1
|
Lin Y, Xu C, Li L, Fan L, Li R, He J, Li H, Deng W, Kang Z, Li Z, Cheng Y. A conserved fungal effector disturbs Ca 2+ sensing and ROS homeostasis to induce plant cell death. Nat Commun 2025; 16:3523. [PMID: 40229290 PMCID: PMC11997220 DOI: 10.1038/s41467-025-58833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/29/2025] [Indexed: 04/16/2025] Open
Abstract
Acting as a major Ca2+ sensor, calmodulin (CaM) activates target proteins to regulate a variety of cellular processes. Here, we report that CaM-target binding is disturbed by a fungal virulence effector PdCDIE1 (Penicillium digitatum Cell Death-Inducing Effector 1), which results into reactive oxygen species (ROS)-dependent plant cell death. PdCDIE1 is an evolutionarily conserved fungal effector that exhibits plant cell death-inducing activity and contributes significantly to pathogen virulence. PdCDIE1 interacts with a plant heat shock protein Hsp70 that is antagonistic to ROS-dependent plant cell death. Hsp70 is a bona fide target of CaM and its CaM-binding domain also interacts with N-terminal PdCDIE1. The interaction between CaM and Hsp70 in citrus fruit is disturbed during pathogen infection but recovered during ΔPdCDIE1 mutant infection. Application of a CaM inhibitor and silencing of CaM genes induce plant cell death and high levels of ROS as PdCDIE1 does. These results reveal a molecular framework of effector-triggered susceptibility which integrates Ca2+ sensing and ROS homeostasis to induce plant cell death.
Collapse
Affiliation(s)
- Yunlong Lin
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Chan Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Liqin Fan
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin He
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Davière A, Voxeur A, Jolivet S, Lelas L, Vernhettes S, Soulié MC, Fagard M. Unravelling the interplay of nitrogen nutrition and the Botrytis cinerea pectin lyase BcPNL1 in modulating Arabidopsis thaliana susceptibility. Commun Biol 2025; 8:204. [PMID: 39922973 PMCID: PMC11807159 DOI: 10.1038/s42003-025-07642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
In this study, we investigated the interplay between nitrogen nutrition and the pectin degradation dynamics during Arabidopsis and Botrytis interaction. Our findings revealed that infected detached leaves from nitrogen-sufficient plants released more pectin lyase (PNL)-derived oligogalacturonides compared to nitrogen-deficient ones. We then focused on BcPNL1, the most highly expressed Botrytis PNL upon infection. Using mutant strains lacking BcPNL1, we observed reduced pathogenicity, a delay in germination and a lag in triggering the plant defense response. Additionally, in nitrogen-sufficient detached leaves, the elevated expression of jasmonic acid repressor genes observed upon infection with the wild-type strain was abolished with the mutants. These results linked the increased production of BcPNL-derived products to the increased expression of jasmonic acid repressor genes, contributing partially to the higher susceptibility of nitrogen-sufficient detached leaves. These findings could lay the foundation for new strategies aimed at reconciling both crop resistance to pathogens and the improvement of nitrogen nutrition.
Collapse
Affiliation(s)
- Antoine Davière
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France.
| | - Sylvie Jolivet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Luka Lelas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marie-Christine Soulié
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Sorbonne Universités, UFR 927, Paris, France
| | - Mathilde Fagard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
3
|
de Ramón-Carbonell M, Sánchez-Torres P. Wide transcriptional outlook to uncover Penicillium expansum genes underlying fungal incompatible infection. Heliyon 2024; 10:e29124. [PMID: 38623190 PMCID: PMC11016614 DOI: 10.1016/j.heliyon.2024.e29124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pathogenesis of P. expansum involved different processes and one of them is the recognition between pathogen-host, which in the case of P. expansum is preferably pome fruit. In this work, the possible mechanisms connected to host recognition are addressed through the generation of a subtractive library carried out during the incompatible P. expansum-orange interaction in the initial stages of infection. The generated library was analyzed by massive sequencing and bioinformatic analysis. Of the identified genes, a total of 24 were selected for subsequent expression analysis by RT-qPCR in two incompatible interaction situations. The characterization of the overexpressed genes revealed the presence of CWDEs, ATPases, aldolases, detoxifying enzymes and virulent determinants that could act as effectors related to fungal virulence independently of the host. However, several identified genes, which could not be associated with the virulence of P. expansum under compatible conditions, were related to enzymes to obtain the nutrients necessary for the growth and development of the pathogen under stress conditions through basal metabolism that contributes to expand the range of adaptation of the pathogen to the environment and different hosts.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
4
|
Silva E, Dantas R, Barbosa JC, Berlinck RGS, Fill T. Metabolomics approach to understand molecular mechanisms involved in fungal pathogen-citrus pathosystems. Mol Omics 2024; 20:154-168. [PMID: 38273771 DOI: 10.1039/d3mo00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Citrus is a crucial crop with a significant economic impact globally. However, postharvest decay caused by fungal pathogens poses a considerable threat, leading to substantial financial losses. Penicillium digitatum, Penicillium italicum, Geotrichum citri-aurantii and Phyllosticta citricarpa are the main fungal pathogens, causing green mold, blue mold, sour rot and citrus black spot diseases, respectively. The use of chemical fungicides as a control strategy in citrus raises concerns about food and environmental safety. Therefore, understanding the molecular basis of host-pathogen interactions is essential to find safer alternatives. This review highlights the potential of the metabolomics approach in the search for bioactive compounds involved in the pathogen-citrus interaction, and how the integration of metabolomics and genomics contributes to the understanding of secondary metabolites associated with fungal virulence and the fungal infection mechanisms. Our goal is to provide a pipeline combining metabolomics and genomics that can effectively guide researchers to perform studies aiming to contribute to the understanding of the fundamental chemical and biochemical aspects of pathogen-host interactions, in order to effectively develop new alternatives for fungal diseases in citrus cultivation. We intend to inspire the scientific community to question unexplored biological systems, and to employ diverse analytical approaches and metabolomics techniques to address outstanding questions about the non-studied pathosystems from a chemical biology perspective.
Collapse
Affiliation(s)
- Evandro Silva
- State University of Campinas, Institute of Chemistry, CEP, 13083-970 Campinas, SP, Brazil.
- University of São Paulo, Institute of Chemistry, CEP 13566-590, São Carlos, SP, Brazil
| | - Rodolfo Dantas
- State University of Campinas, Institute of Chemistry, CEP, 13083-970 Campinas, SP, Brazil.
| | - Júlio César Barbosa
- State University of Campinas, Institute of Chemistry, CEP, 13083-970 Campinas, SP, Brazil.
| | - Roberto G S Berlinck
- University of São Paulo, Institute of Chemistry, CEP 13566-590, São Carlos, SP, Brazil
| | - Taicia Fill
- State University of Campinas, Institute of Chemistry, CEP, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Sánchez-Torres P, González-Candelas L, Ballester AR. Discovery and Transcriptional Profiling of Penicillium digitatum Genes That Could Promote Fungal Virulence during Citrus Fruit Infection. J Fungi (Basel) 2024; 10:235. [PMID: 38667906 PMCID: PMC11051341 DOI: 10.3390/jof10040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Green mold caused by Penicillium digitatum (Pers.:Fr.) Sacc is the most prevalent postharvest rot concerning citrus fruits. Using the subtractive suppression hybridization (SSH) technique, different P. digitatum genes have been identified that could be involved in virulence during citrus infection in the early stages, a crucial moment that determines whether the infection progresses or not. To this end, a comparison of two P. digitatum strains with high and low virulence has been carried out. We conducted a study on the gene expression profile of the most relevant genes. The results indicate the importance of transcription and regulation processes as well as enzymes involved in the degradation of the plant cell wall. The most represented expressed sequence tag (EST) was identified as PDIP_11000, associated with the FluG domain, which is putatively involved in the activation of conidiation. It is also worth noting that PDIP_02280 encodes a pectin methyl esterase, a cell wall remodeling protein with a high expression level in the most virulent fungal strains, which is notably induced during citrus infection. Furthermore, within the group with the greatest representation and showing significant induction in the early stages of infection, regulatory proteins (PDIP_68700, PDIP_76160) and a chaperone (PDIP_38040) stand out. To a lesser extent, but not less relevant, it is worth distinguishing different regulatory proteins and transcription factors, such as PDIP_00580, PDIP_49640 and PDIP_78930.
Collapse
Affiliation(s)
- Paloma Sánchez-Torres
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, 46113 Valencia, Spain
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Luis González-Candelas
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Ana Rosa Ballester
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
6
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
7
|
Xu M, Godana EA, Li J, Deng Y, Ma Y, Ya H, Zhang H. Infection of postharvest pear by Penicillium expansum is facilitated by the glycoside hydrolase (eglB) gene. Int J Food Microbiol 2024; 410:110465. [PMID: 37980812 DOI: 10.1016/j.ijfoodmicro.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, β-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.
Collapse
Affiliation(s)
- Meiqiu Xu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Jingyu Li
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yaping Deng
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yufei Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Llobregat B, González-Candelas L, Ballester AR. Exploring the Biocontrol Capability of Non-Mycotoxigenic Strains of Penicillium expansum. Toxins (Basel) 2024; 16:52. [PMID: 38251268 PMCID: PMC10820982 DOI: 10.3390/toxins16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed.
Collapse
Affiliation(s)
| | | | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain; (B.L.); (L.G.-C.)
| |
Collapse
|
9
|
Lafuente MT, González-Candelas L. The Role of ABA in the Interaction between Citrus Fruit and Penicillium digitatum. Int J Mol Sci 2022; 23:ijms232415796. [PMID: 36555436 PMCID: PMC9779756 DOI: 10.3390/ijms232415796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Abscisic acid (ABA) protects citrus fruit against Penicillium digitatum infection. The global mechanisms involved in the role of ABA in the P. digitatum-citrus fruit interaction are unknown. Here, we determine the transcriptome differences between the Navelate (Citrus sinensis (L.) Osbeck) orange and its ABA-deficient mutant Pinalate, which is less resistant to infection. Low ABA levels may affect both the constitutive mechanisms that protect citrus fruit against P. digitatum and early responses to infection. The repression of terpenoid, phenylpropanoid and glutation metabolism; of oxidation-reduction processes; and of processes related to the defense response to fungus and plant hormone signal transduction may be one part of the constitutive defense reduced in the mutant against P. digitatum. Our results also provide potential targets for developing P. digitatum-citrus fruit-resistant varieties. Of those up-regulated by ABA, a thaumatin protein and a bifunctional inhibitor/LTP, which are relevant in plant immunity, were particularly remarkable. It is also worth highlighting chlorophyllase 1 (CLH1), induced by infection in Pinalate, and the OXS3 gene, which was down-regulated by ABA, because the absence of OXS3 activates ABA-responsive genes in plants.
Collapse
|
10
|
The necrosis-inducing protein (NIP) gene contributes to Penicillium expansum virulence during postharvest pear infection. Food Res Int 2022; 158:111562. [DOI: 10.1016/j.foodres.2022.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
|
11
|
Zhong G, Shen J, Chen Z, Lin Z, Long L, Wu J, Long C, Huang S, Lian P, Luo G. Antioxidant and Antitumor Activities of Newly Synthesized Hesperetin Derivatives. Molecules 2022; 27:879. [PMID: 35164142 PMCID: PMC8839103 DOI: 10.3390/molecules27030879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hesperetin is a class of natural products with a wide range of sources and remarkable biological activities. In this study, we described the synthesis of a series of novel hesperetin derivatives and evaluated the in vitro antioxidant and antitumor activity of these compounds. Eleven novel compounds were synthesized in moderate yields. The compounds synthesized in this work exhibited antioxidant activities against DPPH and ABTS free radicals in a dose-dependent manner. Among them, compound 3f had the best antioxidant activity, with IC50 of 1.2 μM and 24 μM for DPPH and ABTS, respectively. The antitumor activity of the compounds against human cancer cell lines, such as breast MCF-7, liver HepG2, and cervical Hela, was determined by a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Three compounds had moderate IC50 values. Interestingly, compound 3f had better biological activity than hesperetin, which matches the prediction by Maestro from Schrödinger. Therefore, the new hesperidin derivative is a promising drug for the treatment of cancer due to its effective antitumor activity. The results also suggested that the antitumor activities of hesperetin derivatives may be related to their antioxidant activities.
Collapse
Affiliation(s)
| | - Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China; (G.Z.); (Z.C.); (Z.L.); (L.L.); (J.W.); (C.L.); (S.H.); (P.L.)
| | | | | | | | | | | | | | | | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China; (G.Z.); (Z.C.); (Z.L.); (L.L.); (J.W.); (C.L.); (S.H.); (P.L.)
| |
Collapse
|
12
|
Citores L, Valletta M, Singh VP, Pedone PV, Iglesias R, Ferreras JM, Chambery A, Russo R. Deciphering Molecular Determinants Underlying Penicillium digitatum's Response to Biological and Chemical Antifungal Agents by Tandem Mass Tag (TMT)-Based High-Resolution LC-MS/MS. Int J Mol Sci 2022; 23:680. [PMID: 35054864 PMCID: PMC8775614 DOI: 10.3390/ijms23020680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Vikram Pratap Singh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| |
Collapse
|
13
|
de Ramón-Carbonell M, Sánchez-Torres P. Unveiling the Role Displayed by Penicillium digitatum PdMut3 Transcription Factor in Pathogen-Fruit Interaction. J Fungi (Basel) 2021; 7:828. [PMID: 34682249 PMCID: PMC8540835 DOI: 10.3390/jof7100828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Zn2Cys6 transcription factors are unique to fungi and are involved in different regulatory functions. In this study, we have identified the Penicillium digitatumPdMut3 gene, which encodes a putative Zn (II) 2Cys6 DNA-binding protein. Elimination of PdMut3 in Pd1 strain caused increased virulence during citrus infection. The transcription of the PdMut3 gene showed a higher expression rate during fungal growth and less transcription during fruit infection. Furthermore, the deletion of the gene in the wild-type isolate of P. digitatum did not produce any modification of the sensitivity to different fungicides, indicating that the gene is not associated with resistance to fungicides. In contrast, PdMut3 null mutants showed a reduction in growth in minimal media, which was associated with severe alterations in conidiophore development and morphological alterations of the hyphae. Mutants showed greater sensitivity to compounds that interfere with the cell wall and an invasive growth block. Thus, PdMut3 might have an indirect role in fungi virulence through metabolism and peroxisomes development.
Collapse
|
14
|
Albedo- and Flavedo-Specific Transcriptome Profiling Related to Penicillium digitatum Infection in Citrus Fruit. Foods 2021; 10:foods10092196. [PMID: 34574307 PMCID: PMC8467057 DOI: 10.3390/foods10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit. Although the inner fruit peel part (albedo) is less resistant than the outer part (flavedo) to P. digitatum, the global mechanisms involved in their different susceptibility remain unknown. Here, we examine transcriptome differences between both tissues at fruit harvest and in their early responses to infection. At harvest, not only was secondary metabolism, involving phenylpropanoids, waxes, and terpenoids, generally induced in flavedo vs. albedo, but also energy metabolism, transcription factors (TFs), and biotic stress-related hormones and proteins too. Flavedo-specific induced responses to infection might be regulated in part by ERF1 TF, and are related to structural plant cell wall reinforcement. Other induced responses may be related to H2O2, the synthesis of phenylpropanoids, and the stress-related proteins required to maintain basal defense responses against virulent pathogens, whereas P. digitatum represses some hydrolase-encoding genes that play different functions and auxin-responsive genes in this peel tissue. In infected albedo, the repression of transport and signal transduction prevail, as does the induction of not only the processes related to the synthesis of flavonoids, indole glucosinolates, cutin, and oxylipins, but also the specific genes that elicit plant immunity against pathogens.
Collapse
|
15
|
Lima PG, Freitas CDT, Oliveira JTA, Neto NAS, Amaral JL, Silva AFB, Sousa JS, Franco OL, Souza PFN. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Res Int 2021; 147:110582. [PMID: 34399551 DOI: 10.1016/j.foodres.2021.110582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Fungal contamination is among the main reasons for food spoilage, affecting food safety and the economy. Among fungi, Penicillium digitatum is a major agent of this problem. Here, the in vitro activity of eight synthetic antimicrobial peptides was assessed against P. digitatum, and their action mechanisms were evaluated. All peptides were able to inhibit fungal growth. Furthermore, atomic force and fluorescence microscopies revealed that all peptides targeted the fungal membrane leading to pore formation, loss of internal content, and death. The induction of high levels of reactive oxygen species (ROS) was also a mechanism employed by some peptides. Interestingly, only three peptides (PepGAT, PepKAA, and Mo-CBP3-PepI) effectively control P. digitatum colonization in orange fruits, at a concentration (50 µg mL-1) 20-fold lower than the commercial food preservative (sodium propionate). Altogether, PepGAT, PepKAA, and Mo-CBP3-PepI showed high biotechnological potential as new food preservatives to control food infection by P. digitatum.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Jeanlex S Sousa
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
16
|
Ngolong Ngea GL, Qian X, Yang Q, Dhanasekaran S, Ianiri G, Ballester A, Zhang X, Castoria R, Zhang H. Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Compr Rev Food Sci Food Saf 2021; 20:2508-2533. [DOI: 10.1111/1541-4337.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Fisheries Sciences University of Douala Douala Cameroon
| | - Xin Qian
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Qiya Yang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | | | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise Campobasso Italy
| | - Ana‐Rosa Ballester
- Department of Food Biotechnology Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA‐CSIC) Paterna Valencia Spain
| | - Xiaoyun Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise Campobasso Italy
| | - Hongyin Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
17
|
Elsherbiny EA, Taher MA, Abd El-Aziz MH, Mohamed SY. Action mechanisms and biocontrol of Purpureocillium lilacinum against green mould caused by Penicillium digitatum in orange fruit. J Appl Microbiol 2021; 131:1378-1390. [PMID: 33484589 DOI: 10.1111/jam.15016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
AIMS The present study evaluated, for the first time, the inhibitory effects of the filtrate of Purpureocillium lilacinum against Penicillium digitatum. METHODS AND RESULTS No direct contact between P. lilacinum and P. digitatum was observed during the dual culture test and the inhibition zone was 6·1 mm. The filtrate of P. lilacinum completely inhibited P. digitatum growth and spore germination at the concentration of 64%. The filtrate increased the permeability of the cell membrane and the content of MDA in P. digitatum. The ergosterol content in P. digitatum was strongly inhibited at 32% by 81·1%. The green mould incidence and severity in filtrate-treated fruit at 64% were 71·7 and 80·7% lower than in the control, respectively. The filtrate enhanced the activity of PAL, PPO and POD enzymes in orange fruit. The POD and PAL gene expression levels were significantly upregulated in the fruit treated with the filtrate. CONCLUSIONS This study indicated that the antifungal mechanism of P. lilacinum filtrate against P. digitatum is mainly by the damage of the fungal cell membrane and its components. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides the pioneer evidence on the application of P. lilacinum filtrate as a novel biocontrol agent for orange green mould.
Collapse
Affiliation(s)
- E A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M A Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M H Abd El-Aziz
- Department of Genetics, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - S Y Mohamed
- Horticulture Research Institute, Agricultural Research Center, Cairo, Egypt
| |
Collapse
|
18
|
Suarez-Fernandez M, Sambles C, Lopez-Moya F, Nueda MJ, Studholme DJ, Lopez-Llorca LV. Chitosan modulates Pochonia chlamydosporia gene expression during nematode egg parasitism. Environ Microbiol 2021; 23:4980-4997. [PMID: 33496078 PMCID: PMC8518118 DOI: 10.1111/1462-2920.15408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/24/2021] [Indexed: 01/22/2023]
Abstract
Climate change makes plant‐parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root‐knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation–reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen—Host Interaction database (PHI‐base), our previous RNA‐seq data and RT‐PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| | | | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain
| | - María J Nueda
- Mathematics Department, University of Alicante, Alicante, 03080, Spain
| | | | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| |
Collapse
|
19
|
Penicilliumdigitatum MFS transporters can display different roles during pathogen-fruit interaction. Int J Food Microbiol 2020; 337:108918. [PMID: 33126075 DOI: 10.1016/j.ijfoodmicro.2020.108918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 01/06/2023]
Abstract
Major facilitator superfamily (MFS) comprises a large family of fungal transporters. In this work four Penicillium digitatum MFS transporters named PdMFS2-5 were identified and functionally characterized through gene elimination and gene overexpression with aim of unveil the similarities and differences among members of the same family during pathogen-fruit interaction. Fungal mutants in which each of the MFS transporters were individually deleted, displayed a clear effect on their infective capacity during citrus fruit infection especially in two of them. In contrast, the observed effect on fungicide sensitivity limits PdMFS2 and PdMFS3 as transporters underlying fungicide resistance. Moreover, overexpression transformants confirmed P. digitatum MFS transporters function and PdMFS2 and PdMFS3 were able to confer fungicide resistance to P. digitatum strains originally fungicide sensitive. Gene transcription rate depended on each MFS transporter being PdMFS4 the one with higher gene expression. Transcriptional profiling was similar regardless the P. digitatum strain. The gene expression analysis showed an increase of PdMFSs transcription in all overexpression transformants, particularly in Pd27 strain. Expression analysis carried out during P. digitatum-citrus fruit interaction confirmed the contribution of all PdMFSs, excepting PdMFS5, in fungal virulence. These results indicate that MFS fungal transporters might be part of different processes and can replace other genes functions giving them a very high degree of versatility.
Collapse
|
20
|
Synthesis and Antifungal Activities of Cinnamaldehyde Derivatives against Penicillium digitatum Causing Citrus Green Mold. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8898692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Penicillium digitatum (green mold) is pathogenic fungi and causes citrus fruit postharvest rotting that leads to huge economic losses across the world. The current study was aimed to develop a new derivative of cinnamaldehyde (4-methoxycinnamaldehyde) through the cross-hydroxyaldehyde condensation method with benzaldehyde substituted by a benzene ring under the catalysis of alkaline reagent and, moreover, to test their antifungal potential against P. digitatum, the major citrus fruit rotting fungi. Multiple derivatives of cinnamaldehyde viz. 4-nitro CA, 4-chloro CA, 4-bromo CA, 4-methyl CA, 4-methoxy CA, and 2,4-dimethoxy CA were synthesized in the current study whereas the 4-methoxy CA showed highest antifungal actions for citrus fruit postharvest rotting fungi P. digitatum. Moreover, 4-methoxy CA was found to reduce the spore germination and growth by damaging the fungal cell membrane, as well as declined the levels of reducing sugars.
Collapse
|
21
|
Wang Z, Sui Y, Li J, Tian X, Wang Q. Biological control of postharvest fungal decays in citrus: a review. Crit Rev Food Sci Nutr 2020; 62:861-870. [PMID: 33034197 DOI: 10.1080/10408398.2020.1829542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Citrus (Citrus spp.) species produce a variety of fruits that are popular worldwide. Citrus fruits, however, are susceptible to postharvest decays caused by various pathogenic fungi, including Penicillium digitatum, Penicillium italicum, Geotrichum citri-aurantii, Aspergillus niger, and Aspergillus flavus. Decays resulting from infections by these pathogens cause a significant reduction in citrus quality and marketable yield. Biological control of postharvest decay utilizing antagonistic bacteria and fungi has been explored as a promising alternative to synthetic fungicides. In the present article, the isolation of antagonists utilized to manage postharvest decays in citrus is reviewed, and the mechanism of action including recent molecular and genomic studies is discussed as well. Several recently-postulated mechanisms of action, such as biofilm formation and an oxidative burst of reactive oxygen species have been highlighted. Improvements in biocontrol efficacy of antagonists through the use of a combination of microbial antagonists and additives are also reviewed. Biological control utilizing bacterial and yeast antagonists is a critical component of an integrated management approach for the sustainable development of the citrus industry. Further research will be needed, however, to explore and utilize beneficial microbial consortia and novel approaches like CRISPR/Cas technology for management of postharvest decays.
Collapse
Affiliation(s)
- Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Forestry and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology Shandong, Academy of Sciences, Jinan, China
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Ballester AR, González-Candelas L. EFE-Mediated Ethylene Synthesis Is the Major Pathway in the Citrus Postharvest Pathogen Penicillium digitatum during Fruit Infection. J Fungi (Basel) 2020; 6:jof6030175. [PMID: 32957714 PMCID: PMC7558865 DOI: 10.3390/jof6030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Penicillium digitatum is the main fungal postharvest pathogen of citrus fruit under Mediterranean climate conditions. The role of ethylene in the P. digitatum-citrus fruit interaction is unclear and controversial. We analyzed the involvement of the 2-oxoglutarate-dependent ethylene-forming enzyme (EFE)-encoding gene (efeA) of P. digitatum on the pathogenicity of the fungus. The expression of P. digitatumefeA parallels ethylene production during growth on PDA medium, with maximum levels reached during sporulation. We generated ΔefeA knockout mutants in P. digitatum strain Pd1. These mutants showed no significant defect on mycelial growth or sporulation compared to the parental strain. However, the knockout mutants did not produce ethylene in vitro. Citrus pathogenicity assays showed no differences in virulence between the parental and ΔefeA knockout mutant strains, despite a lack of ethylene production by the knockout mutant throughout the infection process. This result suggests that ethylene plays no role in P. digitatum pathogenicity. Our results clearly show that EFE-mediated ethylene synthesis is the major ethylene synthesis pathway in the citrus postharvest pathogen P. digitatum during both in vitro growth on PDA medium and the infection process, and that this hormone is not necessary for establishing P. digitatum infection in citrus fruit. However, our results also indicate that ethylene produced by P. digitatum during sporulation on the fruit surface may influence the development of secondary fungal infections.
Collapse
|
23
|
Costa JH, Fernandes LS, Akiyama DY, Fill TP. Exploring the interaction between citrus flavonoids and phytopathogenic fungi through enzymatic activities. Bioorg Chem 2020; 102:104126. [PMID: 32736150 DOI: 10.1016/j.bioorg.2020.104126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
Flavonoids are involved in citrus defense against phytopathogens. In this study, we applied in vitro biocatalysis assays using the flavanones glycosides hesperidin and naringin to explore the enzymatic activities involved in such interaction. The main enzymatic activity observed was the hydrolysis catalyzed by fungi naringinases and hesperidinases. Withing 7 days, the two citrus phytopathogenic fungi, Penicillium digitatum and Penicillium italicum, exhibited the highest hydrolyzing rate on the flavanones, reaching conversion values higher than 90%. In addition, Geothrichum citri-aurantii exhibited no enzymatic activity and Penicillium expansum only hydrolyzed hesperidin. In order to evaluate flavonoid biotransformation by the fungi in vivo, citrus fruits infected with P. digitatum were analyzed through molecular networking and Imaging Mass Spectrometry (IMS). In vivo assays revealed that citrus fruit in response to the infection is able to hydroxylate flavonoids, and novel flavonoid structures were associated to the citrus' defense. The data reported here present a new point of view in the relation between citrus flavonoids and phytopathogenic fungi and can be useful to understand the infection processes and host-pathogen interaction.
Collapse
Affiliation(s)
- Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Laura Soler Fernandes
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Daniel Yuri Akiyama
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
24
|
Jeffress S, Arun-Chinnappa K, Stodart B, Vaghefi N, Tan YP, Ash G. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters. PLoS One 2020; 15:e0227396. [PMID: 32469865 PMCID: PMC7259788 DOI: 10.1371/journal.pone.0227396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.
Collapse
Affiliation(s)
- Sarah Jeffress
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Ben Stodart
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Gavin Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
25
|
de Ramón-Carbonell M, Sánchez-Torres P. Significance of 195 bp-enhancer of PdCYP51B in the acquisition of Penicillium digitatum DMI resistance and increase of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104522. [PMID: 32359549 DOI: 10.1016/j.pestbp.2020.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/11/2023]
Abstract
Two sterol 14α-demethylase genes from Penicillium digitatum, PdCYP51A and PdCYP51B, were evaluated and revealed that 95% of Imazalil (IMZ)-resistant isolates carried a 195-bp insertion in the PdCYP51B promoter. We functionally characterized both sterol 14α-demethylases by overexpression. Molecular analysis of overexpression mutants showed that the introduction of PdCYP51B insertion is more stable than the five-tandem repeat PdCYP51A sequence previously described that confers DMI fungicide resistance. The both enhancers can coexist in P. digitatum isolates that initially contained the 195-bp PdCYP51B insertion but the introduction of 195-bp PdCYP51B enhancer promoted the loss of the five-tandem repeat of PdCYP51A. The incorporation of 195-bp PdCYP51B resulted in an increase of DMI fungicide resistance in mutants from already resistant isolates and confers resistance to DMIs in mutants from sensitive isolates. Transcription evaluation of the both genes showed noticeable induction in all overexpression mutants, except for those coming from the five-tandem repeat PdCYP51A sequence, whereas PdCYP51A expression dropped dramatically. Only PdCYP51B exhibited up-regulation during citrus infection compared to axenic growth, and the role of PdCYP51B in fungal virulence was further reinforced since strains with low virulence showed increased infectivity in overexpression mutants. This study suggested the predominant role of the PdCYP51B enhancer in the acquisition of DMI resistance and fungal virulence, by replacing homologues genes with same putative function.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain; Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
26
|
Cheng Y, Lin Y, Cao H, Li Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020; 8:E449. [PMID: 32209982 PMCID: PMC7143998 DOI: 10.3390/microorganisms8030449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant-pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit-pathogen interactions remaining relatively unexplored compared with well-studied leaf-pathogen interactions, progress has occurred in the citrus fruit-Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Collapse
Affiliation(s)
- Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yunlong Lin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
27
|
Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus ( Citrus reticulata Blanco). Microorganisms 2019; 7:microorganisms7110485. [PMID: 31652932 PMCID: PMC6920975 DOI: 10.3390/microorganisms7110485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023] Open
Abstract
Green mold disease, a common citrus post-harvest disease caused by Penicillium digitatum, has an unresolved initial infection mechanism. Understanding the infection mechanism leads to the development of potential controls and preventive measures against the disease. The present study aimed to delineate the infection mechanism by investigating spore germination, changes of organic molecules and enzyme activity, and differential expression of genes in the P. digitatum infection. P. digitatum spore germination was observed by a pathology section scanner and it was found that in vivo germination was 3 h behind the in vitro germination. In addition, cell wall degrading enzymes and soluble sugar and titratable acid content during the infection process measured dynamically. The level of pectinase reached its maximum of 6067 U/g before 48 hpi, while cellulase increased rapidly after 48 hpi. The soluble sugar and organic acid content increased considerably with the progression of the infection. The transcriptomic profile of P. digitatum before and after infection was analyzed by RNA-seq. The genes related to cell wall degrading enzymes were significantly up-regulated and annotated to participate in two major carbon source synthesis pathways. The study delineated the initial infection mechanism of P. digitatum which eventually opened the gate way for the development of new control strategies in the future.
Collapse
|
28
|
PdMFS1 Transporter Contributes to Penicilliun digitatum Fungicide Resistance and Fungal Virulence during Citrus Fruit Infection. J Fungi (Basel) 2019; 5:jof5040100. [PMID: 31635246 PMCID: PMC6958471 DOI: 10.3390/jof5040100] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
A new Penicillium digitatum major facilitator superfamily (MFS) transporter (PdMFS1) was identified and functionally characterized in order to shed more light on the mechanisms underlying fungicide resistance. PdMFS1 can play an important role in the intensification of resistance to fungicides normally used in P. digitatum postharvest treatments. In the PdMFS1 disrupted mutants, a slight effect in response to chemical fungicides was observed, but fungicide sensitivity was highly affected in the overexpression mutants which became resistant to wide range of chemical fungicides. Moreover, P. digitatum knock-out mutants exhibited a lower rate of fungal virulence when infected oranges were stored at 20 °C. Disease symptoms were higher in the PdMFS1 overexpression mutants coming from the low-virulent P. digitatum parental strain. In addition, the gene expression analysis showed an induction of PdMFS1 transcription in all overexpression mutants regardless from which progenitor came from, and four-time intensification of the parental wild type strain during citrus infection reinforcing PdMFS1 role in fungal virulence. The P. digitatum MFS transporter PdMFS1 contributes not only to the acquisition of wide range of fungicide resistance but also in fungal virulence during citrus infection.
Collapse
|
29
|
Monitoring indole alkaloid production by Penicillium digitatum during infection process in citrus by Mass Spectrometry Imaging and molecular networking. Fungal Biol 2019; 123:594-600. [DOI: 10.1016/j.funbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
30
|
Costa JH, Bazioli JM, de Moraes Pontes JG, Fill TP. Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biol 2019; 123:584-593. [DOI: 10.1016/j.funbio.2019.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/23/2022]
|
31
|
Ballester AR, López-Pérez M, de la Fuente B, González-Candelas L. Functional and Pharmacological Analyses of the Role of Penicillium digitatum Proteases on Virulence. Microorganisms 2019; 7:microorganisms7070198. [PMID: 31336863 PMCID: PMC6680461 DOI: 10.3390/microorganisms7070198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Penicillium digitatum is the major postharvest pathogen of citrus fruit under Mediterranean climate conditions. Previous results have shown that proteases is the largest enzyme family induced by P. digitatum during fruit infection. In the present work, we addressed the study of the role of P. digitatum's proteases in virulence following two complementary approaches. In the first approach, we undertook the functional characterization of the P. digitatum prtT gene, which codes for a putative transcription factor previously shown to regulate extracellular proteases in other filamentous fungi. Deletion of prtT caused a significant loss in secreted protease activity during in vitro growth assays. However, there was no effect on virulence. Gene expression of the two major secreted acid proteases was barely affected in the ΔprtT deletant during infection of citrus fruit. Hence, no conclusion could be drawn on the role of these secreted acidic proteases on the virulence of P. digitatum. In the second approach, we studied the effect of different protease inhibitors and chelators on virulence. Co-inoculation of citrus fruit with P. digitatum conidia and a cocktail of protease inhibitors resulted in almost a complete absence of disease development. Analysis of individual inhibitors revealed that the metalloprotease inhibitor, 1,10-phenanthroline, was responsible for the observed effect. The application of metal ions reverted the protective effect caused by the metallopeptidase inhibitor. These results may set the basis for the development of new alternative treatments to combat this important postharvest pathogen.
Collapse
Affiliation(s)
- Ana-Rosa Ballester
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Mario López-Pérez
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Beatriz de la Fuente
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Luis González-Candelas
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
32
|
Louw JP, Korsten L. Impact of Postharvest Storage on the Infection and Colonization of Penicillium digitatum and Penicillium expansum on Nectarine. PLANT DISEASE 2019; 103:1584-1594. [PMID: 31025905 DOI: 10.1094/pdis-08-18-1475-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very few studies have investigated the host-pathogen interaction of Penicillium spp. on nectarine. Penicillium digitatum was identified as pathogenic and highly aggressive on nectarine. A strong association was made with host age/ripeness. This points to a new mechanism or life strategy used by P. digitatum to infect and colonize previously thought nonhosts. The aim of this study was to determine the effect of postharvest storage of nectarine on the infection and colonization of P. digitatum and Penicillium expansum at molecular and physical (firmness and pH) levels. The impact of environmental conditions (cold storage) and pathogen pressure (inoculum load) was also investigated. Although disease incidence was much lower, lesions caused by P. digitatum were similar in size to those caused by P. expansum on freshly harvested nectarine. Disease incidence and lesion diameter significantly increased (larger than P. expansum) on longer stored fruit. Cold storage had the largest effect on P. digitatum. Inoculum load had a meaningful effect on both Penicillium spp. Storage significantly affected pH modulation and gene expression. The pathogens not only decreased but also, increased and maintained (similar to initial pH of the host) pH of infected tissue. The polygalacturonase (PG) gene and creA were upregulated by P. digitatum on 7-day postharvest fruit (other genes were unaffected). It partly explains the larger lesions on older or riper fruit. A different expression profile was observed from P. expansum: strong downregulation in PG and slight upregulation in pacC. Very different life strategies were used by the two Penicillium spp. when infecting nectarine. Unlike what is known on citrus, P. digitatum showed an opportunistic lifestyle that takes advantage of specific host and environmental conditions. It is largely still unclear (gene expression) what specifically triggers the increase in disease incidence (infection) and lesion diameter (colonization) of P. digitatum on older or riper fruit. The differences between in vivo and in vitro studies make it difficult to directly correlate results. Additional research is still needed to differentiate and understand the infection and colonization of these pathogens on the same host.
Collapse
Affiliation(s)
- Johannes Petrus Louw
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| | - Lise Korsten
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
33
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
34
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
35
|
Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol Res 2019; 221:28-35. [PMID: 30825939 DOI: 10.1016/j.micres.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 01/12/2023]
Abstract
Endophytic fungi belonging to Muscodor genus are considered as promising alternatives to be used in biological control due to the production of volatile organic compounds (VOCs). The strains LGMF1255 and LGMF1256 were isolated from the medicinal plant Schinus terebinthifolius and, by morphological data and phylogenetic analysis, identified as belonging to Muscodor genus. Phylogenetic analysis suggests that strain LGMF1256 is a new species, which is herein introduced as Muscodor brasiliensis sp. nov. The analysis of VOCs production revealed that compounds phenylethyl alcohol, α-curcumene, and E (β) farnesene until now has been reported only from M. brasiliensis, data that supports the classification of strain LGMF1256 as a new species. M. brasiliensis completely inhibited the phytopathogen P. digitatum in vitro. We also evaluated the ability of VOCs from LGMF1256 to inhibit the development of green mold symptoms by inoculation of P. digitatum in detached oranges. M. brasiliensis reduced the severity of diseases in 77%, and showed potential to be used for fruits storage and transportation to prevent the green mold symptoms development, eventually reducing the use of fungicides.
Collapse
|
36
|
Vilanova L, López-Pérez M, Ballester AR, Teixidó N, Usall J, Lara I, Viñas I, Torres R, González-Candelas L. Differential contribution of the two major polygalacturonases from Penicillium digitatum to virulence towards citrus fruit. Int J Food Microbiol 2018; 282:16-23. [DOI: 10.1016/j.ijfoodmicro.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/27/2022]
|
37
|
de Ramón-Carbonell M, Sánchez-Torres P. PdSlt2 Penicillium digitatum mitogen-activated-protein kinase controls sporulation and virulence during citrus fruit infection. Fungal Biol 2017; 121:1063-1074. [DOI: 10.1016/j.funbio.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
|
38
|
A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. J Microbiol Methods 2017; 144:134-144. [PMID: 29175534 DOI: 10.1016/j.mimet.2017.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022]
Abstract
Penicillium digitatum is a major postharvest pathogen of citrus crops. This fungus broadly spreads worldwide and causes green mold disease, which results in severe losses for citrus production. Understanding of the citrus infection by P. digitatum may help develop effective strategies for controlling this pathogen. In this study, we have characterized a virulent strain of P. digitatum isolated in Vietnam and established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for this fungal strain with two newly constructed binary vectors. These binary vectors harbor dominant selectable markers for hygromycin or nourseothricin resistance, and expression cassettes for the red fluorescent protein (DsRed) or the green fluorescent protein (GFP), respectively. Using the established ATMT system, the transformation efficiency of the Vietnamese strain could reach a very high yield of 1240±165 transformants per 106 spores. Interestingly, we found that GFP is much better than DsRed for in situ visualization of citrus fruit colonization by the fungus. Additionally, we showed that the transformation system can also be used to generate T-DNA insertion mutants for screening non-pathogenic or less virulent strains. Our work provides a new platform including a virulent tropical strain of P. digitatum, an optimized ATMT method and two newly constructed binary vectors for investigation of the postharvest pathogen. This platform will help develop strategies to dissect molecular mechanisms of host-pathogen interactions in more detail as well as to identify potential genes of pathogenicity by either insertional mutagenesis or gene disruption in this important pathogenic fungus.
Collapse
|
39
|
Involvement of Penicillium digitatum PdSUT1 in fungicide sensitivity and virulence during citrus fruit infection. Microbiol Res 2017; 203:57-67. [DOI: 10.1016/j.micres.2017.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
|
40
|
Li B, Huang AL, Zhang YL, Li Z, Ding HW, Huang C, Meng XM, Li J. Design, Synthesis and Evaluation of Hesperetin Derivatives as Potential Multifunctional Anti-Alzheimer Agents. Molecules 2017; 22:molecules22071067. [PMID: 28672874 PMCID: PMC6152180 DOI: 10.3390/molecules22071067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 11/16/2022] Open
Abstract
In this study we designed and synthesized a series of new hesperetin derivatives on the basis of the structural characteristics of acetylcholinesterase (AChE) dual-site inhibitors. The activity of the novel derivatives was also evaluated. Results showed that the synthesized hesperetin derivatives displayed stronger inhibitory activity against AChE and higher selectivity than butyrylcholine esterase (BuChE) (selectivity index values from 68 to 305). The Lineweaver-Burk plot and molecular docking study showed that these compounds targeted both the peripheral anionic site (PAS) and catalytic active site (CAS) of AChE. The derivatives also showed a potent self-induced β-amyloid (Aβ) aggregation inhibition and a peroxyl radical absorbance activity. Moreover, compound 4f significantly protected PC12 neurons against H₂O₂-induced cell death at low concentrations. Cytotoxicity assay showed that the low concentration of the derivatives does not affect the viability of the SH-SY5Y neurons. Thus, these hesperetin derivatives are potential multifunctional agents for further development for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Ai-Ling Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Yi-Long Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Zeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Hai-Wen Ding
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230000 Hefei, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, 230000 Hefei, China.
- Institute for Liver Diseases, Anhui Medical University, 230000 Hefei, China.
| |
Collapse
|
41
|
Lv B, Zheng L, Liu H, Tang J, Hsiang T, Huang J. Use of Random T-DNA Mutagenesis in Identification of Gene UvPRO1, A Regulator of Conidiation, Stress Response, and Virulence in Ustilaginoidea virens. Front Microbiol 2016; 7:2086. [PMID: 28082958 PMCID: PMC5186764 DOI: 10.3389/fmicb.2016.02086] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022] Open
Abstract
False smut of rice, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph: Villosiclava virens), is one of the most important diseases affecting rice worldwide. Agrobacterium tumefaciens-mediated transformation was used to identify functional genes in U. virens. In this study, we selected a single-copy insertion mutant T133 with deficiency in producing conidia by screening the T-DNA insertion mutant library of U. virens. The UvPRO1-deletion mutant was successfully obtained after cloning the targeted gene by analysis of the T-DNA insert site of mutant T133. Further research showed that the UvPRO1 mutant was reduced in growth rate and could not produce conidia in PSB medium, while sensitivities to sodium dodecyl sulfate, Congo red, and hyperosmotic stress increased. Moreover, the UvPRO1 deletion mutant hyphae could extend along the surface of spikelets at 1-3 dpi, but mycelia became shriveled and completely lost the ability to infect spikelets at 4 dpi. The relative expression level of UvPRO1 at 8 dpi was more than twice as high as that at 1-2 dpi. These results suggest that UvPRO1 plays a critical role in hyphal growth and conidiation, as well as in stress response and pathogenesis. These findings provide a novel mode of action for the PRO1 protein in fungi and improve the understanding of the function of UvPRO1 in the life cycle of U. virens.
Collapse
Affiliation(s)
- Bo Lv
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lu Zheng
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Hao Liu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jintian Tang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
| | - Jinbin Huang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
42
|
Estiarte N, Lawrence C, Sanchis V, Ramos A, Crespo-Sempere A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 2016; 238:153-164. [DOI: 10.1016/j.ijfoodmicro.2016.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
43
|
Ma H, Sun X, Wang M, Gai Y, Chung KR, Li H. The citrus postharvest pathogen Penicillium digitatum depends on the PdMpkB kinase for developmental and virulence functions. Int J Food Microbiol 2016; 236:167-76. [DOI: 10.1016/j.ijfoodmicro.2016.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
44
|
Vilanova L, Teixidó N, Torres R, Usall J, Viñas I, Sánchez-Torres P. Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. Int J Food Microbiol 2016; 235:93-102. [DOI: 10.1016/j.ijfoodmicro.2016.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022]
|
45
|
Barad S, Sela N, Kumar D, Kumar-Dubey A, Glam-Matana N, Sherman A, Prusky D. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum. BMC Genomics 2016; 17:330. [PMID: 27146851 PMCID: PMC4855365 DOI: 10.1186/s12864-016-2665-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022] Open
Abstract
Background Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. Results We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. Conclusions Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2665-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan, 50250, Israel
| | - Dilip Kumar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | - Amit Kumar-Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | - Nofar Glam-Matana
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Amir Sherman
- Genomics Unit, ARO, the Volcani Center, Bet Dagan, 50250, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.
| |
Collapse
|
46
|
Wang QQ, Shi JB, Chen C, Huang C, Tang WJ, Li J. Hesperetin derivatives: Synthesis and anti-inflammatory activity. Bioorg Med Chem Lett 2016; 26:1460-5. [PMID: 26848111 DOI: 10.1016/j.bmcl.2016.01.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/04/2016] [Accepted: 01/21/2016] [Indexed: 01/19/2023]
Abstract
Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner.
Collapse
Affiliation(s)
- Qian-Qian Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing-Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chen Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China.
| |
Collapse
|
47
|
Gandía M, Xu S, Font C, Marcos JF. Disruption of ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum. Fungal Biol 2015; 120:317-23. [PMID: 26895860 DOI: 10.1016/j.funbio.2015.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
The dominant mechanism to repair double-stranded DNA breaks in filamentous fungi is the non-homologous end joining (NHEJ) pathway, and not the homologous recombination (HR) pathway that operates in the mutation of genes by replacement of target DNA for selection cassettes. The key to improve HR frequency is the inactivation of the NHEJ pathway by eliminating components of its Ku70/80 heterodimeric complex. We have obtained ku70 mutants of Penicillium digitatum, the main citrus postharvest pathogen. The increased efficiency of HR in Δku70 strains was demonstrated by the generation of mutants in two different chitin synthase genes (PdchsII and PdchsV). P. digitatum Δku70 strains showed no differences from the parental strain in vegetative growth, asexual development or virulence to citrus fruit, when experiments were conducted at the optimal temperature of 24°C. However, growth of Δku70 strains at temperatures higher than 24°C demonstrated a detrimental effect in axenic growth and conidia production. These observations are in agreement with previous studies describing differences between ku70 mutants and their parental strains in some fungal species, and must be taken into account for future applications of the Δku approach to increase HR efficiency in fungi.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Shaomei Xu
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Cristina Font
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Jose F Marcos
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
48
|
Ballester AR, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski M, Droby S, González-Candelas L, Gabaldón T. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:232-48. [PMID: 25338147 DOI: 10.1094/mpmi-09-14-0261-fi] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper.
Collapse
|