1
|
Zhao L, Ma X, Liu B, Yao X, Liu H, Zhang Q. Investigating the unbinding mechanisms and kinetics of MmpL3 inhibitors: A computational study. Protein Sci 2025; 34:e70163. [PMID: 40371723 PMCID: PMC12079479 DOI: 10.1002/pro.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3) is responsible for transporting trehalose monomycolates across the inner membrane for cell wall biosynthesis, a process driven by the proton motive force and essential for the survival of Mycobacterium tuberculosis. As a result, MmpL3 has become a promising target for anti-tuberculosis drugs. Although many inhibitors targeting MmpL3 have been discovered, their unbinding mechanisms and kinetics remain poorly understood. In this study, the τ-random acceleration molecular dynamics (τRAMD) and steered molecular dynamics (SMD) methods were employed to investigate the unbinding mechanisms and kinetics of four representative MmpL3 inhibitors: SQ109, AU1235, NITD349, and BM212. Analysis of 320 RAMD dissociation trajectories revealed considerable diversity in the dissociation pathways for these inhibitors, dissociating into intracellular, extracellular, or transmembrane regions. Notably, the H4H5H10 pathway, dissociating to the intracellular region, was the primary route. Also, τRAMD results demonstrated a strong correlation between the computed relative residence times and experimental data. Furthermore, SMD simulations along the H4H5H10 pathway indicated that SQ109, AU1235, and NITD349 disrupted hydrogen bonding with MmpL3 prior to dissociation. Meanwhile, inhibitor BM212 underwent conformational adjustments within the binding pocket. All these inhibitors must traverse the channel formed by Phe255 and Phe644 via the H4H5H10 pathway, necessitating the overcoming of significant energy barriers. Based on these findings, we suggest that enhancing inhibitor interactions with MmpL3, such as through hydrogen bonding or increasing inhibitor size to create larger physical barriers (e.g., interactions with Phe255 and Phe644), may prolong the inhibitors' residence times.
Collapse
Affiliation(s)
- Likun Zhao
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Xiuling Ma
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Bo Liu
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Xiaojun Yao
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Huanxiang Liu
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Qianqian Zhang
- Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| |
Collapse
|
2
|
Basher M, Gur M, Meir M. Insights on the Pathogenesis of Mycobacterium abscessus Infection in Patients with Cystic Fibrosis. J Clin Med 2025; 14:3492. [PMID: 40429486 DOI: 10.3390/jcm14103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
People with CF (pwCF) have a significant risk for pulmonary infections with non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus (Mab). Mab is an emerging pathogen, which causes pulmonary infections in patients with chronic lung diseases, particularly CF; Mab pulmonary disease leads to progressive pulmonary dysfunction and increased morbidity and mortality. Despite advances in CF care, including CFTR modulators (CFTRm), Mab continues to pose a therapeutic challenge, with significant long-term medical burden. This review provides insights into the complex host-pathogen interplay of Mab infections in pwCF. It provides a detailed overview of Mab bacterial virulence factors, including biofilm formation, secretion systems, the virulence-associated rough morphotype, and antibiotic resistance mechanisms. This review also summarizes features conferring susceptibility of the CF host to Mab infections, alongside the contribution of the CF-host environment to the pathogenesis of Mab infection, such as antibiotic-derived microbial selection, within-host mycobacterial evolution, and interactions with co-pathogens such as Pseudomonas aeruginosa (PA). Finally, the therapeutic implications and novel treatments for Mab are discussed, considering the complex host-pathogen interplay.
Collapse
Affiliation(s)
- Mai Basher
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Gur
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Meir
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
- Pediatric Infectious Diseases Unit, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
3
|
Leclercq LD, Le Moigne V, Daher W, Cortes M, Viljoen B, Tasrini Y, Trivelli X, Lavanant H, Schmitz-Afonso I, Durand N, Biet F, Guérardel Y, Kremer L, Herrmann JL. A glycosylated lipooctapeptide promotes uptake and growth of Mycobacterium abscessus in the host. Nat Commun 2025; 16:3326. [PMID: 40199904 PMCID: PMC11978893 DOI: 10.1038/s41467-025-58455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Pathogenic mycobacteria produce a wide array of lipids which participate in host cell interactions and virulence. While some of these are conserved across all mycobacteria, others, like glycopeptidolipids (GPL), are restricted to a few species. Mycobacterium abscessus, an emerging rapid-growing pathogen, transitions from a smooth to a virulent rough variant upon the loss of surface GPL. Here, we discovered that M. abscessus and phylogenetically-close species harbor a second GPL-related locus, comprising two adjacent non-ribosomal peptide synthetase genes, MAB_4690c and MAB_4691c. A MAB_4690c deletion mutant (ΔMAB_4690c) failed to produce a yet undescribed lipid, designated GL8P for glycosylated lipooctapeptide, sharing an acylated octapeptide core adorned by mono or di-O-rhamnosyl substituents. ΔMAB_4690c exhibited impaired uptake and survival in THP-1 cells and was attenuated in mice. Importantly, GL8P elicited a strong humoral response in patients infected with M. abscessus. These results highlight the role of GL8P in the pathophysiology of infection by rough M. abscessus and suggest its potential as a selective marker for M. abscessus infections.
Collapse
Affiliation(s)
- Louis David Leclercq
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Mélanie Cortes
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Bertus Viljoen
- Centre National de la Recherche Scientifique UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- IPBS, CNRS, Toulouse, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638-IMEC-Institut Michel-Eugène Chevreul, Lille, France
| | - Hélène Lavanant
- Normandie Univ, Univ Rouen Normandie, CNRS, CARMeN UMR 6064 (ex-COBRA-LCMT), Rouen, France
| | | | - Nicolas Durand
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Franck Biet
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly, France
| | - Yann Guérardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
- AP-HP, Service de Microbiologie, GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France.
| |
Collapse
|
4
|
McGowen K, Funck T, Wang X, Zinga S, Wolf ID, Akusobi C, Denkinger CM, Rubin EJ, Sullivan MR. Efflux pumps and membrane permeability contribute to intrinsic antibiotic resistance in Mycobacterium abscessus. PLoS Pathog 2025; 21:e1013027. [PMID: 40208857 PMCID: PMC12017575 DOI: 10.1371/journal.ppat.1013027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/23/2025] [Accepted: 03/08/2025] [Indexed: 04/12/2025] Open
Abstract
Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in M. abscessus using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance in M. abscessus and suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.
Collapse
Affiliation(s)
- Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tobias Funck
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Heidelberg, Germany
| | - Xin Wang
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samuel Zinga
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ian D. Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Claudia M. Denkinger
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Heidelberg, Germany
| | - Eric J. Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Mark R. Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Earp JC, Garaeva AA, Meikle V, Niederweis M, Seeger MA. Structural basis of siderophore export and drug efflux by Mycobacterium tuberculosis. Nat Commun 2025; 16:1934. [PMID: 39994240 PMCID: PMC11850643 DOI: 10.1038/s41467-025-56888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
To replicate and cause disease, Mycobacterium tuberculosis secretes siderophores called mycobactins to scavenge iron from the human host. Two closely related transporters, MmpL4 and MmpL5, are required for mycobactin secretion and drug efflux. In clinical strains, overproduction of MmpL5 confers resistance towards bedaquiline and clofazimine, key drugs to combat multidrug resistant tuberculosis. Here, we present cryogenic-electron microscopy structures of MmpL4 and identify a mycobactin binding site, which is accessible from the cytosol and also required for bedaquiline efflux. An unusual coiled-coil domain predicted to extend 130 Å into the periplasm is essential for mycobactin and bedaquiline efflux by MmpL4 and MmpL5. The mycobacterial acyl carrier protein MbtL forms a complex with MmpL4, indicating that mycobactin synthesis and export are coupled. Thus, MmpL4 and MmpL5 constitute the core components of a unique multi-subunit machinery required for iron acquisition and drug efflux by M. tuberculosis.
Collapse
Affiliation(s)
- Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Alisa A Garaeva
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Laudouze J, Point V, Achache W, Crauste C, Canaan S, Santucci P. Fluorescence-based CRISPR interference system for controlled genetic repression and live single-cell imaging in mycobacteria. FEBS Lett 2025; 599:488-501. [PMID: 39618159 PMCID: PMC11848015 DOI: 10.1002/1873-3468.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 02/25/2025]
Abstract
In this research letter, we report the development and validation of a new subset of fluorescence-based CRISPR interference (CRISPRi) tools for our scientific community. The pJL series is directly derived from the original pIRL CRISPRi vectors and conserves all the elements to perform inducible targeted gene repression. These vectors carry two distinct fluorescent markers under the constitutive promoter psmyc to simplify the selection of recombinant clones. We demonstrate the functionality of these vectors by targeting the expression of the glycopeptidolipid translocase mmpL4b and the essential genes rpoB and mmpL3. Finally, we describe an efficient single-step procedure to co-transform mycobacterial species with this integrative genetic tool alongside episomal vectors. Such tools and approaches should be useful to foster discovery in mycobacterial research.
Collapse
Affiliation(s)
| | - Vanessa Point
- Aix Marseille Univ, CNRS, LISM, IMM FR3479, IM2BFrance
| | - Wafaa Achache
- Aix Marseille Univ, CNRS, LISM, IMM FR3479, IM2BFrance
- IHU Méditerranée Infection, Aix‐Marseille Univ.France
| | | | | | | |
Collapse
|
7
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Malmsheimer S, Daher W, Tasrini Y, Hamela C, Aguilera-Correa JJ, Chalut C, Hatfull GF, Kremer L. Trehalose polyphleates participate in Mycobacterium abscessus fitness and pathogenesis. mBio 2024; 15:e0297024. [PMID: 39475242 PMCID: PMC11633156 DOI: 10.1128/mbio.02970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
Mycobacteria produce a large repertoire of surface-exposed lipids with major biological functions. Among these lipids, trehalose polyphleates (TPPs) are instrumental in the infection of Mycobacterium abscessus by the therapeutic phage BPs. However, while the biosynthesis and transport of TPPs across the membrane by MmpL10 have been reported, the role of TPPs in host infection remains enigmatic. Here, we addressed whether the loss of TPPs influences interactions with macrophages and the virulence of M. abscessus. As anticipated, the deletion of mmpL10 in smooth (S) and rough (R) variants of M. abscessus abrogated TPP production, which was rescued upon gene complementation. Importantly, infection of human THP-1 cells with the mmpL10 mutants was associated with decreased intramacrophage survival and a reduced proportion of infected cells. The rough mmpL10 mutant showed an impaired capacity to block phagosomal acidification and was unable to co-localize with Galectin-3, a marker of phagosomal membrane damage. This suggests that TPPs participate, directly or indirectly, in phagolysosomal fusion and in phagosomal membrane damage to establish cytosolic communication. The TPP defect that affects the fitness and virulence of M. abscessus was further demonstrated in zebrafish embryos using a rough clinical strain resistant to phage BPs and harboring a frameshift mutation in mmpL10. Infection with this strain was correlated with a slight decrease in embryo survival and a reduced bacterial burden as compared to the corresponding parental and complemented derivatives. Together, these results indicate that TPPs are important surface lipids contributing to the pathogenicity of M. abscessus.IMPORTANCETrehalose polyphleates (TPPs) are complex lipids associated with the mycobacterial cell surface and were identified 50 years ago. While the TPP biosynthetic pathway has been described recently, the role of these lipids in the biology of mycobacteria remains yet to be established. The wide distribution of TPPs across mycobacterial species suggests that they may exhibit important functions in these actinobacteria. Here, we demonstrate that Mycobacterium abscessus, an emerging multidrug-resistant pathogen that causes severe lung diseases in cystic fibrosis patients, requires TPPs for survival in macrophages and virulence in a zebrafish model of infection. These findings support the importance of this underexplored family of lipids in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
9
|
Allen R, Ames L, Baldin VP, Butts A, Henry KJ, Durst G, Quach D, Sugie J, Pogliano J, Parish T. An arylsulfonamide that targets cell wall biosynthesis in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0103724. [PMID: 39324799 PMCID: PMC11539219 DOI: 10.1128/aac.01037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
We investigated the mechanism of action of an arylsulfonamide with whole-cell activity against Mycobacterium tuberculosis. We newly synthesized the molecule and confirmed it had activity against both extracellular and intracellular bacilli. The molecule had some activity against HepG2 cells but maintained some selectivity. Bacterial cytological profiling suggested that the mechanism of action was via disruption of cell wall synthesis, with similarities to an inhibitor of the mycolic acid exporter MmpL3. The compound induced expression from the IniB promoter and caused a boost in ATP production but did not induce reactive oxygen species. A mutation in MmpL3 (S591I) led to low-level resistance. Taken together, these data confirm the molecule targets cell wall biosynthesis with MmpL3 as the most probable target.
Collapse
Affiliation(s)
- Renee Allen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lauren Ames
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Vanessa Pietrowski Baldin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Arielle Butts
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | | - Diana Quach
- Linnaeus Bioscience Inc., San Diego, California, USA
| | - Joseph Sugie
- Linnaeus Bioscience Inc., San Diego, California, USA
| | - Joe Pogliano
- Linnaeus Bioscience Inc., San Diego, California, USA
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
10
|
Kim DH, Seo H, Jung S, Kim BJ. Global prevalence of Mycobacterium massiliense strains with recombinant rpoB genes (Rec-Mas) horizontally transferred from Mycobacterium abscessus: two major types, dominant circulating clone 7 and MLST ST46 sequence type. Microbiol Spectr 2024; 12:e0193524. [PMID: 39431893 PMCID: PMC11619318 DOI: 10.1128/spectrum.01935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium abscessus is a group of emerging antimicrobial-resistant nontuberculous mycobacteria that causes severe lung disease in infected patients globally. Recently, molecular epidemiology studies have indicated that horizontal gene transfer (HGT) events in the rpoB gene are prevalent between M. abscessus subspecies. To determine the global prevalence of M. abscessus strains subjected to rpoB HGT, we performed phylogenetic inference using a 711-bp rpoB sequence extracted from 1,786 M. abscessus isolates for which the whole-genome sequence was publicly available. Our data showed that a total of 74 isolates (4.1%) from 1,786 strains are subject to rpoB HGT, which is more prevalent than strains with hsp65 HGT (19 isolates from 1,786, 1.1%). Most of these (69 isolates) belong to two major groups of Mycobacterium massiliense, of which the rpoB gene is horizontally transferred from M. abscessus (Rec-mas), dominant circulating clone 7 (DCC7) (44 isolates) and ST46 type by multilocus sequence typing (25 isolates). The Rec-mas strains of the two groups have distinct geographical patient distributions, of which the former is mainly distributed in the United States, while the latter is prevalent in Asia. Our further genome-based analysis indicated that the ST46 type is a novel DCC candidate of M. massiliense that is responsible for dissemination between noncystic fibrosis patients in Asia. In conclusion, our global phylogenetic analysis revealed two major Rec-mas clones with distinct geographical distributions, namely, DCC7 and ST46. This study provides insights into the genetic clustering and person-to-person transmission of globally dominant and area-specific strains harboring the HGT rpoB gene. IMPORTANCE Horizontal gene transfer (HGT) events play a pivotal role in the evolution of Mycobacterium abscessus into dominant circulating clones (DCCs), which is capable of causing patient-to-patient transmission. In particular, HGT of the rpoB gene between strains of different subspecies of M. abscessus could also compromise differentiation between strains of M. abscessus. Here, for the first time, using 1,786 M. abscessus genome sequences, we evaluated the global prevalence of M. abscessus strains subjected to rpoB HGT. We found a greater prevalence of M. abscessus subjected to rpoB HGT than to those subjected to hsp65 HGT, which is mainly due to two Rec-mas clones, dominant circulating clone 7 and ST46, which are responsible for dissemination between non-CF patients in Asia. Our data highlight the importance of rpoB HGT in the evolution of M. abscessus, particularly Mycobacterium massiliense, into virulent DCC clones.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Sangkwon Jung
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Aguilera-Correa JJ, Wei F, Leclercq LD, Tasrini Y, Mullapudi E, Daher W, Nakajima K, Canaan S, Herrmann JL, Wilmanns M, Guérardel Y, Wen L, Kremer L. A dTDP-L-rhamnose 4-epimerase required for glycopeptidolipid biosynthesis in Mycobacterium abscessus. J Biol Chem 2024; 300:107852. [PMID: 39362472 PMCID: PMC11549994 DOI: 10.1016/j.jbc.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Mycobacterium abscessus causes severe lung infections in cystic fibrosis patients and exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in the S-to-R transition but the underlying molecular mechanisms of this transition remain incompletely understood. Herein, we characterized MAB_4111c in relation to GPL synthesis and investigated the effects of MAB_4111c deletion in M. abscessus pathogenicity. An enzymatic assay indicated that MAB_4111c, also designated Tle for Talose epimerase, is converting dTDP-L-Rhamnose into dTDP-6-deoxy-L-Talose. A tle deletion mutant was constructed in the S variant of M. abscessus and relative areas of Rhamnose and 6-deoxy-Talose and their methylated forms expressed as ratios of total monosaccharides, showed an altered GPL profile lacking 6-deoxy-Talose. Thus, Tle provides dTDP-6-deoxy-L-Talose, subsequently used by the glycosyltransferase Gtf1 to transfer 6-deoxy-Talose to the GPL backbone. Strikingly, the tle mutant exhibited an R morphotype, showed impaired sliding motility and biofilm formation, and these phenotypes were rescued upon functional complementation. Moreover, deletion of tle in M. abscessus results in increased pathogenicity and killing in zebrafish embryos. Together, our results underscore the importance of the dTDP-L-Rhamnose 4-epimerase activity in GPL biosynthesis and in influencing M. abscessus virulence.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Fangyu Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM, Marseille, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| |
Collapse
|
12
|
Zhao L, Liu B, Tong HHY, Yao X, Liu H, Zhang Q. Inhibitor binding and disruption of coupled motions in MmpL3 protein: Unraveling the mechanism of trehalose monomycolate transport. Protein Sci 2024; 33:e5166. [PMID: 39291929 PMCID: PMC11409367 DOI: 10.1002/pro.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.
Collapse
Affiliation(s)
- Likun Zhao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Bo Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Henry H. Y. Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| |
Collapse
|
13
|
Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends Microbiol 2024; 32:663-677. [PMID: 38135617 DOI: 10.1016/j.tim.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases. Zebrafish have emerged as an excellent animal model due to genetic amenability and optical transparency during embryonic development, allowing spatiotemporal visualization of host-pathogen interactions. Furthermore, adult zebrafish possess fully functional innate and adaptive immunity and recapitulate important pathophysiological hallmarks of mycobacterial infection. Here, we report recent breakthroughs in understanding the hallmarks of NTM infections using the zebrafish model.
Collapse
Affiliation(s)
- Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Stefan H Oehlers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Kremer
- Centre National de la Recherche Scientifique, UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
14
|
Lagune M, Kremer L, Herrmann JL. Mycobacterium abscessus, a complex of three fast-growing subspecies sharing virulence traits with slow-growing mycobacteria. Clin Microbiol Infect 2024; 30:726-731. [PMID: 37797823 DOI: 10.1016/j.cmi.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Mycobacterium abscessus belongs to the largest group of mycobacteria, the rapid-growing saprophytic mycobacteria, and is one of the most difficult-to-treat opportunistic pathogen. Several features pertain to the high adaptability of M. abscessus to the host. These include the capacity to survive and persist within amoebae, to transition from a smooth to a rough morphotype that occurs during the course of the disease and to express of a wide array of virulence factors. OBJECTIVES The main objective of this narrative review consists to report major assets of M. abscessus that contribute to the virulence of these rapid-growing saprophytic mycobacteria. Strikingly, many of these determinants, whether they are from a mycobacterial origin or acquired by horizontal gene transfer, are known virulence factors found in slow-growing and strict pathogens for humans and animals. SOURCES In the light of recent published work in the field we attempted to highlight major features characterizing M. abscessus pathogenicity and to explain why this led to the emergence of this mycobacterial species in patients with cystic fibrosis. CONTENT M. abscessus genome plasticity, the smooth-to-rough transition, and the expression of a panel of enzymes associated with virulence in other bacteria are key players in M. abscessus virulence. In addition, the very large repertoire of lipid transporters, known as mycobacterial membrane protein large and small (MmpL and MmpS respectively), deeply influences the pathogenicity of M. abscessus, as exemplified here for some of them. IMPLICATIONS All these traits largely contribute to make M. abscessus a unique mycobacterium regarding to its pathophysiological processes, ranging from the early colonization steps to the establishment of severe and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France.
| |
Collapse
|
15
|
Shyam M, Thakur A, Velez C, Daniel C, Acevedo O, Bhakta S, Jayaprakash V. Mycobactin analogue interacting with siderophore efflux-pump protein: insights from molecular dynamics simulations and whole-cell assays. FRONTIERS IN ANTIBIOTICS 2024; 3:1362516. [PMID: 39816270 PMCID: PMC11731696 DOI: 10.3389/frabi.2024.1362516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 01/18/2025]
Abstract
Introduction In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species. In recent decades, notable approaches have been accounted for EPI development and have resulted in the discovery of several EPIs including SQ109 and AU1235. In context, to accelerate newer EPIs with novel mode of action here we have discussed mycobactin analogues and highlighted in silico binding orientation with siderophore efflux-pump proteins MmpL4/5. Methods 3-(2-hydroxyphenyl)-5-(aryl)-pyrazoline series was investigated for whole-cell efflux-pump inhibitory activity against Mycobacterium smegmatis and Mycobacterium abscessus. Machine learning and molecular dynamics were performed to construct a MmpL4/5 complex embedded in a lipid bilayer to identify the putative binding site and to predict ligand-protein binding energetics. Furthermore, the identified HIT compound was investigated in synergistic assay with bedaquiline. Results Compound Il, 2-(5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, was identified as the most potent efflux pump inhibitor against M. smegmatis in whole-cell efflux-pump investigation. Followed HIT Il employed against M. abscessus for efflux-pump inhibition investigations and notable whole-cell efflux-pump inhibitory profile has been observed. The theoretical investigations predicted compound Il to be selective towards MmpL4, with significant hydrogen bonding and π-π stacking interactions effectively blocking a critical Asp-Tyr dyad interaction network necessary for proton translocation. Compound Il with bedaquiline highlighted an additive profile against the M. abscessus pathogen. Conclusions MD simulations and whole-cell assays are indicating potential development of compound Il as an adjunct to the existing therapeutic regimen against mycobacterial infections.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Chris Daniel
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
16
|
Alcaraz M, Lyonnais S, Ghosh C, Aguilera-Correa JJ, Richeter S, Ulrich S, Kremer L. Evaluation and activity of new porphyrin-peptide cage-type conjugates for the photoinactivation of Mycobacterium abscessus. Microbiol Spectr 2024; 12:e0000624. [PMID: 38619253 PMCID: PMC11064497 DOI: 10.1128/spectrum.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases and cutaneous infections. However, treatment of M. abscessus infections remains particularly challenging, largely due to intrinsic resistance to a wide panel of antimicrobial agents. New therapeutic alternatives are urgently needed. Herein, we show that, upon limited irradiation with a blue-light source, newly developed porphyrin-peptide cage-type photosensitizers exert a strong bactericidal activity against smooth and rough variants of M. abscessus in planktonic cultures and in biofilms, at low concentrations. Atomic force microscopy unraveled important morphological alterations that include a wrinkled and irregular bacterial surface. The potential of these compounds for a photo-therapeutic use to treat M. abscessus skin infections requires further evaluations.IMPORTANCEMycobacterium abscessus causes persistent infections and is extremely difficult to eradicate. Despite intensive chemotherapy, treatment success rates remain very low. Thus, given the unsatisfactory performances of the current regimens, more effective therapeutic alternatives are needed. In this study, we evaluated the activity of newly described porphyrin-peptide cage-type conjugates in the context of photodynamic therapy. We show that upon light irradiation, these compounds were highly bactericidal against M. abscessus in vitro, thus qualifying these compounds for future studies dedicated to photo-therapeutic applications against M. abscessus skin infections.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - Chandramouli Ghosh
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
17
|
Meliefste HM, Mudde SE, Ammerman NC, de Steenwinkel JEM, Bax HI. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 2024; 15:1392606. [PMID: 38690364 PMCID: PMC11058659 DOI: 10.3389/fmicb.2024.1392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen causing severe pulmonary infections in patients with underlying lung disease and cystic fibrosis in particular. The rising prevalence of M. abscessus infections poses an alarming threat, as the success rates of available treatment options are limited. Central to this challenge is the absence of preclinical in vitro models that accurately mimic in vivo conditions and that can reliably predict treatment outcomes in patients. M. abscessus is notorious for its association with biofilm formation within the lung. Bacteria in biofilms are more recalcitrant to antibiotic treatment compared to planktonic bacteria, which likely contributes to the lack of correlation between preclinical drug activity testing (typically performed on planktonic bacteria) and treatment outcome. In recent years, there has been a growing interest in M. abscessus biofilm research. However, the absence of standardized methods for biofilm culture, biofilm characterization and drug activity testing has led to a wide spectrum of, sometimes inconsistent, findings across various studies. Factors such as strain selection, culture medium, and incubation time hugely impact biofilm development, phenotypical characteristics and antibiotic susceptibility. Additionally, a broad range of techniques are used to study M. abscessus biofilms, including quantification of colony-forming units, crystal violet staining and fluorescence microscopy. Yet, limitations of these techniques and the selected readouts for analysis affect study outcomes. Currently, research on the activity of conventional antibiotics, such as clarithromycin and amikacin, against M. abscessus biofilms yield ambiguous results, underscoring the substantial impact of experimental conditions on drug activity assessment. Beyond traditional drug activity testing, the exploration of novel anti-biofilm compounds and the improvement of in vitro biofilm models are ongoing. In this review, we outline the laboratory models, experimental variables and techniques that are used to study M. abscessus biofilms. We elaborate on the current insights of M. abscessus biofilm characteristics and describe the present understanding of the activity of traditional antibiotics, as well as potential novel compounds, against M. abscessus biofilms. Ultimately, this work contributes to the advancement of fundamental knowledge and practical applications of accurate preclinical M. abscessus models, thereby facilitating progress towards improved therapies for M. abscessus infections.
Collapse
Affiliation(s)
| | - Saskia Emily Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Christine Ammerman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Hannelore Iris Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
19
|
Kania K, Wόjcik K, Czekajewska J, Grzesiak M, Klesiewicz K. Molecular Identification of Strains within the Mycobacterium abscessus Complex and Determination of Resistance to Macrolides and Aminoglycosides. Pol J Microbiol 2023; 72:491-506. [PMID: 38103008 PMCID: PMC10725167 DOI: 10.33073/pjm-2023-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most relevant and pathogenic groups among the rapidly growing mycobacteria (RGM) is Mycobacterium abscessus complex (MABC) that includes three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. The aim of this study was the analysis of prevalence of MABC among other non-tuberculous mycobacteria isolated from patients in the Malopolska Region of Poland, between 2018 and 2021, as well as determination of their subspecies and molecular mechanisms of resistance to macrolides and aminoglycosides. The incidence of MABC was 5,4% (12/223). Eight strains were classified as M. abscessus subsp. abscessus, three as M. abscessus subsp. massiliense and one M. abscessus subsp. bolletii. Molecular analysis showed resistance to macrolides for eight strains of M. abscessus subsp. abscessus associated with erm(41)T28 gene mutations. One strain of M. abscessus subsp. abscessus showed resistance to macrolides (two mutations simultaneously: in erm(41)T28 and rrl genes) and aminoglycosides (point mutation in rrs gene). One strain of M. abscessus subs. bolletii was resistant to macrolides (erm(41)T28 mutation), whereas presented no mutations for aminoglycosides. M. abscessus subsp. massiliense reveal no mutations. High clarithromycin resistance of M. abscessus, determines the urgent need for susceptibility-based treatment. Molecular determination of resistance mechanisms to aminoglycosides and macrolides enables fast and accurate targeted treatment implementation.
Collapse
Affiliation(s)
- Katarzyna Kania
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Katarzyna Wόjcik
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Joanna Czekajewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Magdalena Grzesiak
- Laboratory of Microbiology, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| |
Collapse
|
20
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates. Nat Microbiol 2023; 8:1717-1731. [PMID: 37644325 PMCID: PMC10465359 DOI: 10.1038/s41564-023-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| |
Collapse
|
21
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W, Kremer L, Guérardel Y. Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem 2023; 299:104979. [PMID: 37390990 PMCID: PMC10400925 DOI: 10.1016/j.jbc.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Mycobacterium abscessus causes severe lung infections. Clinical isolates can have either smooth (S) or rough (R) colony morphotypes; of these, S but not R variants have abundant cell wall glycopeptidolipids (GPL) consisting of a peptidolipid core substituted by a 6-deoxy-α-L-talose (6-dTal) and rhamnose residues. Deletion of gtf1, encoding the 6-dTal transferase, results in the S-to-R transition, mycobacterial cord formation, and increased virulence, underscoring the importance of 6-dTal in infection outcomes. However, since 6-dTal is di-O-acetylated, it is unclear whether the gtf1 mutant phenotypes are related to the loss of the 6-dTal or the result of the absence of acetylation. Here, we addressed whether M. abscessus atf1 and atf2, encoding two putative O-acetyltransferases located within the gpl biosynthetic locus, transfer acetyl groups to 6-dTal. We found deletion of atf1 and/or atf2 did not drastically alter the GPL acetylation profile, suggesting there are additional enzymes with redundant functions. We subsequently identified two paralogs of atf1 and atf2, MAB_1725c and MAB_3448. While deletion of MAB_1725c and MAB_3448 had no effect on GPL acetylation, the triple atf1-atf2-MAB_1725c mutant did not synthetize fully acetylated GPL, and the quadruple mutant was totally devoid of acetylated GPL. Moreover, both triple and quadruple mutants accumulated hyper-methylated GPL. Finally, we show deletion of atf genes resulted in subtle changes in colony morphology but had no effect on M. abscessus internalization by macrophages. Overall, these findings reveal the existence of functionally redundant O-acetyltransferases and suggest that O-acetylation influences the glycan moiety of GPL by deflecting biosynthetic flux in M. abscessus.
Collapse
Affiliation(s)
- Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Louis-David Leclercq
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Clara Dessenne
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| | - Yann Guérardel
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
22
|
Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Biophys J 2023; 122:2342-2352. [PMID: 36926696 PMCID: PMC10257117 DOI: 10.1016/j.bpj.2023.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, are characterized by a uniquely thick and waxy cell envelope that consists of two membranes, with a variety of mycolates comprising their outer membrane (OM). The protein Mycobacterial membrane protein Large 3 (MmpL3) is responsible for the transport of a primary OM component, trehalose monomycolate (TMM), from the inner (cytoplasmic) membrane (IM) to the periplasmic space, a process driven by the proton gradient. Although multiple structures of MmpL3 with bound substrates have been solved, the exact pathway(s) for TMM or proton transport remains elusive. Here, employing molecular dynamics simulations we investigate putative pathways for either transport species. We hypothesized that MmpL3 will cycle through similar conformational states as the related transporter AcrB, which we used as targets for modeling the conformation of MmpL3. A continuous water pathway through the transmembrane region was found in one of these states, illustrating a putative pathway for protons. Additional equilibrium simulations revealed that TMM can diffuse from the membrane into a binding pocket in MmpL3 spontaneously. We also found that acetylation of TMM, which is required for transport, makes it more stable within MmpL3's periplasmic cavity compared with the unacetylated form.
Collapse
Affiliation(s)
- Yupeng Li
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
23
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532567. [PMID: 36993724 PMCID: PMC10055034 DOI: 10.1101/2023.03.14.532567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteriophages are good model systems for understanding their bacterial hosts and show promise as therapeutic agents for nontuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces, or mechanisms of phage resistance. We show here that surface-exposed trehalose polyphleates (TPPs) are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy, and that TPP loss leads to defects in adsorption, infection, and confers resistance. Transposon mutagenesis indicates that TPP loss is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss, and some M. abscessus clinical isolates are phage-insensitive due to TPP absence. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
|
24
|
Stampolaki M, Stylianakis I, Zgurskaya HI, Kolocouris A. Study of SQ109 analogs binding to mycobacterium MmpL3 transporter using MD simulations and alchemical relative binding free energy calculations. J Comput Aided Mol Des 2023; 37:245-264. [PMID: 37129848 DOI: 10.1007/s10822-023-00504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
N-geranyl-N΄-(2-adamantyl)ethane-1,2-diamine (SQ109) is a tuberculosis drug that has high potency against Mycobacterium tuberculosis (Mtb) and may function by blocking cell wall biosynthesis. After the crystal structure of MmpL3 from Mycobacterium smegmatis in complex with SQ109 became available, it was suggested that SQ109 inhibits Mmpl3 mycolic acid transporter. Here, we showed using molecular dynamics (MD) simulations that the binding profile of nine SQ109 analogs with inhibitory potency against Mtb and alkyl or aryl adducts at C-2 or C-1 adamantyl carbon to MmpL3 was consistent with the X-ray structure of MmpL3 - SQ109 complex. We showed that rotation of SQ109 around carbon-carbon bond in the monoprotonated ethylenediamine unit favors two gauche conformations as minima in water and lipophilic solvent using DFT calculations as well as inside the transporter's binding area using MD simulations. The binding assays in micelles suggested that the binding affinity of the SQ109 analogs was increased for the larger, more hydrophobic adducts, which was consistent with our results from MD simulations of the SQ109 analogues suggesting that sizeable C-2 adamantyl adducts of SQ109 can fill a lipophilic region between Y257, Y646, F260 and F649 in MmpL3. This was confirmed quantitatively by our calculations of the relative binding free energies using the thermodynamic integration coupled with MD simulations method with a mean assigned error of 0.74 kcal mol-1 compared to the experimental values.
Collapse
Affiliation(s)
- Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Ioannis Stylianakis
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
25
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Ochsner UA, De Groote MA, Jarvis TC, Liu H, Youmans T, Hoang T, Ribble W, Day J, Li W, Pearce C, Walz A, Panthi CM, Rimal B, Stevens CM, Zgurskaya HI, Jackson M, Ordway D, Gonzalez-Juarrero M, Sun X, Lamichhane G, Mason C. Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3. Tuberculosis (Edinb) 2023; 138:102288. [PMID: 36470124 PMCID: PMC9892229 DOI: 10.1016/j.tube.2022.102288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 μg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.
Collapse
Affiliation(s)
| | | | | | - Hang Liu
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | | | - Teresa Hoang
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Wendy Ribble
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Joshua Day
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Amanda Walz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Chandra M Panthi
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | - Binayak Rimal
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | - Casey M Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, USA
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Xicheng Sun
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Gyanu Lamichhane
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | | |
Collapse
|
28
|
A Hydrazine-Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207130. [PMID: 36296721 PMCID: PMC9610904 DOI: 10.3390/molecules27207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide–hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies.
Collapse
|
29
|
Alcaraz M, Roquet-Banères F, Leon-Icaza SA, Abendroth J, Boudehen YM, Cougoule C, Edwards TE, Kremer L. Efficacy and Mode of Action of a Direct Inhibitor of Mycobacterium abscessus InhA. ACS Infect Dis 2022; 8:2171-2186. [PMID: 36107992 DOI: 10.1021/acsinfecdis.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is an unmet medical need for effective treatments against Mycobacterium abscessus pulmonary infections, to which cystic fibrosis (CF) patients are particularly vulnerable. Recent studies showed that the antitubercular drug isoniazid is inactive against M. abscessus due to the incapacity of the catalase-peroxidase to convert the pro-drug into a reactive metabolite that inhibits the enoyl-ACP reductase InhA. To validate InhAMAB as a druggable target in M. abscessus, we assayed the activity of NITD-916, a 4-hydroxy-2-pyridone lead candidate initially described as a direct inhibitor of InhA that bypasses KatG bioactivation in Mycobacterium tuberculosis. The compound displayed low MIC values against rough and smooth clinical isolates in vitro and significantly reduced the bacterial burden inside human macrophages. Moreover, treatment with NITD-916 reduced the number and size of intracellular mycobacterial cords, regarded as markers of the severity of the infection. Importantly, NITD-916 significantly lowered the M. abscessus burden in CF-derived lung airway organoids. From a mechanistic perspective, NITD-916 abrogated de novo synthesis of mycolic acids and NITD-916-resistant spontaneous mutants harbored point mutations in InhAMAB at residue 96. That NITD-916 targets InhAMAB directly without activation requirements was confirmed genetically and by resolving the crystal structure of the protein in complex with NADH and NITD-916. These findings collectively indicate that InhAMAB is an attractive target to be exploited for future chemotherapeutic developments against this difficult-to-treat mycobacterium and highlight the potential of NITD-916 derivatives for further evaluation in preclinical settings.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98109, United States.,Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, Washington 98109, United States.,Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.,INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
30
|
Alternatives to Antibiotics against Mycobacterium abscessus. Antibiotics (Basel) 2022; 11:antibiotics11101322. [PMID: 36289979 PMCID: PMC9598287 DOI: 10.3390/antibiotics11101322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus complex is extremely difficult to treat. Intrinsic and acquired bacterial resistance makes this species one of the most challenging pathogens and treatments last from months to years, associated with potential risky antibiotic toxicity and a high number of failures. Nonantibiotic antimicrobial agents against this microorganism have recently been studied so as to offer an alternative to current drugs. This review summarizes recent research on different strategies such as host modulation using stem cells, photodynamic therapy, antibiofilm therapy, phage therapy, nanoparticles, vaccines and antimicrobial peptides against M. abscessus both in vitro and in vivo.
Collapse
|
31
|
Nolan VC, Harrison J, Cox JAG. In vitro synergy between manuka honey and amikacin against Mycobacterium abscessus complex shows potential for nebulisation therapy. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36069786 DOI: 10.1099/mic.0.001237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessusis an opportunistic human pathogen of increasing concern, due to its ability to cause aggressive pulmonary infections (especially in cystic fibrosis patients), as well as skin and soft tissue infections. M. abscessus is intrinsically drug resistant and treatment regimens are lengthy, consisting of multiple antibiotics with severe side effects and poor patient success rates. New and novel strategies are urgently required to combat these infections. One such strategy thus far overlooked for mycobacteria is manuka honey. For millennia manuka honey has been shown to have wide ranging medicinal properties, which have more recently been identified for its broad spectrum of antimicrobial activity. Here we demonstrate that manuka honey can be used to inhibit M. abscessus and a variety of drug resistant clinical isolates in vitro. We also demonstrate using a microbroth dilution checkerboard assay that manuka honey works synergistically with amikacin, which is one of the current front line antibiotics used for treatment of M. abscessus infections. This was further validated using an in vitro inhalation model, where we showed that with the addition of manuka honey, the amikacin dosage can be lowered whilst increasing its efficacy. These findings demonstrate the utility of manuka honey for incorporation into nebulised antibiotic treatment for respiratory infections, in particular M. abscessus. These results pave the way for a change of strategy for M. abscessus management, offering new therapeutic options for this deadly infection.
Collapse
Affiliation(s)
- Victoria C Nolan
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK, B4 7ET
| | - James Harrison
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK, B4 7ET
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK, B4 7ET
| |
Collapse
|
32
|
Zhao H, Gao Y, Li W, Sheng L, Cui K, Wang B, Fu L, Gao M, Lin Z, Zou X, Jackson M, Huang H, Lu Y, Zhang D. Design, Synthesis, and Biological Evaluation of Pyrrole-2-carboxamide Derivatives as Mycobacterial Membrane Protein Large 3 Inhibitors for Treating Drug-Resistant Tuberculosis. J Med Chem 2022; 65:10534-10553. [PMID: 35915958 PMCID: PMC9379527 DOI: 10.1021/acs.jmedchem.2c00718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, pyrrole-2-carboxamides were designed with a structure-guided strategy based on the crystal structure of MmpL3 and a pharmacophore model. The structure-activity relationship studies revealed that attaching phenyl and pyridyl groups with electron-withdrawing substituents to the pyrrole ring and attaching bulky substituents to the carboxamide greatly improved anti-TB activity. Most compounds showed potent anti-TB activity (MIC < 0.016 μg/mL) and low cytotoxicity (IC50 > 64 μg/mL). Compound 32 displayed excellent activity against drug-resistant tuberculosis, good microsomal stability, almost no inhibition of the hERG K+ channel, and good in vivo efficacy. Furthermore, the target of the pyrrole-2-carboxamides was identified by measuring their potency against M. smegmatis expressing wild-type and mutated variants of the mmpL3 gene from M. tuberculosis (mmpL3tb) and determining their effect on mycolic acid biosynthesis using a [14C] acetate metabolic labeling assay. The present study provides new MmpL3 inhibitors that are promising anti-TB agents.
Collapse
Affiliation(s)
- Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yongxin Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Keli Cui
- College of Life Science and Bio-engineering, Beijing University of Technology, 100 Ping Le Yuan, Beijing 100124, P. R. China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Lei Fu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Meng Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Ziyun Lin
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiaowen Zou
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
33
|
Abdelaal HFM, Chan ED, Young L, Baldwin SL, Coler RN. Mycobacterium abscessus: It's Complex. Microorganisms 2022; 10:1454. [PMID: 35889173 PMCID: PMC9316637 DOI: 10.3390/microorganisms10071454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) is an opportunistic pathogen usually colonizing abnormal lung airways and is often seen in patients with cystic fibrosis. Currently, there is no vaccine available for M. abscessus in clinical development. The treatment of M. abscessus-related pulmonary diseases is peculiar due to intrinsic resistance to several commonly used antibiotics. The development of either prophylactic or therapeutic interventions for M. abscessus pulmonary infections is hindered by the absence of an adequate experimental animal model. In this review, we outline the critical elements related to M. abscessus virulence mechanisms, host-pathogen interactions, and treatment challenges associated with M. abscessus pulmonary infections. The challenges of effectively combating this pathogen include developing appropriate preclinical animal models of infection, developing proper diagnostics, and designing novel strategies for treating drug-resistant M. abscessus.
Collapse
Affiliation(s)
- Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Edward D. Chan
- Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO 80206, USA;
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lisa Young
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Iannuzo N, Haller YA, McBride M, Mehari S, Lainson JC, Diehnelt CW, Haydel SE. High-Throughput Screening Identifies Synthetic Peptides with Antibacterial Activity against Mycobacterium abscessus and Serum Stability. ACS OMEGA 2022; 7:23967-23977. [PMID: 35847280 PMCID: PMC9281306 DOI: 10.1021/acsomega.2c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise in antibiotic resistance in bacteria has spawned new technological approaches for identifying novel antimicrobials with narrow specificity. Current antibiotic treatment regimens and antituberculosis drugs are not effective in treating Mycobacterium abscessus. Meanwhile, antimicrobial peptides are gaining prominence as alternative antimicrobials due to their specificity toward anionic bacterial membranes, rapid action, and limited development of resistance. To rapidly identify antimicrobial peptide candidates, our group has developed a high-density peptide microarray consisting of 125,000 random synthetic peptides screened for interaction with the mycobacterial cell surface of M. abscessus morphotypes. From the array screening, peptides positive for interaction were synthesized and their antimicrobial activity was validated. Overall, six peptides inhibited the M. abscessus smooth morphotype (IC50 = 1.7 μM for all peptides) and had reduced activity against the M. abscessus rough morphotype (IC50 range: 13-82 μM). Peptides ASU2056 and ASU2060 had minimum inhibitory concentration values of 32 and 8 μM, respectively, against the M. abscessus smooth morphotype. Additionally, ASU2060 (8 μM) was active against Escherichia coli, including multidrug-resistant E. coli clinical isolates, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. ASU2056 and ASU2060 exhibited no significant hemolytic activity at biologically relevant concentrations, further supporting these peptides as promising therapeutic candidates. Moreover, ASU2060 retained antibacterial activity after preincubation in human serum for 24 h. With antimicrobial resistance on the rise, methods such as those presented here will streamline the peptide discovery process for targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Natalie Iannuzo
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yannik A. Haller
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michelle McBride
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Sabrina Mehari
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - John C. Lainson
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Chris W. Diehnelt
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
35
|
Addison W, Frederickson M, Coyne AG, Abell C. Potential therapeutic targets from Mycobacterium abscessus ( Mab): recently reported efforts towards the discovery of novel antibacterial agents to treat Mab infections. RSC Med Chem 2022; 13:392-404. [PMID: 35647542 PMCID: PMC9020770 DOI: 10.1039/d1md00359c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium abscessus (Mab) are rapidly growing mycobacteria that cause severe and persistent infections in both skin and lung tissues. Treatment regimens involve the extended usage of complex combinations of drugs, often leading to severe adverse side effects, particularly in immunocompromised patients. Current macrolide therapies are gradually proving to be less effective, largely due to emergence of antibiotic resistance; there is therefore an increasing need for the discovery of new antibacterials that are active against Mab. This review highlights recent research centred upon a number of potential therapeutic targets from Mab (Ag85C, ClpC1, GyrB, MmpL3 and TrmD), and discusses the various approaches used to discover small molecule inhibitors, in the search for future antibiotics for the treatment of Mab infections.
Collapse
Affiliation(s)
- William Addison
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Martyn Frederickson
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
36
|
Akwani WC, van Vliet AH, Joel JO, Andres S, Diricks M, Maurer FP, Chambers MA, Hingley-Wilson SM. The Use of Comparative Genomic Analysis for the Development of Subspecies-Specific PCR Assays for Mycobacterium abscessus. Front Cell Infect Microbiol 2022; 12:816615. [PMID: 35419298 PMCID: PMC8995789 DOI: 10.3389/fcimb.2022.816615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies M. abscessus, M. bolletii and M. massiliense. Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related Mycobacterium genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.
Collapse
Affiliation(s)
- Winifred C. Akwani
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan O. Joel
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Florian P. Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark A. Chambers
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
37
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
38
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
39
|
Moolla N, Bailo R, Marshall R, Bavro VN, Bhatt A. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surf 2021; 7:100062. [PMID: 34522829 PMCID: PMC8427324 DOI: 10.1016/j.tcsw.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterial membrane protein Large (MmpL7) is a Resistance-Nodulation-Division (RND) family transporter required for the export of the virulence lipid, phthiocerol dimycocerosate (PDIM), in Mycobacterium tuberculosis. Using a null mutant of the related, vaccine strain Mycobacterium bovis BCG, we show that MmpL7 is also involved in the transport of the structurally related phenolic glycolipid (PGL), which is also produced by the hypervirulent M. tuberculosis strain HN878, but absent in M. tuberculosis H37Rv. Furthermore, we generated an in silico model of M. tuberculosis MmpL7 that revealed MmpL7 as a functional outlier within the MmpL-family, missing a canonical proton-relay signature sequence, suggesting that it employs a yet-unidentified mechanism for energy coupling for transport. In addition, our analysis demonstrates that the periplasmic porter domain 2 insert (PD2-insert), which doesn't share any recognisable homology, is highly alpha-helical in nature, suggesting an organisation similar to that seen in the hopanoid PD3/4 domains. Using the M. bovis BCG mmpL7 mutant for functional complementation with mutated alleles of mmpL7, we were able to identify residues present in the transmembrane domains TM4 and TM10, and the PD2 domain insert that play a crucial role in PDIM transport, and in certain cases, biosynthesis of PDIM.
Collapse
Affiliation(s)
- Nabiela Moolla
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert Marshall
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
41
|
Adams O, Deme JC, Parker JL, Fowler PW, Lea SM, Newstead S. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target. Structure 2021; 29:1182-1191.e4. [PMID: 34242558 PMCID: PMC8752444 DOI: 10.1016/j.str.2021.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.
Collapse
Affiliation(s)
- Oliver Adams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Justin C Deme
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe, Oxford OX3 9DU, UK
| | - Susan M Lea
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
42
|
Johansen MD, Alcaraz M, Dedrick RM, Roquet-Banères F, Hamela C, Hatfull GF, Kremer L. Mycobacteriophage-antibiotic therapy promotes enhanced clearance of drug-resistant Mycobacterium abscessus. Dis Model Mech 2021; 14:272140. [PMID: 34530447 PMCID: PMC8461822 DOI: 10.1242/dmm.049159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Infection by multidrug-resistant Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF) patients, leaving clinicians with few therapeutic options. A compassionate study showed the clinical improvement of a CF patient with a disseminated M. abscessus (GD01) infection, following injection of a phage cocktail, including phage Muddy. Broadening the use of phage therapy in patients as a potential antibacterial alternative necessitates the development of biological models to improve the reliability and successful prediction of phage therapy in the clinic. Herein, we demonstrate that Muddy very efficiently lyses GD01 in vitro, an effect substantially increased with standard drugs. Remarkably, this cooperative activity was retained in an M. abscessus model of infection in CFTR-depleted zebrafish, associated with a striking increase in larval survival and reduction in pathological signs. The activity of Muddy was lost in macrophage-ablated larvae, suggesting that successful phage therapy relies on functional innate immunity. CFTR-depleted zebrafish represent a practical model to rapidly assess phage treatment efficacy against M. abscessus isolates, allowing the identification of drug combinations accompanying phage therapy and treatment prediction in patients. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish model of infection was developed to evaluate the in vivo cooperative activity of specific phages and antibiotics for the treatment of Mycobacterium abscessus infection.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Matthéo Alcaraz
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier 34293, France
| |
Collapse
|
43
|
Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases. Proc Natl Acad Sci U S A 2021; 118:2018289118. [PMID: 33472976 DOI: 10.1073/pnas.2018289118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.
Collapse
|
44
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
45
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
46
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
47
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
48
|
Küssau T, Van Wyk N, Johansen MD, Alsarraf HMAB, Neyret A, Hamela C, Sørensen KK, Thygesen MB, Beauvineau C, Kremer L, Blaise M. Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus. Cells 2020; 9:cells9112410. [PMID: 33158165 PMCID: PMC7694207 DOI: 10.3390/cells9112410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Niël Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Matt D. Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Husam M. A. B. Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Aymeric Neyret
- CEMIPAI CNRS UM UMS3725, CEDEX 5, 34293 Montpellier, France;
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Kasper K. Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Mikkel B. Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France;
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- INSERM, IRIM, 34293 Montpellier, France
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| |
Collapse
|
49
|
Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00363-20. [PMID: 32816730 DOI: 10.1128/aac.00363-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases. As it is intrinsically resistant to most conventional antibiotics, there is an unmet medical need for effective treatments. Repurposing of clinically validated pharmaceuticals represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. In this context, rifabutin (RFB) has been shown to be active against M. abscessus and has raised renewed interest in using rifamycins for the treatment of M. abscessus pulmonary diseases. Here, we compared the in vitro and in vivo activity of RFB against the smooth and rough variants of M. abscessus, differing in their susceptibility profiles to several drugs and physiopathologial characteristics. While the activity of RFB is greater against rough strains than in smooth strains in vitro, suggesting a role of the glycopeptidolipid layer in susceptibility to RFB, both variants were equally susceptible to RFB inside human macrophages. RFB treatment also led to a reduction in the number and size of intracellular and extracellular mycobacterial cords. Furthermore, RFB was highly effective in a zebrafish model of infection and protected the infected larvae from M. abscessus-induced killing. This was corroborated by a significant reduction in the overall bacterial burden, as well as decreased numbers of abscesses and cords, two major pathophysiological traits in infected zebrafish. This study indicates that RFB is active against M. abscessus both in vitro and in vivo, further supporting its potential usefulness as part of combination regimens targeting this difficult-to-treat mycobacterium.
Collapse
|
50
|
Abstract
Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCEMycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.
Collapse
|