1
|
Tuytschaever T, Raes K, Sampers I. Biofilm detection in the food industry: Challenges in identifying biofilm eps markers and analytical techniques with insights for Listeria monocytogenes. Int J Food Microbiol 2025; 432:111091. [PMID: 39923351 DOI: 10.1016/j.ijfoodmicro.2025.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Extracellular polymeric substances (EPS) in biofilms are promising targets for eradicating biofilms and monitoring their presence, especially in the food industry. For this understanding, the composition of the EPS matrix is crucial. Ideally, a biofilm marker is found serving both purposes, but such a compound has not yet been discovered. This review aims to identify general biofilm EPS markers distinct from planktonic cells, focusing on macromolecules in the EPS matrix. It also evaluates the feasibility of this goal across different bacterial groups and environmental conditions and discusses EPS analysis methods. This review digs deeper into the EPS matrix starting with an introduction to the EPS matrix itself and describing some of its influencing factors. Next, a brief description of cell-to-cell communication within biofilms is provided, as these interactions significantly influence the EPS matrix. The main part of this review describes the macromolecules inside the EPS matrix and attempts to find biofilm EPS markers applied to bacteria in general and specifically to Listeria monocytogenes as biofilms are a major contributor to its persistence. The last part of the review focuses on the analytical techniques available to characterize the EPS matrix. The review revealed that although multiple candidates showed great potential as biofilm markers, none were unique but ubiquitous in all bacteria tested. To achieve easy biofilm detection with current techniques, it's necessary to identify markers specific to the environmental conditions and common bacterial groups within each food category, sector, or facility, due to the lack of standardization in these techniques. This tailored approach ensures more accurate and effective biofilm monitoring. Moreover, the lack of standardized analytical techniques, including quantification techniques, complexifies studying the EPS matrix and developing monitoring and intervention strategies. Optimizing analytical techniques is crucial for this tailored approach, as it requires refined methods for detection, characterization, and quantification. This ensures the accurate identification of biofilm markers specific to environmental conditions and bacterial groups within each food sector.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
2
|
Koops M, Meyaard L. VSTM1/SIRL-1: An Inhibitory Pattern Recognition Receptor Regulating Myeloid Cells. Eur J Immunol 2025; 55:e202451465. [PMID: 39989259 PMCID: PMC11848704 DOI: 10.1002/eji.202451465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Innate immune cells express a plethora of inhibitory receptors, many of which recognize molecular patterns. An appropriate balance between signaling via activating and inhibitory pattern recognition receptors is important for a proper immune response while preventing immunopathology. V-set and transmembrane domain containing 1 (VSTM1), also known as signal inhibitory receptor on leukocytes-1 (SIRL-1), is an inhibitory receptor expressed on myeloid cells. VSTM1 can modulate the function of myeloid cells, by inhibiting reactive oxygen species and neutrophil extracellular trap formation. VSTM1 recognizes shared molecular patterns both from endogenous and microbial origin, defining it as an inhibitory pattern recognition receptor. VSTM1 is involved in various pathological conditions, including autoimmune disorders and cancer, and its restricted expression on myeloid cells highlights its potential as a specific therapeutic target. This review summarizes the characteristics and function of VSTM1 in health and disease.
Collapse
Affiliation(s)
- Maaike Koops
- Center of Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Linde Meyaard
- Center of Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
3
|
Li Y, Sung Min H, Chen C, Shan H, Lin Y, Yin F, Chen Y, Lu L, Yu X. A chitosan/gelatin/aldehyde hyaluronic acid hydrogel coating releasing calcium ions and vancomycin in pH response to prevent the formation of bacterial biofilm. Carbohydr Polym 2025; 347:122723. [PMID: 39486953 DOI: 10.1016/j.carbpol.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 11/04/2024]
Abstract
Osteomyelitis is a refractory disease of orthopedics, part of which is caused by medical implants. The main difficulties in treatment are the barrier effect after the formation of bacterial biofilm, and the difficulty in achieving sustained antibiotic intervention. In view of this situation, we studied a hydrogel coating that can release CaCl2 and vancomycin in pH-responsive manner. We used nano-TiO2 to modify Chitosan/ Gelatin/Aldehyde Hyaluronic Acid (CS/Gel/AHA) hydrogel, and combined with the dip-coating technique, prepared a coating with good mechanical strength. The hydrogel-loaded zeolitic imidazolate framework (ZIF) decomposes under acidic conditions, and the released Ca2+ act on the bacterial Bap protein to inhibit the formation of biofilm, and the released vancomycin kills free bacteria. The antibacterial coating achieved good bactericidal effect in both in vitro experiments and rat subcutaneous implant model. These results not only provide a new way to enhance the strength of hydrogels to prepare coatings, but also utilize a new approach to responsively inhibit the formation of biofilms, showing the promising application prospects of the coating in antibacterial treatment of medical implants.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Hong Sung Min
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Chen Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yiwei Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Fuli Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yixian Chen
- Department of Surgery of Chinese Medicine, Jiangxi University of Chinese Medicine, Jiangxi 330004, PR China
| | - Liheng Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
4
|
Goodman SD. Extracellular DNA-protein interactions. Curr Opin Struct Biol 2024; 89:102943. [PMID: 39418796 DOI: 10.1016/j.sbi.2024.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Intracellular DNA primarily serves as the cellular genetic material both in eukaryotes and prokaryotes. This function is often regulated by alterations in the DNA structure to accommodate transcription, recombination, and DNA replication. Extracellularly, both eukaryotic and prokaryotic cells take advantage of DNA plenty in addition to a permissive environment and create novel structures to fulfill multiple new roles. As often occurs intracellularly, extracellular DNA requires proteins to facilitate and stabilize these important structures. Here I review, both host and eubacterial nucleoprotein structures, their composition, their functions, and how these distinct structures can interact. Even at this early stage of study, it is clear that extracellular chromatin plays important biological roles in the survival of both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Steven D Goodman
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis The Ohio State University College of Medicine 700 Children's Drive, WA5021 Columbus, OH 43205, USA.
| |
Collapse
|
5
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|
6
|
Weißelberg S, Both A, Failla AV, Huang J, Linder S, Ohnezeit D, Bartsch P, Aepfelbacher M, Rohde H. Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro. NPJ Biofilms Microbiomes 2024; 10:131. [PMID: 39567551 PMCID: PMC11579364 DOI: 10.1038/s41522-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Biofilm formation shields Staphylococcus epidermidis from host defense mechanisms, contributing to chronic implant infections. Using wild-type S. epidermidis 1457, a PIA-negative mutant (1457-M10), and an eDNA-negative mutant (1457ΔatlE), this study examined the influence of biofilm matrix components on human monocyte-derived macrophage (hMDM) interactions. The wild-type strain was resistant to phagocytosis and induced an anti-inflammatory response in hMDMs, while both mutants were more susceptible to phagocytosis and triggered a pro-inflammatory response. Removing eDNA from the 1457 biofilm matrix increased hMDM uptake and a pro-inflammatory reaction, whereas adding eDNA to the 1457ΔatlE mutant reduced phagocytosis and promoted an anti-inflammatory response. Inhibiting TLR9 enhanced bacterial uptake and induced a pro-inflammatory response in hMDMs exposed to wild-type S. epidermidis. This study highlights the critical role of eDNA in immune evasion and the central role of TLR9 in modulating macrophage responses, advancing the understanding of implant infections.
Collapse
Affiliation(s)
- Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (Umif), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Denise Ohnezeit
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Patricia Bartsch
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
7
|
Hansen KH, Byeon CH, Liu Q, Drace T, Boesen T, Conway JF, Andreasen M, Akbey Ü. Structure of biofilm-forming functional amyloid PSMα1 from Staphylococcus aureus. Proc Natl Acad Sci U S A 2024; 121:e2406775121. [PMID: 39116134 PMCID: PMC11331129 DOI: 10.1073/pnas.2406775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Biofilm-protected pathogenic Staphylococcus aureus causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-β amyloid folds and is therefore a key element in initiating biofilm formation. However, the paucity of high-resolution structures hinders efforts to prevent amyloid assembly and biofilm formation. Here, we present a 3.5 Å resolution density map of the major PSMα1 fibril form revealing a left-handed cross-β fibril composed of two C2-symmetric U-shaped protofilaments whose subunits are unusually tilted out-of-plane. Monomeric α-helical PSMα1 is extremely cytotoxic to cells, despite the moderate toxicity of the cross-β fibril. We suggest mechanistic insights into the PSM functional amyloid formation and conformation transformation on the path from monomer-to-fibril formation. Details of PSMα1 assembly and fibril polymorphism suggest how S. aureus utilizes functional amyloids to form biofilms and establish a framework for developing therapeutics against infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
| | - Chang Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Qian Liu
- Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus8000, Denmark
| | - Taner Drace
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
| | - James F. Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| |
Collapse
|
8
|
Bowden LC, Finlinson J, Jones B, Berges BK. Beyond the double helix: the multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front Cell Infect Microbiol 2024; 14:1400648. [PMID: 38903938 PMCID: PMC11188362 DOI: 10.3389/fcimb.2024.1400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA's structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication.
Collapse
Affiliation(s)
| | | | | | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
9
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
10
|
Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr Opin Microbiol 2024; 79:102473. [PMID: 38608623 PMCID: PMC11162901 DOI: 10.1016/j.mib.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
Collapse
Affiliation(s)
- Molly Elkins
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, Rajasthan, India
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Kalitnik A, Szefczyk M, Wojciechowska AW, Wojciechowski JW, Gąsior-Głogowska M, Olesiak-Bańska J, Kotulska M. Cytotoxic Staphylococcus aureus PSMα3 inhibits the aggregation of human insulin in vitro. Phys Chem Chem Phys 2024; 26:15587-15599. [PMID: 38757742 DOI: 10.1039/d4cp00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-β fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Alicja W Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
12
|
Slobodianyk-Kolomoiets M, Khlebas S, Mazur I, Rudnieva K, Potochilova V, Iungin O, Kamyshnyi O, Kamyshna I, Potters G, Spiers AJ, Moshynets O. Extracellular host DNA contributes to pathogenic biofilm formation during periodontitis. Front Cell Infect Microbiol 2024; 14:1374817. [PMID: 38779563 PMCID: PMC11109387 DOI: 10.3389/fcimb.2024.1374817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.
Collapse
Affiliation(s)
| | - Svitlana Khlebas
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Iryna Mazur
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Kateryna Rudnieva
- Central Clinical Diagnostic Laboratory, Kyiv Regional Clinical Hospital, Kyiv, Ukraine
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical Academy, Kyiv, Ukraine
| | | | - Olga Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Olexandr Kamyshnyi
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
13
|
Kumari S, Das S. Functional amyloid fibrils of biofilm-forming marine bacterium Pseudomonas aeruginosa PFL-P1 interact spontaneously with pyrene and augment the biodegradation. Int J Biol Macromol 2024; 266:131266. [PMID: 38556224 DOI: 10.1016/j.ijbiomac.2024.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
14
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
15
|
Gallucci S. DNA at the center of mammalian innate immune recognition of bacterial biofilms. Trends Immunol 2024; 45:103-112. [PMID: 38281884 PMCID: PMC11032746 DOI: 10.1016/j.it.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Historically, the study of innate immune detection of bacterial infections has focused on the recognition of pathogen-associated molecular patterns (PAMPs) from bacteria growing as single cells in planktonic phase. However, over the past two decades, studies have highlighted an adaptive advantage of bacteria: the formation of biofilms. These structures are complex fortresses that stand against a hostile environment, including antibiotics and immune responses. Extracellular DNA (eDNA) is a crucial component of the matrix of most known biofilms. In this opinion article, I propose that eDNA is a universal PAMP that the immune system uses to recognize biofilms. Outstanding questions concern the discrimination between biofilm-associated eDNA and DNA from planktonic bacteria, the innate receptors involved, and the immune response to biofilms.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Valdivieso González D, Jara J, Almendro-Vedia VG, Orgaz B, López-Montero I. Expansion microscopy applied to mono- and dual-species biofilms. NPJ Biofilms Microbiomes 2023; 9:92. [PMID: 38049404 PMCID: PMC10696089 DOI: 10.1038/s41522-023-00460-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Expansion microscopy (ExM) is a new super-resolution technique based on embedding the biological sample within a hydrogel and its physical expansion after swelling. This allows increasing its size by several times while preserving its structural details. Applied to prokaryotic cells, ExM requires digestion steps for efficient expansion as bacteria are surrounded by a rigid cell wall. Furthermore, bacteria can live in social groups forming biofilms, where cells are protected from environmental stresses by a self-produced matrix. The extracellular matrix represents an additional impenetrable barrier for ExM. Here we optimize the current protocols of ExM and apply them to mono- and dual-species biofilms formed by clinical isolates of Limosilactobacillus reuteri, Enterococcus faecalis, Serratia marcescens and Staphylococcus aureus. Using scanning electron microscopy for comparison, our results demonstrate that embedded bacteria expanded 3-fold. Moreover, ExM allowed visualizing the three-dimensional architecture of the biofilm and identifying the distribution of different microbial species and their interactions. We also detected the presence of the extracellular matrix after expansion with a specific stain of the polysaccharide component. The potential applications of ExM in biofilms will improve our understanding of these complex communities and have far-reaching implications for industrial and clinical research.
Collapse
Affiliation(s)
- David Valdivieso González
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Josué Jara
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Víctor G Almendro-Vedia
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Belén Orgaz
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain.
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
17
|
de Alteriis E, Incerti G, Cartenì F, Chiusano ML, Colantuono C, Palomba E, Termolino P, Monticolo F, Esposito A, Bonanomi G, Capparelli R, Iannaccone M, Foscari A, Landi C, Parascandola P, Sanchez M, Tirelli V, de Falco B, Lanzotti V, Mazzoleni S. Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:292-295. [PMID: 38053574 PMCID: PMC10695634 DOI: 10.15698/mic2023.12.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homologous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumulation of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromosomal circular DNA (eccDNA) already reported inside yeast cells. The recovered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells.
Collapse
Affiliation(s)
- Elisabetta de Alteriis
- Department of Biology, University of Naples “Federico II”, Via Cinthia 26, 80126 Naples, Italy
| | - Guido Incerti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici (NA), Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici (NA), Italy
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alfonso Esposito
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Task Force Microbiome - University of Naples “Federico II“
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Marco Iannaccone
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Laboratory of Biotechnological Processes for Energy and Industry, ENEA, Via Anguillarese, 301, - 00123 Rome, Italy
| | - Alessandro Foscari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Carmine Landi
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy-
| | - Palma Parascandola
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy-
| | - Massimo Sanchez
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valentina Tirelli
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bruna de Falco
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Task Force Microbiome - University of Naples “Federico II“
| |
Collapse
|
18
|
Gnilitskyi I, Rymar S, Iungin O, Vyshnevskyy O, Parisse P, Potters G, Zayats AV, Moshynets O. Femtosecond laser modified metal surfaces alter biofilm architecture and reduce bacterial biofilm formation. NANOSCALE ADVANCES 2023; 5:6659-6669. [PMID: 38024323 PMCID: PMC10662203 DOI: 10.1039/d3na00599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Biofilm formation, or microfouling, is a basic strategy of bacteria to colonise a surface and may happen on surfaces of any nature whenever bacteria are present. Biofilms are hard to eradicate due to the matrix in which the bacteria reside, consisting of strong, adhesive and adaptive self-produced polymers such as eDNA and functional amyloids. Targeting a biofilm matrix may be a promising strategy to prevent biofilm formation. Here, femtosecond laser irradiation was used to modify the stainless steel surface in order to introduce either conical spike or conical groove textures. The resulting topography consists of hierarchical nano-microstructures which substantially increase roughness. The biofilms of two model bacterial strains, P. aeruginosa PA01 and S. aureus ATCC29423, formed on such nanotextured metal surfaces, were considerably modified due to a substantial reduction in amyloid production and due to changes in eDNA surface adhesion, leading to significant reduction in biofilm biomass. Altering the topography of the metal surface, therefore, radically diminishes biofilm development solely by altering biofilm architecture. At the same time, growth and colonisation of the surface by eukaryotic adipose tissue-derived stem cells were apparently enhanced, leading to possible further advantages in controlling eukaryotic growth while suppressing prokaryotic contamination. The obtained results are important for developing anti-bacterial surfaces for numerous applications.
Collapse
Affiliation(s)
- Iaroslav Gnilitskyi
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
- NoviNano Lab LLC Lviv Ukraine
- Lviv Polytechnic National University Ukraine
| | - Svitlana Rymar
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
- Kyiv National University of Technologies and Design Kyiv Ukraine
| | - Olexiy Vyshnevskyy
- M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Pietro Parisse
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC I-34149 Trieste Italy
| | - Geert Potters
- Antwerp Maritime Academy Antwerp Belgium
- Department of Bioscience Engineering, University of Antwerp Antwerp Belgium
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Olena Moshynets
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
| |
Collapse
|
19
|
Marichal L, Bagnard L, Sire O, Vendrely C, Bruckert F, Weidenhaupt M. Phenol-soluble modulins form amyloids in contact with multiple surface chemistries. Biochim Biophys Acta Gen Subj 2023; 1867:130450. [PMID: 37640168 DOI: 10.1016/j.bbagen.2023.130450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Functional amyloids are commonly produced by many microorganisms and their biological functions are numerous. Staphylococcus aureus can secrete a group of peptides named phenol-soluble modulins (PSMs) in their biofilm extracellular matrix. PSMs have been found inside biofilms both in their soluble form and assembled into amyloid structures. Yet, the actual biological function of these amyloids has been highly debated. Here, we assessed the ability of PSMs to form amyloids in contact with different abiotic surfaces to unravel a potential unknown bioadhesive and/or biofilm stabilization function. We combined surface plasmon resonance imaging, fluorescence aggregation kinetics, and FTIR spectroscopy in order to evaluate the PSM adsorption as well as amyloid formation properties in the presence of various surface chemistries. Overall, PSMs adsorb even on low-binding surfaces, making them highly adaptable adsorbants in the context of bioadhesion. Moreover, the PSM aggregation potential to form amyloid aggregates is not impacted by the presence of the surface chemistries tested. This versatility regarding adsorption and amyloid formation may imply a possible role of PSMs in biofilm adhesion and/or structure integrity.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Lucie Bagnard
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Olivier Sire
- IRDL, UMR CNRS 6027, Université Bretagne Sud, Vannes, France
| | - Charlotte Vendrely
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | - Franz Bruckert
- Université Grenoble Alpes, CNRS, Grenoble-INP LMGP, Grenoble F-38000, France
| | | |
Collapse
|
20
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Howard MK, Miller KR, Sohn BS, Ryan JJ, Xu A, Jackrel ME. Probing the drivers of Staphylococcus aureus biofilm protein amyloidogenesis and disrupting biofilms with engineered protein disaggregases. mBio 2023; 14:e0058723. [PMID: 37195208 PMCID: PMC10470818 DOI: 10.1128/mbio.00587-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are the primary proteinaceous component of Staphylococcus aureus biofilms. Residence in the protective environment of biofilms allows bacteria to rapidly evolve and acquire antimicrobial resistance, which can lead to persistent infections such as those caused by methicillin-resistant S. aureus (MRSA). In their soluble form, PSMs hinder the immune response of the host and can increase the virulence potential of MRSA. PSMs also self-assemble into insoluble functional amyloids that contribute to the structural scaffold of biofilms. The specific roles of PSM peptides in biofilms remain poorly understood. Here, we report the development of a genetically tractable yeast model system for studying the properties of PSMα peptides. Expression of PSMα peptides in yeast drives the formation of toxic insoluble aggregates that adopt vesicle-like structures. Using this system, we probed the molecular drivers of PSMα aggregation to delineate key similarities and differences among the PSMs and identified a crucial residue that drives PSM features. Biofilms are a major public health threat; thus, biofilm disruption is a key goal. To solubilize aggregates comprised of a diverse range of amyloid and amyloid-like species, we have developed engineered variants of Hsp104, a hexameric AAA+ protein disaggregase from yeast. Here, we demonstrate that potentiated Hsp104 variants counter the toxicity and aggregation of PSMα peptides. Further, we demonstrate that a potentiated Hsp104 variant can drive the disassembly of preformed S. aureus biofilms. We suggest that this new yeast model can be a powerful platform for screening for agents that disrupt PSM aggregation and that Hsp104 disaggregases could be a promising tool for the safe enzymatic disruption of biofilms. IMPORTANCE Biofilms are complex mixtures secreted by bacteria that form a material in which the bacteria can become embedded. This process transforms the properties of the bacteria, and they become more resistant to removal, which can give rise to multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we study phenol-soluble modulins (PSMs), which are amyloidogenic proteins secreted by S. aureus, that become incorporated into biofilms. Biofilms are challenging to study, so we have developed a new genetically tractable yeast model to study the PSMs. We used our system to learn about several key features of the PSMs. We also demonstrate that variants of an amyloid disaggregase, Hsp104, can disrupt the PSMs and, more importantly, dissolve preformed S. aureus biofilms. We propose that our system can be a powerful screening tool and that Hsp104 disaggregases may be a new avenue to explore for biofilm disruption agents.
Collapse
Affiliation(s)
- Matthew K. Howard
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Karlie R. Miller
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Jeremy J. Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Andy Xu
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
22
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Wang X, Uppu DS, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus Delta Toxin Modulates both Extracellular Membrane Vesicle Biogenesis and Amyloid Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533957. [PMID: 36993475 PMCID: PMC10055364 DOI: 10.1101/2023.03.23.533957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Staphylococcus aureus secretes phenol-soluble modulins (PSMs), a family of small, amphipathic, secreted peptides with multiple biologic activities. Community-acquired S. aureus strains produce high levels of PSMs in planktonic cultures, and PSM alpha peptides have been shown to augment the release of extracellular membrane vesicles (MVs). We observed that amyloids, aggregates of proteins characterized by a fibrillar morphology and stained with specific dyes, co-purified with MVs harvested from cell-free culture supernatants of community-acquired S. aureus strains. δ-toxin was a major component of amyloid fibrils that co-purified with strain LAC MVs, and δ-toxin promoted the production of MVs and amyloid fibrils in a dose-dependent manner. To determine whether MVs and amyloid fibrils were generated under in vivo conditions, we inoculated mice with S. aureus harvested from planktonic cultures. Bacterial MVs could be isolated and purified from lavage fluids recovered from infected animals. Although δ-toxin was the most abundant PSM in lavage fluids, amyloid fibrils could not be detected in these samples. Our findings expand our understanding of amyloid fibril formation in S. aureus cultures, reveal important roles of δ-toxin in amyloid fibril formation and MV biogenesis, and demonstrate that MVs are generated in vivo in a staphylococcal infection model. Importance Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene ( hld ). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
|
24
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
26
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, González-Gómez JP, González-Torres B, Velázquez-Suárez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, Cardona-López MA, Robles-García MÁ, Gutiérrez-Lomelí M. Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol 2022; 13:1001700. [PMID: 36532477 PMCID: PMC9755592 DOI: 10.3389/fmicb.2022.1001700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Staphylococcus aureus is an important pathogen that can form biofilms on food contact surfaces (FCS) in the dairy industry, posing a serious food safety, and quality concern. Biofilm is a complex system, influenced by nutritional-related factors that regulate the synthesis of the components of the biofilm matrix. This study determines the prevalence of biofilm-associated genes and evaluates the development under different growth conditions and compositions of biofilms produced by S. aureus. METHODS Biofilms were developed in TSB, TSBG, TSBNaCl, and TSBGNaCl on stainless-steel (SS), with enumeration at 24 and 192 h visualized by epifluorescence and scanning electron microscopy (SEM). The composition of biofilms was determined using enzymatic and chemical treatments and confocal laser scanning microscopy (CLSM). RESULTS AND DISCUSSION A total of 84 S. aureus (SA1-SA84) strains were collected from 293 dairy industry FCS (FCS-stainless steel [n = 183] and FCS-polypropylene [n = 110]) for this study. The isolates harbored the genes sigB (66%), sar (53%), agrD (52%), clfB/clfA (38%), fnbA/fnbB (20%), and bap (9.5%). 99. In particular, the biofilm formed by bap-positive S. aureus onto SS showed a high cell density in all culture media at 192 h in comparison with the biofilms formed at 24 h (p < 0.05). Epifluorescence microscopy and SEM revealed the metabolically active cells and the different stages of biofilm formation. CLSM analysis detected extracellular polymeric of S. aureus biofilms on SS, such as eDNA, proteins, and polysaccharides. Finally, the level of detachment on being treated with DNase I (44.7%) and NaIO 4(42.4%) was greater in the biofilms developed in TSB compared to culture medium supplemented with NaCl at 24 h; however, there was no significant difference when the culture medium was supplemented with glucose. In addition, after treatment with proteinase K, there was a lower level of biomass detachment (17.7%) of the biofilm developed in TSBNaCl (p < 0.05 at 24 h) compared to that in TSB, TSBG, and TSBGNaCl (33.6, 36.9, and 37.8%, respectively). These results represent a deep insight into the composition of S. aureus biofilms present in the dairy industry, which promotes the development of more efficient composition-specific disinfection strategies.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Jean-Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Noemí Yolanda Velázquez-Suárez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Liliana Martínez-Chávez
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nanci Edid Martínez-Gonzáles
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Luz María Ibarra-Velázquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Marco Antonio Cardona-López
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Miguel Ángel Robles-García
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| |
Collapse
|
27
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Matilla-Cuenca L, Taglialegna A, Gil C, Toledo-Arana A, Lasa I, Valle J. Bacterial biofilm functionalization through Bap amyloid engineering. NPJ Biofilms Microbiomes 2022; 8:62. [PMID: 35909185 PMCID: PMC9339546 DOI: 10.1038/s41522-022-00324-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.
Collapse
Affiliation(s)
| | - Agustina Taglialegna
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.,The Campus 4 Crinan Street London N1, London, UK
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.
| |
Collapse
|
29
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
30
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
31
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
32
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
33
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
34
|
陈 冬, 林 焕. [Research Updates: Cariogenic Mechanism of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:208-213. [PMID: 35332719 PMCID: PMC10409355 DOI: 10.12182/20220360508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of dental caries remains high, posing a major burden on the public health of the global society. Microorganisms are the main cause of dental caries, among which Streptococcus mutans ( S. mutans) is one of the most widely recognized cariogenic bacteria. In recent years, the progress in research technology enabled the academic circle to conduct more in-depth research into caries-inducing S. mutans at the DNA, RNA and protein levels, and to gain thereby a new understanding of the surface structure and extracellular matrix composition of S. mutans. In this paper, we summarized recent findings on the cariogenic mechanism of S. mutans in order to help reveal more targets and potential approaches for the future development of caries prevention agents that target S. mutans, and to promote the development of dental caries prevention campaign.
Collapse
Affiliation(s)
- 冬茹 陈
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - 焕彩 林
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
35
|
Moshynets OV, Baranovskyi TP, Iungin OS, Kysil NP, Metelytsia LO, Pokholenko I, Potochilova VV, Potters G, Rudnieva KL, Rymar SY, Semenyuta IV, Spiers AJ, Tarasyuk OP, Rogalsky SP. eDNA Inactivation and Biofilm Inhibition by the PolymericBiocide Polyhexamethylene Guanidine Hydrochloride (PHMG-Cl). Int J Mol Sci 2022; 23:ijms23020731. [PMID: 35054915 PMCID: PMC8775615 DOI: 10.3390/ijms23020731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA–PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
- Correspondence: (O.V.M.); (S.P.R.)
| | - Taras P. Baranovskyi
- Department of Dermatovenerology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., 03680 Kiev, Ukraine;
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Olga S. Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kiev, Ukraine
| | - Nadiia P. Kysil
- National Children’s Specialized Hospital “Okhmatdyt”, 28/1 Chornovola Str., 01135 Kiev, Ukraine;
| | - Larysa O. Metelytsia
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Ianina Pokholenko
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
| | - Viktoria V. Potochilova
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium;
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Kateryna L. Rudnieva
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Svitlana Y. Rymar
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
| | - Ivan V. Semenyuta
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Oksana P. Tarasyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Sergiy P. Rogalsky
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
- Correspondence: (O.V.M.); (S.P.R.)
| |
Collapse
|
36
|
Chen Y, Cui G, Cui Y, Chen D, Lin H. Small molecule targeting amyloid fibrils inhibits Streptococcus mutans biofilm formation. AMB Express 2021; 11:171. [PMID: 34919191 PMCID: PMC8683520 DOI: 10.1186/s13568-021-01333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Amyloid fibrils are important scaffold in bacterial biofilms. Streptococcus mutans is an established cariogenic bacteria dwelling within biofilms, and C123 segment of P1 protein is known to form amyloid fibrils in S. mutans biofilms, among which C3 segment could serve as a promising anti-amyloid target due to its critical role in C123-P1 interactions. Recently, small molecules have been found to successfully inhibit biofilms by targeting amyloid fibrils. Thus, our study aimed to screen small molecules targeting C3 segment with the capacity to influence amyloid fibrils and S. mutans biofilms. In silico screening was utilized to discover promising small molecules, which were evaluated for their effects on bacterial cells and amyloid fibrils. We selected 99 small molecules and enrolled 55 small molecules named D1-D55 for crystal violet staining. Notably, D25 selectively inhibit S. mutans biofilms but had no significant influence on biofilms formed by Streptococcus gordonii and Streptococcus sanguinis, and D25 showed no bactericidal effects and low cytotoxicity. In addition, amyloid fibrils in free-floating bacteria, biofilms and purified C123 were quantified with ThT assays, and the differences were not statistically significant in the presence or absence of D25. Morphological changes of amyloid fibrils were visualized with TEM images, where amorphous aggregates were obvious coupled with long and atypical amyloid fibrils. Moreover, amyloid-related genes were upregulated in response to D25. In conclusion, D25 is a promising antimicrobial agent with the capacity to influence amyloid fibrils and inhibit S. mutans biofilms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Guxin Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yuqi Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Dongru Chen
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
37
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
38
|
Yan H, Li M, Meng L, Zhao F. Formation of viable but nonculturable state of Staphylococcus aureus under frozen condition and its characteristics. Int J Food Microbiol 2021; 357:109381. [PMID: 34492585 DOI: 10.1016/j.ijfoodmicro.2021.109381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Viable but nonculturable (VBNC) state of microorganisms has attracted much attention due to its characteristics, including the difficulty in detection by culture-based methods, virulence retention, high resistance, and so on. As a foodborne pathogen, Staphylococcus aureus is widely distributed, and has been found to enter the VBNC state under some environmental stresses, posing a potential threat to human health. Freezing is a common condition for food storage. This study investigated whether citric acid, a common food additive, could induce S. aureus into the VBNC state at -20 °C. By measuring the number of culturable and viable cells, it was found that S. aureus entered the VBNC state after 72 days of induction in citric acid buffer at -20 °C. The VBNC cells were then successfully resuscitated at 37 °C in trypsin soybean medium (TSB) with or without heat shock treatment, and TSB supplemented with sodium pyruvate and Tween 80 after 48 h. Heat shock resulted in an excellent resuscitation effect. Observed by transmission electron microscopy, the internal structure of VBNC cells was found markedly changed, compared with that of exponential phase cells. API ZYM kit was used to compare the intracellular enzyme activity of S. aureus in the exponential phase with that in the VBNC state. The results showed that the enzyme activity decreased significantly in VBNC cells, and that the VBNC cells were more resistant to simulated gastrointestinal fluid through flow cytometry analysis. Quantitative reverse-transcription polymerase chain reaction results suggested that the ability of adhesion and biofilm formation of VBNC cells might be decreased due to the down-regulation of related genes. However, it should not be ignored the recovery potential of biofilm-forming ability of VBNC cells caused by the high expression of sarA. In conclusion, S. aureus could be induced into the VBNC state in citric acid buffer at -20 °C, which showed changes in some biological characteristics and could resuscitate successfully by many conditions. Food industry needs to pay attention to the potential hazard by VBNC S. aureus under frozen conditions.
Collapse
Affiliation(s)
- Haiyang Yan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Meng Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Lingling Meng
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China.
| |
Collapse
|
39
|
Yau HCL, Malekpour AK, Momin NG, Morales-García AL, Willats WGT, Lant NJ, Jones CY. Removal of eDNA from fabrics using a novel laundry DNase revealed using high-resolution imaging. Sci Rep 2021; 11:21542. [PMID: 34728780 PMCID: PMC8563969 DOI: 10.1038/s41598-021-98939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Washed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that 'invisible' soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.
Collapse
Affiliation(s)
- Hamish C L Yau
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Adam K Malekpour
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Nazarmohammad G Momin
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Ana L Morales-García
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Neil J Lant
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.
| | - Catherine Y Jones
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
40
|
Pant N, Eisen DP. Non-Antimicrobial Adjuvant Strategies to Tackle Biofilm-Related Staphylococcus aureus Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:antibiotics10091060. [PMID: 34572641 PMCID: PMC8465242 DOI: 10.3390/antibiotics10091060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus frequently causes community- and hospital-acquired infections. S. aureus attachment followed by biofilm formation on tissues and medical devices plays a significant role in the establishment of chronic infections. Staphylococcal biofilms encase bacteria in a matrix and protect the cells from antimicrobials and the immune system, resulting in infections that are highly resistant to treatment. The biology of biofilms is complex and varies between organisms. In this review, we focus our discussion on S. aureus biofilms and describe the stages of their formation. We particularly emphasize genetic and biochemical processes that may be vulnerable to novel treatment approaches. Against this background, we discuss treatment strategies that have been successful in animal models of S. aureus biofilm-related infection and consider their possible use for the prevention and eradication of biofilm-related S. aureus prosthetic joint infection.
Collapse
|
41
|
Najarzadeh Z, Nielsen J, Farzadfard A, Sereikaite V, Strømgaard K, Meyer RL, Otzen DE. Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from Staphylococcus aureus. ACS OMEGA 2021; 6:21960-21970. [PMID: 34497891 PMCID: PMC8412925 DOI: 10.1021/acsomega.1c02333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMβ1, and PSMβ2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous β-rich aggregates rather than fibrils. Fg also induces PSMβ2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMβ1 and PSMβ2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Azad Farzadfard
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Vita Sereikaite
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci 2021; 22:ijms22169100. [PMID: 34445806 PMCID: PMC8396552 DOI: 10.3390/ijms22169100] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
After the first ancient studies on microbial slime (the name by which the biofilm matrix was initially indicated), multitudes of studies on the morphology, composition and physiology of biofilms have arisen. The emergence of the role that biofilms play in the pathogenesis of recalcitrant and persistent clinical infections, such as periprosthetic orthopedic infections, has reinforced scientific interest. Extracellular DNA (eDNA) is a recently uncovered component that is proving to be almost omnipresent in the extracellular polymeric substance (EPS) of biofilm. This macromolecule is eliciting unprecedented consideration for the critical impact on the pathogenesis of chronic clinical infections. After a systematic review of the literature, an updated description of eDNA in biofilms is presented, with a special focus on the latest findings regarding its fundamental structural role and the contribution it makes to the complex architecture of bacterial biofilms through interactions with a variety of other molecular components of the biofilm matrix.
Collapse
|
43
|
Najarzadeh Z, Zaman M, Sereikaite V, Strømgaard K, Andreasen M, Otzen DE. Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. J Biol Chem 2021; 297:100953. [PMID: 34270957 PMCID: PMC8363829 DOI: 10.1016/j.jbc.2021.100953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/26/2022] Open
Abstract
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Masihuz Zaman
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
44
|
Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules 2021; 26:molecules26133890. [PMID: 34202224 PMCID: PMC8271424 DOI: 10.3390/molecules26133890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023] Open
Abstract
Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.
Collapse
|
45
|
Svarcova V, Zdenkova K, Sulakova M, Demnerova K, Pazlarova J. Contribution to determination of extracellular DNA origin in the biofilm matrix. J Basic Microbiol 2021; 61:652-661. [PMID: 33997991 DOI: 10.1002/jobm.202100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
This study is focused on the analysis of extracellular DNA (eDNA) from a biofilm matrix formed by Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica. The presence of eDNA in the biofilm of all the studied strains was confirmed by confocal laser scanning microscopy using fluorescent dyes with high affinity to nucleic acid. The protocol for eDNA isolation from the biofilm matrix was established, and subsequent characterization of the eDNA was performed. The purified eDNA obtained from the biofilm matrix of all three microorganisms was compared to the genomic DNA (gDNA) isolated from relevant planktonic grown cells. The process of eDNA isolation consisted of biofilm cultivation, its collection, sonication, membrane filtration, dialysis, lyophilisation, and extraction of DNA separated from the biofilm matrix with cetyltrimethylammonium bromide. An amplified fragment length polymorphism (AFLP) was used for comparing eDNA and gDNA. AFLP profiles showed a significant similarity between eDNA and gDNA at the strain level. The highest similarity, with a profile concordance rate of 94.7% per strain, was observed for S. aureus, L. monocytogenes, and S. enterica exhibited lower profiles similarity (78% and 60%, respectively). The obtained results support the hypothesis that the eDNA of studied bacterial species has its origin in the gDNA.
Collapse
Affiliation(s)
- Viviana Svarcova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Kamila Zdenkova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Martina Sulakova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Katerina Demnerova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jarmila Pazlarova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
46
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
47
|
Ruiz-Sorribas A, Poilvache H, Kamarudin NHN, Braem A, Van Bambeke F. In vitro polymicrobial inter-kingdom three-species biofilm model: influence of hyphae on biofilm formation and bacterial physiology. BIOFOULING 2021; 37:481-493. [PMID: 34225500 DOI: 10.1080/08927014.2021.1919301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.
Collapse
Affiliation(s)
- Albert Ruiz-Sorribas
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hervé Poilvache
- Laboratoire de neuro musculo squelettique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
48
|
Khambhati K, Patel J, Saxena V, A P, Jain N. Gene Regulation of Biofilm-Associated Functional Amyloids. Pathogens 2021; 10:490. [PMID: 33921583 PMCID: PMC8072697 DOI: 10.3390/pathogens10040490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Jaykumar Patel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Vijaylaxmi Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Parvathy A
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
49
|
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129-2141. [PMID: 33748946 DOI: 10.1002/bit.27760] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Advances in biotechnology to treat and cure human disease have markedly improved human health and the development of modern societies. However, substantial challenges remain to overcome innate biological factors that thwart the activity and efficacy of pharmaceutical therapeutics. Until recently, the importance of extracellular DNA (eDNA) in biofilms was overlooked. New data reveal its extensive role in biofilm formation, adhesion, and structural integrity. Different approaches to target eDNA as anti-biofilm therapies have been proposed, but eDNA and the corresponding biofilm barriers are still difficult to disrupt. Therefore, more creative approaches to eradicate biofilms are needed. The production of eDNA often originates with the genetic material of bacterial cells through cell lysis. However, genomic DNA and eDNA are not necessarily structurally or compositionally identical. Variations are noteworthy because they dictate important interactions within the biofilm. Interactions between eDNA and biofilm components may as well be exploited as alternative anti-biofilm strategies. In this review, we discuss recent developments in eDNA research, emphasizing potential ways to disrupt biofilms. This review also highlights proteins, exopolysaccharides, and other molecules interacting with eDNA that can serve as anti-biofilm therapeutic targets. Overall, the array of diverse interactions with eDNA is important in biofilm structure, architecture, and stability.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
50
|
Viruega-Góngora VI, Acatitla-Jácome IS, Reyes-Carmona SR, Baca BE, Ramírez-Mata A. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense. FEMS Microbiol Lett 2021; 367:5762672. [PMID: 32105306 DOI: 10.1093/femsle/fnaa037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Elucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix. In static culture conditions, the polar flagellum disaggregated after 3 days of biofilm growth, but exopolysaccharides were increasing. These findings suggest that the first step in biofilm formation may be attachment, in which the bacterium first makes contact with a surface through its polar flagellum. After attaching to the surface, the long flagella and OmaA intertwine the cells to form a network. These bacterial aggregates initiate biofilm development. The underlying mechanisms dictating how the biofilm matrix components of A. brasilense direct the overall morphology of the biofilm are not well known. The methods developed here might be useful in further studies that analyze the differential spatial regulation of genes encoding matrix components that drive biofilm construction.
Collapse
Affiliation(s)
- Víctor I Viruega-Góngora
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Iris S Acatitla-Jácome
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Sandra R Reyes-Carmona
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| |
Collapse
|