1
|
Liu C, Wei Y, Dang Y, Batool W, Fan X, Hu Y, He Z, Zhang S. Decarboxylase mediated oxalic acid metabolism is important to antioxidation and detoxification rather than pathogenicity in Magnaporthe oryzae. Virulence 2025; 16:2444690. [PMID: 39814555 PMCID: PMC11776485 DOI: 10.1080/21505594.2024.2444690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in Magnaporthe oryzae remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus. By knocking out the D-arabino-1,4-lactone oxidase gene (Moalo1), one-third of oxalic acid remained in M. oryzae, indicating a main pathway for oxalic acid production. M. oryzae OxdC (MoOxdC) is an oxalate decarboxylase that appears to play a role in relieving oxalic acid toxicity. Loss of Mooxdc does not affect mycelial growth, conidiophore development, or appressorium formation in M. oryzae; however, the antioxidant and pathogenic abilities of the mutant were enhanced. This is owing to Mooxdc deletion upregulated a series of OA metabolic genes, including the oxalate oxidase gene (Mooxo) and Moalo1, as well as both OA transporter genes. Simultaneously, as feedback to the tricarboxylic acid (TCA) cycle, the decrease of formic acid in ΔMooxdc leads to the reduction of acetyl-CoA content, and two genes involved in the β-oxidation of fatty acids were also upregulated, which enhanced the fatty acid metabolism of the ΔMooxdc. Overall, this work reveals the role of OA in M. oryzae. We found that OA metabolism was mainly involved in the growth and development of M. oryzae, OA as a byproduct of D-erythroascorbic acid after removing H2O2, the OA-associated pathway ensures the TCA process and ATP supply.
Collapse
Affiliation(s)
- Chang Liu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuejia Dang
- College of Life and Health, Dalian University, Dalian, China
| | - Wajjiha Batool
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoning Fan
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yan Hu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, Three Gorges University, Yichang, China
| | - Shihong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Weerasinghe T, Li J, Chen X, Gao J, Tian L, Xu Y, Gong Y, Huang W, Zhang Y, Jiang L, Li X. Autophagy-Related Proteins (ATGs) Are Differentially Required for Development and Virulence of Sclerotinia sclerotiorum. J Fungi (Basel) 2025; 11:391. [PMID: 40422725 DOI: 10.3390/jof11050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Sclerotinia sclerotiorum is a devastating fungal pathogen that can colonize numerous crops. Despite its economic importance, the regulation of its development and pathogenicity remains poorly understood. From a forward genetic screen in S. sclerotiorum, six UV mutants were identified with loss-of-function mutations in SsATG1, SsATG2, SsATG4, SsATG5, SsATG9, and SsATG26. Functional validation through gene knockouts revealed that each ATG is essential for sclerotia formation, although the morphology of appressoria was not significantly altered in the mutants. Different levels of virulence attenuation were observed among these mutants. Autophagy, monitored using GFP-ATG8, showed dynamic activities during sclerotia development. These findings suggest that macroautophagy and pexophagy contribute to sclerotia maturation and virulence processes. Future work will reveal how autophagy controls target organelle or protein turnover to regulate these processes.
Collapse
Affiliation(s)
- Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xuanye Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jiayang Gao
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yan Xu
- The College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yihan Gong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weijie Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- The College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Ouyang Y, Xia Y, Tang X, Qin L, Xia S. Trans-Kingdom sRNA Silencing in Sclerotinia sclerotiorum for Crop Fungal Disease Management. Pathogens 2025; 14:398. [PMID: 40333207 PMCID: PMC12030631 DOI: 10.3390/pathogens14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Sclerotinia sclerotiorum is a globally widespread and vast destructive plant pathogenic fungus that causes significant yield losses in crops. Due to the lack of effective resistant germplasm resources, the control of diseases caused by S. sclerotiorum largely relies on chemical fungicides. However, excessive use of these chemicals not only causes environmental concerns but also leads to the increased development of resistance in S. sclerotiorum. In contrast, trans-kingdom sRNA silencing-based technologies, such as host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), offer novel, effective, and environmentally friendly methods for the management of S. sclerotiorum infection. This review summarizes recent advances in the identification of S. sclerotiorum pathogenic genes, target gene selection, categories, and application of trans-kingdom RNA interference (RNAi) technologies targeting this pathogen. Although some challenges, including off-target effects and the efficiency of external sRNA uptake, exist, recent findings have proposed solutions for further improvement. Combined with the latest developments in CRISPR/Cas gene editing and other technologies, trans-kingdom RNAi has significant potential to become a crucial tool in the control of sclerotinia stem rot (SSR), mitigating the impact of S. sclerotiorum on crop production.
Collapse
Affiliation(s)
- Yuqing Ouyang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Lei Qin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| |
Collapse
|
4
|
Lv Y, Liu Y, Lin Y, Zheng H, Yan J, Zhang Y, Miao W, Wu W, Lin C. Functional diversification of oxalate decarboxylases in terms of enzymatic activity, morphosporogenesis, stress regulation and virulence in Colletotrichum siamense. Front Microbiol 2025; 16:1547950. [PMID: 40092038 PMCID: PMC11906461 DOI: 10.3389/fmicb.2025.1547950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Oxalate decarboxylase (OxdC) is an enzyme that degrades oxalic acid and may affect the virulence of necrotrophic fungal pathogens that rely on oxalic acid as a pathogenicity factor. However, the biological function of OxdCs in hemibiotropic fungi is still unknown. Our previous studies revealed four OxdC-encoding genes in the whole genome, with CsOxdC3 playing important roles in morphosporogenesis, fungicide resistance and virulence in Colletotrichum siamense. Here, we systematically analyzed the biological functions of four oxalate decarboxylase genes in C. siamense via a loss-of-function method. The results revealed CsOxdC1, CsOxdC2, and CsOxdC4 played major roles in degrading oxalic acid in C. siamense, whereas CsOxdC3 did not. All four CsOxdCs positively modulated morphosporogenesis, including vegetative growth, conidial size, conidial germination rate and the appressorium formation rate, to different extents. In particular, the CsOxdC3 deletion mutant failed to form appressoria. The four OxdC gene deletion mutants had different responses to Mn2+, Cu2+, and multiple fungicides. Among them, CsOxdC2 and CsOxdC4 exhibited positive roles in resistance to Mn2+ and Cu2+ stresses; CsOxdC1 played a slightly positive role in C. siamense resistance to azole fungicides; and CsOxdC3 had a significantly positive role in regulating the sensitivity of C. siamense to multiple fungicides, including pyrrole and azole, but not CsOxdC2 and CsOxdC4. Furthermore, compared with the wild-type strain, ΔCsOxdC2 and ΔCsOxdC3, but not ΔCsOxdC1 and ΔCsOxdC4, displayed significantly reduced virulence. In conclusion, our data indicated that CsOxdCs exerted diverse functions in morphogenesis, stress homeostasis, fungicide resistance, and virulence in C. siamense. This study provides insights into the biological function of OxdCs in the hemibiotrophic fungus C. siamense.
Collapse
Affiliation(s)
- Yanyun Lv
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yuqing Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huiying Zheng
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jingting Yan
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Wu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
5
|
Li E, Zhu N, Zhang S, Xu B, Liu L, Zhang A. Efficacy of Trichoderma longibrachiatum SC5 Fermentation Filtrate in Inhibiting the Sclerotinia sclerotiorum Growth and Development in Sunflower. Int J Mol Sci 2024; 26:201. [PMID: 39796062 PMCID: PMC11720231 DOI: 10.3390/ijms26010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Sclerotinia sclerotiorum is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. Trichoderma species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of Trichoderma metabolites in inhibiting S. sclerotiorum growth and development and controlling sunflower sclerotinia rot disease. Our results showed that five Trichoderma strains (SC5, T6, TN, P6, and TS3) exhibited mycelial growth inhibition higher than 60% in dual culture assays out of the 11 tested strains. The Trichoderma SC5 fermentation filtrate exhibited superior efficacy compared to other strains, achieving a 94.65% inhibition rate of mycelial growth on S. sclerotiorum, 96% inhibition of myceliogenic germination of sclerotia, and 81.05% reduction in the oxalic acid content of S. sclerotiorum, while significantly increasing the cell membrane permeability. In addition, the Trichoderma SC5 fermentation filtrate significantly decreased the activities of polygalacturonase and pectin methyl-galacturonic enzymes and even caused S. sclerotiorum hyphae to swell, branch, twist, lyse, and inhibited the production and development of sclerotia. Moreover, the Trichoderma SC5 fermentation filtrate downregulated genes expression that associated with the growth and infection of S. sclerotiorum. The control efficacies of the protective and curative activities of the Trichoderma SC5 fermentation filtrate were 95.45% and 75.36%, respectively, on detached sunflower leaves at a concentration of 8 mg/mL. Finally, the Trichoderma SC5 was identified as Trichoderma longibrachiatum through morphological and phylogenetic analysis. Our research indicates that the T. longibrachiatum SC5 can be considered a promising biological control candidate against S. sclerotiorum and controlling the sunflower sclerotinia rot disease, both in vitro and in vivo.
Collapse
Affiliation(s)
- Enchen Li
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (N.Z.)
| | - Na Zhu
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (N.Z.)
| | - Shuwu Zhang
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (N.Z.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (N.Z.)
| | - Lilong Liu
- Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (L.L.); (A.Z.)
- Institute of Wheat Research, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Aiqin Zhang
- Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (L.L.); (A.Z.)
| |
Collapse
|
6
|
Zhu Y, Zong Y, Wang X, Gong D, Zhang X, Zhang F, Prusky D, Bi Y. Regulation of sucrose metabolism, sugar transport and pentose phosphate pathway by PacC in apple fruit colonized by Penicillium expansum. Food Chem 2024; 461:140863. [PMID: 39153373 DOI: 10.1016/j.foodchem.2024.140863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
A critical transcription factor, PacC, modulates the expression of fungal pH signaling. Although PacC-mediated environmental pH has been reported to regulate the growth and pathogenicity of postharvest pathogens, the involvement of PacC in sucrose metabolism, sugar transport, and the pentose phosphate pathway (PPP) in different zones of decayed fruit remains unclear. Our work showed that the inoculation with a PePacC deletion strain of Penicillium expansum (ΔPePacC) accelerated sucrose catabolism and glucose and fructose accumulation in different zones of apple fruit. This was attributed to an increase in sucrose metabolism enzyme activities and up-regulation of the sugar transporter protein-related gene expression. Moreover, ΔPePacC inoculation increased the PPP-related enzyme activities and the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+. In conclusion, PacC modulates sucrose metabolism, sugar transport, and the PPP in apple fruit by mediating dynamic changes in environmental pH, thereby enhancing fruit disease resistance.
Collapse
Affiliation(s)
- Yatong Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuexue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, the Volcani Center, RishonLeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Huo D, Westrick NM, Nelson A, Kabbage M, Koch P. The Role of Oxalic Acid in Clarireedia jacksonii Virulence and Development on Creeping Bentgrass. PHYTOPATHOLOGY 2024; 114:2394-2400. [PMID: 39145740 DOI: 10.1094/phyto-03-24-0094-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dollar spot is a destructive foliar disease of amenity turfgrass caused by Clarireedia spp. fungi, mainly C. jacksonii, on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as Sclerotinia sclerotiorum; however, the role of OA in the pathogenic development of C. jacksonii remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (oah) gene that is required for the biosynthesis of OA was deleted from a C. jacksonii wild-type (WT) strain. Two independent knockout mutants, ΔCjoah-1 and ΔCjoah-2, were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants ΔCjoah-1 and ΔCjoah-2 exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in C. jacksonii virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daowen Huo
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Nathaniel M Westrick
- Valley Laboratory, Connecticut Agricultural Experiment Station, Windsor, CT, U.S.A
| | - Ashley Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, U.S.A
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Paul Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
8
|
Ayaz M, Ali Q, Zhao W, Chi YK, Ali F, Rashid KA, Cao S, He YQ, Bukero AA, Huang WK, Qi RD. Exploring plant growth promoting traits and biocontrol potential of new isolated Bacillus subtilis BS-2301 strain in suppressing Sclerotinia sclerotiorum through various mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1444328. [PMID: 39239197 PMCID: PMC11374654 DOI: 10.3389/fpls.2024.1444328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is the causative agent of stem white mold disease which severely reduces major crop productivity including soybean and rapeseed worldwide. The current study aimed to explore plant growth-promoting traits and biocontrol of new isolated Bacillus subtilis BS-2301 to suppress S. sclerotiorum through various mechanisms. The results indicated that the BS-2301 exhibited strong biocontrol potential against S. sclerotiorum up to 74% both in dual culture and partition plate experiments. The BS-2301 and its crude extract significantly suppressed S. sclerotiorum growth involving excessive reactive oxygen species (ROS) production in mycelia for rapid death. Furthermore, the treated hyphae produced low oxalic acid (OA), a crucial pathogenicity factor of S. sclerotiorum. The SEM and TEM microscopy of S. sclerotiorum showed severe damage in terms of cell wall, cell membrane breakage, cytoplasm displacement, and organelles disintegration compared to control. The pathogenicity of S. sclerotiorum exposed to BS-2301 had less disease progression potential on soybean leaves in the detached leaf assay experiment. Remarkably, the strain also demonstrated broad-range antagonistic activity with 70%, and 68% inhibition rates against Phytophthora sojae and Fusarium oxysporum, respectively. Furthermore, the strain exhibits multiple plant growth-promoting and disease-prevention traits, including the production of indole-3-acetic acid (IAA), siderophores, amylases, cellulases and proteases as well as harboring calcium phosphate decomposition activity. In comparison to the control, the BS-2301 also showed great potential for enhancing soybean seedlings growth for different parameters, including shoot length 31.23%, root length 29.87%, total fresh weight 33.45%, and total dry weight 27.56%. The antioxidant enzymes like CAT, POD, SOD and APX under BS-2301 treatment were up-regulated in S. sclerotiorum infected plants along with the positive regulation of defense-related genes (PR1-2, PR10, PAL1, AOS, CHS, and PDF1.2). These findings demonstrate that the BS-2301 strain possesses a notable broad-spectrum biocontrol potential against different phytopathogens and provides new insight in suppressing S. sclerotiorum through various mechanisms. Therefore, BS-2301 will be helpful in the development of biofertilizers for sustainable agricultural practices.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Khan Abdur Rashid
- Department of Plant Pathology, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Shun Cao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan-Qiu He
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Abdul Aziz Bukero
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
9
|
Ding Y, Yang N, Lu Y, Xu J, Rana K, Chen Y, Xu Z, Qian W, Wan H. Fusiform nanoparticle boosts efficient genetic transformation in Sclerotinia sclerotiorum. J Nanobiotechnology 2024; 22:494. [PMID: 39160572 PMCID: PMC11334516 DOI: 10.1186/s12951-024-02736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies. RESULTS Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl3 and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1. CONCLUSIONS Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.
Collapse
Affiliation(s)
- Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Nan Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Lu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiming Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
10
|
Hong G, Wang S, Xia Y, Peng G. MaAzaR Influences Virulence of Metarhizium acridum against Locusta migratoria manilensis by Affecting Cuticle Penetration. J Fungi (Basel) 2024; 10:564. [PMID: 39194890 DOI: 10.3390/jof10080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaR (ΔMaAzaR) diminished the fungus's ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen-host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains.
Collapse
Affiliation(s)
- Geng Hong
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Siqing Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
11
|
Zhu Y, Wu C, Deng Y, Yuan W, Zhang T, Lu J. Recent advances in virulence of a broad host range plant pathogen Sclerotinia sclerotiorum: a mini-review. Front Microbiol 2024; 15:1424130. [PMID: 38962122 PMCID: PMC11220166 DOI: 10.3389/fmicb.2024.1424130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
12
|
Pant P, Kaur J. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. PLANTA 2024; 259:153. [PMID: 38744752 DOI: 10.1007/s00425-024-04430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
MAIN CONCLUSION The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.
Collapse
Affiliation(s)
- Pratibha Pant
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
13
|
Zan X, Yan Y, Chen G, Sun L, Wang L, Wen Y, Xu Y, Zhang Z, Li X, Yang Y, Sun W, Cui F. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10163-10178. [PMID: 38653191 DOI: 10.1021/acs.jafc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gege Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixin Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xinlin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yumeng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
14
|
Azizi A, Del Río Mendoza LE. Effective Control of Sclerotinia Stem Rot in Canola Plants Through Application of Exogenous Hairpin RNA of Multiple Sclerotinia sclerotiorum Genes. PHYTOPATHOLOGY 2024; 114:1000-1010. [PMID: 38506733 DOI: 10.1094/phyto-10-23-0395-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Sclerotinia stem rot is a globally destructive plant disease caused by Sclerotinia sclerotiorum. Current management of Sclerotinia stem rot primarily relies on chemical fungicides and crop rotation, raising environmental concerns. In this study, we developed an eco-friendly RNA bio-fungicide targeting S. sclerotiorum. Six S. sclerotiorum genes were selected for double-stranded RNA (dsRNA) synthesis. Four genes, a chitin-binding domain, mitogen-activated protein kinase, oxaloacetate acetylhydrolase, and abhydrolase-3, were combined to express hairpin RNA in Escherichia coli HT115. The effect of application of total RNA extracted from E. coli HT115 expressing hairpin RNA on disease progressive and necrosis lesions was evaluated. Gene expression analysis using real-time PCR showed silencing of the target genes using 5 ng/µl of dsRNA in a fungal liquid culture. A detached leaf assay and greenhouse application of dsRNA on canola stem and leaves showed variation in the reduction of necrosis symptoms by dsRNA of different genes, with abhydrolase-3 being the most effective. The dsRNA from a combination of four genes reduced disease severity significantly (P = 0.01). Plants sprayed with hairpin RNA from four genes had lesions that were almost 30% smaller than those of plants treated with abhydrolase-3 alone, in lab and greenhouse assays. The results of this study highlight the potential of RNA interference to manage diseases caused by S. sclerotiorum; however, additional research is necessary to optimize its efficacy.
Collapse
Affiliation(s)
- Abdolbaset Azizi
- Department of Plant Pathology, North Dakota State University, ND, U.S.A
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
15
|
Grąz M. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential. World J Microbiol Biotechnol 2024; 40:178. [PMID: 38662173 PMCID: PMC11045627 DOI: 10.1007/s11274-024-03973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.
Collapse
Affiliation(s)
- Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
16
|
Liang B, Lu S, Hu J, Liu J, Liu Y. Green Nanopesticide: pH Response and Molybdenum Selenide Carrier with Photothermal Effect to Transport Prochloraz to Inhibit Sclerotinia Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15931-15945. [PMID: 38503698 DOI: 10.1021/acsami.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Accurate pesticide delivery is a key factor in improving pesticide utilization, which can effectively reduce the use of pesticides and environmental risks. In this study, we developed a nanocarrier preparation method which can be controlled by pH/near-infrared response. Mesoporous molybdenum selenide (MoSe2) with a high loading rate was used as the core, poly(acrylic acid) (PAA) with acid response was used as the shell, and prochloraz (Pro) was loaded to form a pH-/near-infrared-responsive core-shell nanosystem (Pro@MoSe2@PAA NPs, abbreviated as PMP). Sclerotinia sclerotiorum infection secretes oxalic acid, forming an acidic microenvironment. In an acidic environment, PMP could quickly release Pro, and the cumulative release amount of Pro at pH = 5.0 was 3.1 times higher than that at pH = 7.4, and the efficiency of releasing Pro in the acidic environment was significantly enhanced. In addition, the release rate of PMP under near-infrared light irradiation was also significantly improved, and the cumulative release of Pro under simulated sunlight was 2.35 times higher than that under no light. The contact angles of PMP droplets on rapeseeds were reduced by 31.2 and 13.9% compared to Pro and MoSe2, respectively, which proved that the nanosystems had good wettability. In addition, PMP shows excellent adhesion and resistance to simulated rain washout. In the plate antibacterial experiment, the inhibitory effect of 0.5 μg/mL PMP on S. sclerotiorum was as high as 75.2% after 6 days, which showed a higher bactericidal activity than Pro. More importantly, PMP shows excellent biocompatibility and safety to plants, microorganisms, and cells. In a word, PMP is a green nanopesticide with a dual response of pH/near-infrared light, which provides a new strategy for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Bin Liang
- Department of Chemistry College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shuhao Lu
- Department of Chemistry College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jianglong Hu
- Department of Chemistry College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China
| |
Collapse
|
17
|
Westrick NM, Dominguez EG, Bondy M, Hull CM, Smith DL, Kabbage M. A single laccase acts as a key component of environmental sensing in a broad host range fungal pathogen. Commun Biol 2024; 7:348. [PMID: 38514801 PMCID: PMC10957995 DOI: 10.1038/s42003-024-06034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Secreted laccases are important enzymes on a broad ecological scale for their role in mediating plant-microbe interactions, but within ascomycete fungi these enzymes have been primarily associated with melanin biosynthesis. In this study, a putatively secreted laccase, Sslac2, was characterized from the broad-host-range plant pathogen Sclerotinia sclerotiorum, which is largely unpigmented and is not dependent on melanogenesis for plant infection. Gene knockouts of Sslac2 demonstrate wide ranging developmental phenotypes and are functionally non-pathogenic. These mutants also displayed indiscriminate growth behaviors and enhanced biomass formation, seemingly as a result of their inability to respond to canonical environmental growth cues, a phenomenon further confirmed through chemical stress, physiological, and transcriptomic analyses. Transmission and scanning electron microscopy demonstrate apparent differences in extracellular matrix structure between WT and mutant strains that likely explain the inability of the mutants to respond to their environment. Targeting Sslac2 using host-induced gene silencing significantly improved resistance to S. sclerotiorum, suggesting that fungal laccases could be a valuable target of disease control. Collectively, we identified a laccase critical to the development and virulence of the broad-host-range pathogen S. sclerotiorum and propose a potentially novel role for fungal laccases in modulating environmental sensing.
Collapse
Affiliation(s)
- Nathaniel M Westrick
- Valley Laboratory, Connecticut Agricultural Experiment Station, Windsor, CT, USA
| | - Eddie G Dominguez
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Madeline Bondy
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Kumar P, Sharma R, Kumar K. A perspective on varied fungal virulence factors causing infection in host plants. Mol Biol Rep 2024; 51:392. [PMID: 38446264 DOI: 10.1007/s11033-024-09314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Pathogenic fungi and their spores are ubiquitously present and invade the tissues of higher living plants causing pathogenesis and inevitably death or retarded growth. A group of fungi kills its hosts and consume the dead tissues (necrotrophs), while others feed on living tissue (biotrophs) or combination of two (hemibiotrophs). A number of virulent factors is used by fungal pathogens to inhabit new hosts and cause illness. Fungal pathogens develop specialized structures for complete invasion into plant organs to regulate pathogenic growth. Virulence factors like effectors, mycotoxins, cell wall degrading enzymes and organic acids have varied roles depending on the infection strategy and assist the pathogens to possess control on living tissues of the plants. Infection strategies employed by fungi generally masks the plant defense mechanism, however necrotrophs are best known to harm plant tissues with their poisonous secretion. Interestingly, the effector chemicals released by Biotrophs reduce plant cell growth and regulate plant metabolism in their advantage causing no direct death. All these virulence tools cause huge loss to the agricultural product of pre- harvest crops and post-harvest yields causing low output leading to huge economic losses. This review focusses on comprehensive study of range of virulence factors of the pathogenic fungi responsible for their invasion inside the healthy tissues of plants. The compiled information would influence researchers to design antidote against all virulence factors of fungi relevant to their area of research which could pave way for protection against plant pathogenesis.
Collapse
Affiliation(s)
- Prince Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Rajani Sharma
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Kunal Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India.
| |
Collapse
|
19
|
Shang Q, Jiang D, Xie J, Cheng J, Xiao X. The schizotrophic lifestyle of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13423. [PMID: 38407560 PMCID: PMC10895550 DOI: 10.1111/mpp.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Sclerotinia sclerotiorum is a cosmopolitan and typical necrotrophic phytopathogenic fungus that infects hundreds of plant species. Because no cultivars highly resistant to S. sclerotiorum are available, managing Sclerotinia disease caused by S. sclerotiorum is still challenging. However, recent studies have demonstrated that S. sclerotiorum has a beneficial effect and can live mutualistically as an endophyte in graminaceous plants, protecting the plants against major fungal diseases. An in-depth understanding of the schizotrophic lifestyle of S. sclerotiorum during interactions with plants under different environmental conditions will provide new strategies for controlling fungal disease. In this review, we summarize the pathogenesis mechanisms of S. sclerotiorum during its attack of host plants as a destructive pathogen and discuss its lifestyle as a beneficial endophytic fungus.
Collapse
Affiliation(s)
- Qingna Shang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
20
|
Xu Y, Tan J, Lu J, Zhang Y, Li X. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:262-277. [PMID: 37845842 PMCID: PMC10754012 DOI: 10.1111/pbi.14184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Sclerotinia sclerotiorum causes white mold (also called stem rot, Sclerotinia blight, etc.) in many economically important plants. It is a notorious soilborne fungal pathogen due to its wide host range and ability to survive in soil for long periods of time as sclerotia. Although host-induced gene silencing (HIGS) was recently demonstrated to be an effective method for controlling white mold, limited gene targets are available. Here, using a forward genetics approach, we identified a RAS-GTPase activating protein, SsGAP1, which plays essential roles in sclerotia formation, compound appressoria production and virulence. In parallel, as revealed by our knockout analysis, the SsGAP1 ortholog in Botrytis cinerea, BcGAP1, plays similar roles in fungal development and virulence. By knocking down SsRAS1 and SsRAS2, we also revealed that both SsRAS1 and SsRAS2 are required for vegetative growth, sclerotia development, compound appressoria production and virulence in S. sclerotiorum. Due to the major roles these RAS signalling components play in Sclerotiniaceae biology, they can be used as HIGS targets to control diseases caused by both S. sclerotiorum and B. cinerea. Indeed, when we introduced HIGS constructs targeting SsGAP1, SsRAS1 and SsRAS2 in Nicotiana benthamiana and Arabidopsis thaliana, we observed reduced virulence. Taken together, our forward genetics gene discovery pipeline in S. sclerotiorum is highly effective in identifying novel HIGS targets to control S. sclerotiorum and B. cinerea.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jinyi Tan
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Junxing Lu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
21
|
Sun Y, Wang Y, Zhang Y, Hasan N, Yang N, Xie Y, Tang C. Identification and characterization of the Bicupin domain family and functional analysis of GhBCD11 in response to verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111875. [PMID: 37769874 DOI: 10.1016/j.plantsci.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Bicupin domain protein (BCD) family, an important component of Cupin domain superfamily, plays important roles in oxalic acid (OA) degradation and stress responses in high plants. However, no studies have been reported on the Cupin domain family in cotton up till now. In our study, a total 110 proteins including Cupin domain were identified from the upland cotton (Gossypium hirsutum). Among them, 17 proteins contained Bicupin domain. Subsequently, we found that V. dahliae produces OA leading to cotton leaf wilting. RT-qPCR analysis of GhBCDs revealed that OA and V. dahliae Vd080 significantly enhanced the expression of GhBCD11. The Virus-induced gene silencing and overexpression analysis showed that GhBCD11 positively regulates plant resistance to V. dahliae. Subcellular localization showed GhBCD11 located on the plasma membrane. The analysis of expression pattern showed that GhBCD11 can be induced via hormone-mediated signal pathway including salicylic acid (SA), ethephon (ET), methyl jasmonate (JA) and abscisic acid (ABA). In addition, we identified an interaction between 60 S ribosomal protein GhRPL12-3 and GhBCD11 by yeast double hybridization. Overall, this is the first study, where we identified Cupin domain family in cotton, clarified the role of GhBCD11 in cotton for resistance to V. dahliae and found an interaction between GhRPL12-3 and GhBCD11.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
22
|
Rai P, Prasad L, Rai PK. Fungal effectors versus defense-related genes of B. juncea and the status of resistant transgenics against fungal pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1139009. [PMID: 37360735 PMCID: PMC10285668 DOI: 10.3389/fpls.2023.1139009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Oilseed brassica has become instrumental in securing global food and nutritional security. B. juncea, colloquially known as Indian mustard, is cultivated across tropics and subtropics including Indian subcontinent. The production of Indian mustard is severely hampered by fungal pathogens which necessitates human interventions. Chemicals are often resorted to as they are quick and effective, but due to their economic and ecological unsustainability, there is a need to explore their alternatives. The B. juncea-fungal pathosystem is quite diverse as it covers broad-host range necrotrophs (Sclerotinia sclerotiorum), narrow-host range necrotrophs (Alternaria brassicae and A. brassicicola) and biotrophic oomycetes (Albugo candida and Hyaloperonospora brassica). Plants ward off fungal pathogens through two-step resistance mechanism; PTI which involves recognition of elicitors and ETI where the resistance gene (R gene) interacts with the fungal effectors. The hormonal signalling is also found to play a vital role in defense as the JA/ET pathway is initiated at the time of necrotroph infection and SA pathway is induced when the biotrophs attack plants. The review discuss the prevalence of fungal pathogens of Indian mustard and the studies conducted on effectoromics. It covers both pathogenicity conferring genes and host-specific toxins (HSTs) that can be used for a variety of purposes such as identifying cognate R genes, understanding pathogenicity and virulence mechanisms, and establishing the phylogeny of fungal pathogens. It further encompasses the studies on identifying resistant sources and characterisation of R genes/quantitative trait loci and defense-related genes identified in Brassicaceae and unrelated species which, upon introgression or overexpression, confer resistance. Finally, the studies conducted on developing resistant transgenics in Brassicaceae have been covered in which chitinase and glucanase genes are mostly used. The knowledge gained from this review can further be used for imparting resistance against major fungal pathogens.
Collapse
Affiliation(s)
- Prajjwal Rai
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Laxman Prasad
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Pramod Kumar Rai
- Division of Plant Pathology, Directorate of Rapeseed-Mustard Research, Bharatpur, India
| |
Collapse
|
23
|
Wei J, Yao C, Zhu Z, Gao Z, Yang G, Pan Y. Nitrate reductase is required for sclerotial development and virulence of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1096831. [PMID: 37342142 PMCID: PMC10277653 DOI: 10.3389/fpls.2023.1096831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Junjun Wei
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chuanchun Yao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhimou Gao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
24
|
Hossain MM, Sultana F, Li W, Tran LSP, Mostofa MG. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells 2023; 12:cells12071063. [PMID: 37048136 PMCID: PMC10093061 DOI: 10.3390/cells12071063] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a broad host-range fungus that infects an inclusive array of plant species and afflicts significant yield losses globally. Despite being a notorious pathogen, it has an uncomplicated life cycle consisting of either basal infection from myceliogenically germinated sclerotia or aerial infection from ascospores of carpogenically germinated sclerotia. This fungus is unique among necrotrophic pathogens in that it inevitably colonizes aging tissues to initiate an infection, where a saprophytic stage follows the pathogenic phase. The release of cell wall-degrading enzymes, oxalic acid, and effector proteins are considered critical virulence factors necessary for the effective pathogenesis of S. sclerotiorum. Nevertheless, the molecular basis of S. sclerotiorum pathogenesis is still imprecise and remains a topic of continuing research. Previous comprehensive sequencing of the S. sclerotiorum genome has revealed new insights into its genome organization and provided a deeper comprehension of the sophisticated processes involved in its growth, development, and virulence. This review focuses on the genetic and genomic aspects of fungal biology and molecular pathogenicity to summarize current knowledge of the processes utilized by S. sclerotiorum to parasitize its hosts. Understanding the molecular mechanisms regulating the infection process of S. sclerotiorum will contribute to devising strategies for preventing infections caused by this destructive pathogen.
Collapse
|
25
|
Qiao Y, Zhang M, Cao Y, Mi Q, Liang S, Feng J, Wang Y. Postharvest sclerotinia rot control in carrot by the natural product hinokitiol and the potential mechanisms involved. Int J Food Microbiol 2022; 383:109939. [PMID: 36166914 DOI: 10.1016/j.ijfoodmicro.2022.109939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Sclerotinia rot infected by cosmopolitan fungi Sclerotinia sclerotiorum is a serious and destructive disease in carrot production, especially during their postharvest storage. Natural products with the advantages of environmentally friendly and safety have been widely concerned. This research estimated the impact of hinokitiol against S. sclerotiorum and on the quality of carrots. In vitro and in vivo tests demonstrated that hinokitiol had promising antifungal activities against both carbendazim-susceptible and -resistant isolates of S. sclerotiorum. Importantly, it effectively kept the quality and prolonged the shelf life of carrot by declining the loss of weight, ascorbic acid, carotenoid, and total phenolics content, preventing the formation of malondialdehyde, and enhancing the activities of antioxidant enzymes. Further study found that hinokitiol inhibited the formation of sclerotia by destroying the morphology and the integrality of cell membrane, reduced the pathogenicity by suppressing the synthesis of oxalic acid and exopolysaccharide, declined the activities of enzymes and the gene expression related to sclerotia development in S. sclerotiorum. These information evidenced the great potential of hinokitiol as a natural fresh-keeping agent for the management of postharvest decay infected by S. sclerotiorum.
Collapse
Affiliation(s)
- Yonghui Qiao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengwei Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqian Mi
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an 710000, Shaanxi, China.
| |
Collapse
|
26
|
Li W, Lu J, Yang C, Arildsen K, Li X, Xia S. An Amidase Contributes to Full Virulence of Sclerotinia sclerotiorum. Int J Mol Sci 2022; 23:11207. [PMID: 36232508 PMCID: PMC9570306 DOI: 10.3390/ijms231911207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Kate Arildsen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
27
|
Li W, Zhou Z, Li X, Ma L, Guan Q, Zheng G, Liang H, Yan Y, Shen X, Wang J, Sun X, Yuan Q. Biosynthesis of plant hemostatic dencichine in Escherichia coli. Nat Commun 2022; 13:5492. [PMID: 36123371 PMCID: PMC9485241 DOI: 10.1038/s41467-022-33255-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Dencichine is a plant-derived nature product that has found various pharmacological applications. Currently, its natural biosynthetic pathway is still elusive, posing challenge to its heterologous biosynthesis. In this work, we design artificial pathways through retro-biosynthesis approaches and achieve de novo production of dencichine. First, biosynthesis of the two direct precursors L-2, 3-diaminopropionate and oxalyl-CoA is achieved by screening and integrating microbial enzymes. Second, the solubility of dencichine synthase, which is the last and only plant-derived pathway enzyme, is significantly improved by introducing 28 synonymous rare codons into the codon-optimized gene to slow down its translation rate. Last, the metabolic network is systematically engineered to direct the carbon flux to dencichine production, and the final titer reaches 1.29 g L-1 with a yield of 0.28 g g-1 glycerol. This work lays the foundation for sustainable production of dencichine and represents an example of how synthetic biology can be harnessed to generate unnatural pathways to produce a desired molecule.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xianglai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Lin Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qingyuan Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
28
|
Sun Q, Xi Y, Lu P, Lu Y, Wang Y, Wang Y. Genome-wide analysis of the G-box regulating factors protein family reveals its roles in response to Sclerotinia sclerotiorum infection in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:986635. [PMID: 36035692 PMCID: PMC9412199 DOI: 10.3389/fpls.2022.986635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The G-box regulating factors (GRFs) are involved in a wide array of signal transduction pathway and play important roles in plant physiological and developmental processes and stress responses. The GRF proteins have previously been described in several plant species, but not in rapeseed (Brassica napus L.). In this study, we carried out genome-wide analysis of GRFs in B. napus based on the available genome sequence information, and analyzed their expression in different tissues under different hormone treatments and after inoculation with Sclerotinia sclerotiorum. We identified 46 putative BnaGRF genes in rapeseed, unevenly distributed on 18 chromosomes. Like the 14-3-3 proteins in other plant species, the 46 putative BnaGRFs could be classified into two major evolutionary branches: epsilon (ε) group and non-epsilon (non-ε) group. Evolutionary analysis indicated that the BnaGRF gene family expanded in both groups much before speciation. We discovered an expansion of the 14-3-3 gene family that likely occurred during a recent gene duplication event. Collinearity analysis revealed that most of the BnaGRF genes shared syntenic relationships. Global gene expression profiling of BnaGRFs by RNA-seq analysis showed 41.3% (19/46) response to S. sclerotiorum infection, and this response was probably mediated through jasmonic acid (JA) and salicylic acid (SA) signaling pathways. These results provide key insights into the role of 14-3-3s in the biotic stress response and enhance our understanding of their multiple functions in B. napus.
Collapse
|
29
|
Wei W, Wu X, Blahut-Beatty L, Simmonds DH, Clough SJ. Transcriptome Profiling Reveals Molecular Players in Early Soybean- Sclerotinia sclerotiorum Interaction. PHYTOPATHOLOGY 2022; 112:1739-1752. [PMID: 35778800 DOI: 10.1094/phyto-08-21-0329-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sclerotinia sclerotiorum causes Sclerotinia stem rot on soybean. Using RNA sequencing, the transcriptomes of the soybean host and the S. sclerotiorum pathogen were simultaneously determined at 4 and 8 h postinoculation (hpi). Two soybean genotypes were involved: a resistant oxalate oxidase (OxO)-transgenic line and its susceptible parent, AC Colibri (AC). Of the 594 genes that were significantly induced by S. sclerotiorum, both hosts expressed genes related to jasmonic acid, ethylene, oxidative burst, and phenylpropanoids. In all, 36% of the differentially expressed genes encoded genes associated with transcription factors, ubiquitination, or general signaling transduction such as receptor-like kinases, mitogen-activated protein kinase kinases, and hormones. No significant differentially expressed genes were identified between genotypes, suggesting that oxalic acid (OA) did not play a differential role in early disease development or primary lesion formation under the conditions used. Looking at pathogen behavior through its gene expression during infection, thousands of genes in S. sclerotiorum were induced at 8 hpi, compared with expression in culture. Many plant cell-wall-degrading enzymes (PCWDEs), sugar transport genes, and genes involved in secondary metabolism were upregulated and could contribute to early pathogenesis. When infecting the OxO plants, there was a higher induction of genes encoding OA, botcinic acid, PCWDEs, proteases, and potential effectors, revealing the wealth of virulence factors available to this pathogen as it attempts to colonize a host. Data presented identify hundreds of genes associated with the very early stages of infection for both the host and pathogen.
Collapse
Affiliation(s)
- Wei Wei
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Xing Wu
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Laureen Blahut-Beatty
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Daina H Simmonds
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, U.S.A
| |
Collapse
|
30
|
Derbyshire MC, Newman TE, Khentry Y, Owolabi Taiwo A. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:1075-1090. [PMID: 35411696 PMCID: PMC9276942 DOI: 10.1111/mpp.13221] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 05/21/2023]
Abstract
Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of plant species, including many of the world's most important crops. Key features of S. sclerotiorum include its extraordinary host range, preference for dicotyledonous plants, relatively slow evolution, and production of protein effectors that are active in multiple host species. Plant resistance to this pathogen is highly complex, typically involving numerous polymorphisms with infinitesimally small effects, which makes resistance breeding a major challenge. Due to its economic significance, S. sclerotiorum has been subjected to a large amount of molecular and evolutionary research. In this updated pathogen profile, we review the evolutionary and molecular features of S. sclerotiorum and discuss avenues for future research into this important species.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Toby E. Newman
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Yuphin Khentry
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Akeem Owolabi Taiwo
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
31
|
SsNEP2 Contributes to the Virulence of Sclerotinia sclerotiorum. Pathogens 2022; 11:pathogens11040446. [PMID: 35456121 PMCID: PMC9026538 DOI: 10.3390/pathogens11040446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes serious economic losses globally. The necrosis and ethylene-inducible peptide 1 (NEP1)-like proteins (NLPs) were previously shown to play an important role in pathogenicity in fungal and oomycete pathogens. Here, we generated S. sclerotiorum necrosis and ethylene-inducible peptide 2 (SsNEP2) deletion mutant through homologous recombination and found that SsNEP2 contributes to the virulence of S. sclerotiorum without affecting the development of mycelia, the formation of appressoria, or the secretion of oxalic acid. Although knocking out SsNEP2 did not affect fungal sensitivity to oxidative stress, it did lead to decreased accumulation of reactive oxygen species (ROS) in S. sclerotiorum. Furthermore, Ssnlp24SsNEP2 peptide derived from SsNEP2 triggered host mitogen-activated protein kinase (MAPK) activation, increased defense marker gene expression, and enhanced resistance to Hyaloperonospora arabidopsidis Noco2. Taken together, our data suggest that SsNEP2 is involved in fungal virulence by affecting ROS levels in S. sclerotiorum. It can serve as a pathogen-associated molecular pattern (PAMP) and trigger host pattern triggered immunity to promote the necrotrophic lifestyle of S. sclerotiorum.
Collapse
|
32
|
Li J, Duan Y, Hu Z, Yang F, Wu X, Zhang R. Physiological mechanisms by which gypsum increases the growth and yield of Lentinula edodes. Appl Microbiol Biotechnol 2022; 106:2677-2688. [PMID: 35338385 DOI: 10.1007/s00253-022-11884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/02/2022]
Abstract
Lentinula edodes is one of the most important commercially cultivated edible mushrooms. It is well known that gypsum (CaSO4·2H2O) supplementation in sawdust medium increases the yield of L. edodes, while the physiological mechanisms remain unclear. Our previous study showed that the acidification of the medium to pH 3.5-4.0 was essential for the growth of L. edodes. In this study, it was found that the oxalic acid excreted by L. edodes was responsible for the acidification of the medium. The biosynthesis of oxalic acid was regulated by the ambient pH and buffer capacity of the medium. To acidify the sawdust medium, the concentrations of total and soluble oxalate were 51.1 mmol/kg and 10.8 mmol/kg, respectively. However, when the concentration of soluble oxalate was 8.0 mmol/kg, the mycelial growth rate decreased by 29% compared with the control. Soluble oxalate was toxic to L. edodes, while soluble sulfate was nontoxic. CaSO4 reacted with soluble oxalate to form nontoxic insoluble CaC2O4 and the strong acid H2SO4. When the CaSO4 supplemented in sawdust medium was more than 25 mmol/kg, the soluble oxalate decreased to less than 1 mmol/kg, and the mycelial growth rate increased by 32% compared with the control. In conclusion, gypsum improved the growth and yield by relieving the toxicity of oxalate and facilitating the acidification of sawdust medium. KEY POINTS: • L. edodes excretes oxalic acid to acidify the ambient environment for growth. • Soluble oxalate is toxic to L. edodes. • Gypsum increases growth by reacting with oxalate to relieve its toxicity.
Collapse
Affiliation(s)
- Jintao Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yingce Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ziyi Hu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Fan Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruiying Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
33
|
Xu Y, Ao K, Tian L, Qiu Y, Huang X, Liu X, Hoy R, Zhang Y, Rashid KY, Xia S, Li X. A Forward Genetic Screen in Sclerotinia sclerotiorum Revealed the Transcriptional Regulation of Its Sclerotial Melanization Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:244-256. [PMID: 34813706 DOI: 10.1094/mpmi-10-21-0254-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most plant fungal pathogens that cause worldwide crop losses are understudied, due to various technical challenges. With the increasing availability of sequenced whole genomes of these non-model fungi, effective genetic analysis methods are highly desirable. Here, we describe a newly developed pipeline, which combines forward genetic screening with high-throughput next-generation sequencing to enable quick gene discovery. We applied this pipeline in the notorious soilborne phytopathogen Sclerotinia sclerotiorum and identified 32 mutants with various developmental and growth deficiencies. Detailed molecular studies of three melanization-deficient mutants provide a proof of concept for the effectiveness of our method. A master transcription factor was found to regulate melanization of sclerotia through the DHN (1,8-dihydroxynaphthalene) melanin biosynthesis pathway. In addition, these mutants revealed that sclerotial melanization is important for sclerotia survival under abiotic stresses, sclerotial surface structure, and sexual reproduction. Foreseeably, this pipeline can be applied to facilitate efficient in-depth studies of other non-model fungal species in the future.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan Hoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yishan Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khalid Youssef Rashid
- Oilseed Crops Pathology, Science and Technology Branch, Ottawa Research and Development Centre, K.W. Neatby Building, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
34
|
Jiao W, Liu X, Li Y, Li B, Du Y, Zhang Z, Chen Q, Fu M. Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. MOLECULAR PLANT PATHOLOGY 2022; 23:304-312. [PMID: 34820999 PMCID: PMC8743014 DOI: 10.1111/mpp.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Decay due to fungal infection is a major cause of postharvest losses in fruits. Acidic fungi may enhance their virulence by locally reducing the pH of the host. Several devastating postharvest fungi, such as Penicillium spp., Botrytis cinerea, and Sclerotinia sclerotiorum, can secrete gluconic acid, oxalic acid, or citric acid. Emerging evidence suggests that organic acids secreted by acidic fungi are important virulence factors. In this review, we summarized the research progress on the biosynthesis of organic acids, the role of the pH signalling transcription factor PacC in regulating organic acid, and the action mechanism of the main organic acid secreted via postharvest pathogenic fungi during infection of host tissues. This paper systematically demonstrates the relationships between tissue acidification and postharvest fungal pathogenicity, which will motivate the study of host-pathogen interactions and provide a better understanding of virulence mechanisms of the pathogens so as to design new technical strategies to prevent postharvest diseases.
Collapse
Affiliation(s)
- Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Xin Liu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Youyuan Li
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Boqiang Li
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yamin Du
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhanquan Zhang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
35
|
Rana K, Yuan J, Liao H, Banga SS, Kumar R, Ding Y, Qian W. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res 2022; 258:126981. [DOI: 10.1016/j.micres.2022.126981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
|
36
|
Yu PL, Rollins JA. The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum. Fungal Biol 2022; 126:20-34. [DOI: 10.1016/j.funbio.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023]
|
37
|
Yang M, Zhang W, Lv Z, Shi L, Zhang K, Ge B. Evaluation of the Inhibitory Effects of Wuyiencin, a Secondary Metabolite of Streptomyces albulus CK-15, Against Sclerotinia sclerotiorum In Vitro. PLANT DISEASE 2022; 106:156-164. [PMID: 34184553 DOI: 10.1094/pdis-05-21-0987-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary, a destructive fungal pathogen with an extensive host range, causes various diseases with the potential to cause huge economic losses to crops worldwide. Streptomyces species produce secondary metabolites with variable structures and biological activities that offer possible control methods for crop diseases. Herein, we evaluated the inhibitory effects of wuyiencin, a secondary metabolite of Streptomyces albulus CK-15, against S. sclerotiorum. The results showed that wuyiencin markedly inhibited mycelial growth and germination and the formation of sclerotia. It also increased cell membrane permeability, resulting in leakage of intracellular substances in pathogen mycelia. Wuyiencin markedly decreased oxalic acid content and the activities of polygalacturonase and pectin methyl-galacturonic enzymes. Moreover, it downregulated Nox1, ITL, pph1, Caf1, and sca1, all genes related to growth and infection. Lesions were smaller and less pronounced on soybean (Glycine max [L.] Merr.) leaves pretreated with wuyiencin in vitro, and the inhibition rate reached 78.36%. The results suggest that wuyiencin holds promise for the management of diseases caused by S. sclerotiorum, and the findings provide clues on the mechanism of action.
Collapse
Affiliation(s)
- Miaoling Yang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Wei Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Zhaoyang Lv
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
38
|
Zhang H, Li Y, Lai W, Huang K, Li Y, Wang Z, Chen X, Wang A. SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 157:103632. [PMID: 34710583 DOI: 10.1016/j.fgb.2021.103632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Autophagy plays vital roles in the interaction between the necrotrophic fungal pathogen Sclerotinia sclerotiorum and its hosts. However, so far, only little is known about the impacts of autophagy machinery in S. sclerotiorum per se on the fungal morphogenesis and pathogenesis. Here, through functional genomic approaches, we showed that SsATG8, one of the core components of the autophagy machinery, and its interactor SsNBR1, an autophagy cargo receptor, are important for vegetative growth, sclerotial formation, oxalic acid (OA) production, compound appressoria development, and virulence of S. sclerotiorum. Complementation assays with chimeric fusion constructs revealed that both LDS [AIM (ATG8 interacting motif) / LIR (LC3-interacting region) docking site] and UDS [UIM (ubiquitin-interacting motif) docking site] sites of the SsATG8 are required for its functions in autophagy and pathogenesis. Importantly, ΔSsatg8 and ΔSsnbr1 mutants showed enhanced sensitivity to the exogenous treatment with the proteasome inhibitors bortezomib and carfilzomib, and ΔSsnbr1 mutant had decreased expression of SsATG8 under the proteasomal stress conditions, suggesting that a cross-talk exists between ubiquitin-proteasome and selective autophagy pathways, which enables downstream protein degradation to proceed properly during diverse biological processes. Collectively, our data indicate that SsATG8- and SsNBR1-mediated autophagy is crucial for S. sclerotiorum development, proteasomal stress response and virulence.
Collapse
Affiliation(s)
- Honghong Zhang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Wenyu Lai
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kun Huang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yaling Li
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xiaofeng Chen
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China.
| | - Airong Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
39
|
Ding Y, Chen Y, Yan B, Liao H, Dong M, Meng X, Wan H, Qian W. Host-Induced Gene Silencing of a Multifunction Gene Sscnd1 Enhances Plant Resistance Against Sclerotinia sclerotiorum. Front Microbiol 2021; 12:693334. [PMID: 34690946 PMCID: PMC8531507 DOI: 10.3389/fmicb.2021.693334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Sclerotinia sclerotiorum is a devastating necrotrophic fungal pathogen and has a substantial economic impact on crop production worldwide. Magnaporthe appressoria-specific (MAS) proteins have been suggested to be involved in the appressorium formation in Magnaporthe oryzae. Sscnd1, an MAS homolog gene, is highly induced at the early infection stage of S. sclerotiorum. Knock-down the expression of Sscnd1 gene severely reduced the virulence of S. sclerotiorum on intact rapeseed leaves, and their virulence was partially restored on wounded leaves. The Sscnd1 gene-silenced strains exhibited a defect in compound appressorium formation and cell integrity. The instantaneous silencing of Sscnd1 by tobacco rattle virus (TRV)-mediated host-induced gene silencing (HIGS) resulted in a significant reduction in disease development in tobacco. Three transgenic HIGS Arabidopsis lines displayed high levels of resistance to S. sclerotiorum and decreased Sscnd1 expression. Production of specific Sscnd1 siRNA in transgenic HIGS Arabidopsis lines was confirmed by stem-loop qRT-PCR. This study revealed that the compound appressorium-related gene Sscnd1 is required for cell integrity and full virulence in S. sclerotiorum and that Sclerotinia stem rot can be controlled by expressing the silencing constructs of Sscnd1 in host plants.
Collapse
Affiliation(s)
- Yijuan Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yangui Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Baoqin Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Hongmei Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Mengquan Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xinran Meng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
40
|
Kumar S, Shukla V, Dubey MK, Upadhyay RS. Activation of defense response in common bean against stem rot disease triggered by Trichoderma erinaceum and Trichoderma viride. J Basic Microbiol 2021; 61:910-922. [PMID: 34398489 DOI: 10.1002/jobm.202000749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/25/2021] [Accepted: 08/08/2021] [Indexed: 11/08/2022]
Abstract
White mold and stem rot is a common disease of Phaseolus vulgaris caused by Sclerotinia sclerotiorum. Biological control is a promising alternative for the control of this disease. In the present study, two Trichoderma spp., T. erinaceum and T. viride, and the consortium of both were evaluated as biocontrol agents against sclerotinia stem rot disease. The results revealed that T. erinaceum (NAIMCC-F-02171) and T. viride (NAIMCC-F-02500) when applied alone, significantly suppressed the infection rate of S. sclerotiorum and increased the rate of survival of plants by 74.5%. On the contrary, the combination of both the Trichoderma spp. was found to be more effective in reducing stem rot by 57.2% and increasing the survival of plants by 87.5% when compared to the individual Trichoderma applications. Further, the exogenous supplementation of Trichoderma activated antioxidative machineries, such as peroxidase, polyphenol oxidase, superoxide dismutase, catalase, and ascorbic acid in the plant. Besides, hydrogen peroxide and superoxide-free radical accumulation were also found to be reduced when T. erinaceum and T. viride were used either individually or in combination under the pathogen-challenged condition. Additionally, the photopigments in the bioprimed plants were markedly increased. Moreover, the combined inoculation of the two isolates yielded the highest records of growth parameters (root weight, shoot length, and leaf weight) compared with individual inoculation. Therefore, based on the above results, it was concluded that the combination of T. erinaceum and T. viride can be effectively used as an alternative to control white mold and stem rot caused by S. sclerotiorum.
Collapse
Affiliation(s)
- Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
41
|
Wang CY, Lou XY, Cai Z, Zhang MZ, Jia C, Qin JC, Yang YW. Supramolecular Nanoplatform Based on Mesoporous Silica Nanocarriers and Pillararene Nanogates for Fungus Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32295-32306. [PMID: 34196538 DOI: 10.1021/acsami.1c08582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthetic fungicides have been widely used to protect crops from fungal diseases. However, excessive use of synthetic fungicides leads to the generation of fungicide resistance in fungal pathogens. Recently, smart cargo delivery systems have been introduced for the construction of a pesticide delivery nanoplatform, benefiting from their controlled release performance. Herein, a fungal pathogen microenvironment-responsive supramolecular fungicide nanoplatform has been designed and constructed, using quaternary ammonium salt (Q)-modified mesoporous silica nanoparticles (MSN-Q NPs) as nanocarriers loaded with berberine hydrochloride (BH) and carboxylatopillar[5]arene (CP[5]A) as nanogates to form BH-loaded CP[5]A@MSN-Q NPs for effective inhibition of Botrytis cinerea. CP[5]A as nanogates can endow the fungicide nanoplatform with pH stimuli-responsive release features for the control of fungicide release. The loaded BH, as a natural plant fungicide, provides an ecofriendly alternative to synthetic fungicides for controlling B. cinerea. Interestingly, we use oxalic acid (OA) secreted by B. cinerea as a trigger so that BH can be released from the fungicide nanoplatform on demand under pathogen microenvironments for controlling B. cinerea. The experimental results indicate that the fabricated fungicide nanoplatform could effectively inhibit the mycelial growth and spore germination, providing a new way for the management of B. cinerea in actual application.
Collapse
Affiliation(s)
- Chao-Yi Wang
- College of Chemistry and College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Xin-Yue Lou
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ming-Zhe Zhang
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
42
|
Hu S, Li J, Wang P, Zhu F. Hormetic Effects of Dimethachlone on Mycelial Growth and Virulence of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2021; 111:1166-1172. [PMID: 33107780 DOI: 10.1094/phyto-08-20-0364-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungicide hormesis has implications for the application of fungicides to control plant diseases. We investigated the hormetic effects of the dicarboximide fungicide dimethachlone on mycelial growth and virulence of the necrotrophic plant pathogen Sclerotinia sclerotiorum. Dimethachlone at sublethal doses in potato dextrose agar (PDA) increased the mycelial growth of S. sclerotiorum. After the growth-stimulated mycelia were subcultured on fresh PDA and inoculated on rapeseed leaves, increased mycelial growth and virulence were observed, indicating that hormetic traits were passed down to the next generation. Dimethachlone applied to leaves at 0.002 to 500 μg/ml stimulated virulence, with a maximum stimulation amplitude (MSA) of 31.4% for the isolate HLJ4, which occurred at 2 μg/ml. Dimethachlone-resistant isolates and transformants had a mean virulence MSA of 30.4%, which was significantly higher (P = 0.008) than the MSA for sensitive isolates (16.2%). Negative correlations were detected between MSA and virulence in the absence of any fungicide (r = -0.872, P < 0.001) and between MSA and mycelial growth on PDA (r = -0.794, P = 0.002). Studies on hormetic mechanisms indicated that dimethachlone had no significant effects on expression levels of three virulence-associated genes, that is, a cutinase-encoding gene SsCut, a polygalacturonase gene SsPG1, or an oxaloacetate acetylhydrolase gene SsOah1. The results will contribute to understanding hormesis and have implications for the judicious application of fungicides to control plant diseases.
Collapse
Affiliation(s)
- Simin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinli Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Pengju Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
43
|
Qu Z, Fu Y, Lin Y, Zhao Z, Zhang X, Cheng J, Xie J, Chen T, Li B, Jiang D. Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. J Fungi (Basel) 2021; 7:493. [PMID: 34206246 PMCID: PMC8303302 DOI: 10.3390/jof7070493] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
The infection by a single-stranded DNA virus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), causes hypovirulence, a reduced growth rate, and other colony morphological changes in its host Sclerotinia sclerotiorum strain DT-8. However, the mechanisms of the decline are still unclear. Using digital RNA sequencing, a transcriptome analysis was conducted to elucidate the phenotype-related genes with expression changes in response to SsHADV-1 infection. A total of 3110 S. sclerotiorum differentially expressed genes (DEGs) were detected during SsHADV-1 infection, 1741 of which were up-regulated, and 1369 were down-regulated. The identified DEGs were involved in several important pathways. DNA replication, DNA damage response, carbohydrate and lipid metabolism, ribosomal assembly, and translation were the affected categories in S. sclerotiorum upon SsHADV-1 infection. Moreover, the infection of SsHADV-1 also suppressed the expression of antiviral RNA silencing and virulence factor genes. These results provide further detailed insights into the effects of SsHADV-1 infection on the whole genome transcription in S. sclerotiorum.
Collapse
Affiliation(s)
- Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Zhenzhen Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xuekun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
44
|
Wang C, Rollins JA. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 154:103598. [PMID: 34119663 DOI: 10.1016/j.fgb.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
We previously reported on a CRISPR-Cas9 genome editing system for the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. This system (the TrpC-sgRNA system), based on an RNA polymerase II (RNA Pol II) promoter (TrpC) to drive sgRNA transcription in vivo, was successful in creating gene insertion mutants. However, relatively low efficiency targeted gene editing hampered the application of this method for functional genomic research in S. sclerotiorum. To further optimize the CRISPR-Cas9 system, a plasmid-free Cas9 protein/sgRNA ribonucleoprotein (RNP)-mediated system (the RNP system) and a plasmid-based RNA polymerase III promoter (U6)-driven sgRNA transcription system (the U6-sgRNA system) were established and evaluated. The previously characterized oxaloacetate acetylhydrolase (Ssoah1) locus and a new locus encoding polyketide synthase12 (Sspks12) were targeted in this study to create loss-of-function mutants. The RNP system, similar to the TrpC-sgRNA system we previously reported, creates mutations at the Ssoah1 gene locus with comparable efficiency. However, neither system successfully generated mutations at the Sspks12 gene locus. The U6-sgRNA system exhibited a significantly higher efficiency of genemutation at both loci. This technology provides a simple and efficient strategy for targeted gene mutation and thereby will accelerating the pace of research of pathogenicity and development in this economically important plant pathogen.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Joshi V, Penalosa A, Joshi M, Rodriguez S. Regulation of Oxalate Metabolism in Spinach Revealed by RNA-Seq-Based Transcriptomic Analysis. Int J Mol Sci 2021; 22:ijms22105294. [PMID: 34069886 PMCID: PMC8157348 DOI: 10.3390/ijms22105294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/12/2023] Open
Abstract
Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and other minerals. This study aimed to investigate the proposed hypothesis that a complex network of genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes with contrasting oxalate phenotypes was performed under normal physiological conditions. A total of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment of the metabolic and secondary metabolite pathways. The expression profiles of genes associated with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3) all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation for novel insights into oxalate metabolism in spinach.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
- Correspondence: ; Tel.: +1-830-988-6137
| | - Arianne Penalosa
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
| | - Sierra Rodriguez
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| |
Collapse
|
46
|
Ding LN, Li T, Guo XJ, Li M, Liu XY, Cao J, Tan XL. Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2965-2978. [PMID: 33667087 DOI: 10.1021/acs.jafc.0c07351] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sclerotinia stem rot (SSR) of rapeseed (Brassica napus), caused by the soil-borne fungus Sclerotinia sclerotiorum, is one of the main diseases seriously affecting the yield and oil quality of infected rapeseed crops. The complexity of the inheritance of resistance and of the interaction mechanisms between rapeseed and S. sclerotiorum limits resistance gene identification and molecular breeding. In this review, the latest progress of research into resistance to SSR in B. napus is summarized from the following three directions: the pathogenesis mechanisms of S. sclerotiorum, the resistance mechanisms of B. napus toward S. sclerotiorum, and rapeseed breeding for resistance to SSR. This review aims to provide a theoretical basis and useful reference for analyzing the mechanism of the interaction between B. napus and S. sclerotiorum, searching for gene loci associated with the resistance response, and for achieving disease-resistance genetic manipulation and molecular design breeding in rapeseed.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Juan Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Tian J, Chen C, Sun H, Wang Z, Steinkellner S, Feng J, Liang Y. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1430-1440. [PMID: 33481591 DOI: 10.1021/acs.jafc.0c06685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sclerotinia sclerotiorum is a ubiquitous necrotrophic pathogenic fungus causing significant losses in a broad range of plant species. Sclerotia formed by S. sclerotiorum play important roles in both the fungal life cycle and the disease development cycle. Sclerotial exudation during sclerotial development is a characteristic feature of this fungus. In this study, a proteome-level investigation of proteins present in sclerotial exudates was conducted by high-throughput LC-MS/MS analysis. A total of 258 proteins were identified, in which 193 were annotated by GO annotation and 54 were classified by KEGG analysis. Four proteins related to plant cell wall degradation were further validated by measuring the corresponding enzymatic activity of the sclerotial exudates and/or by assessing the gene expression during sclerotial development. Results indicated that the proteins identified in sclerotial exudates help in the development of sclerotia and contribute to host cell necrosis caused by S. sclerotiorum. Furthermore, we proposed that sclerotial exudates can degrade plant cell walls to release carbohydrates that provide nutrition for fungal growth and possibly facilitate fungal cell wall assembly in developing sclerotia. This study also provides new insights on the morphogenesis and pathogenicity of other sclerotia-forming fungi.
Collapse
Affiliation(s)
- Jiamei Tian
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Caixia Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siegrid Steinkellner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Jie Feng
- Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
48
|
Lv Z, He Z, Hao L, Kang X, Ma B, Li H, Luo Y, Yuan J, He N. Genome Sequencing Analysis of Scleromitrula shiraiana, a Causal Agent of Mulberry Sclerotial Disease With Narrow Host Range. Front Microbiol 2021; 11:603927. [PMID: 33519746 PMCID: PMC7840784 DOI: 10.3389/fmicb.2020.603927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Scleromitrula shiraiana is a necrotrophic fungus with a narrow host range, and is one of the main causal pathogens of mulberry sclerotial disease. However, its molecular mechanisms and pathogenesis are unclear. Here, we report a 39.0 Mb high-quality genome sequence for S. shiraiana strain SX-001. The S. shiraiana genome contains 11,327 protein-coding genes. The number of genes and genome size of S. shiraiana are similar to most other Ascomycetes. The cross-similarities and differences of S. shiraiana with the closely related Sclerotinia sclerotiorum and Botrytis cinerea indicated that S. shiraiana differentiated earlier from their common ancestor. A comparative genomic analysis showed that S. shiraiana has fewer genes encoding cell wall-degrading enzymes (CWDEs) and effector proteins than that of S. sclerotiorum and B. cinerea, as well as many other Ascomycetes. This is probably a key factor in the weaker aggressiveness of S. shiraiana to other plants. S. shiraiana has many species-specific genes encoding secondary metabolism core enzymes. The diversity of secondary metabolites may be related to the adaptation of these pathogens to specific ecological niches. However, melanin and oxalic acid are conserved metabolites among many Sclerotiniaceae fungi, and may be essential for survival and infection. Our results provide insights into the narrow host range of S. shiraiana and its adaptation to mulberries.
Collapse
Affiliation(s)
- Zhiyuan Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ziwen He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lijuan Hao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xin Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hongshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianglian Yuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Zhu P, Kou M, Liu C, Zhang S, Lü R, Xia Z, Yu M, Zhao A. Genome Sequencing of Ciboria shiraiana Provides Insights into the Pathogenic Mechanisms of Hypertrophy Sorosis Scleroteniosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:62-74. [PMID: 33021883 DOI: 10.1094/mpmi-07-20-0201-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ciboria shiraiana causes hypertrophy sorosis scleroteniosis in mulberry trees, resulting in huge economic losses, and exploring its pathogenic mechanism at a genomic level is important for developing new control methods. Here, genome sequencing of C. shiraiana based on PacBio RSII and Illumina HiSeq 2500 platform as well as manual gap filling was performed. Synteny analysis with Sclerotinia sclerotiorum revealed 16 putative chromosomes corresponding to 16 chromosomes of C. shiraiana. Screening of rapid-evolution genes revealed that 97 and 2.4% of genes had undergone purifying selection and positive selection, respectively. When compared with S. sclerotiorum, fewer secreted effector proteins were found in C. shiraiana. The number of genes involved in pathogenicity, including secondary metabolites, carbohydrate active enzymes, and P450s, in the C. shiraiana genome was comparable with that of other necrotrophs but higher than that of biotrophs and saprotrophs. The growth-related genes and plant cell-wall-degradation-related genes in C. shiraiana were expressed in different developmental and infection stages, and may be potential targets for prevention and control of this pathogen. These results provide new insights into C. shiraiana pathogenic mechanisms, especially host range and necrotrophy features, and lay the foundation for further study of the underlying molecular mechanisms.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Panpan Zhu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Min Kou
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Changying Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Shuai Zhang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Ruihua Lü
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- College of Medical Technology, Shanxi University of Chinese Medicine, Xianyang, Shanxi Province, China
| | - Zhongqiang Xia
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Maode Yu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Aichun Zhao
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
50
|
McCaghey M, Shao D, Kurcezewski J, Lindstrom A, Ranjan A, Whitham SA, Conley SP, Williams B, Smith DL, Kabbage M. Host-Induced Gene Silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase Using Bean Pod Mottle Virus as a Vehicle Reduces Disease on Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:677631. [PMID: 34354721 PMCID: PMC8329588 DOI: 10.3389/fpls.2021.677631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
A lack of complete resistance in the current germplasm complicates the management of Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum in soybean. In this study, we used bean pod mottle virus (BPMV) as a vehicle to down-regulate expression of a key enzyme in the production of an important virulence factor in S. sclerotiorum, oxalic acid (OA). Specifically, we targeted a gene encoding oxaloacetate acetylhydrolase (Ssoah1), because Ssoah1 deletion mutants are OA deficient and non-pathogenic on soybean. We first established that S. sclerotiorum can uptake environmental RNAs by monitoring the translocation of Cy3-labeled double-stranded and small interfering RNA (ds/siRNAs) into fungal hyphae using fluorescent confocal microscopy. This translocation led to a significant decrease in Ssoah1 transcript levels in vitro. Inoculation of soybean plants with BPMV vectors targeting Ssoah1 (pBPMV-OA) also led to decreased expression of Ssoah1. Importantly, pBPMV-OA inoculated plants showed enhanced resistance to S. sclerotiorum compared to empty-vector control plants. Our combined results provide evidence supporting the use of HIGS and exogenous applications of ds/siRNAs targeting virulence factors such as OA as viable strategies for the control of SSR in soybean and as discovery tools that can be used to identify previously unknown virulence factors.
Collapse
Affiliation(s)
- Megan McCaghey
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dandan Shao
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jake Kurcezewski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ally Lindstrom
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Shawn P. Conley
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Damon L. Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
- Damon L. Smith
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Mehdi Kabbage
| |
Collapse
|