1
|
Li R, Zhang S, Otsuguro S, Nagao M, Matsuda A, Thapa J, Okubo T, Maenaka K, Higashi H, Yamaguchi H. Chlamydia trachomatis L2 434/Bu readily activates glycolysis under hypoxia for efficient metabolism. Biochem Biophys Res Commun 2024; 736:150461. [PMID: 39128263 DOI: 10.1016/j.bbrc.2024.150461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
To understand why Chlamydia trachomatis (Ct) (L2/434/Bu) favors hypoxia, we examined the dynamics of infected cells using a glycolysis-related PCR array and metabolomic analysis, along with the perturbation of nucleotide synthesis. Our findings revealed that, compared to normoxia, hypoxia with infection significantly and selectively upregulates the expression of genes related to glycolysis, glycogen degradation, and the pentose phosphate pathway. Furthermore, hypoxia induced a significant decrease in metabolite levels, particularly methionine-related metabolites, independent of infection, indicating efficient metabolism under hypoxia. Additionally, the perturbation of nucleotide synthesis with adenosine derivatives impaired Ct growth. Collectively, our results suggest that Ct favors a hypoxic environment with efficient metabolism, in which Ct readily activates glycolysis responsible for stable nucleotide synthesis as well as ATP supply.
Collapse
Affiliation(s)
- Ruiyu Li
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Saicheng Zhang
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi-6, Kita-12, Kita-ku, Sapporo, 060-0812, Japan.
| | - Manabu Nagao
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi-6, Kita-12, Kita-ku, Sapporo, 060-0812, Japan.
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi-6, Kita-12, Kita-ku, Sapporo, 060-0812, Japan.
| | - Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi-6, Kita-12, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
3
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Klose SM, De Souza DP, Devlin JM, Bushell R, Browning GF, Vaz PK. A "plus one" strategy impacts replication of felid alphaherpesvirus 1, Mycoplasma and Chlamydia, and the metabolism of coinfected feline cells. mSystems 2024; 9:e0085224. [PMID: 39315777 PMCID: PMC11495031 DOI: 10.1128/msystems.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Coinfections are known to play an important role in disease progression and severity. Coinfections are common in cats, but no coinfection studies have investigated the in vitro dynamics between feline viral and bacterial pathogens. In this study, we performed co-culture and invasion assays to investigate the ability of common feline bacterial respiratory pathogens, Chlamydia felis and Mycoplasma felis, to replicate in and invade into Crandell-Rees feline kidney cells. We subsequently investigated how coinfection of these feline cells with each bacterium (C. felis or M. felis) and the common feline viral pathogen, felid alphaherpesvirus 1 (FHV-1), affects replication of each agent in this cell culture system. We also investigated the metabolic impact of each co-pathogen using metabolomic analysis of infected and coinfected cells. C. felis was able to invade and replicate in CRFKs, while M. felis had little capacity to invade. During coinfection, FHV-1 replication was minimally affected by the presence of either bacterial pathogen, but bacterial replication kinetics were more affected, particularly in M. felis. Both C. felis and M. felis replicated to higher levels in the presence of a secondary pathogen. Coinfections resulted in reprogramming of the glycolysis pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle. The distinct metabolic profiles of coinfected cells compared to those of cells infected with just one of these three pathogens, as well as the impact of coinfections on viral or bacterial load, suggest strong interactions between these three pathogens and possible synergistic mechanisms enhancing virulence that need further investigation.IMPORTANCEIn the natural world, respiratory pathogens coexist within their hosts, but their dynamics and interactions remain largely unexplored. Herpesviruses, mycoplasmas, and chlamydias are common and significant causes of acute and chronic respiratory and system disease in animals and people, and these diseases are increasingly found to be polymicrobial. This study investigates how coinfection of feline cells between three respiratory pathogens of cats impact each other as well as the host innate metabolic response to infection. Each of these pathogens have been implicated in the induction of feline upper respiratory tract disease in cats, which is the leading cause of euthanasia in shelters. Understanding how coinfection impacts co-pathogenesis and host responses is critical for improving disease management.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhys Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Chowdhury NB, Pokorzynski N, Rucks EA, Ouellette SP, Carabeo RA, Saha R. Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in Chlamydia trachomatis persistence. mSystems 2024; 9:e0071724. [PMID: 38940523 PMCID: PMC11323709 DOI: 10.1128/msystems.00717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL's stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate that pgm has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence. IMPORTANCE This study uses a metabolic model to investigate factors that contribute to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence-that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nick Pokorzynski
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rey A. Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
7
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Chowdhury NB, Pokorzynski N, Rucks EA, Ouellette SP, Carabeo RA, Saha R. Machine Learning and Metabolic Model Guided CRISPRi Reveals a Central Role for Phosphoglycerate Mutase in Chlamydia trachomatis Persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572198. [PMID: 38187683 PMCID: PMC10769294 DOI: 10.1101/2023.12.18.572198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence is an adaptive response or lack of it. To understand that transcriptomics data were collected for nutrient-sufficient and nutrient-starved CTL. Applying machine learning approaches on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions without having any global stress regulator. This indicated that CTL's stress response is due to lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence. Later, pgm was found to have the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm and tryptophan starvation experiments revealed the importance of this gene in inducing persistence. Hence, this work, for the first time, introduced thermodynamics and enzyme-cost as tools to gain deeper understanding on CTL persistence.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68508, USA
| | - Nick Pokorzynski
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Elizabeth A. Rucks
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rey A. Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68508, USA
| |
Collapse
|
9
|
Cheong HC, Sulaiman S, Looi CY, Chang LY, Wong WF. Chlamydia Infection Remodels Host Cell Mitochondria to Alter Energy Metabolism and Subvert Apoptosis. Microorganisms 2023; 11:1382. [PMID: 37374883 DOI: 10.3390/microorganisms11061382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chlamydia infection represents an important cause for concern for public health worldwide. Chlamydial infection of the genital tract in females is mostly asymptomatic at the early stage, often manifesting as mucopurulent cervicitis, urethritis, and salpingitis at the later stage; it has been associated with female infertility, spontaneous abortion, ectopic pregnancy, and cervical cancer. As an obligate intracellular bacterium, Chlamydia depends heavily on host cells for nutrient acquisition, energy production, and cell propagation. The current review discusses various strategies utilized by Chlamydia in manipulating the cell metabolism to benefit bacterial propagation and survival through close interaction with the host cell mitochondrial and apoptotic pathway molecules.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
10
|
Banerjee A, Sun Y, Muramatsu MK, Toh E, Nelson DE. A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion. Infect Immun 2023; 91:e0048322. [PMID: 36847502 PMCID: PMC10068747 DOI: 10.1128/iai.00483-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Many obligate intracellular bacteria, including members of the genus Chlamydia, cannot synthesize a variety of amino acids de novo and acquire these from host cells via largely unknown mechanisms. Previously, we determined that a missense mutation in ctl0225, a conserved Chlamydia open reading frame of unknown function, mediated sensitivity to interferon gamma. Here, we show evidence that CTL0225 is a member of the SnatA family of neutral amino acid transporters that contributes to the import of several amino acids into Chlamydia cells. Further, we show that CTL0225 orthologs from two other distantly related obligate intracellular pathogens (Coxiella burnetii and Buchnera aphidicola) are sufficient to import valine into Escherichia coli. We also show that chlamydia infection and interferon exposure have opposing effects on amino acid metabolism, potentially explaining the relationship between CTL0225 and interferon sensitivity. Overall, we show that phylogenetically diverse intracellular pathogens use an ancient family of amino acid transporters to acquire host amino acids and provide another example of how nutritional virulence and immune evasion can be linked in obligate intracellular pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuan Sun
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew K. Muramatsu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae. mBio 2023; 14:e0309322. [PMID: 36598194 PMCID: PMC9973317 DOI: 10.1128/mbio.03093-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.
Collapse
|
12
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
13
|
Vollmuth N, Schlicker L, Guo Y, Hovhannisyan P, Janaki-Raman S, Kurmasheva N, Schmitz W, Schulze A, Stelzner K, Rajeeve K, Rudel T. c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis. eLife 2022; 11:76721. [PMID: 36155135 PMCID: PMC9512400 DOI: 10.7554/elife.76721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Schlicker
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yongxia Guo
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pargev Hovhannisyan
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Naziia Kurmasheva
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Almut Schulze
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Stelzner
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
14
|
Yu X, Xu Q, Chen W, Mai Z, Mo L, Su X, Ou J, Lan Y, Zheng H, Xue Y. Rhein inhibits Chlamydia trachomatis infection by regulating pathogen-host cell. Front Public Health 2022; 10:1002029. [PMID: 36238249 PMCID: PMC9552556 DOI: 10.3389/fpubh.2022.1002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The global incidence of genital Chlamydia trachomatis infection increased rapidly as the primary available treatment of C. trachomatis infection being the use of antibiotics. However, the development of antibiotics resistant stain and other treatment failures are often observed in patients. Consequently, novel therapeutics are urgently required. Rhein is a monomer derivative of anthraquinone compounds with an anti-infection activity. This study investigated the effects of rhein on treating C. trachomatis infection. Rhein showed significant inhibitory effects on the growth of C. trachomatis in multiple serovars of C. trachomatis, including D, E, F and L1, and in various host cells, including HeLa, McCoy and Vero. Rhein could not directly inactivate C. trachomatis but could inhibit the growth of C. trachomatis by regulating pathogen-host cell interactions. Combined with azithromycin, the inhibitory effect of rehin was synergistic both in vitro and in vivo. Together these findings suggest that rhein could be developed for the treatment of C. trachomatis infections.
Collapse
Affiliation(s)
- Xueying Yu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Chen
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Zhida Mai
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lijun Mo
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xin Su
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiangli Ou
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinyuan Lan
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China,*Correspondence: Heping Zheng
| | - Yaohua Xue
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China,Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China,Yaohua Xue
| |
Collapse
|
15
|
N'Gadjaga MD, Perrinet S, Connor MG, Bertolin G, Millot GA, Subtil A. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways. J Biol Chem 2022; 298:102338. [PMID: 35931114 PMCID: PMC9449673 DOI: 10.1016/j.jbc.2022.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.
Collapse
Affiliation(s)
- Maimouna D N'Gadjaga
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France
| | - Michael G Connor
- Institut Pasteur, Chromatin and Infection, Université Paris Cité, Paris, France
| | - Giulia Bertolin
- CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Univ Rennes, Rennes, France
| | - Gaël A Millot
- Institut Pasteur, Hub Bioinformatique et Biostatistique-DBC, Université Paris Cité, Paris, France
| | - Agathe Subtil
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France.
| |
Collapse
|
16
|
Triboulet S, N'Gadjaga MD, Niragire B, Köstlbacher S, Horn M, Aimanianda V, Subtil A. CT295 Is Chlamydia trachomatis' Phosphoglucomutase and a Type 3 Secretion Substrate. Front Cell Infect Microbiol 2022; 12:866729. [PMID: 35795184 PMCID: PMC9251005 DOI: 10.3389/fcimb.2022.866729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis store glycogen in the lumen of the vacuoles in which they grow. Glycogen catabolism generates glucose-1-phosphate (Glc1P), while the bacteria can take up only glucose-6-phosphate (Glc6P). We tested whether the conversion of Glc1P into Glc6P could be catalyzed by a phosphoglucomutase (PGM) of host or bacterial origin. We found no evidence for the presence of the host PGM in the vacuole. Two C. trachomatis proteins, CT295 and CT815, are potential PGMs. By reconstituting the reaction using purified proteins, and by complementing PGM deficient fibroblasts, we demonstrated that only CT295 displayed robust PGM activity. Intriguingly, we showed that glycogen accumulation in the lumen of the vacuole of a subset of Chlamydia species (C. trachomatis, C. muridarum, C. suis) correlated with the presence, in CT295 orthologs, of a secretion signal recognized by the type three secretion (T3S) machinery of Shigella. C. caviae and C. pneumoniae do not accumulate glycogen, and their CT295 orthologs lack T3S signals. In conclusion, we established that the conversion of Glc1P into Glc6P was accomplished by a bacterial PGM, through the acquisition of a T3S signal in a "housekeeping" protein. Acquisition of this signal likely contributed to shaping glycogen metabolism within Chlamydiaceae.
Collapse
Affiliation(s)
- Sébastien Triboulet
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l'Infection Microbienne, Paris, France
| | - Maimouna D N'Gadjaga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l'Infection Microbienne, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Béatrice Niragire
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l'Infection Microbienne, Paris, France
| | - Stephan Köstlbacher
- Centre for Microbiology and Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité de Mycologie Moléculaire, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l'Infection Microbienne, Paris, France
| |
Collapse
|
17
|
Huang X, Liufu Q, Xu R, Chen X, Liu M, Han J, Guan H, Ma C. Integrating lncRNAs and mRNAs Expression Profiles in Penicillin-Induced Persistent Chlamydial Infection in HeLa Cells. Front Mol Biosci 2022; 9:744901. [PMID: 35252346 PMCID: PMC8890745 DOI: 10.3389/fmolb.2022.744901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is a major etiological agent of sexually transmitted infection. Some stressing conditions can result in persistent chlamydial infection, which is thought to be associated with severe complications including ectopic pregnancy and tubal factor infertility. Long noncoding RNAs (lncRNAs) have been identified as key modulators in many biological processes. Nevertheless, the role of lncRNAs in persistent chlamydial infection is still unclear. In this study, we used lncRNA and mRNA microarray to identify the global lncRNAs and mRNAs expression in penicillin-induced persistent chlamydial infection in HeLa cells as well as the control group (HeLa cells without C. trachomatis infection). Among 1005 differentially expressed lncRNAs, 585 lncRNAs were upregulated and 420 downregulated in persistent chlamydial infection, while 410 mRNAs were identified to express differentially, of which 113 mRNAs were upregulated and 297 downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with differentially expressed genes were performed. We then constructed the lncRNA-miRNA-mRNA competing endogenous RNAs (ceRNAs) network. Four mRNAs were validated to be changed by quantitative real-time PCR which were correlated with the microarray result. Integration of protein-protein interaction network was constructed and hub genes were identified. These findings provide a new perspective on the molecular mechanisms of penicillin-induced persistent chlamydial infection.
Collapse
Affiliation(s)
- Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Liufu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingna Liu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunguang Ma, ; Hongyu Guan,
| | - Chunguang Ma
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunguang Ma, ; Hongyu Guan,
| |
Collapse
|
18
|
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, Nemazanyy I, de Moraes FE, Labate C, Guerrera IC, Charbit A. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog 2021; 17:e1009326. [PMID: 34339477 PMCID: PMC8360588 DOI: 10.1371/journal.ppat.1009326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Collapse
Affiliation(s)
- Héloise Rytter
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Pauline Lagouge-Roussey
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Nicolas Goudin
- Pole Bio-analyse d’images, Structure Fédérative de Recherche Necker INSERM US24- CNRS UMS 3633, Paris, France
| | - Cerina Chhuon
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Université de Paris, Paris, France
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Fabricio Edgar de Moraes
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ida Chiara Guerrera
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
- * E-mail: (ICG); (AC)
| | - Alain Charbit
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
- * E-mail: (ICG); (AC)
| |
Collapse
|
19
|
Huang X, Tan J, Chen X, Liu M, Zhu H, Li W, He Z, Han J, Ma C. Akt Phosphorylation Influences Persistent Chlamydial Infection and Chlamydia-Induced Golgi Fragmentation Without Involving Rab14. Front Cell Infect Microbiol 2021; 11:675890. [PMID: 34169005 PMCID: PMC8218875 DOI: 10.3389/fcimb.2021.675890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that causes multiple diseases involving the eyes, gastrointestinal tract, and genitourinary system. Previous studies have identified that in acute chlamydial infection, C. trachomatis requires Akt pathway phosphorylation and Rab14-positive vesicles to transmit essential lipids from the Golgi apparatus in survival and replication. However, the roles that Akt phosphorylation and Rab14 play in persistent chlamydial infection remain unclear. Here, we discovered that the level of Akt phosphorylation was lower in persistent chlamydial infection, and positively correlated with the effect of activating the development of Chlamydia but did not change the infectivity and 16s rRNA gene expression. Rab14 was found to exert a limited effect on persistent infection. Akt phosphorylation might regulate Chlamydia development and Chlamydia-induced Golgi fragmentation in persistent infection without involving Rab14. Our results provide a new insight regarding the potential of synergistic repressive effects of an Akt inhibitor with antibiotics in the treatment of persistent chlamydial infection induced by penicillin.
Collapse
Affiliation(s)
- Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Tan
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingna Liu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiling Zhu
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Wenjing Li
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunguang Ma
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Kunze M, Steiner T, Chen F, Huber C, Rydzewski K, Stämmler M, Heuner K, Eisenreich W. Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii. Int J Med Microbiol 2021; 311:151504. [PMID: 33906075 DOI: 10.1016/j.ijmm.2021.151504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
The metabolism of Legionella pneumophila strain Paris was elucidated during different time intervals of growth within its natural host Acanthamoeba castellanii. For this purpose, the amoebae were supplied after bacterial infection (t =0 h) with 11 mM [U-13C6]glucose or 3 mM [U-13C3]serine, respectively, during 0-17 h, 17-25 h, or 25-27 h of incubation. At the end of these time intervals, bacterial and amoebal fractions were separated. Each of these fractions was hydrolyzed under acidic conditions. 13C-Enrichments and isotopologue distributions of resulting amino acids and 3-hydroxybutyrate were determined by gas chromatography - mass spectrometry. Comparative analysis of the labelling patterns revealed the substrate preferences, metabolic pathways, and relative carbon fluxes of the intracellular bacteria and their amoebal host during the time course of the infection cycle. Generally, the bacterial infection increased the usage of exogenous glucose via glycolysis by A. castellanii. In contrast, carbon fluxes via the amoebal citrate cycle were not affected. During the whole infection cycle, intracellular L. pneumophila incorporated amino acids from their host into the bacterial proteins. However, partial bacterial de novo biosynthesis from exogenous 13C-Ser and, at minor rates, from 13C-glucose could be shown for bacterial Ala, Asp, Glu, and Gly. More specifically, the catabolic usage of Ser increased during the post-exponential phase of intracellular growth, whereas glucose was utilized by the bacteria throughout the infection cycle and not only late during infection as assumed on the basis of earlier in vitro experiments. The early usage of 13C-glucose by the intracellular bacteria suggests that glucose availability could serve as a trigger for replication of L. pneumophila inside the vacuoles of host cells.
Collapse
Affiliation(s)
- Mareike Kunze
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fan Chen
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Claudia Huber
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Maren Stämmler
- Proteomics and Spectroscopy, ZBS 6, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
21
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
22
|
Host and Bacterial Glycolysis during Chlamydia trachomatis Infection. Infect Immun 2020; 88:IAI.00545-20. [PMID: 32900818 DOI: 10.1128/iai.00545-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the leading cause of noncongenital blindness and causative agent of the most common sexually transmitted infection of bacterial origin. With a reduced genome, C. trachomatis is dependent on its host for survival, in part due to a need for the host cell to compensate for incomplete bacterial metabolic pathways. However, relatively little is known regarding how C. trachomatis is able to hijack host cell metabolism. In this study, we show that two host glycolytic enzymes, aldolase A and pyruvate kinase, as well as lactate dehydrogenase, are enriched at the C. trachomatis inclusion membrane during infection. Inclusion localization was not species specific, since a similar phenotype was observed with C. muridarum Time course experiments showed that the number of positive inclusions increased throughout the developmental cycle. In addition, these host enzymes colocalized to the same inclusion, and their localization did not appear to be dependent on sustained bacterial protein synthesis or on intact host actin, vesicular trafficking, or microtubules. Depletion of the host glycolytic enzyme aldolase A resulted in decreased inclusion size and infectious progeny production, indicating a role for host glycolysis in bacterial growth. Finally, quantitative PCR analysis showed that expression of C. trachomatis glycolytic enzymes inversely correlated with host enzyme localization at the inclusion. We discuss potential mechanisms leading to inclusion localization of host glycolytic enzymes and how it could benefit the bacteria. Altogether, our findings provide further insight into the intricate relationship between host and bacterial metabolism during Chlamydia infection.
Collapse
|
23
|
Rajeeve K, Vollmuth N, Janaki-Raman S, Wulff TF, Baluapuri A, Dejure FR, Huber C, Fink J, Schmalhofer M, Schmitz W, Sivadasan R, Eilers M, Wolf E, Eisenreich W, Schulze A, Seibel J, Rudel T. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nat Microbiol 2020; 5:1390-1402. [PMID: 32747796 DOI: 10.1038/s41564-020-0762-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.
Collapse
Affiliation(s)
- Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany. .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sudha Janaki-Raman
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas F Wulff
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Francesca R Dejure
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.,BioMed X Institute, Heidelberg, Germany
| | - Claudia Huber
- Chair of Biochemistry, Technical University of Munich, Garching, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rajeeve Sivadasan
- RNA Biology and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.,Division of Tumour Metabolism and Microenvironment, German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany. .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.
| |
Collapse
|
24
|
Marziali G, Marangoni A, Foschi C, Re MC, Calonghi N. Effect of Sugars on Chlamydia trachomatis Infectivity. Pathogens 2020; 9:pathogens9040298. [PMID: 32316668 PMCID: PMC7237991 DOI: 10.3390/pathogens9040298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Previous works suggest that sugars can have a beneficial effect on C. trachomatis (CT) survival and virulence. In this study, we investigated the effect of different sugars on CT infectivity, elucidating some of the molecular mechanisms behind CT-sugar interaction. Methods. CT infectivity was investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose, or mannitol solutions (0.5, 2.5, 5.0 mM). The effect of sugars on EB membrane fluidity was investigated by fluorescence anisotropy measurement, whereas the changes in lipopolysaccharide (LPS) exposure were examined by cytofluorimetric analysis. By means of a Western blot, we explored the phosphorylation state of Focal Adhesion Kinase (FAK) in HeLa cells infected with EBs pre-incubated with sugars. Results. All sugar solutions significantly increased CT infectivity on epithelial cells, acting directly on the EB structure. Sugars induced a significant increase of EB membrane fluidity, leading to changes in LPS membrane exposure. Especially after incubation with sucrose and mannitol, EBs led to a higher FAK phosphorylation, enhancing the activation of anti-apoptotic and proliferative signals in the host cells. Conclusions. Sugars can increase CT infectivity and virulence, by modulating the expression/exposure of chlamydial membrane ligands. Further in-depth studies are needed to better understand the molecular mechanisms involved.
Collapse
Affiliation(s)
- Giacomo Marziali
- FaBiT Department, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (G.M.); (N.C.)
| | - Antonella Marangoni
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
- Correspondence: ; Tel.: +39-051-2144513; Fax: +39-051-307397
| | - Maria Carla Re
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
| | - Natalia Calonghi
- FaBiT Department, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (G.M.); (N.C.)
| |
Collapse
|
25
|
Soules KR, Dmitriev A, LaBrie SD, Dimond ZE, May BH, Johnson DK, Zhang Y, Battaile KP, Lovell S, Hefty PS. Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation. Mol Microbiol 2020; 113:68-88. [PMID: 31637787 PMCID: PMC7007330 DOI: 10.1111/mmi.14401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.
Collapse
Affiliation(s)
- Katelyn R Soules
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Aidan Dmitriev
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Scott D LaBrie
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Zoë E Dimond
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Benjamin H May
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David K Johnson
- Computational Chemical Biology Core Facility, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Yang Zhang
- Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, IL, 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
26
|
Yang M, Rajeeve K, Rudel T, Dandekar T. Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection. Front Microbiol 2019; 10:2350. [PMID: 31681215 PMCID: PMC6803457 DOI: 10.3389/fmicb.2019.02350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Abstract
Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct’s major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies.
Collapse
Affiliation(s)
- Manli Yang
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,European Molecular Biology Laboratory, Computational Biology and Structures Program, Heidelberg, Germany
| |
Collapse
|
27
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Rother M, Teixeira da Costa AR, Zietlow R, Meyer TF, Rudel T. Modulation of Host Cell Metabolism by Chlamydia trachomatis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0012-2019. [PMID: 31111817 PMCID: PMC11026074 DOI: 10.1128/microbiolspec.bai-0012-2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
Propagation of the intracellular bacterial pathogen Chlamydia trachomatis is strictly bound to its host cells. The bacterium has evolved by minimizing its genome size at the cost of being completely dependent on its host. Many of the vital nutrients are synthesized only by the host, and this has complex implications. Recent advances in loss-of-function analyses and the metabolomics of human infected versus noninfected cells have provided comprehensive insight into the molecular changes that host cells undergo during the stage of infection. Strikingly, infected cells acquire a stage of high metabolic activity, featuring distinct aspects of the Warburg effect, a condition originally assigned to cancer cells. This condition is characterized by aerobic glycolysis and an accumulation of certain metabolites, altogether promoting the synthesis of crucial cellular building blocks, such as nucleotides required for DNA and RNA synthesis. The altered metabolic program enables tumor cells to rapidly proliferate as well as C. trachomatis-infected cells to feed their occupants and still survive. This program is largely orchestrated by a central control board, the tumor suppressor protein p53. Its downregulation in C. trachomatis-infected cells or mutation in cancer cells not only alters the metabolic state of cells but also conveys the prevention of programmed cell death involving mitochondrial pathways. While this points toward common features in the metabolic reprogramming of infected and rapidly proliferating cells, it also forwards novel treatment options against chronic intracellular infections involving well-characterized host cell targets and established drugs.
Collapse
Affiliation(s)
- Marion Rother
- Steinbeis Innovation Center for Systems Biomedicine, 14612 Berlin-Falkensee, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | | | - Rike Zietlow
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
29
|
Capmany A, Gambarte Tudela J, Alonso Bivou M, Damiani MT. Akt/AS160 Signaling Pathway Inhibition Impairs Infection by Decreasing Rab14-Controlled Sphingolipids Delivery to Chlamydial Inclusions. Front Microbiol 2019; 10:666. [PMID: 31001235 PMCID: PMC6456686 DOI: 10.3389/fmicb.2019.00666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular bacterium, intercepts different trafficking pathways of the host cell to acquire essential lipids for its survival and replication, particularly from the Golgi apparatus via a Rab14-mediated transport. Molecular mechanisms underlying how these bacteria manipulate intracellular transport are a matter of intense study. Here, we show that C. trachomatis utilizes Akt/AS160 signaling pathway to promote sphingolipids delivery to the chlamydial inclusion through Rab14-controlled vesicular transport. C. trachomatis provokes Akt phosphorylation along its entire developmental life cycle and recruits phosphorylated Akt (pAkt) to the inclusion membrane. As a consequence, Akt Substrate of 160 kDa (AS160), also known as TBC1D4, a GTPase Activating Protein (GAP) for Rab14, is phosphorylated and therefore inactivated. Phosphorylated AS160 (pAS160) loses its ability to promote GTP hydrolysis, favoring Rab14 binding to GTP. Akt inhibition by an allosteric isoform-specific Akt inhibitor (iAkt) prevents AS160 phosphorylation and reduces Rab14 recruitment to chlamydial inclusions. iAkt further impairs sphingolipids acquisition by C. trachomatis-inclusion and provokes lipid retention at the Golgi apparatus. Consequently, treatment with iAkt decreases chlamydial inclusion size, bacterial multiplication, and infectivity in a dose-dependent manner. Similar results were found in AS160-depleted cells. By electron microscopy, we observed that iAkt generates abnormal bacterial forms as those reported after sphingolipids deprivation or Rab14 silencing. Taken together, our findings indicate that targeting the Akt/AS160/Rab14 axis could constitute a novel strategy to limit chlamydial infections, mainly for those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Anahí Capmany
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - María T Damiani
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| |
Collapse
|
30
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
31
|
Best A, Abu Kwaik Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol 2019; 27:550-561. [PMID: 30655036 DOI: 10.1016/j.tim.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
The host is a nutrient-rich niche for microbial pathogens, but one that comes with obstacles and challenges. Many intracellular pathogens like Legionella pneumophila, Coxiella burnetii, Listeria monocytogenes, and Chlamydia trachomatis have developed bipartite metabolism within their hosts. This style of metabolic regulation enables pathogen sensing of specific nutrients to engage them into catabolic and anabolic processes, and contributes to temporal and spatial pathogen phenotypic modulation. Not only have intracellular pathogens adapted their metabolism to the host, they have also acquired idiosyncratic strategies to exploit host nutritional supplies and intercept metabolites. Francisella tularensis and Anaplasma phagocytophilum alter host autophagy, Shigella flexneri intercepts all host pyruvate, while L. pneumophila induces host protein degradation and blocks protein translation. Strategies of pathogen manipulation of host nutrients could serve as therapeutic targets.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA; Center for Predictive Medicine, College of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
32
|
Taylor-Brown A, Pillonel T, Greub G, Vaughan L, Nowak B, Polkinghorne A. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biol Evol 2018; 10:2587-2595. [PMID: 30202970 PMCID: PMC6171736 DOI: 10.1093/gbe/evy195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Switzerland.,Pathovet AG, Tagelswangen, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, Australia
| | - Adam Polkinghorne
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
33
|
Rother M, Gonzalez E, Teixeira da Costa AR, Wask L, Gravenstein I, Pardo M, Pietzke M, Gurumurthy RK, Angermann J, Laudeley R, Glage S, Meyer M, Chumduri C, Kempa S, Dinkel K, Unger A, Klebl B, Klos A, Meyer TF. Combined Human Genome-wide RNAi and Metabolite Analyses Identify IMPDH as a Host-Directed Target against Chlamydia Infection. Cell Host Microbe 2018; 23:661-671.e8. [PMID: 29706504 DOI: 10.1016/j.chom.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Chlamydia trachomatis (Ctr) accounts for >130 million human infections annually. Since chronic Ctr infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As an obligate intracellular bacterium, Ctr strictly depends on the functional contribution of the host cell. Here, we combined a human genome-wide RNA interference screen with metabolic profiling to obtain detailed understanding of changes in the infected cell and identify druggable pathways essential for Ctr growth. We demonstrate that Ctr shifts the host metabolism toward aerobic glycolysis, consistent with increased biomass requirement. We identify key regulator complexes of glucose and nucleotide metabolism that govern Ctr infection processes. Pharmacological targeting of inosine-5'-monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits Ctr growth both in vitro and in vivo. These results highlight the potency of genome-scale functional screening for the discovery of drug targets against bacterial infections.
Collapse
Affiliation(s)
- Marion Rother
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany; Center for Systems Biomedicine, Steinbeis Innovation, 14612 Falkensee, Germany
| | - Erik Gonzalez
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ana Rita Teixeira da Costa
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Lea Wask
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Isabella Gravenstein
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Matteo Pardo
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany; Institute for Applied Mathematics and Information Technologies, Italian National Research Council, 16149 Genova, Italy
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Angermann
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert Laudeley
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany; Center for Systems Biomedicine, Steinbeis Innovation, 14612 Falkensee, Germany
| | - Cindrilla Chumduri
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Klaus Dinkel
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Anke Unger
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Andreas Klos
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
34
|
Foschi C, Laghi L, D’Antuono A, Gaspari V, Zhu C, Dellarosa N, Salvo M, Marangoni A. Urine metabolome in women with Chlamydia trachomatis infection. PLoS One 2018; 13:e0194827. [PMID: 29566085 PMCID: PMC5864028 DOI: 10.1371/journal.pone.0194827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/09/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to characterize the urine metabolome of women with Chlamydia trachomatis (CT) uro-genital infection (n = 21), comparing it with a group of CT-negative subjects (n = 98). By means of a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy, we detected and quantified the urine metabolites of a cohort of 119 pre-menopausal Caucasian women, attending a STI Outpatients Clinic in Italy. In case of a CT positive result, CT molecular genotyping was performed by omp1 gene semi-nested PCR followed by RFLP analysis. We were able to identify several metabolites whose concentrations were significantly higher in the urine samples of CT-positive subjects, including sucrose, mannitol, pyruvate and lactate. In contrast, higher urinary levels of acetone represented the main feature of CT-negative women. These results were not influenced by the age of patients nor by the CT serovars (D, E, F, G, K) responsible of the urethral infections. Since the presence of sugars can increase the stability of chlamydial proteins, higher levels of sucrose and mannitol in the urethral lumen, related to a higher sugar consumption, could have favoured CT infection acquisition or could have been of aid for the bacterial viability. Peculiar dietary habits of the subjects enrolled, in term of type and amount of food consumed, could probably explain these findings. Lactate and pyruvate could result from CT-induced immunopathology, as a product of the inflammatory microenvironment. Further studies are needed to understand the potential role of these metabolites in the pathogenesis of CT infection, as well as their diagnostic/prognostic use.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | | | | | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | - Nicolò Dellarosa
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | - Melissa Salvo
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | |
Collapse
|
35
|
Cortés MP, Mendoza SN, Travisany D, Gaete A, Siegel A, Cambiazo V, Maass A. Analysis of Piscirickettsia salmonis Metabolism Using Genome-Scale Reconstruction, Modeling, and Testing. Front Microbiol 2017; 8:2462. [PMID: 29321769 PMCID: PMC5732189 DOI: 10.3389/fmicb.2017.02462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/27/2017] [Indexed: 01/27/2023] Open
Abstract
Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with highly adverse impact in the Chilean salmon farming industry. The development of effective treatment and control methods for piscireckttsiosis is still a challenge. To meet it the number of studies on P. salmonis has grown in the last couple of years but many aspects of the pathogen's biology are still poorly understood. Studies on its metabolism are scarce and only recently a metabolic model for reference strain LF-89 was developed. We present a new genome-scale model for P. salmonis LF-89 with more than twice as many genes as in the previous model and incorporating specific elements of the fish pathogen metabolism. Comparative analysis with models of different bacterial pathogens revealed a lower flexibility in P. salmonis metabolic network. Through constraint-based analysis, we determined essential metabolites required for its growth and showed that it can benefit from different carbon sources tested experimentally in new defined media. We also built an additional model for strain A1-15972, and together with an analysis of P. salmonis pangenome, we identified metabolic features that differentiate two main species clades. Both models constitute a knowledge-base for P. salmonis metabolism and can be used to guide the efficient culture of the pathogen and the identification of specific drug targets.
Collapse
Affiliation(s)
- María P Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Verónica Cambiazo
- Fondap Center for Genome Regulation (CGR), Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev 2017; 41:640-652. [PMID: 28961963 DOI: 10.1093/femsre/fux033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Glycerol and glycerol-containing compounds such as lipids belong to the most abundant organic compounds that may serve as nutrient for many bacteria. For the cell wall-less bacteria of the genus Mycoplasma, glycerol derived from phospholipids of their human or animal hosts is the major source of carbon and energy. The lipids are first degraded by lipases, and the resulting glycerophosphodiesters are transported into the cell and cleaved to release glycerol-3-phosphate. Alternatively, free glycerol can be transported, and then become phosphorylated. The oxidation of glycerol-3-phosphate in Mycoplasma spp. as well as in related firmicutes involves a hydrogen peroxide-generating glycerol-3-phosphate oxidase. This enzyme is a key player in the virulence of Mycoplasma spp. as the produced hydrogen peroxide is one of the major virulence factors of these bacteria. In this review, the different components involved in the utilization of lipids and glycerol in Mycoplasma pneumoniae and related bacteria are discussed.
Collapse
Affiliation(s)
- Cedric Blötz
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Liang P, Rosas-Lemus M, Patel D, Fang X, Tuz K, Juárez O. Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation. J Biol Chem 2017; 293:510-522. [PMID: 29123027 DOI: 10.1074/jbc.m117.797209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.
Collapse
Affiliation(s)
- Pingdong Liang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Mónica Rosas-Lemus
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Dhwani Patel
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
38
|
Haferkamp I. Crossing the border - Solute entry into the chlamydial inclusion. Int J Med Microbiol 2017; 308:41-48. [PMID: 28864236 DOI: 10.1016/j.ijmm.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022] Open
Abstract
Chlamydiales comprise important human and animal pathogens as well as endosymbionts of amoebae. Generally, these obligate intracellular living bacteria are characterized by a biphasic developmental cycle, a reduced genome and a restricted metabolic capacity. Because of their metabolic impairment, Chlamydiales essentially rely on the uptake of diverse metabolites from their hosts. Chlamydiales thrive in a special compartment, the inclusion, and hence are surrounded by an additional membrane. Solutes might enter the inclusion through pores and open channels or by redirection of host vesicles, which fuse with the inclusion membrane and release their internal cargo. Recent investigations shed new light on the chlamydia-host interaction and identified an additional way for nutrient uptake into the inclusion. Proteome studies and targeting analyses identified chlamydial and host solute carriers in inclusions of Chlamydia trachomatis infected cells. These transporters are involved in the provision of UDP-glucose and biotin, and probably deliver further metabolites to the inclusion. By the controlled recruitment of specific solute carriers to the inclusion, the chlamydial resident thus can actively manipulate the metabolite availability and composition in the inclusion. This review summarizes recent findings and new ideas on carrier mediated solute uptake into the chlamydial inclusion in the context of the bacterial and host metabolism.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin-Schrödinger Str. 22, 67663 Kaiserslautern, Germany.
| |
Collapse
|
39
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
40
|
Häuslein I, Cantet F, Reschke S, Chen F, Bonazzi M, Eisenreich W. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network. Front Cell Infect Microbiol 2017; 7:285. [PMID: 28706879 PMCID: PMC5489692 DOI: 10.3389/fcimb.2017.00285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars) from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites) through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine) via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network, resembling the overall topology of the related pathogen Legionella pneumophila. These strategies could benefit the metabolic capacities of the pathogens also as a trait to adapt for replication under intracellular conditions.
Collapse
Affiliation(s)
- Ina Häuslein
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Franck Cantet
- IRIM-UMR 9004, Infectious Disease Research Institute of Montpellier, Université de Montpellier, Centre National de la Recherche ScientifiqueMontpellier, France
| | - Sarah Reschke
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Fan Chen
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Matteo Bonazzi
- IRIM-UMR 9004, Infectious Disease Research Institute of Montpellier, Université de Montpellier, Centre National de la Recherche ScientifiqueMontpellier, France
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| |
Collapse
|
41
|
Chen F, Rydzewski K, Kutzner E, Häuslein I, Schunder E, Wang X, Meighen-Berger K, Grunow R, Eisenreich W, Heuner K. Differential Substrate Usage and Metabolic Fluxes in Francisella tularensis Subspecies holarctica and Francisella novicida. Front Cell Infect Microbiol 2017; 7:275. [PMID: 28680859 PMCID: PMC5478678 DOI: 10.3389/fcimb.2017.00275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kerstin Rydzewski
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Erika Kutzner
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Ina Häuslein
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Eva Schunder
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Xinzhe Wang
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kevin Meighen-Berger
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Robert Koch InstituteBerlin, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Klaus Heuner
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
42
|
Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont. mSystems 2017; 2:mSystems00202-16. [PMID: 28593198 PMCID: PMC5451489 DOI: 10.1128/msystems.00202-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes. IMPORTANCE Chlamydiae are known as major bacterial pathogens of humans, causing the ancient disease trachoma, but they are also frequently found in the environment where they infect ubiquitous protists such as amoebae. All known chlamydiae require a eukaryotic host cell to thrive. Using the environmental chlamydia Protochlamydia amoebophila within its natural host, Acanthamoeba castellanii, we investigated gene expression dynamics in vivo and throughout the complete chlamydial developmental cycle for the first time. This allowed us to infer how a major virulence mechanism, the type III secretion system, is regulated and employed, and we show that the physiology of chlamydiae undergoes a complete shift regarding carbon metabolism and energy generation. This study provides comprehensive insights into the infection strategy of chlamydiae and reveals a unique adaptation to life within a eukaryotic host cell.
Collapse
|