1
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
De Ryck J, Jonckheere V, De Paepe B, De Keyser A, Peeters N, Van Vaerenbergh J, Debode J, Van Damme P, Goormachtig S. Exploring the Tomato Root Protein Network Exploited by Core Type 3 Effectors from the Ralstonia solanacearum Species Complex. J Proteome Res 2025; 24:696-709. [PMID: 39786355 DOI: 10.1021/acs.jproteome.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the Ralstonia solanacearum species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB. The RipU proxeome was enriched for multiple protein kinases, suggesting a potential impact on the two branches of the plant immune surveillance system, being the membrane-localized PAMP-triggered immunity (PTI) and the RIN4-dependent effector-triggered immunity (ETI) complexes. In agreement, a transcriptomics analysis in tomato revealed the potential involvement of RipU in modulating reactive oxygen species (ROS) signaling. The proxeome of RipB was putatively enriched for mitochondrial and chloroplast proteins and that of RipD for proteins potentially involved in the endomembrane system. Together, our results demonstrate that TurboID-PL in tomato hairy roots represents a promising tool to study Ralstonia T3E targets and functioning and that it can unravel potential host processes that can be hijacked by the bacterial pathogen.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Brigitte De Paepe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Johan Van Vaerenbergh
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
3
|
Jeon H, Kim W, Segonzac C. The disordered effector RipAO of Ralstonia solanacearum destabilizes microtubule networks in Nicotiana benthamiana cells. Mol Cells 2025; 48:100167. [PMID: 39645148 PMCID: PMC11730531 DOI: 10.1016/j.mocell.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Ralstonia solanacearum causes bacterial wilt, a devastating disease in solanaceous crops. The pathogenicity of R. solanacearum depends on its type III secretion system, which delivers a suite of type III effectors into plant cells. The disordered core effector RipAO is conserved across R. solanacearum species and affects plant immune responses when transiently expressed in Nicotiana benthamiana. Specifically, RipAO impairs pathogen-associated molecular pattern-triggered reactive oxygen species production, an essential plant defense mechanism. RipAO fused to yellow fluorescent protein initially localizes to filamentous structures, resembling the cytoskeleton, before forming large punctate aggregates around the nucleus. Consistent with these findings, tubulin alpha 6 (TUA6) and tubulin beta-1, building blocks of microtubules, were identified as putative targets of RipAO in immunoprecipitation and mass spectrometry analyses. In the presence of RipAO, TUA6-labeled microtubules fragmented into puncta, mimicking the effects of oryzalin, a microtubule polymerization inhibitor. These effects were corroborated in a N. benthamiana transgenic line constitutively expressing green fluorescent protein-labeled TUA6, where RipAO reduced microtubule density and stability at an accumulation level that did not induce aggregation. Moreover, oryzalin treatment further enhanced RipAO's impairment of reactive oxygen species production, suggesting that RipAO disrupts microtubule networks via its association with tubulins, leading to immune suppression. Further research into RipAO's interaction with the microtubule network will enhance our understanding of bacterial strategies to subvert plant immunity.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanhui Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Yu W, Li M, Wang W, Zhuang H, Luo J, Sang Y, Segonzac C, Macho AP. A bacterial type III effector hijacks plant ubiquitin proteases to evade degradation. PLoS Pathog 2025; 21:e1012882. [PMID: 39841799 PMCID: PMC11771917 DOI: 10.1371/journal.ppat.1012882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions. In this work, we found that RipE1, an effector protein secreted by the bacterial wilt pathogen, Ralstonia solanacearum, undergoes phosphorylation of specific residues inside plant cells, and this promotes its stability. Moreover, RipE1 associates with plant ubiquitin proteases, which contribute to RipE1 deubiquitination and stabilization. The absence of those specific phosphorylation sites or specific host ubiquitin proteases leads to a substantial decrease in RipE1 protein accumulation, indicating that RipE1 hijacks plant post-translational modification regulators in order to promote its own stability. These results suggest that effector stability or degradation in plant cells constitute another molecular event subject to co-evolution between plants and pathogens.
Collapse
Affiliation(s)
- Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cecile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Hiles R, Rogers A, Jaiswal N, Zhang W, Butchacas J, Merfa MV, Klass T, Barua P, Thirumalaikumar VP, Jacobs JM, Staiger CJ, Helm M, Iyer-Pascuzzi AS. A Ralstonia solanacearum type III effector alters the actin and microtubule cytoskeleton to promote bacterial virulence in plants. PLoS Pathog 2024; 20:e1012814. [PMID: 39724074 PMCID: PMC11723619 DOI: 10.1371/journal.ppat.1012814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/10/2025] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated. Bacterial pathogens of plants and animals use proteins called type III effectors (T3Es) to interfere with host immune signaling, thereby promoting virulence. We previously found that RipU, a T3E from the soilborne phytobacterial pathogen Ralstonia solanacearum, co-localizes with the plant cytoskeleton. Here, we show that RipU from R. solanacearum K60 (RipUK60) associated with and altered the organization of both the actin and microtubule cytoskeleton. We found that pharmacological disruption of the tomato (Solanum lycopersicum) cytoskeleton promoted R. solanacearum K60 colonization. Importantly, tomato plants inoculated with R. solanacearum K60 lacking RipUK60 (ΔripUK60) had reduced wilting symptoms and significantly reduced root colonization when compared to plants inoculated with wild-type R. solanacearum K60. Collectively, our data suggest that R. solanacearum K60 uses the type III effector RipUK60 to remodel cytoskeletal organization, thereby promoting pathogen virulence.
Collapse
Affiliation(s)
- Rachel Hiles
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Abigail Rogers
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Namrata Jaiswal
- Crop Production and Pest Control Research Unit, USDA-ARS: USDA Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Weiwei Zhang
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Jules Butchacas
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcus V. Merfa
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Taylor Klass
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Pragya Barua
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Venkatesh P. Thirumalaikumar
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Matthew Helm
- Crop Production and Pest Control Research Unit, USDA-ARS: USDA Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
6
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Zhao A, Xian L, Franco Ortega S, Yu G, Macho AP. A bacterial effector manipulates plant metabolism, cell death, and immune responses via independent mechanisms. THE NEW PHYTOLOGIST 2024; 243:1137-1153. [PMID: 38877712 DOI: 10.1111/nph.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
Bacterial pathogens inject effector proteins inside plant cells to manipulate cellular functions and achieve a successful infection. The soil-borne pathogen Ralstonia solanacearum (Smith), the causal agent of bacterial wilt disease, secretes > 70 different effectors inside plant cells, although only a handful of them have been thoroughly characterized. One of these effectors, named RipI, is required for full R. solanacearum pathogenicity. RipI associates with plant glutamate decarboxylases (GADs) to promote the accumulation of gamma-aminobutyric acid (GABA), which serves as bacterial nutrient. In this work, we found that RipI can also suppress plant immune responses to bacterial elicitors, which seems to be unrelated to the ability of RipI to induce GABA accumulation and plant cell death. A detailed characterization of the RipI features that contribute to its virulence activities identified two residues at the C-terminal domain that mediate RipI interaction with plant GADs and the subsequent promotion of GABA accumulation. These residues are also required for the appropriate homeostasis of RipI in plant cells and the induction of cell death, although they are partially dispensable for the suppression of plant immune responses. Altogether, we decipher and uncouple the virulence activities of an important bacterial effector at the biochemical level.
Collapse
Affiliation(s)
- Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sara Franco Ortega
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, York, YO10 5DD, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
8
|
Shi H, Jiang J, Yu W, Cheng Y, Wu S, Zong H, Wang X, Ding A, Wang W, Sun Y. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. PLANT PHYSIOLOGY 2024; 195:1818-1834. [PMID: 38573326 PMCID: PMC11213252 DOI: 10.1093/plphys/kiae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Yu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
9
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
10
|
Liu K, Shi L, Luo H, Zhang K, Liu J, Qiu S, Li X, He S, Liu Z. Ralstonia solanacearum effector RipAK suppresses homodimerization of the host transcription factor ERF098 to enhance susceptibility and the sensitivity of pepper plants to dehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:121-144. [PMID: 37738430 DOI: 10.1111/tpj.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.
Collapse
Affiliation(s)
- Kaisheng Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lanping Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongli Luo
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianxin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Qiu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Li
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
11
|
Sun ZM, Zhang Q, Feng YX, Zhang SX, Bai BX, Ouyang X, Xiao ZL, Meng H, Wang XT, He JM, An YY, Zhang MX. The Ralstonia solanacearum Type III Effector RipAW Targets the Immune Receptor Complex to Suppress PAMP-Triggered Immunity. Int J Mol Sci 2023; 25:183. [PMID: 38203354 PMCID: PMC10779406 DOI: 10.3390/ijms25010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, one of the most destructive phytopathogens, leads to significant annual crop yield losses. Type III effectors (T3Es) mainly contribute to the virulence of R. solanacearum, usually by targeting immune-related proteins. Here, we clarified the effect of a novel E3 ubiquitin ligase (NEL) T3E, RipAW, from R. solanacearum on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and further explored its action mechanism. In the susceptible host Arabidopsis thaliana, we monitored the expression of PTI marker genes, flg22-induced ROS burst, and callose deposition in RipAW- and RipAWC177A-transgenic plants. Our results demonstrated that RipAW suppressed host PTI in an NEL-dependent manner. By Split-Luciferase Complementation, Bimolecular Fluorescent Complimentary, and Co-Immunoprecipitation assays, we further showed that RipAW associated with three crucial components of the immune receptor complex, namely FLS2, XLG2, and BIK1. Furthermore, RipAW elevated the ubiquitination levels of FLS2, XLG2, and BIK1, accelerating their degradation via the 26S proteasome pathway. Additionally, co-expression of FLS2, XLG2, or BIK1 with RipAW partially but significantly restored the RipAW-suppressed ROS burst, confirming the involvement of the immune receptor complex in RipAW-regulated PTI. Overall, our results indicate that RipAW impairs host PTI by disrupting the immune receptor complex. Our findings provide new insights into the virulence mechanism of R. solanacearum.
Collapse
Affiliation(s)
- Zhi-Mao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Qi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Xin Feng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Shuang-Xi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Bi-Xin Bai
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Xue Ouyang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Zhi-Liang Xiao
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - He Meng
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - Xiao-Ting Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Jun-Min He
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Yan An
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Mei-Xiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| |
Collapse
|
12
|
Wang K, Yu W, Yu G, Zhang L, Xian L, Wei Y, Perez‐Sancho J, Xue H, Rufian JS, Zhuang H, Kwon C, Macho AP. A bacterial type III effector targets plant vesicle-associated membrane proteins. MOLECULAR PLANT PATHOLOGY 2023; 24:1154-1167. [PMID: 37278116 PMCID: PMC10423332 DOI: 10.1111/mpp.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.
Collapse
Affiliation(s)
- Keke Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jessica Perez‐Sancho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jose S. Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Chian Kwon
- Department of Molecular BiologyDankook UniversityCheonanSouth Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
13
|
Ito T, Ohkama-Ohtsu N. Degradation of glutathione and glutathione conjugates in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3313-3327. [PMID: 36651789 DOI: 10.1093/jxb/erad018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a ubiquitous, abundant, and indispensable thiol for plants that participates in various biological processes, such as scavenging reactive oxygen species, redox signaling, storage and transport of sulfur, detoxification of harmful substances, and metabolism of several compounds. Therefore knowledge of GSH metabolism is essential for plant science. Nevertheless, GSH degradation has been insufficiently elucidated, and this has hampered our understanding of plant life. Over the last five decades, the γ-glutamyl cycle has been dominant in GSH studies, and the exoenzyme γ-glutamyl transpeptidase has been regarded as the major GSH degradation enzyme. However, recent studies have shown that GSH is degraded in cells by cytosolic enzymes such as γ-glutamyl cyclotransferase or γ-glutamyl peptidase. Meanwhile, a portion of GSH is degraded after conjugation with other molecules, which has also been found to be carried out by vacuolar γ-glutamyl transpeptidase, γ-glutamyl peptidase, or phytochelatin synthase. These findings highlight the need to re-assess previous assumptions concerning the γ-glutamyl cycle, and a novel overview of the plant GSH degradation pathway is essential. This review aims to build a foundation for future studies by summarizing current understanding of GSH/glutathione conjugate degradation.
Collapse
Affiliation(s)
- Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
14
|
Mostaffa NH, Suhaimi AH, Al-Idrus A. Interactomics in plant defence: progress and opportunities. Mol Biol Rep 2023; 50:4605-4618. [PMID: 36920596 DOI: 10.1007/s11033-023-08345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
Collapse
Affiliation(s)
- Nur Hikmah Mostaffa
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Husaini Suhaimi
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aisyafaznim Al-Idrus
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
16
|
Shi H, Liu Y, Ding A, Wang W, Sun Y. Induced defense strategies of plants against Ralstonia solanacearum. Front Microbiol 2023; 14:1059799. [PMID: 36778883 PMCID: PMC9910360 DOI: 10.3389/fmicb.2023.1059799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Plants respond to Ralstonia solanacearum infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation. When R. solanacearum secrete cell wall degrading enzymes, plants also sense the status of cell wall fragments through the cell wall integrity (CWI) system, which activates deep-seated defense responses. In addition, plants also fight against R. solanacearum infestation by regulating the distribution of metabolic networks to increase the production of resistant metabolites and reduce the production of metabolites that are easily exploited by R. solanacearum. We review the strategies used by plants to induce resistance in response to R. solanacearum infestation. In particular, we highlight the importance of plant-induced physical and chemical defenses as well as cell wall defenses in the fight against R. solanacearum.
Collapse
Affiliation(s)
- Haoqi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- The Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Liu
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Weifeng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
17
|
Zuo N, Bai WZ, Wei WQ, Yuan TL, Zhang D, Wang YZ, Tang WH. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Cell Rep 2022; 41:111877. [PMID: 36577386 DOI: 10.1016/j.celrep.2022.111877] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
The fungus Fusarium graminearum causes a devastating disease Gibberella stalk rot of maize. Our knowledge of molecular interactions between F. graminearum effectors and maize immunity factors is lacking. Here, we show that a group of cysteine-rich common in fungal extracellular membrane (CFEM) domain proteins of F. graminearum are required for full virulence in maize stalk infection and that they interact with two secreted maize proteins, ZmLRR5 and ZmWAK17ET. ZmWAK17ET is an alternative splicing isoform of a wall-associated kinase ZmWAK17. Both ZmLRR5 and ZmWAK17ET interact with the extracellular domain of ZmWAK17. Transgenic maize overexpressing ZmWAK17 shows increased resistance to F. graminearum, while ZmWAK17 mutants exhibit enhanced susceptibility to F. graminearum. Transient expression of ZmWAK17 in Nicotiana benthamiana triggers hypersensitive cell death, whereas co-expression of CFEMs with ZmWAK17ET or ZmLRR5 suppresses the ZmWAK17-triggered cell death. Our results show that ZmWAK17 mediates stalk rot resistance and that F. graminearum delivers apoplastic CFEMs to compromise ZmWAK17-mediated resistance.
Collapse
Affiliation(s)
- Ni Zuo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhen Bai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Qian Wei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Zhang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou J, Menke FLH, Trujillo M, Zipfel C, Macho AP. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 2022; 41:e107257. [PMID: 36314733 PMCID: PMC9713774 DOI: 10.15252/embj.2020107257] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Maria Derkacheva
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
The Earlham InstituteNorwich Research ParkNorwichUK
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Carla Brillada
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Shushu Jiang
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lena Stransfeld
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Frank L H Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Marco Trujillo
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Leibniz Institute for Plant BiochemistryHalle (Saale)Germany
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
19
|
Host-specific activation of a pathogen effector Aave_4606 from Acidovorax citrulli, the causal agent for bacterial fruit blotch. Biochem Biophys Res Commun 2022; 616:41-48. [DOI: 10.1016/j.bbrc.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
|
20
|
Tan X, Dai X, Chen T, Wu Y, Yang D, Zheng Y, Chen H, Wan X, Yang Y. Complete Genome Sequence Analysis of Ralstonia solanacearum Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants. Front Microbiol 2022; 13:830900. [PMID: 35273586 PMCID: PMC8904134 DOI: 10.3389/fmicb.2022.830900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum–peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut–R. solanacearum interaction and develop targeted control strategies in the future.
Collapse
Affiliation(s)
- Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
21
|
Niu Y, Fu S, Chen G, Wang H, Wang Y, Hu J, Jin X, Zhang M, Lu M, He Y, Wang D, Chen Y, Zhang Y, Coll NS, Valls M, Zhao C, Chen Q, Lu H. Different epitopes of Ralstonia solanacearum effector RipAW are recognized by two Nicotiana species and trigger immune responses. MOLECULAR PLANT PATHOLOGY 2022; 23:188-203. [PMID: 34719088 PMCID: PMC8743020 DOI: 10.1111/mpp.13153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/17/2023]
Abstract
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107 ) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on N. benthamiana. However, on N. tabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either N. benthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on N. tabacum, but not on N. benthamiana. In addition, N. tabacum recognizes more RipAW orthologs than N. benthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant-pathogen co-evolution.
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Huijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - JinXue Hu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xin Jin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mingxia Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yizhe He
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Dongdong Wang
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yong Zhang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Núria S. Coll
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
| | - Marc Valls
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
- Centre for Research in Agricultural GenomicsCSIC‐IRTA‐UAB‐UBBellaterraCataloniaSpain
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qin Chen
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
- Department of GeneticsUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
22
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
23
|
Wang Y, Zhao A, Morcillo RJL, Yu G, Xue H, Rufian JS, Sang Y, Macho AP. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease. MOLECULAR PLANT 2021; 14:1281-1296. [PMID: 33940211 DOI: 10.1016/j.molp.2021.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide. Upon plant colonization, R. solanacearum replicates massively, causing plant wilting and death; collapsed infected tissues then serve as a source of inoculum. In this work, we show that the plant metabolic pathway mediated by pyruvate decarboxylases (PDCs) contributes to plant tolerance to bacterial wilt disease. Arabidopsis and tomato plants respond to R. solanacearum infection by increasing PDC activity, and plants with deficient PDC activity are more susceptible to bacterial wilt. Treatment with either pyruvic acid or acetic acid (substrate and product of the PDC pathway, respectively) enhances plant tolerance to bacterial wilt disease. An effector protein secreted by R. solanacearum, RipAK, interacts with PDCs and inhibits their oligomerization and enzymatic activity. Collectively, our work reveals a metabolic pathway involved in plant resistance to biotic and abiotic stresses, and a bacterial virulence strategy to promote disease and the completion of the pathogenic life cycle.
Collapse
Affiliation(s)
- Yaru Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
24
|
Song H, Lin B, Huang Q, Sun L, Chen J, Hu L, Zhuo K, Liao J. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5638-5655. [PMID: 33974693 DOI: 10.1093/jxb/erab208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/07/2021] [Indexed: 05/14/2023]
Abstract
Recent studies have reported that plant-parasitic nematodes facilitate their infection by suppressing plant immunity via effectors, but the inhibitory mechanisms remain poorly understood. This study found that a novel effector MgMO289 is exclusively expressed in the dorsal esophageal gland of Meloidogyne graminicola and is up-regulated at parasitic third-/fourth-stage juveniles. In planta silencing of MgMO289 substantially increased plant resistance to M. graminicola. Moreover, we found that MgMO289 interacts with a new rice copper metallochaperone heavy metal-associated plant protein 04 (OsHPP04), and that rice cytosolic COPPER/ZINC -SUPEROXIDE DISMUTASE 2 (cCu/Zn-SOD2) is the target of OsHPP04. Rice plants overexpressing OsHPP04 or MgMO289 exhibited an increased susceptibility to M. graminicola and a higher Cu/Zn-SOD activity, but lower O2•- content, when compared with wild-type plants. Meanwhile, immune response assays showed that MgMO289 could suppress host innate immunity. These findings reveal a novel pathway for a plant pathogen effector that utilizes the host O2•--scavenging system to eliminate O2•- and suppress plant immunity.
Collapse
Affiliation(s)
- Handa Song
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Longhua Sun
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jiansong Chen
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lili Hu
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
25
|
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. PLANT PHYSIOLOGY 2021; 186:53-65. [PMID: 33793940 PMCID: PMC8154045 DOI: 10.1093/plphys/kiaa088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
A review of recent progress in understanding the mechanisms whereby plants utilize selective and reversible redox signaling to establish immunity.
Collapse
Affiliation(s)
- Jade R Bleau
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Author for communication:
| |
Collapse
|
26
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
27
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
28
|
Chen K, Wang L, Chen H, Zhang C, Wang S, Chu P, Li S, Fu H, Sun T, Liu M, Yang Q, Zou H, Zhuang W. Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200. BMC Microbiol 2021; 21:118. [PMID: 33874906 PMCID: PMC8056632 DOI: 10.1186/s12866-021-02157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum species complex is an important soil-borne disease worldwide that affects more than 450 plant species, including peanut, leading to great yield and quality losses. However, there are no effective measures to control bacterial wilt. The reason is the lack of research on the pathogenic mechanism of bacterial wilt. RESULTS Here, we report the complete genome of a toxic Ralstonia solanacearum species complex strain, Rs-P.362200, a peanut pathogen, with a total genome size of 5.86 Mb, encoding 5056 genes and the average G + C content of 67%. Among the coding genes, 75 type III effector proteins and 12 pseudogenes were predicted. Phylogenetic analysis of 41 strains including Rs-P.362200 shows that genetic distance mainly depended on geographic origins then phylotypes and host species, which associated with the complexity of the strain. The distribution and numbers of effectors and other virulence factors changed among different strains. Comparative genomic analysis showed that 29 families of 113 genes were unique to this strain compared with the other four pathogenic strains. Through the analysis of specific genes, two homologous genes (gene ID: 2_657 and 3_83), encoding virulence protein (such as RipP1) may be associated with the host range of the Rs-P.362200 strain. It was found that the bacteria contained 30 pathogenicity islands and 6 prophages containing 378 genes, 7 effectors and 363 genes, 8 effectors, respectively, which may be related to the mechanism of horizontal gene transfer and pathogenicity evaluation. Although the hosts of HA4-1 and Rs-P.362200 strains are the same, they have specific genes to their own genomes. The number of genomic islands and prophages in HA4-1 genome is more than that in Rs-P.36220, indicating a rapid change of the bacterial wilt pathogens. CONCLUSION The complete genome sequence analysis of peanut bacterial wilt pathogen enhanced the information of R. solanacearum genome. This research lays a theoretical foundation for future research on the interaction between Ralstonia solanacearum and peanut.
Collapse
Affiliation(s)
- Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chong Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shanshan Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Panpan Chu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shaokang Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tao Sun
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Menghan Liu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiang Yang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weijian Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
29
|
de Pedro-Jové R, Puigvert M, Sebastià P, Macho AP, Monteiro JS, Coll NS, Setúbal JC, Valls M. Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics 2021; 22:170. [PMID: 33750302 PMCID: PMC7941725 DOI: 10.1186/s12864-021-07457-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ralstonia solanacearum is the causal agent of bacterial wilt, a devastating plant disease responsible for serious economic losses especially on potato, tomato, and other solanaceous plant species in temperate countries. In R. solanacearum, gene expression analysis has been key to unravel many virulence determinants as well as their regulatory networks. However, most of these assays have been performed using either bacteria grown in minimal medium or in planta, after symptom onset, which occurs at late stages of colonization. Thus, little is known about the genetic program that coordinates virulence gene expression and metabolic adaptation along the different stages of plant infection by R. solanacearum. RESULTS We performed an RNA-sequencing analysis of the transcriptome of bacteria recovered from potato apoplast and from the xylem of asymptomatic or wilted potato plants, which correspond to three different conditions (Apoplast, Early and Late xylem). Our results show dynamic expression of metabolism-controlling genes and virulence factors during parasitic growth inside the plant. Flagellar motility genes were especially up-regulated in the apoplast and twitching motility genes showed a more sustained expression in planta regardless of the condition. Xylem-induced genes included virulence genes, such as the type III secretion system (T3SS) and most of its related effectors and nitrogen utilisation genes. The upstream regulators of the T3SS were exclusively up-regulated in the apoplast, preceding the induction of their downstream targets. Finally, a large subset of genes involved in central metabolism was exclusively down-regulated in the xylem at late infection stages. CONCLUSIONS This is the first report describing R. solanacearum dynamic transcriptional changes within the plant during infection. Our data define four main genetic programmes that define gene pathogen physiology during plant colonisation. The described expression of virulence genes, which might reflect bacterial states in different infection stages, provides key information on the R. solanacearum potato infection process.
Collapse
Affiliation(s)
- R de Pedro-Jové
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - M Puigvert
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - P Sebastià
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - A P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - J S Monteiro
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - N S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - J C Setúbal
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - M Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain.
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain.
| |
Collapse
|
30
|
Ralstonia solanacearum type III effector RipV2 encoding a novel E3 ubiquitin ligase (NEL) is required for full virulence by suppressing plant PAMP-triggered immunity. Biochem Biophys Res Commun 2021; 550:120-126. [PMID: 33691198 DOI: 10.1016/j.bbrc.2021.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt disease in a broad range of plants, primarily through type Ⅲ secreted effectors. However, the R. solanacearum effectors promoting susceptibility in host plants remain limited. In this study, we determined that the R. solanacearum effector RipV2 functions as a novel E3 ubiquitin ligase (NEL). RipV2 was observed to be locali in the plasma membrane after translocatio into plant cells. Transient expression of RipV2 in Nicotiana benthamiana could induce cell death and suppress the flg22-induced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, mediating such effects as attenuation of the expression of several PTI-related genes and ROS bursts. Furthermore, we demonstrated that the conserved catalytic residue is highly important for RipV2. Transient expression of the E3 ubiquitin ligase catalytic mutant RipV2 C403A alleviated the PTI suppression ability and cell death induction, indicating that RipV2 requires its E3 ubiquitin ligase activity for its role in plant-microbe interactions. More importantly, mutation of RipV2 in R. solanacearum reduces the virulence of R. solanacearum on potato. In conclusion, we identified a NEL effector that is required for full virulence of R. solanacearum by suppressing plant PTI.
Collapse
|
31
|
Identification and Characterization of Plant-Interacting Targets of Tomato Spotted Wilt Virus Silencing Suppressor. Pathogens 2021; 10:pathogens10010027. [PMID: 33401462 PMCID: PMC7823891 DOI: 10.3390/pathogens10010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023] Open
Abstract
Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus) is an economically important plant virus that infects multiple horticultural crops on a global scale. TSWV encodes a non-structural protein NSs that acts as a suppressor of host RNA silencing machinery during infection. Despite extensive structural and functional analyses having been carried out on TSWV NSs, its protein-interacting targets in host plants are still largely unknown. Here, we systemically investigated NSs-interacting proteins in Nicotiana benthamiana via affinity purification and mass spectrometry (AP-MS) analysis. Forty-three TSWV NSs-interacting candidates were identified in N. benthamiana. Gene Ontology (GO) and protein–protein interaction (PPI) network analyses were carried out on their closest homologs in tobacco (Nicotiana tabacum), tomatoes (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). The results showed that NSs preferentially interacts with plant defense-related proteins such as calmodulin (CaM), importin, carbonic anhydrase and two heat shock proteins (HSPs): HSP70 and HSP90. As two major nodes in the PPI network, CaM and importin subunit α were selected for the further verification of their interactions with NSs via yeast two-hybrid (Y2H) screening. Our work suggests that the downstream signaling, transportation and/or metabolic pathways of host-NSs-interacting proteins may play critical roles in NSs-facilitated TSWV infection.
Collapse
|
32
|
Ho-Plágaro T, Morcillo RJL, Tamayo-Navarrete MI, Huertas R, Molinero-Rosales N, López-Ráez JA, Macho AP, García-Garrido JM. DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2021; 229:548-562. [PMID: 32966595 DOI: 10.1111/nph.16938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
D14 and KAI2 receptors enable plants to distinguish between strigolactones (SLs) and karrikins (KARs), respectively, in order to trigger appropriate environmental and developmental responses. Both receptors are related to the regulation of arbuscular mycorrhiza (AM) formation and are members of the RsbQ-like family of α,β-hydrolases. DLK2 proteins, whose function remains unknown, constitute a third clade from the RsbQ-like protein family. We investigated whether the tomato SlDLK2 is a new regulatory component in the AM symbiosis. Genetic approaches were conducted to analyze SlDLK2 expression and to understand SlDLK2 function in AM symbiosis. We show that SlDLK2 expression in roots is AM-dependent and is associated with cells containing arbuscules. SlDLK2 ectopic expression arrests arbuscule branching and downregulates AM-responsive genes, even in the absence of symbiosis; while the opposite effect was observed upon SlDLK2 silencing. Moreover, SlDLK2 overexpression in Medicago truncatula roots showed the same altered phenotype observed in tomato roots. Interestingly, SlDLK2 interacts with DELLA, a protein that regulates arbuscule formation/degradation in AM roots. We propose that SlDLK2 is a new component of the complex plant-mediated mechanism regulating the life cycle of arbuscules in AM symbiosis.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - María Isabel Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Raúl Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Nuria Molinero-Rosales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| |
Collapse
|
33
|
Xian L, Yu G, Wei Y, Rufian JS, Li Y, Zhuang H, Xue H, Morcillo RJL, Macho AP. A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition. Cell Host Microbe 2020; 28:548-557.e7. [PMID: 32735848 DOI: 10.1016/j.chom.2020.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
Collapse
Affiliation(s)
- Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yansha Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
34
|
Landry D, González‐Fuente M, Deslandes L, Peeters N. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. MOLECULAR PLANT PATHOLOGY 2020; 21:1377-1388. [PMID: 32770627 PMCID: PMC7488467 DOI: 10.1111/mpp.12977] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.
Collapse
Affiliation(s)
- David Landry
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Manuel González‐Fuente
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
35
|
Meyer MD, Ryck JD, Goormachtig S, Van Damme P. Keeping in Touch with Type-III Secretion System Effectors: Mass Spectrometry-Based Proteomics to Study Effector-Host Protein-Protein Interactions. Int J Mol Sci 2020; 21:E6891. [PMID: 32961832 PMCID: PMC7555288 DOI: 10.3390/ijms21186891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein-protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector-host protein-protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector-host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes.
Collapse
Affiliation(s)
- Margaux De Meyer
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Medical Biotechnology, Technologiepark 75, 9052 Zwijnaarde, Belgium
| | - Joren De Ryck
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
| |
Collapse
|
36
|
Yu G, Xian L, Xue H, Yu W, Rufian JS, Sang Y, Morcillo RJL, Wang Y, Macho AP. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathog 2020; 16:e1008933. [PMID: 32976518 PMCID: PMC7540872 DOI: 10.1371/journal.ppat.1008933] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/07/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as sensors that perceive pathogen molecules and activate immunity. In plants, the accumulation and activation of NLRs is regulated by SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1). In this work, we found that an effector protein named RipAC, secreted by the plant pathogen Ralstonia solanacearum, associates with SGT1 to suppress NLR-mediated SGT1-dependent immune responses, including those triggered by another R. solanacearum effector, RipE1. RipAC does not affect the accumulation of SGT1 or NLRs, or their interaction. However, RipAC inhibits the interaction between SGT1 and MAP kinases, and the phosphorylation of a MAPK target motif in the C-terminal domain of SGT1. Such phosphorylation is enhanced upon activation of immune signaling and contributes to the activation of immune responses mediated by the NLR RPS2. Additionally, SGT1 phosphorylation contributes to resistance against R. solanacearum. Our results shed light onto the mechanism of activation of NLR-mediated immunity, and suggest a positive feedback loop between MAPK activation and SGT1-dependent NLR activation.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jose S. Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rafael J. L. Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaru Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Wei Y, Balaceanu A, Rufian JS, Segonzac C, Zhao A, Morcillo RJL, Macho AP. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat Commun 2020; 11:3763. [PMID: 32724132 PMCID: PMC7387336 DOI: 10.1038/s41467-020-17573-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022] Open
Abstract
In both animals and plants, the perception of bacterial flagella by immune receptors elicits the activation of defence responses. Most plants are able to perceive the highly conserved epitope flg22 from flagellin, the main flagellar protein, from most bacterial species. However, flagellin from Ralstonia solanacearum, the causal agent of the bacterial wilt disease, presents a polymorphic flg22 sequence (flg22Rso) that avoids perception by all plants studied to date. In this work, we show that soybean has developed polymorphic versions of the flg22 receptors that are able to perceive flg22Rso. Furthermore, we identify key residues responsible for both the evasion of perception by flg22Rso in Arabidopsis and the gain of perception by the soybean receptors. Heterologous expression of the soybean flg22 receptors in susceptible plant species, such as tomato, enhances resistance to bacterial wilt disease, demonstrating the potential of these receptors to enhance disease resistance in crop plants.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexandra Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
38
|
Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, Yu G, Luo J, Macho AP. Intra-strain Elicitation and Suppression of Plant Immunity by Ralstonia solanacearum Type-III Effectors in Nicotiana benthamiana. PLANT COMMUNICATIONS 2020; 1:100025. [PMID: 33367244 PMCID: PMC7747989 DOI: 10.1016/j.xplc.2020.100025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 05/11/2023]
Abstract
Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.
Collapse
Affiliation(s)
- Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
39
|
Zhuo T, Wang X, Chen Z, Cui H, Zeng Y, Chen Y, Fan X, Hu X, Zou H. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2020; 21:999-1004. [PMID: 32285606 PMCID: PMC7279998 DOI: 10.1111/mpp.12937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 05/11/2023]
Abstract
Ralstonia solanacearum releases a set of effectors into plant cells that modify the host defence reaction. The role of the effector protein RipI during infection has not been elucidated. In this study, we demonstrated that transient overexpression of RipI induces the hypersensitive response (HR), up-regulating the HR marker gene hin1, in Nicotiana benthamiana. Deletion of R. solanacearum ripI led to increased virulence in tomato (Solanum lycopersicum) plants. Through yeast two-hybrid and pull-down assays, we identified an interaction between the N. benthamiana transcription factor bHLH93 and RipI, both of which could be localized in the nucleus of Arabidopsis protoplasts. Silencing of bHLH93 markedly attenuated the RipI-induced HR and induced expression of the PDF1.2 defence gene. These data demonstrate that the R. solanacearum effector RipI induces a host defence reaction by interacting with the bHLH93 transcription factor.
Collapse
Affiliation(s)
- Tao Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xue Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhengyu Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Haitao Cui
- Plant Immunity CenterHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yanhong Zeng
- Plant Immunity CenterHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaojing Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xun Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huasong Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
40
|
Chen B, Long QS, Meng J, Zhou X, Wu ZB, Tuo XX, Ding Y, Zhang L, Wang PY, Li Z, Yang S. Target Discovery in Ralstonia solanacearum through an Activity-Based Protein Profiling Technique Based on Bioactive Oxadiazole Sulfones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2340-2346. [PMID: 32017553 DOI: 10.1021/acs.jafc.9b07192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ralstonia solanacearum is an extremely destructive and rebellious phytopathogen that can cause bacterial wilt diseases in more than 200 plant species. To explore and discover the potential targets in R. solanacearum for the purpose of developing new agrochemicals targeting this infection, here, we exploited a typical activity-based protein profiling technique for target discovery in R. solanacearum based on an activity-based probe 1 derived from bioactive oxadiazole sulfones. A total of 65 specific targets were identified with high confidence through a quantitative chemical proteomic approach. Three representative proteins (glycine cleavage system H protein, thiol peroxidase, and dihydrolipoamide S-succinyltransferase) were validated as the targets by using the immunoblotting analysis with their respective antibodies. Additionally, the in vitro interaction between the recombinant thiol peroxidase and probe 1 further confirmed that this protein was a target of oxadiazole sulfones. We anticipated that these discovered protein targets in R. solanacearum can stimulate the discovery and development of novel agrochemicals targeting bacterial infections caused by R. solanacearum.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Jiao Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Xin-Xin Tuo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yue Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
41
|
Jeon H, Kim W, Kim B, Lee S, Jayaraman J, Jung G, Choi S, Sohn KH, Segonzac C. Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp. THE PLANT PATHOLOGY JOURNAL 2020; 36:43-53. [PMID: 32089660 PMCID: PMC7012579 DOI: 10.5423/ppj.oa.08.2019.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 05/11/2023]
Abstract
Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Wanhui Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826,
Korea
| | - Boyoung Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sookyeong Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Auckland 1025,
New Zealand
| | - Gayoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826,
Korea
- Corresponding author: Phone) +82-2-880-2229, FAX) +82-2-873-2056, E-mail)
| |
Collapse
|
42
|
Characterization of the mechanism of thioredoxin-dependent activation of γ-glutamylcyclotransferase, RipAY, from Ralstonia solanacearum. Biochem Biophys Res Commun 2020; 523:759-765. [PMID: 31948763 DOI: 10.1016/j.bbrc.2019.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
A class II ChaC protein, RipAY, from phytopathogenic bacterium, Ralstonia solanacearum exhibits γ-glutamylcyclotransferase (GGCT) activity to degrade intracellular glutathione in host cells upon its interaction with host thioredoxins (Trxs). To understand the Trx-dependent activation of RipAY, we constructed various deletion mutants of RipAY and found the determinant region for GGCT activation in the N- and C-terminal sequences of RipAY by analyzing their yeast growth inhibition activity and the interaction with Trxs. Mutational analysis of the active site cysteine residues of Arabidopsis thaliana Trx-h5 (AtTrx-h5), one of the most efficiently stimulating Trxs, revealed that each active site cysteine residue of AtTrx-h5 contributes to efficient RipAY-binding and -activation activity. We also estimated that RipAY and AtTrx-h5 form a complex at a 1:2 M ratio. Furthermore, we found that the constitutive GGCT activity of Gcg1, a yeast class I ChaC protein, is also stimulated by yeast Trx1. These results indicate that class I ChaC proteins can sense the intracellular redox state and interact with Trxs to promote more efficient degradation of glutathione and regulate intracellular redox homeostasis. We hypothesize that RipAY acquired a more efficient and specific Trx-dependent activation mechanism to activate its GGCT activity only in the host eukaryotic cells during the evolution.
Collapse
|
43
|
Nakano M, Mukaihara T. Comprehensive Identification of PTI Suppressors in Type III Effector Repertoire Reveals that Ralstonia solanacearum Activates Jasmonate Signaling at Two Different Steps. Int J Mol Sci 2019; 20:E5992. [PMID: 31795135 PMCID: PMC6928842 DOI: 10.3390/ijms20235992] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt in many plants. To identify R. solanacearum effectors that suppress pattern-triggered immunity (PTI) in plants, we transiently expressed R. solanacearum RS1000 effectors in Nicotiana benthamiana leaves and evaluated their ability to suppress the production of reactive oxygen species (ROS) triggered by flg22. Out of the 61 effectors tested, 11 strongly and five moderately suppressed the flg22-triggered ROS burst. Among them, RipE1 shared homology with the Pseudomonas syringae cysteine protease effector HopX1. By yeast two-hybrid screening, we identified jasmonate-ZIM-domain (JAZ) proteins, which are transcriptional repressors of the jasmonic acid (JA) signaling pathway in plants, as RipE1 interactors. RipE1 promoted the degradation of JAZ repressors and induced the expressions of JA-responsive genes in a cysteine-protease-activity-dependent manner. Simultaneously, RipE1, similarly to the previously identified JA-producing effector RipAL, decreased the expression level of the salicylic acid synthesis gene that is required for the defense responses against R. solanacearum. The undecuple mutant that lacks 11 effectors with a strong PTI suppression activity showed reduced growth of R. solanacearum in Nicotiana plants. These results indicate that R. solanacearum subverts plant PTI responses using multiple effectors and manipulates JA signaling at two different steps to promote infection.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| |
Collapse
|
44
|
Yu G, Xian L, Sang Y, Macho AP. Cautionary notes on the use of Agrobacterium-mediated transient gene expression upon SGT1 silencing in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2019; 222:14-17. [PMID: 30451288 DOI: 10.1111/nph.15601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/12/2018] [Indexed: 05/02/2023]
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, P. R. China
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100004, P. R. China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, P. R. China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, P. R. China
| |
Collapse
|
45
|
Zheng X, Li X, Wang B, Cheng D, Li Y, Li W, Huang M, Tan X, Zhao G, Song B, Macho AP, Chen H, Xie C. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. MOLECULAR PLANT PATHOLOGY 2019; 20:547-561. [PMID: 30499228 PMCID: PMC6637881 DOI: 10.1111/mpp.12774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Both Solanum tuberosum and Ralstonia solanacearum phylotype IIB originated in South America and share a long-term co-evolutionary history. However, our knowledge of potato bacterial wilt pathogenesis is scarce as a result of the technical difficulties of potato plant manipulation. Thus, we established a multiple screening system (virulence screen of effector mutants in potato, growth inhibition of yeast and transient expression in Nicotiana benthamiana) of core type III effectors (T3Es) of a major potato pathovar of phylotype IIB, to provide more research perspectives and biological tools. Using this system, we identified four effectors contributing to virulence during potato infection, with two exhibiting multiple phenotypes in two other systems, including RipAB. Further study showed that RipAB is an unknown protein with a nuclear localization signal (NLS). Furthermore, we generated a ripAB complementation strain and transgenic ripAB-expressing potato plants, and subsequent virulence assays confirmed that R. solanacearum requires RipAB for full virulence. Compared with wild-type potato, transcriptomic analysis of transgenic ripAB-expressing potato plants showed a significant down-regulation of Ca2+ signalling-related genes in the enriched Plant-Pathogen Interaction (PPI) gene ontology (GO) term. We further verified that, during infection, RipAB is required for the down-regulation of four Ca2+ sensors, Stcml5, Stcml23, Stcml-cast and Stcdpk2, and a Ca2+ transporter, Stcngc1. Further evidence showed that the immune-associated reactive oxygen species (ROS) burst is attenuated in ripAB transgenic potato plants. In conclusion, a systematic screen of conserved R. solanacearum effectors revealed an important role for RipAB, which interferes with Ca2+ -dependent gene expression to promote disease development in potato.
Collapse
Affiliation(s)
- Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojing Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Guozhen Zhao
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
46
|
Sun Y, Li P, Shen D, Wei Q, He J, Lu Y. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:533-546. [PMID: 30499216 PMCID: PMC6637912 DOI: 10.1111/mpp.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Pai Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Dong Shen
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Qiaoling Wei
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Jianguo He
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Yongjun Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
47
|
Qin T, Liu S, Zhang Z, Sun L, He X, Lindsey K, Zhu L, Zhang X. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. PLANT MOLECULAR BIOLOGY 2019; 99:379-393. [PMID: 30671725 DOI: 10.1007/s11103-019-00824-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/12/2019] [Indexed: 05/02/2023]
Abstract
A U-box E3 ubiquitin ligase GhPUB17 is inhibited by GhCyP3 with antifungal activity and acts as a negative regulator involved in cotton resistance to Verticillium dahliae. E3 ubiquitin ligases, the key component enzymes of the ubiquitin-proteasome system, which contains the most diverse structural and functional members involved in the determination of target specificity and the regulation of metabolism, have been well documented in previous studies. Here, we identify GhPUB17, a U-box E3 ligase in cotton that has ubiquitination activity and is involved in the cotton immune response to Verticillium dahliae. The expression level of GhPUB17 is downregulated in the ssn mutant with a constitutively activated immune response (Sun et al., Nat Commun 5:5372, 2014). Infection with V. dahliae or exogenous hormone treatment, including jasmonic acid and salicylic acid, significantly upregulated GhPUB17 in cotton roots, which suggested a possible role for this E3 ligase in the plant immune response to pathogens. Moreover, GhPUB17-knockdown cotton plants are more resistant to V. dahliae, whereas GhPUB17-overexpressing plants are more susceptible to the pathogen, which indicated that GhPUB17 is a negative regulator of cotton resistance to V. dahliae. A yeast two-hybrid (Y2H) assay identified GhCyP3 as a protein that interacts with GhPUB17, and this finding was confirmed by further protein interaction assays. The downregulation of GhCyP3 in cotton seedlings attenuated the plants' resistance to V. dahliae. In addition, GhCyP3 showed antifungal activity against V. dahliae, and the E3 ligase activity of GhPUB17 was repressed by GhCyP3 in vitro. These results suggest that GhPUB17 negatively regulates cotton immunity to V. dahliae and that the antifungal protein GhCyP3 likely interacts with and inhibits the ligase activity of GhPUB17 and plays an important role in the cotton-Verticillium interaction.
Collapse
Affiliation(s)
- Tao Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhennan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
48
|
Wang Y, Li Y, Rosas-Diaz T, Caceres-Moreno C, Lozano-Duran R, Macho AP. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 Protein Is a Regulator of Basal Immunity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:65-75. [PMID: 29958083 DOI: 10.1094/mpmi-03-18-0062-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A robust regulation of plant immune responses requires a multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgenic plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-green fluorescent protein followed by mass spectrometry analysis revealed that IAN9 associates with a previously uncharacterized C3HC4-type RING-finger domain-containing protein that we named IAN9-associated protein 1 (IAP1), which also acts as a negative regulator of basal immunity. Interestingly, neither ian9 or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Because both IAN9 and IAP1 have orthologs in important crop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.
Collapse
Affiliation(s)
- Yuanzheng Wang
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Yansha Li
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Tabata Rosas-Diaz
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Carlos Caceres-Moreno
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Duran
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Alberto P Macho
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| |
Collapse
|
49
|
Nakano M, Mukaihara T. Ralstonia solanacearum Type III Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2576-2589. [PMID: 30165674 DOI: 10.1093/pcp/pcy177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/23/2018] [Indexed: 05/06/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects more than 70 type III effector proteins called Rips (Ralstonia-injected proteins) into plant cells to succeed in infection. One of the Rips, RipAL, contains a putative lipase domain that shared homology with Arabidopsis DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1). RipAL significantly suppressed pattern-triggered immunity in leaves of Nicotiana benthamiana. Subcellular localization analyses suggest that RipAL localizes to chloroplasts and targets chloroplast lipids in plant cells. Notably, the expression of RipAL markedly increased the jasmonic acid (JA) and JA-isoleucine levels, and induced the expressions of JA-signaling marker genes in plant leaves. Simultaneously, RipAL greatly reduced the salicylic acid (SA) level and decreased the expression levels of SA-signaling marker genes. Mutations in two putative catalytic residues in the DAD1-like lipase domain abolished the ability of RipAL to induce JA production and suppress SA signaling. Infection of R. solanacearum also induced JA production and simultaneously decreased the SA level in susceptible pepper leaves in a ripAL-dependent manner. The growth of R. solanacearum enhanced in plants with silenced CaICS1, which encodes the SA synthesis enzyme isochorismate synthase 1. These results indicate that SA signaling is involved in the defense response against R. solanacearum and that R. solanacearum uses RipAL to induce JA production and suppress SA signaling in plant cells.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama, Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama, Japan
| |
Collapse
|
50
|
Wei Y, Caceres‐Moreno C, Jimenez‐Gongora T, Wang K, Sang Y, Lozano‐Duran R, Macho AP. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1349-1362. [PMID: 29265643 PMCID: PMC5999195 DOI: 10.1111/pbi.12874] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol ) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Carlos Caceres‐Moreno
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Keke Wang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yuying Sang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Alberto P. Macho
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|