1
|
Nguyen TH, Wang BX, Diaz OR, Rajendram M, McKenna JA, Butler DSC, Hokamp K, Hinton JCD, Monack DM, Huang KC. Profiling Salmonella transcriptional dynamics during macrophage infection using a comprehensive reporter library. Nat Microbiol 2025; 10:1006-1023. [PMID: 40175723 DOI: 10.1038/s41564-025-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2025] [Indexed: 04/04/2025]
Abstract
Salmonella enterica serovar Typhimurium must adapt to rapid environmental shifts, including those encountered upon entry and during replication to survive within macrophages during pathogenesis. Despite extensive RNA-seq-based investigations, questions remain regarding the range, timing and magnitude of response dynamics. Here we constructed a comprehensive GFP-reporter strain library representing 2,901 computationally identified Salmonella promoter regions to study time-resolved Salmonella transcriptional responses. Promoter activity was measured during in vitro growth and during intracellular infection of RAW 264.7 macrophages. Using bulk measurements and single-cell imaging, we uncovered condition-specific transcriptional regulation and population-level heterogeneity in SPI2-related promoter activity. We also discovered previously unidentified transcriptional activity from 234 promoters. These analyses revealed metabolic shifts including requirements for mntS expression to support manganese homeostasis and expression of Entner-Doudoroff pathway-associated genes to support growth within macrophages. Our library and datasets, made available through the online tool SalComKinetics, provide resources for systems-level interrogation of Salmonella transcriptional dynamics.
Collapse
Affiliation(s)
- Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oscar R Diaz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Joy A McKenna
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel S C Butler
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ilyina V, Gatina A, Trizna E, Siniagina M, Yadykova L, Ivannikova A, Ozhegov G, Zhuravleva D, Fedorova M, Gorshkova A, Evseev P, Drucker V, Bogachev M, Validov S, Kharitonova M, Kayumov A. New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal. Viruses 2025; 17:189. [PMID: 40006944 PMCID: PMC11861027 DOI: 10.3390/v17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, causes various biofilm-associated infections like pneumonia, infections in cystic fibrosis patients, and urinary tract and burn infections with high morbidity and mortality, as well as low treatment efficacy due to the extremely wide spread of isolates with multidrug resistance. Here, we report the new bacteriophage Pseudomonas phage Ka2 isolated from a tributary stream of Lake Baikal and belonging to the Pbunavirus genus. Transmission electron microscopy resolved that Pseudomonas phage Ka2 has a capsid of 57 ± 9 nm and a contractile and inflexible tail of 115 ± 10 nm in the non-contracted state. The genome consists of 66,310 bp with a GC content of 55% and contains 96 coding sequences. Among them, 52 encode proteins have known functions, and none of them are potentially associated with lysogeny. The bacteriophage lyses 21 of 30 P. aeruginosa clinical isolates and decreases the MIC of amikacin, gentamicin, and cefepime up to 16-fold and the MIC of colistin up to 32-fold. When treating the biofilms with Ka2, the biomass was reduced by twice, and up to a 32-fold decrease in the antibiotics MBC against biofilm-embedded cells was achieved by the combination of Ka2 with cefepime for the PAO1 strain, along with a decrease of up to 16-fold with either amikacin or colistin for clinical isolates. Taken together, these data characterize the new Pseudomonas phage Ka2 as a promising tool for the combined treatment of infections associated with P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Valeriya Ilyina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Alina Gatina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Elena Trizna
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Maria Siniagina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Liudmila Yadykova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Anastasiya Ivannikova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Georgiy Ozhegov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Daria Zhuravleva
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Marina Fedorova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Anna Gorshkova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Peter Evseev
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Valentin Drucker
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | - Shamil Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia;
| | - Maya Kharitonova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Airat Kayumov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| |
Collapse
|
3
|
Cuomo P, Medaglia C, Casillo A, Gentile A, Fruggiero C, Corsaro MM, Capparelli R. Phage-resistance alters Lipid A reactogenicity: a new strategy for LPS-based conjugate vaccines against Salmonella Rissen. Front Immunol 2024; 15:1450600. [PMID: 39723217 PMCID: PMC11668645 DOI: 10.3389/fimmu.2024.1450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serovar Rissen (S. Rissen) is an emerging causative agent of foodborne diseases. The current emergence of antibiotic resistance makes necessary alternative therapeutic strategies. In this study, we investigated the potential of a phage-resistant strain of S. Rissen (RR) as a tool for developing an effective lipopolysaccharide (LPS)-based vaccine. The LPS O-antigen is known to play critical roles in protective immunity against Salmonella. However, the high toxicity of the LPS lipid A moiety limits its use in vaccines. Here, we demonstrated that the acquisition of bacteriophage resistance by S. Rissen leads to structural modifications in the LPS structure. Using NMR and mass spectrometry, we characterized the LPS from phage-resistant strains as a smooth variant bearing under-acylated Lipid A portions (penta- and tetra-acylated forms). We then combined RT-qPCR and NMR-based metabolomics to explore the effects of phage resistance and LPS modification on bacterial fitness and virulence. Finally, we conducted in vivo studies to determine whether lysogeny-induced remodeling of LPS affects the host immune response. Results revealed that the under-acylated variant of LPS from RR attenuates the inflammatory response in BALB/c mice, while eliciting a specific antibody response that protects against S. Rissen (RW) infection. In conclusion, our findings suggest that phage resistance, through lipid A modification, may offer a novel strategy for reducing LPS toxicity, highlighting its potential as a promising biological approach for developing LPS-based vaccines against Salmonella infections.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Chiara Medaglia
- Functional Genomics Research Center, Fondazione Human Technopole, Milan, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Gentile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Carmine Fruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Sargen MR, Helaine S. A prophage competition element protects Salmonella from lysis. Cell Host Microbe 2024; 32:2063-2079.e8. [PMID: 39515326 PMCID: PMC11840918 DOI: 10.1016/j.chom.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in Salmonella, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage Salmonella persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences Salmonella persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.
Collapse
Affiliation(s)
- Molly R Sargen
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Mylona E, Pereira-Dias J, Keane JA, Karkey A, Dongol S, Khokhar F, Tran TA, Cormie C, Higginson E, Baker S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024; 42:126404. [PMID: 39383552 DOI: 10.1016/j.vaccine.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Enteric fever remains a major public health problem in South and Southeast Asia. The recent roll-out of the typhoid conjugate vaccine protecting against S. Typhi exhibits great promise for disease reduction in high burden areas. However, some endemic regions remain vulnerable to S. Paratyphi A due to a lack of licensed vaccines and inadequate WASH. Several developmental S. Paratyphi A vaccines exploit O-antigen as the target antigen. It has been hypothesised that O-antigen is under selective and environmental pressure, with mutations in O-antigen biosynthesis genes being reported, but their phenotypic effects are unknown. Here, we aimed to evaluate O-antigen variation in S. Paratyphi A originating from Nepal, and the potential effect of this variation on antibody binding. O-antigen variation was determined by measuring LPS laddering shift following electrophoresis; this analysis was complemented with genomic characterisation of the O-antigen region. We found structural O-antigen variation in <10 % of S. Paratyphi A organisms, but a direct underlying genetic cause could not be identified. High-content imaging was performed to determine antibody binding by commercial O2 monoclonal (mAb) and polyclonal antibodies, as well as polyclonal sera from convalescent patients naturally infected with S. Paratyphi A. Commercial mAbs detected only a fraction of an apparently "clonal" bacterial population, suggesting phase variation and nonuniform O-antigen composition. Notably, and despite visible subpopulation clusters, O-antigen structural changes did not appear to affect the binding ability of polyclonal human antibody considerably, which led to no obvious differences in the functionality of antibodies targeting organisms with different O-antigen conformations. Although these results need to be confirmed in organisms from alternative endemic areas, they are encouraging the use of O-antigen as the target antigen in S. Paratyphi A vaccines.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Fahad Khokhar
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, UK
| | - Tuan-Anh Tran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Human Immunology Laboratory, IAVI, London, UK
| |
Collapse
|
6
|
Carneiro DG, Vidigal PMP, Morgan T, Vanetti MCD. Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence. Access Microbiol 2024; 6:000828.v3. [PMID: 39686970 PMCID: PMC11649194 DOI: 10.1099/acmi.0.000828.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella enterica serotype Enteritidis is a generalist serotype that adapts to different hosts and transmission niches. It has significant epidemiological relevance and is among the most prevalent serotypes distributed in several countries. Salmonella Enteritidis causes self-limited gastroenteritis in humans, which can progress to systemic infection in immunocompromised individuals. The Salmonella pathogenicity mechanism is multifactorial and complex, including the presence of virulence factors that are encoded by virulence genes. Poultry products are considered significant reservoirs of many Salmonella serotypes, and Salmonella Enteritidis infections are often related to the consumption of chicken meat and eggs. This study reports the whole-genome sequence of Salmonella Enteritidis PT4 strain 578. A total of 165 genes (3.66%) of the 4506 coding sequences (CDS) predicted in its genome are virulence factors associated with cell invasion, intestinal colonization, and intracellular survival. The genome harbours twelve Salmonella pathogenicity islands (SPIs), with the SPI-1 and SPI-2 genes encoding type III secretion systems (T3SS) showing high conservation. Six prophage-related sequences were found, with regions of intact prophages corresponding to Salmon_118970_sal3 and Gifsy-2. The genome also contains two CRISPR systems. Comparative genome analysis with Salmonella Enteritidis ATCC 13076, Salmonella Typhimurium ATCC 13311, and Salmonella Typhimurium ATCC 14028 demonstrates that most unshared genes are related to metabolism, membrane, and hypothetical proteins. Finally, the phenotypic characterization evidenced differences among Salmonella Enteritidis PT4 578 and the other three serotypes regarding the expression of the red, dry, and rough (rdar) morphotype and biofilm formation. Overall, the genomic characterization and phenotypic properties expand knowledge of the mechanisms of pathogenicity in Salmonella Enteritidis PT4 578.
Collapse
Affiliation(s)
- Deisy G. Carneiro
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Pedro Marcus P. Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa 36570-900, Minas Gerais, Brazil
| | - Túlio Morgan
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Maria Cristina D. Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
7
|
Guo X, Luo G, Hou F, Zhou C, Liu X, Lei Z, Niu D, Ran T, Tan Z. A review of bacteriophage and their application in domestic animals in a post-antibiotic era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174931. [PMID: 39043300 DOI: 10.1016/j.scitotenv.2024.174931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
8
|
Zhuo ZX, Feng YL, Zhang XW, Liu H, Zeng FY, Li XY. Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages. J Microbiol 2024; 62:859-870. [PMID: 39495470 DOI: 10.1007/s12275-024-00170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 11/05/2024]
Abstract
Salmonella Typhimurium is an invasive gastrointestinal pathogen for both humans and animals. To investigate the genetic framework and diversity of S. Typhimurium, a total of 194 S. Typhimurium isolates were collected from patients in a tertiary hospital between 2020 and 2021. Antimicrobial susceptibility testing was used to confirm the resistance phenotype. Whole-genome sequencing and bioinformatics analysis were performed to determine the sequence type, phylogenetic relationships, resistance gene profiles, Salmonella pathogenicity island (SPI) and the diversity of the core and pan genome. The result showed that 57.22% of S. Typhimurium isolates were multidrug resistant and resistance of total isolates to the first-line drug ciprofloxacin was identified in 60.82%. The population structure of S. Typhimurium was categorized into three lineages: ST19 (20.10%, 39/194), ST34-1 (47.42%, 92/194) and ST34-2 (40.65%, 63/194), with the population size exhibiting increasing trends. All lineages harbored variety of fimbrial operons, prophages, SPIs and effectors that contributed to the virulence and long-term infections of S. Typhimurium. Importantly, ST34-1 lineage might potentially be more invasive due to the possession of SPI1-effector gene sopE which was essential for the proliferation, internalization and intracellular presence of S. Typhimurium in hosts. Multiple antimicrobial resistance genes were characteristically distributed across three lineages, especially carbapenem genes only detected in ST34-1&2 lineages. The distinct functional categories of pan genome among three lineages were observed in metabolism, signaling and gene information processing. This study provides a theoretical foundation for the evolved adaptation and genetic diversity of S. Typhimurium ST19 and ST34, among which ST34 lineages with multidrug resistance and potential hypervirulence need to pay more attention to epidemiological surveillance.
Collapse
Affiliation(s)
- Zhen-Xu Zhuo
- Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510000, Guangzhou, People's Republic of China
| | - Yu-Lian Feng
- Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510000, Guangzhou, People's Republic of China
| | - Xi-Wei Zhang
- Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510000, Guangzhou, People's Republic of China
| | - Hao Liu
- Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510000, Guangzhou, People's Republic of China
| | - Fang-Yin Zeng
- Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510000, Guangzhou, People's Republic of China.
| | - Xiao-Yan Li
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, People's Republic of China.
| |
Collapse
|
9
|
Campos IC, Vilela FP, Saraiva MDMS, Junior AB, Falcão JP. Insights into the global genomic features of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum. J Appl Microbiol 2024; 135:lxae217. [PMID: 39165105 DOI: 10.1093/jambio/lxae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
AIMS Characterize global genomic features of 86 genomes of Salmonella Gallinarum (SG) and Pullorum (SP), which are important pathogens causing systemic infections in poultry. METHODS AND RESULTS All genomes harbored efflux pump encoding gene mdsA and gold tolerance genes golS and golT. Aminoglycoside (aac(6')-Ib, aadA5, aph(6)-Id, aph(3'')-Ib, ant(2'')-Ia), beta-lactam (blaTEM-1, blaTEM-135), efflux pump (mdsB), fosfomycin (fosA3), sulfonamide (sul1, sul2), tetracycline [tet(A)], trimethoprim (dfrA17), acid (asr), and disinfectant (qacEdelta1) resistance genes, gyrA, gyrB, and parC quinolone resistance point mutations, and mercury tolerance genes (mer) were found in different frequencies. Additionally, 310 virulence genes, pathogenicity islands (including SPI-1, 2, 3, 4, 5, 6, 9, 10, 12, 13, and 14), plasmids [IncFII(S), ColpVC, IncX1, IncN, IncX2, and IncC], and prophages (Fels-2, ST104, 500465-1, pro483, Gifsy-2, 103 203_sal5, Fels-1, RE-2010, vB_SenS-Ent2, and L-413C) were detected. MLST showed biovar-specific sequence types, and core genome MLST showed country-specific and global-related clusters. CONCLUSION SG and SP global strains carry many virulence factors and important antimicrobial resistance genes. The diverse plasmids and prophages suggest genetic variability. MLST and cgMLST differentiated biovars and showed profiles occurring locally or worldwide.
Collapse
Affiliation(s)
- Isabela C Campos
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Felipe Pinheiro Vilela
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Mauro de M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Juliana Pfrimer Falcão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Yates CR, Nguyen A, Liao J, Cheng RA. What's on a prophage: analysis of Salmonella spp. prophages identifies a diverse range of cargo with multiple virulence- and metabolism-associated functions. mSphere 2024; 9:e0003124. [PMID: 38775467 PMCID: PMC11332146 DOI: 10.1128/msphere.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
The gain of mobile elements, such as prophages, can introduce cargo to the recipient bacterium that could facilitate its persistence in or expansion to a new environment, such as a host. While previous studies have focused on identifying and characterizing the genetic diversity of prophages, analyses characterizing the cargo that prophages carry have not been extensively explored. We characterized prophage regions from 303 Salmonella spp. genomes (representing 254 unique serovars) to assess the distribution of prophages in diverse Salmonella. On average, prophages accounted for 3.7% (0.1%-8.8%) of the total genomic content of each isolate. Prophage regions annotated as Gifsy 1 and Salmon Fels 1 were the most commonly identified intact prophages, suggesting that they are common throughout the Salmonella genus. Among 21,687 total coding sequences (CDSs) from intact prophage regions in subsp. enterica genomes, 7.5% (median; range: 1.1%-47.6%) were categorized as having a function not related to prophage integration or phage structure, some of which could potentially provide a functional attribute to the host Salmonella cell. These predicted functions could be broadly categorized into CDSs involved in: (i) modification of cell surface structures (i.e., glycosyltransferases); (ii) modulation of host responses (e.g., SodC/SodA, SopE, ArtAB, and typhoid toxin); (iii) conferring resistance to heavy metals and antimicrobials; (iv) metabolism of carbohydrates, amino acids, and nucleotides; and (v) DNA replication, repair, and regulation. Overall, our systematic analysis of prophage cargo highlights a broader role for prophage cargo in influencing the metabolic, virulence, and resistance characteristics of Salmonella. IMPORTANCE Lysogenic bacteriophages (phages) can integrate their genome into a bacterial host's genome, potentially introducing genetic elements that can affect the fitness of the host bacterium. The functions of prophage-encoded genes are important to understand as these genes could be mobilized and transferred to a new host. Using a large genomic dataset representing >300 isolates from all known subspecies and species of Salmonella, our study contributes important new findings on the distribution of prophages and the types of cargo that diverse Salmonella prophages carry. We identified a number of coding sequences (CDSs) annotated as having cell surface-modifying attributes, suggesting that prophages may have played an important role in shaping Salmonella's diverse surface antigen repertoire. Furthermore, our characterization of prophages suggests that they play a broader role in facilitating the acquisition and transfer of CDSs associated with metabolism, DNA replication and repair, virulence factors, and to a lesser extent, antimicrobial resistance.
Collapse
Affiliation(s)
- Caroline R. Yates
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Anthony Nguyen
- Computational Modeling and Data Analytics Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Yu X, Cheng L, Yi X, Li B, Li X, Liu X, Liu Z, Kong X. Gut phageome: challenges in research and impact on human microbiota. Front Microbiol 2024; 15:1379382. [PMID: 38585689 PMCID: PMC10995246 DOI: 10.3389/fmicb.2024.1379382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Cheng
- Department of Clinical Laboratory and Pathology, Hospital of Shanxi People’s Armed Police, Taiyuan, China
| | - Xin Yi
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bing Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xueqin Li
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Jincheng Coal Industry Group, Jincheng, China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Andrews K, Landeryou T, Sicheritz-Pontén T, Nale JY. Diverse Prophage Elements of Salmonella enterica Serovars Show Potential Roles in Bacterial Pathogenicity. Cells 2024; 13:514. [PMID: 38534358 PMCID: PMC10969437 DOI: 10.3390/cells13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.
Collapse
Affiliation(s)
- Kirstie Andrews
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Toby Landeryou
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Janet Yakubu Nale
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| |
Collapse
|
14
|
Watler S, Toka FN, Lardé H, Johnson A, Butaye P. Epidemiology of Salmonella enterica subspecies enterica serotypes, isolated from imported, farmed and feral poultry in the Cayman Islands. Front Vet Sci 2024; 11:1331916. [PMID: 38406633 PMCID: PMC10884249 DOI: 10.3389/fvets.2024.1331916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Non-typhoidal Salmonellae (NTS) are common foodborne pathogens throughout the world causing acute gastroenteritis. Compared to North America and Europe, there is little information on NTS in the Caribbean. Here we investigated the prevalence and characteristics of NTS present in the local poultry of the Cayman Islands to determine the public health risk. In total, we collected 156 samples. These were made up of boot swabs of 31 broiler farms and 31 layer farms (62 samples), paper bedding from 45 imported chick boxes, and 49 pooled cecum samples from feral chickens, each sample representing 10 individual chickens. Salmonella was isolated using the ISO 6579 protocol and isolates were characterized using Whole Genome Sequencing (WGS) analysis. Eighteen Salmonella isolates were obtained and comprised six S. enterica subspecies enterica serotypes and one subspecies houtenae serotype. Serotypes were: S. Kentucky (n = 9), S. Saintpaul (n = 5), S. Javiana (n = 1), S. Senftenberg (n = 1), S. Poona (n = 1) and S. Agona (n = 1). S. Kentucky strains were all ST152 and clonally related to poultry strains from the United states. S. Saintpaul ST50 strains showed clonality to North American strains. Over half of the strains (n = 11) contained resistance genes to at least two antibiotic groups and five strains were MDR, mainly those from imported day-old chicks. The blaCMY-2 gene was found in S. Kentucky from day-old chicks. Strains from feral poultry had no acquired AMR genes. While serotypes from feral poultry have been identified in human infections, they pose minimal risk due to their low virulence.
Collapse
Affiliation(s)
- Simon Watler
- Department of Environmental Health, Ministry of Health and Wellness, Grand Cayman, Cayman Islands
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Felix N. Toka
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Hélène Lardé
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Antoinette Johnson
- Department of Environmental Health, Ministry of Health and Wellness, Grand Cayman, Cayman Islands
| | - Patrick Butaye
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Zhuang Z, Cheng YY, Deng J, Cai Z, Zhong L, Qu JX, Wang K, Yang L. Genomic insights into the phage-defense systems of Stenotrophomonas maltophilia clinical isolates. Microbiol Res 2024; 278:127528. [PMID: 37918082 DOI: 10.1016/j.micres.2023.127528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Stenotrophomonas maltophilia is a rapidly evolving multidrug-resistant opportunistic pathogen that can cause serious infections in immunocompromised patients. Although phage therapy is one of promising strategies for dealing with MDR bacteria, the main challenges of phage therapeutics include accumulation of phage resistant mutations and acquisition of the phage defense systems. To systematically evaluate the impact of (pro)phages in shaping genetic and evolutionary diversity of S. maltophilia, we collected 166 S. maltophilia isolates from three hospitals in southern China to analyze its pangenome, virulence factors, prophage regions, and anit-viral immune systems. Pangenome analysis indicated that there are 1328 saturated core genes and 26961 unsaturated accessory genes in the pangenome, suggesting existence of highly variable parts of S. maltophilia genome. The presence of genes in relation to T3SS and T6SS mechanisms suggests the great potential to secrete toxins by the S. maltophilia population, which is contrary to the conventional notion of low-virulence of S. maltophilia. Additionally, we characterized the pan-immune system maps of these clinical isolates against phage infections and revealed the co-harboring of CBASS and anti-CBASS in some strains, suggesting a never-ending arms race and the co-evolutionary dynamic between bacteria and phages. Furthermore, our study predicted 310 prophage regions in S. maltophilia with high genetic diversity. Six viral defense systems were found to be located at specific position of the S. maltophilia prophage genomes, indicating potential evolution of certain site/region similar to bacterial 'defense islands' in prophage. Our study provides novel insights into the S. maltophilia pangenome in relation to phage-defense mechanisms, which extends our understanding of bacterial-phage interactions and might guide the application of phage therapy in combating S. maltophilia infections.
Collapse
Affiliation(s)
- Zilin Zhuang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Ying-Ying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China; BGI Forensic, Shenzhen 518083, PR China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, PR China
| | - Jie Deng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jiu-Xin Qu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
16
|
Hurtado R, Barh D, de Jesus LCL, Canário Viana MV, Tiwari S, Aburjaile FF, Carhuaricra Huaman DE, Brenig B, Hernández LM, Azevedo V. The genomic approach of antimicrobial resistance of Salmonella Typhimurium isolates from guinea pigs in Lima, Peru. Res Microbiol 2023; 174:104086. [PMID: 37307910 DOI: 10.1016/j.resmic.2023.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Salmonella Typhimurium is an important agent of foodborne diseases. In Peru, the emergence of multidrug-resistant isolates of S. Typhimurium from the food chain could be linked to guinea pig farming as a potential reservoir and their uncontrolled antibiotic treatment against salmonellosis. In this study, we performed the sequencing, genomic diversity, and characterization of resistance elements transmitted by isolates from farm and meat guinea pigs. The genomic diversity and antimicrobial resistance of S. Typhimurium isolates were performed using nucleotide similarity, cgMLST, serotyping, phylogenomic analyses, and characterization of resistance plasmids. We found at least four populations of isolates from farm guinea pigs and four populations from meat guinea pigs without finding isolated transmission between both resources. Genotypic resistance to antibiotics was observed in at least 50% of the isolates. Among the farm guinea pig isolates, ten were found to be resistant to nalidixic acid, and two isolates exhibited multidrug resistance to aminoglycosides, tetracycline-fluoroquinolone (carrying strA-strB-tetA-tetB genes and gyrA S83F mutation), or trimethoprim-sulfonamide (carrying AaadA1-drfA15-sul1 genes). Additionally, two isolates from the meat source were resistant to fluoroquinolones (one of which had enrofloxacin resistance). The transmissible resistance plasmids with insertion sequences (IS) such as IncI-gamma-K1-ISE3-IS6, IncI1-I (alpha)-IS21-Tn10, and Col (pHAD28) were commonly found in isolates belonging to the HC100-9757 cluster from both guinea pigs and human hosts. Altogether, our work provides resistance determinants profiles and Salmonella sp. circulating lineages using WGS data that can promote better sanitary control and adequate antimicrobial prescription.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, 721172, India.
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Marcus Vinicius Canário Viana
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Sandeep Tiwari
- Pós-graduação em Microbiologia, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahía, Brazil; Programa de Pós-graduação em Imunologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahía, Brazil.
| | - Flávia Figueira Aburjaile
- Preventive Veterinary Medicine Department, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Dennis E Carhuaricra Huaman
- SANIGEN, Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Lima, 15021, Peru.
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | - Lenin Maturrano Hernández
- SANIGEN, Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Lima, 15021, Peru.
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
17
|
Zhang M, Hao Y, Yi Y, Liu S, Sun Q, Tan X, Tang S, Xiao X, Jian H. Unexplored diversity and ecological functions of transposable phages. THE ISME JOURNAL 2023; 17:1015-1028. [PMID: 37069234 PMCID: PMC10284936 DOI: 10.1038/s41396-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.
Collapse
Affiliation(s)
- Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
18
|
Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, Koperski Ł, Cieślak H, Sokołowska B, Juszczuk-Kubiak E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. Int J Mol Sci 2023; 24:10134. [PMCID: PMC10299301 DOI: 10.3390/ijms241210134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Due to irrational antibiotic stewardship, an increase in the incidence of multidrug resistance of bacteria has been observed recently. Therefore, the search for new therapeutic methods for pathogen infection treatment seems to be necessary. One of the possibilities is the utilization of bacteriophages (phages)—the natural enemies of bacteria. Thus, this study is aimed at the genomic and functional characterization of two newly isolated phages targeting MDR Salmonella enterica strains and their efficacy in salmonellosis biocontrol in raw carrot–apple juice. The Salmonella phage vB_Sen-IAFB3829 (Salmonella phage strain KKP 3829) and Salmonella phage vB_Sen-IAFB3830 (Salmonella phage strain KKP 3830) were isolated against S. I (6,8:l,-:1,7) strain KKP 1762 and S. Typhimurium strain KKP 3080 host strains, respectively. Based on the transmission electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the viruses were identified as members of tailed bacteriophages from the Caudoviricetes class. Genome sequencing revealed that these phages have linear double-stranded DNA and sizes of 58,992 bp (vB_Sen-IAFB3829) and 50,514 bp (vB_Sen-IAFB3830). Phages retained their activity in a wide range of temperatures (from −20 °C to 60 °C) and active acidity values (pH from 3 to 11). The exposure of phages to UV radiation significantly decreased their activity in proportion to the exposure time. The application of phages to the food matrices significantly reduced the level of Salmonella contamination compared to the control. Genome analysis showed that both phages do not encode virulence or toxin genes and can be classified as virulent bacteriophages. Virulent characteristics and no possible pathogen factors make examined phages feasible to be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Tomasz Ilczuk
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| |
Collapse
|
19
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
20
|
Salam F, Lekshmi M, Prabhakar P, Kumar SH, Nayak BB. Physiological characteristics and virulence gene composition of selected serovars of seafood-borne Salmonella enterica. Vet World 2023; 16:431-438. [PMID: 37041837 PMCID: PMC10082740 DOI: 10.14202/vetworld.2023.431-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background and Aim: All serotypes of Salmonella enterica are considered potentially pathogenic. However, the non-typhoidal Salmonella (NTS) serotypes vary considerably in terms of pathogenicity and the severity of infections. Although diverse serotypes of NTS have been reported from tropical seafood, their sources, physiological characteristics, and virulence potentials are not well understood. This study aimed to compare the physiological characteristics of selected serovars of Salmonella from seafood and investigate possible variations in the distribution of known genes within the pathogenicity islands.
Materials and Methods: A series of biochemical tests, including carbohydrate fermentation and amino acid decarboxylation tests were performed to physiologically compare the isolates. The genetic characterization with respect to putative virulence genes was done by screening for genes associated with Salmonella pathogenicity island (SPI) I– V, as well as the toxin- and prophage-associated genes by polymerase chain reaction.
Results: Irrespective of serotypes, all the isolates uniformly harbored the five SPIs screened in this study. However, some virulence genes, such as the avrA, sodC, and gogB were not detected in all Salmonella isolates. The biochemical profiles of Salmonella serotypes were highly conserved except for variations in inositol fermentation and citrate utilization. All the isolates of this study were weak biofilm formers on polystyrene surfaces.
Conclusion: The pathogenicity profiles of environmental NTS isolates observed in this study suggest that they possess the virulence machinery necessary to cause human infections and therefore, urgent measures to contain Salmonella contamination of seafood are required to ensure the safety of consumers.
Keywords: biofilm, invasion, non-typhoidal Salmonella, Salmonella pathogenicity islands, seafood, virulence.
Collapse
Affiliation(s)
- Fathima Salam
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manjusha Lekshmi
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Parmanand Prabhakar
- Fish Processing Technology, College of Fisheries, Bihar Animal Sciences University, Patna, Bihar, India
| | - Sanath H. Kumar
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Binaya Bhusan Nayak
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
22
|
Kurasz JE, Crawford MC, Porwollik S, Gregory O, Tadlock KR, Balding EC, Weinert EE, McClelland M, Karls AC. Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium. J Bacteriol 2023; 205:e0026222. [PMID: 36622230 PMCID: PMC9879122 DOI: 10.1128/jb.00262-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.
Collapse
Affiliation(s)
| | | | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Oliver Gregory
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eve C. Balding
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Cao G, Zhao S, Kuang D, Hsu CH, Yin L, Luo Y, Chen Z, Xu X, Strain E, McDermott P, Allard M, Brown E, Meng J, Zheng J. Geography shapes the genomics and antimicrobial resistance of Salmonella enterica Serovar Enteritidis isolated from humans. Sci Rep 2023; 13:1331. [PMID: 36693882 PMCID: PMC9873609 DOI: 10.1038/s41598-022-24150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.
Collapse
Affiliation(s)
- Guojie Cao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Dai Kuang
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Patrick McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| |
Collapse
|
24
|
Greig DR, Bird MT, Chattaway MA, Langridge GC, Waters EV, Ribeca P, Jenkins C, Nair S. Characterization of a P1-bacteriophage-like plasmid (phage-plasmid) harbouring bla CTX-M-15 in Salmonella enterica serovar Typhi. Microb Genom 2022; 8:mgen000913. [PMID: 36748517 PMCID: PMC9837566 DOI: 10.1099/mgen.0.000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been elucidated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar Typhi isolate. It carries bla CTX-M-15, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route for bla CTX-M-15 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacterial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than previously thought.
Collapse
Affiliation(s)
- David R. Greig
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Gastrointestinal Pathogens, Liverpool, UK,Division of Infection and Immunity, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Matthew T. Bird
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Oxford, UK
| | | | | | - Emma V. Waters
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paolo Ribeca
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Genomics and Enabling Data, Warwick, UK
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Gastrointestinal Pathogens, Liverpool, UK
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,*Correspondence: Satheesh Nair,
| |
Collapse
|
25
|
Lee W, Kim E, Zin H, Sung S, Woo J, Lee MJ, Yang SM, Kim SH, Kim SH, Kim HY. Genomic characteristics and comparative genomics analysis of Salmonella enterica subsp. enterica serovar Thompson isolated from an outbreak in South Korea. Sci Rep 2022; 12:20553. [PMID: 36446807 PMCID: PMC9708683 DOI: 10.1038/s41598-022-22168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Salmonella infections represent an important public health problem. In 2018, a multistate outbreak of S. enterica subsp. enterica serovar Thompson infection associated with contaminated chocolate cakes in schools was reported in South Korea. In this study, we sequenced the 37 S. Thompson strains isolated from chocolate cakes, egg whites, preserves, and cookware associated with the outbreak. In addition, we analyze the genomic sequences of 61 S. Thompson strains (37 chocolate cake-related outbreak strains, 4 strains isolated from outbreaks in South Korea and 20 strains available in the National Center for Biotechnology Information) to assess the genomic characteristics of outbreak-related strains by comparative genomics and phylogenetic analysis. The results showed that identically classified clusters divided strains into two clusters, sub-clusters A & I (with strains from 2018 in South Korea) and sub-clusters B & II (with strains from 2014 to 2015 in South Korea). S. Thompson isolated from South Korea were accurately distinguished from publicly-available strains. Unlike other S. Thompson genomes, those of chocolate cake outbreak-related strains had three Salmonella phages (SEN8, vB SosS Oslo, and SI7) integrated into their chromosome. Comparative genomics revealed several genes responsible for the specific genomic features of chocolate cake outbreak-related strains and three bacteriophages that may contribute to the pathogenicity of other S. Thompson strains.
Collapse
Affiliation(s)
- Woojung Lee
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea ,grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Eiseul Kim
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Hyunwoo Zin
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Soohyun Sung
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Jungha Woo
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Min Jung Lee
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Seung-Min Yang
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Seung Hwan Kim
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Soon Han Kim
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Hae-Yeong Kim
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| |
Collapse
|
26
|
Marquet M, Hölzer M, Pletz MW, Viehweger A, Makarewicz O, Ehricht R, Brandt C. What the Phage: a scalable workflow for the identification and analysis of phage sequences. Gigascience 2022; 11:giac110. [PMID: 36399058 PMCID: PMC9673492 DOI: 10.1093/gigascience/giac110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage" (WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).
Collapse
Affiliation(s)
- Mike Marquet
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
| | - Martin Hölzer
- Bioinformatics and Systems Biology, Robert Koch Institute, Berlin 13353, Germany
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| | - Adrian Viehweger
- Medical Microbiology and Virology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| | - Ralf Ehricht
- InfectoGnostics Research Campus, Jena 07747, Germany
- Optisch-molekulare Diagnostik und Systemtechnologie, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena 07747, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Christian Brandt
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| |
Collapse
|
27
|
Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022; 2022:4913146. [PMID: 36263241 PMCID: PMC9550513 DOI: 10.1155/2022/4913146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microbiota plays a key role in regulating the pathogenesis of human disease and maintaining health. Many diseases, mainly induced by bacteria, are on the rise due to the emergence of antibiotic-resistant strains. Intestinal microorganisms include organisms such as bacteria, viruses, and fungi. They play an important role in maintaining human health. Among these microorganisms, phages are the main members of intestinal viromes. In particular, the viral fraction, composed essentially of phages, affects homeostasis by exerting selective pressure on bacterial communities living in the intestinal tract. In recent years, with the widespread use and even abuse of antibacterial drugs, more and more drug-resistant bacteria have been found, and they show a trend of high drug resistance and multidrug resistance. Therefore, it has also become increasingly difficult to treat serious bacterial infections. Phages, a natural antibacterial agent with strong specificity and rapid proliferation, have come back to the field of vision of clinicians and scholars. In this study, the current state of research on intestinal phages was discussed, with an exploration of the impact of phage therapy against infectious diseases, as well as potential application beyond infectious diseases.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wen-Min Xu
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| | - Long Zhang
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| |
Collapse
|
28
|
Gendre J, Ansaldi M, Olivenza DR, Denis Y, Casadesús J, Ginet N. Genetic Mining of Newly Isolated Salmophages for Phage Therapy. Int J Mol Sci 2022; 23:8917. [PMID: 36012174 PMCID: PMC9409062 DOI: 10.3390/ijms23168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica, a Gram-negative zoonotic bacterium, is mainly a food-borne pathogen and the main cause of diarrhea in humans worldwide. The main reservoirs are found in poultry farms, but they are also found in wild birds. The development of antibiotic resistance in S. enterica species raises concerns about the future of efficient therapies against this pathogen and revives the interest in bacteriophages as a useful therapy against bacterial infections. Here, we aimed to decipher and functionally annotate 10 new Salmonella phage genomes isolated in Spain in the light of phage therapy. We designed a bioinformatic pipeline using available building blocks to de novo assemble genomes and perform syntaxic annotation. We then used genome-wide analyses for taxonomic annotation enabled by vContact2 and VICTOR. We were also particularly interested in improving functional annotation using remote homologies detection and comparisons with the recently published phage-specific PHROG protein database. Finally, we searched for useful functions for phage therapy, such as systems encoded by the phage to circumvent cellular defenses with a particular focus on anti-CRISPR proteins. We, thus, were able to genetically characterize nine virulent phages and one temperate phage and identify putative functions relevant to the formulation of phage cocktails for Salmonella biocontrol.
Collapse
Affiliation(s)
- Julia Gendre
- Laboratoire de Chimie Bactérienne, (UMR7283)-CNRS/Aix-Marseille Université, 13009 Marseille, France
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, (UMR7283)-CNRS/Aix-Marseille Université, 13009 Marseille, France
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Yann Denis
- Institut de Microbiologie de la Méditerranée, (FR3479)-CNRS/Aix-Marseille Université, 13009 Marseille, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Nicolas Ginet
- Laboratoire de Chimie Bactérienne, (UMR7283)-CNRS/Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
29
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Cardoso B, Maillé C, Reille O, Veyrier I, Vieillot C, Aussel L. [Prophages: Cellular parasites or driving force of evolution?]. Med Sci (Paris) 2022; 38:492-496. [PMID: 35608475 DOI: 10.1051/medsci/2022060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Barbara Cardoso
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Camille Maillé
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Océane Reille
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Iris Veyrier
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Colin Vieillot
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, LCB UMR7283, IMM, Marseille, France
| |
Collapse
|
31
|
Staes I, Bäcker LE, Simoens K, De Winter K, Marolt G, Cenens W, Wolput S, Vazquez AR, Goos P, Lavigne R, Bernaerts K, Aertsen A. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep 2022; 39:110804. [PMID: 35545039 DOI: 10.1016/j.celrep.2022.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022] Open
Abstract
Temperate bacterial viruses are commonly thought to favor vertical (lysogenic) transmission over horizontal (lytic) transmission when the virion-to-host-cell ratio is high and available host cells become scarce. In P22-infected Salmonella Typhimurium populations, however, we find that host subpopulations become lytically consumed despite high phage-to-host ratios that would normally favor lysogeny. These subpopulations originate from the proliferation of P22-free siblings that spawn off from P22-carrier cells from which they cytoplasmically inherit P22-borne superinfection exclusion factors (SEFs). In fact, we demonstrate that the gradual dilution of these SEFs in the growing subpopulation of P22-free siblings restricts the number of incoming phages, thereby imposing the perception of a low phage-to-host ratio that favors lytic development. Although their role has so far been neglected, our data indicate that phage-borne SEFs can spur complex infection dynamics and a history-dependent switch from vertical to horizontal transmission in the face of host-cell scarcity.
Collapse
Affiliation(s)
- Ines Staes
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Kjerstin De Winter
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Gasper Marolt
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium; Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Sanne Wolput
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Alan R Vazquez
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Peter Goos
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Rob Lavigne
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium.
| |
Collapse
|
32
|
Yu J, Xu X, Wang Y, Zhai X, Pan Z, Jiao X, Zhang Y. Prophage-mediated genome differentiation of the Salmonella Derby ST71 population. Microb Genom 2022; 8. [PMID: 35451954 PMCID: PMC9453062 DOI: 10.1099/mgen.0.000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Salmonella Derby ST71 strains have been recognized as poultry-specific by previous studies, multiple swine-associated S. Derby ST71 strains were identified in this long-term, multi-site epidemic study. Here, 15 representative swine-associated S. Derby ST71 strains were sequenced and compared with 65 (one swine-associated and 64 poultry-associated) S. Derby ST71 strains available in the NCBI database at a pangenomic level through comparative genomics analysis to identify genomic features related to the differentiation of swine-associated strains and previously reported poultry-associated strains. The distribution patterns of known Salmonella pathogenicity islands (SPIs) and virulence factor (VF) encoding genes were not capable of differentiating between the two strain groups. The results demonstrated that the S. Derby ST71 population harbours an open pan-genome, and swine-associated ST71 strains contain many more genes than the poultry-associated strains, mainly attributed to the prophage sequence contents in the genomes. The numbers of prophage sequences identified in the swine-associated strains were higher than those in the poultry-associated strains. Prophages specifically harboured by the swine-associated strains were found to contain genes that facilitate niche adaptation for the bacterial hosts. Gene deletion experiments revealed that the dam gene specifically present in the prophage of the swine-associated strains is important for S. Derby to adhere onto the host cells. This study provides novel insights into the roles of prophages during the genome differentiation of Salmonella.
Collapse
Affiliation(s)
- Jinyan Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaomeng Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xianyue Zhai
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
33
|
Phenotypic characterization and genome analysis of a novel Salmonella Typhimurium phage having unique tail fiber genes. Sci Rep 2022; 12:5732. [PMID: 35388062 PMCID: PMC8986868 DOI: 10.1038/s41598-022-09733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing occasional outbreaks of enteric infections in humans. Salmonella has one of the largest pools of temperate phages in its genome that possess evolutionary significance for pathogen. In this study, we characterized a novel temperate phage Salmonella phage BIS20 (BIS20) with unique tail fiber genes. It belongs to the subfamily Peduovirinae genus Eganvirus and infects Salmonella Typhimurium strain (SE-BS17; Acc. NO MZ503545) of poultry origin. Phage BIS20 was viable only at biological pH and temperature ranges (pH7 and 37 °C). Despite being temperate BIS20 significantly slowed down the growth of host strain for 24 h as compared to control (P < 0.009). Phage BIS20 features 29,477-base pair (bp) linear DNA genome with 53% GC content and encodes for 37 putative ORFs. These ORFs have mosaic arrangement as indicated by its ORF similarity to various phages and prophages in NCBI. Genome analysis indicates its similarity to Salmonella enterica serovar Senftenberg prophage (SEStP) sequence (Nucleotide similarity 87.7%) and Escherichia virus 186 (~ 82.4% nucleotide similarity). Capsid genes were conserved however those associated with tail fiber formation and assembly were unique to all members of genus Eganvirus. We found strong evidence of recombination hotspot in tail fiber gene. Our study identifies BIS20 as a new species of genus Eganvirus temperate phages as its maximum nucleotide similarity is 82.4% with any phage in NCBI. Our findings may contribute to understanding of origin of new temperate phages.
Collapse
|
34
|
Ksibi B, Ktari S, Ghedira K, Othman H, Maalej S, Mnif B, Fabre L, Rhimi F, Hello SL, Hammami A. Antimicrobial resistance genes, virulence markers and prophage sequences in Salmonella enterica serovar Enteritidis isolated in Tunisia using whole genome sequencing. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100151. [PMID: 35909609 PMCID: PMC9325895 DOI: 10.1016/j.crmicr.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antimcrobial resistance genes, virulence factors and prophage sequences were studied in WGS of 45 Salmonella Enteritidis from different sources. WGS is most powerful tool for determining genomic variation in S. Enteritidis. Two major lineages of S. Enteritidis were detected in Tunisia. Missense mutations identified in virulence genes were mostly detected in lineage B. Salmon118970_sal3 and RE_2010 phages were detected in lineage A and lineage B, respectively.
Salmonella Enteritidis causes a major public health problem in the world. Whole genome sequencing can give us a lot of information not only about the phylogenetic relatedness of these bacteria but also in antimicrobial resistance and virulence gene predictions. In this study, we analyzed the whole genome data of 45 S. Enteritidis isolates recovered in Tunisia from different origins, human, animal, and foodborne samples. Two major lineages (A and B) were detected based on 802 SNPs differences. Among these SNPs, 493 missense SNPs were identified. A total of 349 orthologue genes mutated by one or two missense SNPs were classified in 22 functional groups with the prevalence of carbohydrate transport and metabolism group. A good correlation between genotypic antibiotic resistance profiles and phenotypic analysis were observed. Only resistant isolates carried the respective molecular resistant determinants. The investigation of virulence markers showed the distribution of 11 Salmonella pathogenicity islands (SPI) out of 23 previously described. The SPI-1 and SPI-2 genes encoding type III secretion systems were highly conserved in all isolates except one. In addition, the virulence plasmid genes were present in all isolates except two. We showed the presence of two fimbrial operons sef and ste previously considered to be specific for typhoidal Salmonella. Our collection of S. Enteritidis reveal a diversity among prophage profiles. SNPs analysis showed that missense mutations identified in fimbriae and in SPI-1 and SPI-2 genes were mostly detected in lineage B. In conclusion, WGS is a powerful application to study functional genomic determinants of S. Enteritidis such as antimicrobial resistance genes, virulence markers and prophage sequences. Further studies are needed to predict the impact of the missenses SNPs that can affect the protein functions associated with pathogenicity.
Collapse
|
35
|
Rakitin AL, Yushina YK, Zaiko EV, Bataeva DS, Kuznetsova OA, Semenova AA, Ermolaeva SA, Beletskiy AV, Kolganova TV, Mardanov AV, Shapovalov SO, Tkachik TE. Evaluation of Antibiotic Resistance of Salmonella Serotypes and Whole-Genome Sequencing of Multiresistant Strains Isolated from Food Products in Russia. Antibiotics (Basel) 2021; 11:1. [PMID: 35052878 PMCID: PMC8773070 DOI: 10.3390/antibiotics11010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Yulia K. Yushina
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Elena V. Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Dagmara S. Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Oksana A. Kuznetsova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Svetlana A. Ermolaeva
- Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute Branch, 603950 Nizhny Novgorod, Russia;
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Aleksey V. Beletskiy
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Tat’yana V. Kolganova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Andrey V. Mardanov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Sergei O. Shapovalov
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| | - Timofey E. Tkachik
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| |
Collapse
|
36
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
37
|
Haendiges J, Davidson GR, Pettengill JB, Reed E, Ramachandran P, Blessington T, Miller JD, Anderson N, Myoda S, Brown EW, Zheng J, Tikekar R, Hoffmann M. Genomic evidence of environmental and resident Salmonella Senftenberg and Montevideo contamination in the pistachio supply-chain. PLoS One 2021; 16:e0259471. [PMID: 34735518 PMCID: PMC8568146 DOI: 10.1371/journal.pone.0259471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 12/04/2022] Open
Abstract
Pistachios have been implicated in two salmonellosis outbreaks and multiple recalls in the U.S. This study performed an in-depth retrospective data analysis of Salmonella associated with pistachios as well as a storage study to evaluate the survivability of Salmonella on inoculated inshell pistachios to further understand the genetics and microbiological dynamics of this commodity-pathogen pair. The retrospective data analysis on isolates associated with pistachios was performed utilizing short-read and long-read sequencing technologies. The sequence data were analyzed using two methods: the FDA's Center for Food Safety and Applied Nutrition Single Nucleotide Polymorphism (SNP) analysis and Whole Genome Multilocus Sequence Typing (wgMLST). The year-long storage study evaluated the survival of five strains of Salmonella on pistachios stored at 25 °C at 35% and 54% relative humidity (RH). Our results demonstrate: i) evidence of persistent Salmonella Senftenberg and Salmonella Montevideo strains in pistachio environments, some of which may be due to clonal resident strains and some of which may be due to preharvest contamination; ii) presence of the Copper Homeostasis and Silver Resistance Island (CHASRI) in Salmonella Senftenberg and Montevideo strains in the pistachio supply chain; and iii) the use of metagenomic analysis is a novel tool for determining the composition of serovar survival in a cocktail inoculated storage study.
Collapse
Affiliation(s)
- Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Gordon R Davidson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Tyann Blessington
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Jesse D Miller
- Neogen Corporation, Lansing, Michigan, United States of America
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Sam Myoda
- IEH Incorporated, Seattle, Washington, United States of America
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Rohan Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
38
|
Martinez-Soto CE, Cucić S, Lin JT, Kirst S, Mahmoud ES, Khursigara CM, Anany H. PHIDA: A High Throughput Turbidimetric Data Analytic Tool to Compare Host Range Profiles of Bacteriophages Isolated Using Different Enrichment Methods. Viruses 2021; 13:2120. [PMID: 34834927 PMCID: PMC8623551 DOI: 10.3390/v13112120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and are present in niches where bacteria thrive. In recent years, the suggested application areas of lytic bacteriophage have been expanded to include therapy, biocontrol, detection, sanitation, and remediation. However, phage application is constrained by the phage's host range-the range of bacterial hosts sensitive to the phage and the degree of infection. Even though phage isolation and enrichment techniques are straightforward protocols, the correlation between the enrichment technique and host range profile has not been evaluated. Agar-based methods such as spotting assay and efficiency of plaquing (EOP) are the most used methods to determine the phage host range. These methods, aside from being labor intensive, can lead to subjective and incomplete results as they rely on qualitative observations of the lysis/plaques, do not reflect the lytic activity in liquid culture, and can overestimate the host range. In this study, phages against three bacterial genera were isolated using three different enrichment methods. Host range profiles of the isolated phages were quantitatively determined using a high throughput turbidimetric protocol and the data were analyzed with an accessible analytic tool "PHIDA". Using this tool, the host ranges of 9 Listeria, 14 Salmonella, and 20 Pseudomonas phages isolated with different enrichment methods were quantitatively compared. A high variability in the host range index (HRi) ranging from 0.86-0.63, 0.07-0.24, and 0.00-0.67 for Listeria, Salmonella, and Pseudomonas phages, respectively, was observed. Overall, no direct correlation was found between the phage host range breadth and the enrichment method in any of the three target bacterial genera. The high throughput method and analytics tool developed in this study can be easily adapted to any phage study and can provide a consensus for phage host range determination.
Collapse
Affiliation(s)
- Carlos E. Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janet T. Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Sarah Kirst
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - El Sayed Mahmoud
- Faculty of Applied Science and Technology, The Sheridan College Institute of Technology and Advanced Learning, Oakville, ON L6H 2L1, Canada;
| | - Cezar M. Khursigara
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
39
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Chen Z, Shen M, Mao C, Wang C, Yuan P, Wang T, Sun D. A Type I Restriction Modification System Influences Genomic Evolution Driven by Horizontal Gene Transfer in Paenibacillus polymyxa. Front Microbiol 2021; 12:709571. [PMID: 34413842 PMCID: PMC8370563 DOI: 10.3389/fmicb.2021.709571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Considered a “Generally Recognized As Safe” (GRAS) bacterium, the plant growth–promoting rhizobacterium Paenibacillus polymyxa has been widely applied in agriculture and animal husbandry. It also produces valuable compounds that are used in medicine and industry. Our previous work showed the presence of restriction modification (RM) system in P. polymyxa ATCC 842. Here, we further analyzed its genome and methylome by using SMRT sequencing, which revealed the presence of a larger number of genes, as well as a plasmid documented as a genomic region in a previous report. A number of mobile genetic elements (MGEs), including 78 insertion sequences, six genomic islands, and six prophages, were identified in the genome. A putative lysozyme-encoding gene from prophage P6 was shown to express lysin which caused cell lysis. Analysis of the methylome and genome uncovered a pair of reverse-complementary DNA methylation motifs which were widespread in the genome, as well as genes potentially encoding their cognate type I restriction-modification system PpoAI. Further genetic analysis confirmed the function of PpoAI as a RM system in modifying and restricting DNA. The average frequency of the DNA methylation motifs in MGEs was lower than that in the genome, implicating a role of PpoAI in restricting MGEs during genomic evolution of P. polymyxa. Finally, comparative analysis of R, M, and S subunits of PpoAI showed that homologs of the PpoAI system were widely distributed in species belonging to other classes of Firmicute, implicating a role of the ancestor of PpoAI in the genomic evolution of species beyond Paenibacillus.
Collapse
Affiliation(s)
- Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Minjia Shen
- UMR 9198 Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics, Hangzhou, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
41
|
Sklyar T, Kurahina N, Lavrentieva K, Burlaka V, Lykholat T, Lykholat O. Autonomic (Mobile) Genetic Elements of Bacteria and Their Hierarchy. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Seribelli AA, da Silva P, da Cruz MF, de Almeida F, Frazão MR, Medeiros MIC, Rodrigues DDP, Kich JD, de Jesus Benevides L, Soares SDC, Allard MW, Falcão JP. Insights about the epidemiology of Salmonella Typhimurium isolates from different sources in Brazil using comparative genomics. Gut Pathog 2021; 13:27. [PMID: 33910644 PMCID: PMC8082823 DOI: 10.1186/s13099-021-00423-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. RESULTS The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. CONCLUSIONS The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs' results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.
Collapse
Affiliation(s)
- Amanda Ap Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Patrick da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, UNESP - Departamento de Ciências Biológicas, Rodovia Araraquara-Jaú Km 1, Araraquara, SP, Brazil
| | - Marcelo Ferreira da Cruz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Fernanda de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Miliane R Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | | | | | - Jalusa D Kich
- Empresa Brasileira de Pesquisa Agropecuária - Suínos e Aves - EMBRAPA, Concórdia, SC, Brazil
| | | | | | - Marc W Allard
- Food and Drug Administration-FDA, College Park, MD, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil.
| |
Collapse
|
43
|
Claisse O, Chaïb A, Jaomanjaka F, Philippe C, Barchi Y, Lucas PM, Le Marrec C. Distribution of Prophages in the Oenococcus oeni Species. Microorganisms 2021; 9:856. [PMID: 33923461 PMCID: PMC8074189 DOI: 10.3390/microorganisms9040856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Le Marrec
- Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; (O.C.); (A.C.); (F.J.); (C.P.); (Y.B.); (P.M.L.)
| |
Collapse
|
44
|
Gonçalves OS, Souza FDO, Bruckner FP, Santana MF, Alfenas-Zerbini P. Widespread distribution of prophages signaling the potential for adaptability and pathogenicity evolution of Ralstonia solanacearum species complex. Genomics 2021; 113:992-1000. [PMID: 33626339 DOI: 10.1016/j.ygeno.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Integrated bacteriophages (prophages) can impact host cells, affecting their lifestyle, genomic diversity, and fitness. However, many basic aspects of how these organisms affect the host cell remain poorly understood. Ralstonia solanacearum is a gram-negative plant pathogenic bacterium that encompasses a great diversity of ecotypes regarded as a species complex (R. solanacearum Species Complex - RSSC). RSSC genomes have a mosaic structure containing numerous elements, signaling the potential for its evolution through horizontal gene transfer. Here, we analyzed 120 Ralstonia spp. genomes from the public database to identify prophage sequences. In total, 379 prophage-like elements were found in the chromosome and megaplasmid of Ralstonia spp. These elements encode genes related to host fitness, virulence factors, antibiotic resistance, and niche adaptation, which might contribute to RSSC adaptability. Prophage-like elements are widespread into the complex in different species and geographic origins, suggesting that the RSSC phages are ancestrally acquired. Complete prophages belonging to the families Inoviridae, Myoviridae, and Siphoviridae were found, being the members of Inoviridae the most abundant. Analysis of CRISPR-Cas spacer sequences demonstrated the presence of prophages sequences that indicate successive infection events during bacterial evolution. Besides complete prophages, we also demonstrated 14 novel putative prophages integrated into Ralstonia spp. genomes. Altogether, our results provide insights into the diversity of prophages in RSSC genomes and suggest that these elements may deeply affect the virulence and host adaptation and shaping the genomes among the strains of this important pathogen.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Flávia de Oliveira Souza
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Fernanda Prieto Bruckner
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil.
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil.
| |
Collapse
|
45
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
46
|
Olivenza DR, Casadesús J, Ansaldi M. Epigenetic biosensors for bacteriophage detection and phage receptor discrimination. Environ Microbiol 2020; 22:3126-3142. [PMID: 32363756 PMCID: PMC7496735 DOI: 10.1111/1462-2920.15050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Environmental monitoring of bacteria using phage-based biosensors has been widely developed for many different species. However, there are only a few available methods to detect specific bacteriophages in raw environmental samples. In this work, we developed a simple and efficient assay to rapidly monitor the phage content of a given sample. The assay is based on the bistable expression of the Salmonella enterica opvAB operon. Under regular growth conditions, opvAB is only expressed by a small fraction of the bacterial subpopulation. In the OpvABON subpopulation, synthesis of the OpvA and OpvB products shortens the O-antigen and confers resistance to phages that use LPS as a receptor. As a consequence, the OpvABON subpopulation is selected in the presence of such phages. Using an opvAB::gfp fusion, we could monitor LPS-binding phages in various media, including raw water samples. To enlarge our phage-biosensor panoply, we also developed biosensors able to detect LPS, as well as protein-binding coliphages. Moreover, the combination of these tools allowed to identify the bacterial receptor triggering phage infection. The epigenetic opvAB::gfp biosensor thus comes in different flavours to detect a wide range of bacteriophages and identify the type of receptor they recognize.
Collapse
Affiliation(s)
- David R. Olivenza
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Josep Casadesús
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Mireille Ansaldi
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche ScientifiqueAix‐Marseille UniversitéMarseilleFrance
| |
Collapse
|
47
|
Chen M, Song Y, Feng X, Tang K, Jiao N, Tian J, Zhang Y. Genomic Characteristics and Potential Metabolic Adaptations of Hadal Trench Roseobacter and Alteromonas Bacteria Based on Single-Cell Genomics Analyses. Front Microbiol 2020; 11:1739. [PMID: 32793171 PMCID: PMC7393951 DOI: 10.3389/fmicb.2020.01739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Heterotrophic bacteria such as those from the Roseobacter group and genus Alteromonas dominate the hadal zones of oceans; however, we know little about the genomic characteristics and potential metabolic adaptations of hadal trench-dwelling bacteria. Here, we report multiple single amplified genomes (SAGs) belonging to Roseobacter and Alteromonas, recovered from the hadal zone of the Mariana Trench. While phylogenetic analyses show that these hadal SAGs cluster with their surface relatives, an analysis of genomic recruitment indicates that they have higher relative abundances in the hadal zone of the Mariana Trench. Comparative genomic analyses between the hadal SAGs and reference genomes of closely related shallow-water relatives indicate that genes involved in the mobilome (prophages and transposons) are overrepresented among the unique genes of the hadal Roseobacter and Alteromonas SAGs; the functional proteins encoded by this category of genes also shows higher amino acid sequence variation than those encoded by other gene sets within the Roseobacter SAGs. We also found that genes involved in cell wall/membrane/envelope biogenesis, transcriptional regulation, and metal transport may be important for the adaptation of hadal Roseobacter and Alteromonas lineages. These results imply that the modification of cell surface-related proteins and transporters is the major direction of genomic evolution in Roseobacter and Alteromonas bacteria adapting to the hadal environment, and that prophages and transposons may be the key factors driving this process.
Collapse
Affiliation(s)
- Mingming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Xiaoyuan Feng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jiwei Tian
- Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol 2020; 13:205-215. [PMID: 31907364 PMCID: PMC7039812 DOI: 10.1038/s41385-019-0250-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d'Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.
Collapse
Affiliation(s)
- R Sausset
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Myriade, 68 boulevard de Port Royal, 75005, Paris, France
| | - M A Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - V Gaboriau-Routhiau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75006, Paris, France
| | - M De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
49
|
Owen SV, Canals R, Wenner N, Hammarlöf DL, Kröger C, Hinton JCD. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb Genom 2020; 6:e000330. [PMID: 32022660 PMCID: PMC7067206 DOI: 10.1099/mgen.0.000330] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
Collapse
Affiliation(s)
- Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health, Siena, Italy
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Disa L. Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Science for Life Laboratory, KTH, Stockholm, Sweden
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Staes I, Passaris I, Cambré A, Aertsen A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res Int 2019; 125:108560. [DOI: 10.1016/j.foodres.2019.108560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|