1
|
Olivares-Yañez C, Arias-Inostroza N, Polanco R, Canessa P. Mycoparasitic transcription factor 1 (BcMTF1) participates in the Botrytis cinerea response against Trichoderma atroviride. iScience 2025; 28:111783. [PMID: 39925430 PMCID: PMC11803261 DOI: 10.1016/j.isci.2025.111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus. Traditional control using fungicides has faced challenges, prompting the exploration of sustainable alternatives such as biocontrol. Trichoderma atroviride, a promising biocontroller, is well-known for its mycoparasitism. However, the molecular processes involved in this fungal-fungal interaction, particularly regarding the defense mechanisms of the pathogen, have yet to be deeply studied. Here, we investigated the transcriptional defense responses of B. cinerea to T. atroviride. We focused on four B. cinerea transcription factors (TFs) differentially expressed during interaction with the biocontroller. Mutants lacking these TFs exhibit increased sensitivity to T. atroviride, with the Bcin07g06800 (BcMTF1) loss-of-function mutant being most susceptible. Genes predicted to be regulated by mycoparasitic transcription factor 1 were differentially expressed during this interaction. BcMTF1 influences B. cinerea's resistance to mycoparasitism by regulating the expression of genes potentially involved in fungal defense against Trichoderma. The findings provide insights into the transcriptional processes underlying fungal-fungal interactions.
Collapse
Affiliation(s)
- Consuelo Olivares-Yañez
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Nicolas Arias-Inostroza
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Ruben Polanco
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
2
|
Snoj T, Lukan T, Gruden K, Anderluh G. Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes. J Membr Biol 2024:10.1007/s00232-024-00330-3. [PMID: 39692881 DOI: 10.1007/s00232-024-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.
Collapse
Affiliation(s)
- Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Graduate School of Biosciences, Biotehnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Longsaward R, Viboonjun U, Wen Z, Asiegbu FO. In silico analysis of secreted effectorome of the rubber tree pathogen Rigidoporus microporus highlights its potential virulence proteins. Front Microbiol 2024; 15:1439454. [PMID: 39360316 PMCID: PMC11446221 DOI: 10.3389/fmicb.2024.1439454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Rigidoporus microporus, the causative agent of the white root rot disease of rubber trees, poses a significant threat to natural rubber production worldwide. Understanding the molecular mechanisms facilitating its pathogenicity would be crucial for developing effective disease management strategies. The pathogen secretes effector proteins, which play pivotal roles in modulating host immune responses and infection. In this study, in silico analyses identified 357 putative secreted effector proteins from the R. microporus genome. These were then integrated into previous RNA-seq data obtained in response to rubber tree latex exposure. Annotation of putative effectors suggested the abundance of proteins in several families associated with the virulence of R. microporus, especially hydrophobin proteins and glycoside hydrolase (GH) proteins. The contribution of secreted effectors to fungal pathogenicity was discussed, particularly in response to rubber tree latex exposure. Some unknown highly expressed effectors were predicted for the protein structures, revealing their similarity to aminopeptidase, ubiquitin ligase, spherulin, and thaumatin protein. This integrative study further elucidates the molecular mechanism of R. microporus pathogenesis and offers alternative targets for developing control strategies for managing white root rot disease in rubber plantations.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zilan Wen
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Escobar-Niño A, Harzen A, Stolze SC, Nakagami H, Fernández-Acero FJ. The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process. J Fungi (Basel) 2023; 9:872. [PMID: 37754980 PMCID: PMC10532283 DOI: 10.3390/jof9090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal-host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways.
Collapse
Affiliation(s)
- Almudena Escobar-Niño
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Sara C. Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Francisco J. Fernández-Acero
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| |
Collapse
|
5
|
Liu S, Zhang S, He S, Qiao X, Runa A. Tea plant ( Camellia sinensis) lipid metabolism pathway modulated by tea field microbe ( Colletotrichum camelliae) to promote disease. HORTICULTURE RESEARCH 2023; 10:uhad028. [PMID: 37090093 PMCID: PMC10117433 DOI: 10.1093/hr/uhad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Tea is one of the most popular healthy and non-alcoholic beverages worldwide. Tea anthracnose is a disease in tea mature leaves and ultimately affects yield and quality. Colletotrichum camelliae is a dominant fungal pathogen in the tea field that infects tea plants in China. The pathogenic factors of fungus and the susceptible factors in the tea plant are not known. In this work, we performed molecular and genetic studies to observe a cerato-platanin protein CcCp1 from C. camelliae, which played a key role in fungal pathogenicity. △CcCp1 mutants lost fungal virulence and reduced the ability to produce conidia. Transcriptome and metabolome were then performed and analysed in tea-susceptible and tea-resistant cultivars, Longjing 43 and Zhongcha 108, upon C. camelliae wild-type CCA and △CcCp1 infection, respectively. The differentially expressed genes and the differentially accumulated metabolites in tea plants were clearly overrepresented such as linolenic acid and linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine biosynthesis and metabolism, biosynthesis of flavonoid, flavone and flavonol etc. In particular, the accumulation of jasmonic acid was significantly increased in the susceptible cultivar Longjing 43 upon CCA infection, in the fungal CcCp1 protein dependent manner, suggesting the compound involved in regulating fungal infection. In addition, other metabolites in the glycerophospholipid and phenylalanine pathway were observed in the resistant cultivar Zhongcha 108 upon fungal treatment, suggesting their potential role in defense response. Taken together, this work indicated C. camelliae CcCp1 affected the tea plant lipid metabolism pathway to promote disease while the lost function of CcCp1 mutants altered the fungal virulence and plant response.
Collapse
Affiliation(s)
| | - Shuhan Zhang
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shengnan He
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences Tea Research Institute, Guangzhou 510640, China
| | - A Runa
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Jeblick T, Leisen T, Steidele CE, Albert I, Müller J, Kaiser S, Mahler F, Sommer F, Keller S, Hückelhoven R, Hahn M, Scheuring D. Botrytis hypersensitive response inducing protein 1 triggers noncanonical PTI to induce plant cell death. PLANT PHYSIOLOGY 2023; 191:125-141. [PMID: 36222581 PMCID: PMC9806589 DOI: 10.1093/plphys/kiac476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.
Collapse
Affiliation(s)
- Tanja Jeblick
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Thomas Leisen
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Christina E Steidele
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Isabell Albert
- Molecular Plant Physiology, FAU Erlangen, Erlangen 91058, Germany
| | - Jonas Müller
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Florian Mahler
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Matthias Hahn
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
7
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
8
|
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. BIOLOGY 2022; 11:biology11020251. [PMID: 35205119 PMCID: PMC8869222 DOI: 10.3390/biology11020251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Plant pathogens are key threats to agriculture and global food security, causing various crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized by G. boninense during infection and the methods used in the disease management to reduce BSR, including cultural practices, chemical treatments and antagonistic microorganism manipulations. Newer developments arising from multi-omics technologies such as whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review can contribute towards an improved disease management and a sustainable oil palm production in this region.
Collapse
Affiliation(s)
- Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Fraser’s Hill Research Centre (PPBF), Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
- Correspondence:
| | - Anis Farhan Fatimi Ab Wahab
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- FGV Innovation Centre (Biotechnology), Pt. 23417 Lengkuk Teknologi, Bandar Enstek 71760, Malaysia
| | - Muhammad Asyraff Abd Samad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Ng Xin Yie
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Madihah Ahmad Zairun
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Plant Pathology & Biosecurity Unit, Biology & Sustainability Research Division, 6, Malaysian Palm Oil Board, Bandar Baru Bangi, Kajang 43000, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| |
Collapse
|
9
|
Baroni F, Gallo M, Pazzagli L, Luti S, Baccelli I, Spisni A, Pertinhez TA. A mechanistic model may explain the dissimilar biological efficiency of the fungal elicitors cerato-platanin and cerato-populin. Biochim Biophys Acta Gen Subj 2021; 1865:129843. [PMID: 33444726 DOI: 10.1016/j.bbagen.2021.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022]
Abstract
Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops β1-β2 and β2-β3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.
Collapse
Affiliation(s)
- Fabio Baroni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino (Florence), Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | |
Collapse
|
10
|
Dubovik V, Dalinova A, Berestetskiy A. Effect of Adjuvants on Herbicidal Activity and Selectivity of Three Phytotoxins Produced by the Fungus, Stagonospora cirsii. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1621. [PMID: 33233474 PMCID: PMC7700206 DOI: 10.3390/plants9111621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 05/15/2023]
Abstract
The use of many fungal phytotoxins as natural herbicides is still limited because they cannot penetrate leaf cuticle without injury and a little is known on their selectivity. In order to assess the herbicidal potential of phytotoxic 10-membered lactones (stagonolide A, stagonolide K, and herbarumin I), the selection of adjuvants, the evaluation of selectivity of the toxins and the efficacy of their formulations were performed. Among four adjuvants tested, Hasten™ (0.1%, v/v) increased phytotoxic activity of all the toxins assayed on non-punctured leaf discs of Sonchus arvensis. When assayed on intact leaf fragments of 18 plants species, 10 species were low to moderately sensitive to stagonolide A, while just five and three species were sensitive to stagonolide K and herbarumin I, respectively. Both leaf damage or addition of Hasten™ (0.1%) to the formulations of the compounds considerably increased or altered the sensitivity of plants to the toxins. Stagonolide A was shown to be non-selective phytotoxin. The selectivity profile of stagonolide K and herbarumin I depended on the leaf wounding or the adjuvant addition. Stagonolide A and herbarumin I formulated in 0.5% Hasten™ showed considerable herbicidal effect on S. arvensis aerial shoots. This study supported the potential of the oil-based adjuvant Hasten™ to increase the herbicidal efficacy of natural phytotoxins.
Collapse
Affiliation(s)
| | | | - Alexander Berestetskiy
- All-Russian Institute of Plant Protection, Podbelskogo St., 3, Pushkin, Saint-Petersburg 196608, Russia; (V.D.); (A.D.)
| |
Collapse
|
11
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
12
|
Luti S, Bemporad F, Vivoli Vega M, Leri M, Musiani F, Baccelli I, Pazzagli L. Partitioning the structural features that underlie expansin-like and elicitor activities of cerato-platanin. Int J Biol Macromol 2020; 165:2845-2854. [PMID: 33736287 DOI: 10.1016/j.ijbiomac.2020.10.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
Cerato-platanin family (CPF) proteins are produced by fungi and elicit defences when applied to plants, behaving as PAMPs/MAMPs. CPF proteins share structural similarity to plant and bacterial expansins, and have been demonstrated, in some cases, to possess expansin-like loosening activity on cellulose. This is the case of cerato-platanin (CP), the founder of the CPF, which shows both eliciting and cellulose-loosening activities, raising the question as to whether the expansin-like activity may be responsible for defence activation. To pinpoint structural and thermodynamic features underlying eliciting and expansin-like activity of CP, we carried out site-directed mutagenesis targeting separately net charge (N84D mutation), conformational stability (V63A mutation), or conserved position previously shown to affect expansin-like activity in CP (D77A mutation), and characterized wild-type protein and its variants. Removing or adding negative charges on the protein surface led to reducing or increasing, respectively, the expansin-like activity. The activity was instead not affected by mutations affecting protein fold and stability. In contrast, all the mutants showed reduced capacity to elicit defences in plants. We conclude that the expansin-like activity of CP depends on net charge and ability to (weakly) bind cellulose, whereas the eliciting activity on plants does not depend on the cellulose-loosening activity.
Collapse
Affiliation(s)
- S Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; Institute for Sustainable Plant Protection, National Research Council, via Madonna del piano 10, 50019 Sesto Fiorentino, Florence, Italy.
| | - F Bemporad
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - M Vivoli Vega
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - M Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - F Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - I Baccelli
- Institute for Sustainable Plant Protection, National Research Council, via Madonna del piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - L Pazzagli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
13
|
Zhang Z, Li Y, Luo L, Hao J, Li J. Characterization of cmcp Gene as a Pathogenicity Factor of Ceratocystis manginecans. Front Microbiol 2020; 11:1824. [PMID: 32849428 PMCID: PMC7411389 DOI: 10.3389/fmicb.2020.01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Ceratocystis manginecans causes mango wilt with significant economic losses. In the infection court, cerato-platanin (CP) family proteins (CPPs) are believed to involve in pathogenesis but has not been determined in C. manginecans. To confirm this function, a CP protein (CmCP) of C. manginecans was characterized in this study. A protoplast of C. manginecans was prepared by treating its mycelia with driselase and lysing enzymes. The cmcp gene was edited using CRISPR/Cas-U6-1 expression vectors in 60% PEG and 50 μg/mL hygromycin B in the medium, resulting in mutants with cmcp deletion (Δcmcp). A complemented mutant (Δcmcp-C) was obtained by transforming cmcp to Δcmcp. Both Δcmcp and Δcmcp-C were characterized by comparing them with a wild-type strain on morphology, mycelial growth, conidial production and pathogenicity. Additionally, cmcp was transformed and expressed in Pichia pastoris, and the derived recombinant protein CmCP caused a severe necrosis on Nicotiana tabacum leaves. CmCP-treated plant leaves showed symptoms of hypersensitive response including electrolyte leakage, reactive oxygen species generation and overexpression of defense-related genes PR-1, PAD3, ERF1, HSR203J, and HIN1. All those results suggested that cmcp gene was required for the growth development of C. manginecans and functioned as a major pathogenicity factor in mango infection.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Yingbin Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Laixin Luo
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Jianqiang Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Luti S, Sella L, Quarantin A, Pazzagli L, Baccelli I. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
González M, Brito N, Hernández‐Bolaños E, González C. New tools for high-throughput expression of fungal secretory proteins in Saccharomyces cerevisiae and Pichia pastoris. Microb Biotechnol 2019; 12:1139-1153. [PMID: 30289201 PMCID: PMC6801181 DOI: 10.1111/1751-7915.13322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Heterologous protein expression in yeast, mostly in Saccharomyces cerevisiae and Pichia pastoris, is a well-established and widely used technique. It typically requires the construction of an expression vector in Escherichia coli containing the foreign gene and its subsequent transformation into yeast. Although simple, this procedure has important limitations for the expression of large numbers of proteins, that is, for the generation of protein libraries. We describe here the development of a novel system for the easy and fast expression of heterologous proteins both in S. cerevisiae and in P. pastoris, under the control of the GAL1 and AOX1 promoters respectively. Expression in S. cerevisiae requires only the transformation of yeast cells with an unpurified PCR product carrying the gene to be expressed, and the expression of the same gene in P. pastoris requires only the isolation of the plasmid generated in S. cerevisiae and its transformation into this second yeast, thus making this system suitable for high-throughput projects. The system has been tested by the extracellular expression of 30 secretory fungal proteins.
Collapse
Affiliation(s)
- Mario González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Nélida Brito
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Eduardo Hernández‐Bolaños
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Celedonio González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| |
Collapse
|
16
|
Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J, Dorey S. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. MOLECULAR PLANT PATHOLOGY 2019; 20:1602-1616. [PMID: 31353775 PMCID: PMC6804340 DOI: 10.1111/mpp.12857] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants are able to effectively cope with invading pathogens by activating an immune response based on the detection of invasion patterns (IPs) originating from the pathogen or released by the plant after infection. At a first level, this perception takes place at the plasma membrane through cell surface immune receptors and although the involvement of proteinaceous pattern recognition receptors (PRRs) is well established, increasing data are also pointing out the role of membrane lipids in the sensing of IPs. In this review, we discuss the evolution of various conceptual models describing plant immunity and present an overview of well-characterized IPs from different natures and origins. We summarize the current knowledge on how they are perceived by plants at the plasma membrane, highlighting the increasingly apparent diversity of sentinel-related systems in plants.
Collapse
Affiliation(s)
- Romain Schellenberger
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Matthieu Touchard
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Christophe Clément
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Fabienne Baillieul
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Sylvain Cordelier
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Jérôme Crouzet
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Stéphan Dorey
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| |
Collapse
|
17
|
Quarantin A, Castiglioni C, Schäfer W, Favaron F, Sella L. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:229-238. [PMID: 30913532 DOI: 10.1016/j.plaphy.2019.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/01/2023]
Abstract
Cerato-platanin proteins (CPPs) are small non-catalytic, cysteine-rich hydrophobic proteins produced by filamentous fungi. The genome of Fusarium graminearum, the causal agent of Fusarium head blight disease of wheat and other cereal grains, contains two genes putatively encoding for CPPs. To better characterize their features, the two FgCPPs were heterologously expressed in Pichia pastoris. The recombinant FgCPPs reduced the viscosity of a cellulose soluble derivate (carboxymethyl cellulose, CMC). The same effect was not observed on other polysaccharide substrates such as chitin, 1,3-β-glucan, xylan and pectin. Indeed, differently from other fungal CPPs and similarly to expansins, FgCPPs are trapped by cellulose and not by chitin, thus suggesting that these proteins interact with cellulose. A double knock-out mutant deleted of both FgCPPs encoding genes produces much more cellulase activity than the corresponding wild type strain when grown on CMC, likely compensating the absence of FgCPPs. This result prompted us to investigate a possible synergistic effect of these proteins with fungal cellulases. The incubation of FgCPPs in the presence of a fungal cellulase (EC 3.2.1.4) determines an increased enzymatic activity on CMC, filter paper and wheat cell walls. The observation that FgCPPs act with a non-hydrolytic mechanism indicates that these proteins favor fungal cellulase activity in an expansin-like manner. Though the disruption of the FgCPP genes had no demonstrable impact on fungal virulence, our experimental data suggest their probable involvement in virulence, thus we refer to them as accessory virulence genes. Our results suggest also that the FgCPPs could be exploited for future biotechnological application in second-generation biofuels production on lignocellulosic biomasses rich in cellulose. Finally, we demonstrate that FgCPPs act as elicitors of defense responses on Arabidopsis leaves, increasing resistance to Botrytis cinerea infections.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Carla Castiglioni
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
18
|
Haile ZM, Malacarne G, Pilati S, Sonego P, Moretto M, Masuero D, Vrhovsek U, Engelen K, Baraldi E, Moser C. Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection. FRONTIERS IN PLANT SCIENCE 2019; 10:1704. [PMID: 32082332 PMCID: PMC7002552 DOI: 10.3389/fpls.2019.01704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/16/2023]
Abstract
Botrytis cinerea is an important necrotroph in vineyards. Primary infections are mostly initiated by airborne conidia from overwintered sources around bloom, then the fungus remains quiescent from bloom till maturity and egresses at ripeness. We previously described in detail the process of flower infection and quiescence initiation. Here, we complete the characterization studying the cross-talk between the plant and the fungus during pathogen quiescence and egression by an integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir were inoculated with a GFP-labeled strain of B. cinerea at full cap-off stage, and molecular analyses were carried out at 4 weeks post inoculation (wpi, fungal quiescent state) and at 12 wpi (fungal pre-egression and egression states). The expressed fungal transcriptome highlighted that the fungus remodels its cell wall to evade plant chitinases besides undergoing basal metabolic activities. Berries responded by differentially regulating genes encoding for different PR proteins and genes involved in monolignol, flavonoid, and stilbenoid biosynthesis pathways. At 12 wpi, the transcriptome of B. cinerea in the pre-egressed samples showed that virulence-related genes were expressed, suggesting infection process was initiated. The egressed B. cinerea expressed almost all virulence and growth related genes that enabled the pathogen to colonize the berries. In response to egression, ripe berries reprogrammed different defense responses, though futile. Examples are activation of membrane localized kinases, stilbene synthases, and other PR proteins related to SA and JA-mediated responses. Our results indicated that hard-green berries defense program was capable to hamper B. cinerea growth. However, ripening associated fruit cell wall self-disassembly together with high humidity created the opportunity for the fungus to egress and cause bunch rot.
Collapse
Affiliation(s)
- Zeraye Mehari Haile
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- *Correspondence: Giulia Malacarne,
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kristof Engelen
- ESAT-ELECTA, Electrical Energy and Computer Architectures, Leuven, Belgium
| | - Elena Baraldi
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| |
Collapse
|
19
|
Wang W, An B, Feng L, He C, Luo H. A Colletotrichum gloeosporioides cerato-platanin protein, CgCP1, contributes to conidiation and plays roles in the interaction with rubber tree. Can J Microbiol 2018; 64:826-834. [DOI: 10.1139/cjm-2018-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colletotrichum gloeosporioides is the causal agent of rubber tree anthracnose and leads to serious losses of natural rubber production. The pathogenesis of C. gloeosporioides on rubber tree remains unknown. Cerato-platanin proteins are small, secreted cysteine-rich proteins that contribute to virulence and function in plant–fungal interactions. A gene encoding cerato-platanin protein, CgCP1, was identified in C. gloeosporioides. In silico analysis indicated that CgCP1 belongs to a new branch of the cerato-platanin protein family. The CgCP1 knockout mutants (ΔCgCP1) and complementary strain (Res-ΔCgCP1) were generated to investigate its biological function. The results showed that the speed of growth of aerial hyphae was not significantly different among the wild-type (WT), ΔCgCP1, and Res-ΔCgCP1 strains, but conidiation of ΔCgCP1 significantly decreased in comparison with the WT. The pathogenicity test proved that the severity of symptoms caused by ΔCgCP1 was reduced significantly compared with those caused by the Res-ΔCgCP1 and WT strains. Additionally, CgCP1 induced necrosis-like cell death on tobacco leaf and accumulation of reactive oxygen species in rubber tree mesophyll protoplasts. Altogether, these data indicate the involvement of C. gloeosporioides CgCP1 in conidiation and the interaction with rubber tree.
Collapse
Affiliation(s)
- Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Liping Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
20
|
Meng Q, Gupta R, Min CW, Kim J, Kramer K, Wang Y, Park SR, Finkemeier I, Kim ST. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. J Proteomics 2018; 196:120-130. [PMID: 29970347 DOI: 10.1016/j.jprot.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Previously, we reported a novel Magnaporthe oryzae- secreted protein MSP1, which triggers cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. To investigate the MSP1 induced defense response in rice at the protein level, we employed a label-free quantitative proteomic approach, in parallel with flg22 treatment, which is a well-known elicitor. Exogenous application of MSP1 to rice leaves induced an oxidative burst, MAPK3/6 activation, and activation of pathogenesis-related genes (DUF26, PBZ, and PR-10). MaxQuant based label free proteome analysis led to the identification of 4167 protein groups of which 433 showed significant differences in response to MSP1 and/or flg22 treatment. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins associated mainly with the stress response, post-translational modification and signaling were increased in abundance. Moreover, several peroxidases and receptor kinases were induced by both the elicitors, highlighting their involvement in MSP1 and flg22 induced signaling in rice. Taken together, the results reported here contribute to our understanding of MSP1 and flg22 triggered immune responses at the proteome level, thereby increasing our overall understanding of PTI signaling in rice. BIOLOGICAL SIGNIFICANCE: MSP1 is a M. oryzae secreted protein, which triggers defense responses in rice. Previous reports have shown that MSP1 is required for the pathogenicity of rice blast fungus, however, the exact mechanism of its action and its downstream targets in rice are currently unknown. Identification of the downstream targets is required in order to understand the MSP1 induced signaling in rice. Moreover, key proteins identified could also serve as potential candidates for the generation of disease resistance crops by modulating stress signaling pathways. Therefore, here we employed, for the first time, a label-free quantitative proteomic approach to investigate the MSP1 induced signaling in rice together with flg22. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins related to the defense response, signaling and ROS detoxification were majorly increased. Thus, as an elicitor, recombinant MSP1 proteins could be utilized to inducing broad pathogen resistance in crops by priming the local immune responses.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| | - Chul Woo Min
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Jongyun Kim
- Division of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Katharina Kramer
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sang-Ryeol Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, South Korea
| | - Iris Finkemeier
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany; Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| |
Collapse
|
21
|
Mesarich CH, Ӧkmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M, Mihajlovski A, Collemare J, Hunziker L, Deng CH, van der Burgt A, Beenen HG, Templeton MD, Bradshaw RE, de Wit PJGM. Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:145-162. [PMID: 29144204 DOI: 10.1094/mpmi-05-17-0114-fi] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.
Collapse
Affiliation(s)
- Carl H Mesarich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 2 Laboratory of Molecular Plant Pathology, Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- 3 Bio-Protection Research Centre, New Zealand
| | - Bilal Ӧkmen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hanna Rovenich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott A Griffiths
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Changchun Wang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Mansoor Karimi Jashni
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 5 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, P.O. Box 19395‒1454, Tehran, Iran
| | - Aleksandar Mihajlovski
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jérôme Collemare
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lukas Hunziker
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Cecilia H Deng
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Ate van der Burgt
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henriek G Beenen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthew D Templeton
- 3 Bio-Protection Research Centre, New Zealand
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Rosie E Bradshaw
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Pierre J G M de Wit
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 8 Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
22
|
Zhang Y, Liang Y, Dong Y, Gao Y, Yang X, Yuan J, Qiu D. The Magnaporthe oryzae Alt A 1-like protein MoHrip1 binds to the plant plasma membrane. Biochem Biophys Res Commun 2017; 492:55-60. [PMID: 28807829 DOI: 10.1016/j.bbrc.2017.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022]
Abstract
MoHrip1, a protein isolated from Magnaporthe oryzae, belongs to the Alt A 1 (AA1) family. mohrip1 mRNA levels showed inducible expression throughout the infection process in rice. To determine the location of MoHrip1 in M. oryzae, a mohrip1-gfp mutant was generated. Fluorescence microscopy observations and western blotting analysis showed that MoHrip1 was both present in the secretome and abundant in the fungal cell wall. To obtain MoHrip1 protein, we carried out high-yield expression of MoHrip1 in Pichia pastoris. Treatment of tobacco plants with MoHrip1 induced the formation of necrosis, accumulation of reactive oxygen species and expression of several defense-related genes, as well as conferred disease resistance. By fusion to green fluorescent protein, we showed that MoHrip1 was able to bind to the tobacco and rice plant plasma membrane, causing rapid morphological changes at the cellular level, such as cell shrinkage and chloroplast disorganization. These findings indicate that MoHrip1 is a microbe-associated molecular pattern that is perceived by the plant immune system. This is the first study on an AA1 family protein that can bind to the plant plasma membrane.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yijie Dong
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China.
| |
Collapse
|
23
|
Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Savidor A, Sharon I, Eizner E, Valerius O, Braus GH, Bowler K, Bar-Peled M, Sharon A. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, Triggers Both Cell Death and Plant Immune Responses. PLANT PHYSIOLOGY 2017; 175:438-456. [PMID: 28710128 PMCID: PMC5580746 DOI: 10.1104/pp.17.00375] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Mordechi Ronen
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Gur
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itai Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elad Eizner
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Physical Electronics, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oliver Valerius
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Gerhard H Braus
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Kyle Bowler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Maor Bar-Peled
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
24
|
Zhang Y, Liang Y, Qiu D, Yuan J, Yang X. Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Protein Expr Purif 2017; 136:20-26. [PMID: 28606662 DOI: 10.1016/j.pep.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/20/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
The Botrytis cinerea BcSpl1 protein is a member of the cerato-platanin family, and consists of 137 amino acids and two disulfide bridges. This protein induces the onset of necrosis in infiltrated plant hosts. Recombinant BcSpl1 proteins produced in Pichia pastoris (pBcSpl1) and Escherichia coli (eBcSpl1) were initially compared regarding their abilities to induce necrosis and systemic acquired resistance (SAR). The pBcSpl1 and eBcSpl1 treatments led to the development of necrotic lesions on tomato leaves, and provided tomato plants with SAR to B. cinerea. The lesion area of leaves infiltrated with the BcSpl1 proteins decreased by 22.7% (pBcSpl1) and 21.8% (eBcSpl1). Additionally, eBcSpl1 up-regulated the expression levels of some defense-related genes, including PR-1a, prosystemin, PI I, and PI II, as well as SIPK and TPK1b, which encode two protein kinases. Furthermore, eBcSpl1 exhibited chitin-binding properties. Our data revealed that the E. coli expression system produces higher BcSpl1 yields than the P. pastoris system. This high-yield expression of BcSpl1 may be relevant for future large-scale applications of this elicitor to improve crop production.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China.
| |
Collapse
|
25
|
Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, Wang XY, Short DPG, Li L, Guo W, Kong ZQ, Bao YM, Subbarao KV, Dai XF. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ Microbiol 2017; 19:1914-1932. [PMID: 28205292 DOI: 10.1111/1462-2920.13695] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.
Collapse
Affiliation(s)
- Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wen-Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin-Yan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Guo
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
26
|
Hong Y, Yang Y, Zhang H, Huang L, Li D, Song F. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Sci Rep 2017; 7:41037. [PMID: 28106116 PMCID: PMC5247740 DOI: 10.1038/srep41037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Potential of MoSM1, encoding for a cerato-platanin protein from Magnaporthe oryzae, in improvement of rice disease resistance was examined. Transient expression of MoSM1 in rice leaves initiated hypersensitive response and upregulated expression of defense genes. When transiently expressed in tobacco leaves, MoSM1 targeted to plasma membrane. The MoSM1-overexpressing (MoSM1-OE) transgenic rice lines showed an improved resistance, as revealed by the reduced disease severity and decreased in planta pathogen growth, against 2 strains belonging to two different races of M. oryzae, causing blast disease, and against 2 strains of Xanthomonas oryzae pv. oryzae, causing bacterial leaf blight disease. However, no alteration in resistance to sheath blight disease was observed in MoSM1-OE lines. The MoSM1-OE plants contained elevated levels of salicylic acid (SA) and jasmonic acid (JA) and constitutively activated the expression of SA and JA signaling-related regulatory and defense genes. Furthermore, the MoSM1-OE plants had no effect on drought and salt stress tolerance and on grain yield. We conclude that MoSM1 confers a broad-spectrum resistance against different pathogens through modulating SA- and JA-mediated signaling pathways without any penalty on abiotic stress tolerance and grain yield, providing a promising potential for application of MoSM1 in improvement of disease resistance in crops.
Collapse
Affiliation(s)
- Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yayun Yang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
27
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
28
|
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Yuan J, Qiu D. The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System. FRONTIERS IN PLANT SCIENCE 2017; 8:1880. [PMID: 29163605 PMCID: PMC5671667 DOI: 10.3389/fpls.2017.01880] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 05/05/2023]
Abstract
During pathogenic infection, hundreds of proteins that play vital roles in the Verticillium dahliae-host interaction are secreted. In this study, an integrated proteomic analysis of secreted V. dahliae proteins was performed, and a conserved secretory protein, designated VdCP1, was identified as a member of the SnodProt1 phytotoxin family. An expression analysis of the vdcp1 gene revealed that the transcript is present in every condition studied and displays elevated expression throughout the infection process. To investigate the natural role of VdCP1 in V. dahliae, two vdcp1 knockout mutants and their complementation strains were generated. Bioassays of these mutants revealed no obvious phenotypic differences from the wild-type (WT) in terms of mycelial growth, conidial production or mycelial/spore morphology. However, compared with the WT, the vdcp1 knockout mutants displayed attenuated pathogenicity in cotton plants. Furthermore, treating plants with purified recombinant VdCP1 protein expressed in Pichia pastoris induced the accumulation of reactive oxygen species (ROS), expression of several defense-related genes, leakage of ion electrolytes, enhancement of defense-related enzyme activity and production of salicylic acid. Moreover, VdCP1 conferred resistance to Botrytis cinerea and Pseudomonas syringae pv. tabaci in tobacco and to V. dahliae in cotton. Further research revealed that VdCP1 possesses chitin-binding properties and that the growth of vdcp1 knockout mutants was more affected by treatments with chitinase, indicating that VdCP1 could protect V. dahliae cell wall from enzymatic degradation, which suggests an effector role of VdCP1 in infecting hosts.
Collapse
|
29
|
Quarantin A, Glasenapp A, Schäfer W, Favaron F, Sella L. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:220-229. [PMID: 27744264 DOI: 10.1016/j.plaphy.2016.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 05/01/2023]
Abstract
The genome of Fusarium graminearum, a necrotrophic fungal pathogen causing Fusarium head blight (FHB) disease of wheat, barley and other cereal grains, contains five genes putatively encoding for proteins with a cerato-platanin domain. Cerato-platanins are small secreted cysteine-rich proteins possibly localized in the fungal cell walls and also contributing to the virulence. Two of these F. graminearum proteins (FgCPP1 and FgCPP2) belong to the class of SnodProt proteins which exhibit phytotoxic activity in the fungal pathogens Botrytis cinerea and Magnaporthe grisea. In order to verify their contribution during plant infection and fungal growth, single and double gene knock-out mutants were produced and no reduction in symptoms severity was observed compared to the wild type strain on both soybean and wheat spikes. Histological analysis performed by fluorescence microscopy on wheat spikelets infected with mutants constitutively expressing the dsRed confirmed that FgCPPs do not contribute to fungal virulence. In particular, the formation of compound appressoria on wheat paleas was unchanged. Looking for other functions of these proteins, the double mutant was characterized by in vitro experiments. The mutant was inhibited by salt and H2O2 stress similarly to wild type. Though no growth difference was observed on glucose, the mutant grew better than wild type on carboxymethyl cellulose. Additionally, the mutant's mycelium was more affected by treatments with chitinase and β-1,3-glucanase, thus indicating that FgCPPs could protect fungal cell wall polysaccharides from enzymatic degradation.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Anika Glasenapp
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
30
|
Frías M, González M, González C, Brito N. BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:115-124. [PMID: 27457989 DOI: 10.1016/j.plantsci.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
BcIEB1 is a very abundant protein in the secretome of Botrytis cinerea but it has no known function and no similarity to any characterized protein family. Previous results suggested that this protein is an elicitor of the plant defense system. In this work we have generated loss-of-function B. cinerea mutants lacking BcIEB1 and we have expressed the protein in yeast to assay its activity on plants. Analysis of the Δbcieb1 mutants did not result in any observable phenotype, including no difference in the virulence on a variety of hosts. However, when BcIEB1 was applied to plant tissues it produced necrosis as well as a whole range of symptoms: inhibition of seedling growth in Arabidopsis and tobacco, ion leakage from tobacco leaf disks, a ROS burst, cell death and autofluorescence in onion epidermis, as well as the expression of defense genes in tobacco. Moreover, tobacco plants treated with BcIEB1 showed an increased systemic resistance to B. cinerea. A small 35-amino acids peptide derived from a conserved region of BcIEB1 is almost as active on plants as the whole protein. These results clearly indicate that BcIEB1 elicits plant defenses, probably as a consequence of its recognition as a pathogen associated molecular pattern.
Collapse
Affiliation(s)
- Marcos Frías
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Mario González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Celedonio González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Nélida Brito
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
31
|
Chang HX, Domier LL, Radwan O, Yendrek CR, Hudson ME, Hartman GL. Identification of Multiple Phytotoxins Produced by Fusarium virguliforme Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:96-108. [PMID: 26646532 DOI: 10.1094/mpmi-09-15-0219-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sudden death syndrome (SDS) of soybean is caused by a soilborne pathogen, Fusarium virguliforme. Phytotoxins produced by F. virguliforme are translocated from infected roots to leaves, in which they cause SDS foliar symptoms. In this study, additional putative phytotoxins of F. virguliforme were identified, including three secondary metabolites and 11 effectors. While citrinin, fusaric acid, and radicicol induced foliar chlorosis and wilting, Soybean mosaic virus (SMV)-mediated overexpression of F. virguliforme necrosis-inducing secreted protein 1 (FvNIS1) induced SDS foliar symptoms that mimicked the development of foliar symptoms in the field. The expression level of fvnis1 remained steady over time, although foliar symptoms were delayed compared with the expression levels. SMV::FvNIS1 also displayed genotype-specific toxicity to which 75 of 80 soybean cultivars were susceptible. Genome-wide association mapping further identified three single nucleotide polymorphisms at two loci, where three leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes were found. Culture filtrates of fvnis1 knockout mutants displayed a mild reduction in phytotoxicity, indicating that FvNIS1 is one of the phytotoxins responsible for SDS foliar symptoms and may contribute to the quantitative susceptibility of soybean by interacting with the LRR-RLK genes.
Collapse
Affiliation(s)
| | - Leslie L Domier
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| | | | - Craig R Yendrek
- 1 University of Illinois
- 3 Institute for Genomic Biology, Urbana, IL, U.S.A
| | | | - Glen L Hartman
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| |
Collapse
|
32
|
Mbengue M, Navaud O, Peyraud R, Barascud M, Badet T, Vincent R, Barbacci A, Raffaele S. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2016; 7:422. [PMID: 27066056 PMCID: PMC4814483 DOI: 10.3389/fpls.2016.00422] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.
Collapse
|
33
|
Chen H, Quintana J, Kovalchuk A, Ubhayasekera W, Asiegbu FO. A cerato-platanin-like protein HaCPL2 from Heterobasidion annosum sensu stricto induces cell death in Nicotiana tabacum and Pinus sylvestris. Fungal Genet Biol 2015; 84:41-51. [PMID: 26385823 DOI: 10.1016/j.fgb.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
The cerato-platanin family is a group of small secreted cysteine-rich proteins exclusive for filamentous fungi. They have been shown to be involved in the interactions between fungi and plants. Functional characterization of members from this family has been performed mainly in Ascomycota, except Moniliophthora perniciosa. Our previous phylogenetic analysis revealed that recent gene duplication of cerato-platanins has occurred in Basidiomycota but not in Ascomycota, suggesting higher functional diversification of this protein family in Basidiomycota than in Ascomycota. In this study, we identified three cerato-platanin homologues from the basidiomycete conifer pathogen Heterobasidion annosum sensu stricto. Expression of the homologues under various conditions as well as their roles in the H. annosum s.s.-Pinus sylvestris (Scots pine) pathosystem was investigated. Results showed that HaCPL2 (cerato-platanin-like protein 2) had the highest sequence similarity to cerato-platanin from Ceratocystis platani and hacpl2 was significantly induced during nutrient starvation and necrotrophic growth. The treatment with recombinant HaCPL2 induced cell death, phytoalexin production and defense gene expression in Nicotiana tabacum. Eliciting and cell death-inducing ability accompanied by retardation of apical root growth was also demonstrated in Scots pine seedlings. Our results suggest that HaCPL2 might contribute to the virulence of H. annosum s.s. by promoting plant cell death.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland.
| | - Julia Quintana
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Wimal Ubhayasekera
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Fred O Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Dieryckx C, Gaudin V, Dupuy JW, Bonneu M, Girard V, Job D. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:859. [PMID: 26528317 PMCID: PMC4607878 DOI: 10.3389/fpls.2015.00859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 05/27/2023]
Abstract
Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873.
Collapse
Affiliation(s)
- Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Vanessa Gaudin
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Marc Bonneu
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Dominique Job
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| |
Collapse
|
35
|
Heard S, Brown NA, Hammond-Kosack K. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0130534. [PMID: 26107498 PMCID: PMC4480369 DOI: 10.1371/journal.pone.0130534] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cinerea secretomes, identifying 432 and 499 proteins respectively. Analyses focusing on S. sclerotiorum revealed that 16% of the secretome encoding genes resided in small, sequence heterogeneous, gene clusters that were distributed over 13 of the 16 predicted chromosomes. Functional analyses highlighted the importance of plant cell hydrolysis, oxidation-reduction processes and the redox state to the S. sclerotiorum and B. cinerea secretomes and potentially host infection. Only 8% of the predicted proteins were distinct between the two secretomes. In contrast to S. sclerotiorum, the B. cinerea secretome lacked CFEM- or LysM-containing proteins. The 115 fungal and oomycete genome comparison identified 30 proteins specific to S. sclerotiorum and B. cinerea, plus 11 proteins specific to S. sclerotiorum and 32 proteins specific to B. cinerea. Expressed sequence tag (EST) and proteomic analyses showed that 246 S. sclerotiorum secretome encoding genes had EST support, including 101 which were only expressed in vitro and 49 which were only expressed in planta, whilst 42 predicted proteins were experimentally proven to be secreted. These detailed in silico analyses of two important necrotrophic pathogens will permit informed choices to be made when candidate effector proteins are selected for function analyses in planta.
Collapse
Affiliation(s)
- Steph Heard
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | - Neil A. Brown
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | - Kim Hammond-Kosack
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Crutcher FK, Moran-Diez ME, Ding S, Liu J, Horwitz BA, Mukherjee PK, Kenerley CM. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biol 2015; 119:476-86. [PMID: 25986544 DOI: 10.1016/j.funbio.2015.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs within the T. virens genome. The paralog sm2 is highly expressed in the presence of plant roots. Gene deletion mutants of sm2 were generated and the mutants were found to overproduce SM1. The ability to elicit ISR in maize against Colletotrichum graminicola was not compromised for the mutants compared to that of wild type isolate. However, the deletion strains had a significantly lowered ability to colonize maize roots. This appears to be the first report on the involvement of an effector-like protein in colonization of roots by Trichoderma.
Collapse
Affiliation(s)
- Frankie K Crutcher
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Southern Plains Agricultural Research Center, USDA, Agricultural Research Service, 2765 F and B Road, College Station, TX 77845, USA
| | - Maria E Moran-Diez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Bioprotection Research Centre, Lincoln University, PO Box 84, Lincoln 7647 Canterbury, New Zealand
| | - Shengli Ding
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jinggao Liu
- Southern Plains Agricultural Research Center, USDA, Agricultural Research Service, 2765 F and B Road, College Station, TX 77845, USA
| | - Benjamin A Horwitz
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Prasun K Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
37
|
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? FRONTIERS IN PLANT SCIENCE 2015; 5:769. [PMID: 25610450 PMCID: PMC4284994 DOI: 10.3389/fpls.2014.00769] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/12/2014] [Indexed: 05/24/2023]
|
38
|
Cook DE, Mesarich CH, Thomma BPHJ. Understanding plant immunity as a surveillance system to detect invasion. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:541-63. [PMID: 26047564 DOI: 10.1146/annurev-phyto-080614-120114] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.
Collapse
Affiliation(s)
- David E Cook
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; ,
| | | | | |
Collapse
|
39
|
Pazzagli L, Seidl-Seiboth V, Barsottini M, Vargas WA, Scala A, Mukherjee PK. Cerato-platanins: elicitors and effectors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:79-87. [PMID: 25438788 DOI: 10.1016/j.plantsci.2014.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 06/04/2023]
Abstract
Cerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules. Here we present a comprehensive review on the occurrence of these conserved proteins across the fungal kingdom, their structure-function relationships, and their physiological roles in plant pathogenic and symbiotic fungi. We also discuss the usefulness of these proteins in evolving strategies for crop protection through a transgenic approach or direct application as elicitors.
Collapse
Affiliation(s)
- Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Morgagni Street, 50134 Florence, Italy
| | - Verena Seidl-Seiboth
- Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Mario Barsottini
- Department of Genetics, Evolution and Bioagents/IB, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970, Campinas, Brazil
| | - Walter A Vargas
- Centro de EstudiosFotosintéticos y Bioquímicos (CEFOBI)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Aniello Scala
- Department of Production Sciences Agri-Food and the Environment (DISPAA), University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
40
|
González M, Brito N, González C. Identification of glycoproteins secreted by wild-type Botrytis cinerea and by protein O-mannosyltransferase mutants. BMC Microbiol 2014; 14:254. [PMID: 25305780 PMCID: PMC4197228 DOI: 10.1186/s12866-014-0254-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Botrytis cinerea secretes a high number of proteins that are predicted to have numerous O-glycosylation sites, frequently grouped in highly O-glycosylated regions, and analysis of mutants affected in O-glycosylation has shown, in B. cinerea and in other phytopathogenic fungi, that this process is important for fungal biology and virulence. Results We report here the purification of glycoproteins from the culture medium, for a wild-type strain of B. cinerea and for three mutants affected in the first step of O-glycosylation, and the identification of components in the purified protein samples. Overall, 158 proteins were identified belonging to a wide diversity of protein families, which possess Ser/Thr-rich regions (presumably highly O-glycosylated) twice as frequently as the whole secretome. Surprisingly, proteins predicted to be highly O-glycosylated tend to be more abundant in the secretomes of the mutants affected in O-glycosylation than in the wild type, possibly because a correct glycosylation of these proteins helps keep them in the cell wall or extracellular matrix. Overexpression of three proteins predicted to be O-glycosylated in various degrees allowed to confirm the presence of mannose α1-2 and/or α1-3 bonds, but no mannose α1-6 bonds, and resulted in an enhanced activity of the culture medium to elicit plant defenses. Conclusions Glycosylation of secretory proteins is very prevalent in B. cinerea and affects members of diverse protein families. O-glycosylated proteins play a role in the elicitation of plant defenses. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0254-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Nélida Brito
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Celedonio González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| |
Collapse
|
41
|
Baccelli I, Lombardi L, Luti S, Bernardi R, Picciarelli P, Scala A, Pazzagli L. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PLoS One 2014; 9:e100959. [PMID: 24968226 PMCID: PMC4072723 DOI: 10.1371/journal.pone.0100959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1–5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Lara Lombardi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Aniello Scala
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Luigia Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
42
|
Gaderer R, Bonazza K, Seidl-Seiboth V. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl Microbiol Biotechnol 2014; 98:4795-803. [PMID: 24687753 PMCID: PMC4024134 DOI: 10.1007/s00253-014-5690-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 11/02/2022]
Abstract
Cerato-platanin proteins are small, secreted proteins with four conserved cysteines that are abundantly produced by filamentous fungi with all types of lifestyles. These proteins appear to be readily recognized by other organisms and are therefore important factors in interactions of fungi with other organisms, e.g. by stimulating the induction of defence responses in plants. However, it is not known yet whether the main function of cerato-platanin proteins is associated with these fungal interactions or rather a role in fungal growth and development. Cerato-platanin proteins seem to unify several biochemical properties that are not found in this combination in other proteins. On one hand, cerato-platanins are carbohydrate-binding proteins and are able to bind to chitin and N-acetylglucosamine oligosaccharides; on the other hand, they are able to self-assemble at hydrophobic/hydrophilic interfaces and form protein layers, e.g. on the surface of aqueous solutions, thereby altering the polarity of solutions and surfaces. The latter property is reminiscent of hydrophobins, which are also small, secreted fungal proteins, but interestingly, the surface-activity-altering properties of cerato-platanins are the opposite of what can be observed for hydrophobins. The so far known biochemical properties of cerato-platanin proteins are summarized in this review, and potential biotechnological applications as well as implications of these properties for the biological functions of cerato-platanin proteins are discussed.
Collapse
Affiliation(s)
- Romana Gaderer
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Klaus Bonazza
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Verena Seidl-Seiboth
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|