1
|
Pinna C, Nespoli L, Brioschi G, Kunova A, Cortesi P, Martino PA, Molinari F, Musso L, Dallavalle S, Contente ML, Pinto A. Biocatalyzed Synthesis of Benzoyl and Cinnamoylamides Inspired by Rice Phytoalexins. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2025; 5:461-467. [PMID: 40276682 PMCID: PMC12015818 DOI: 10.1021/acsagscitech.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/26/2025]
Abstract
Worldwide, phytopathogenic fungi, bacteria, and viruses are responsible for huge crop losses each year, threatening agricultural progress and food security and causing massive economic damages. Pyricularia oryzae represents one of the most dangerous fungal phytopathogens being the cause of rice blast, a highly destructive disease widely distributed across the world. In this critical context, good agricultural practices necessarily need to be supported using novel, effective, and sustainable agrochemicals. It is known that plants naturally counteract exogenous infections by synthesizing defense secondary metabolites, known as phytoalexins. Inspired by N-benzoyltryptamine and N-cinnamoyltryptamine, two phytoalexins found in Oryza sativa, we designed a collection of tryptamine-based derivatives. The compounds were synthesized exploiting an enzymatic approach, using Candida antarctica Lipase B (CaL-B) as a biocatalyst and tert-amyl alcohol (t-AA) as an unconventional green solvent. The activity was evaluated against a panel of different phytopathogenic fungi as well as selected Gram-negative and Gram-positive bacteria. The obtained results pave the way for novel nature-inspired products as a valuable alternative to currently available pesticides.
Collapse
Affiliation(s)
- Cecilia Pinna
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Luca Nespoli
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Giulia Brioschi
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Kunova
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Paolo Cortesi
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Piera Anna Martino
- Department
of Biomedical, Surgical and Dental Sciences (DSBCO), One Health Unit, University of Milan, via Pascal 36, 20133 Milan, Italy
| | - Francesco Molinari
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Loana Musso
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Sabrina Dallavalle
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Martina L. Contente
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
2
|
Zhou A, Xia M, Chen X, Feng Y, Liu X, Jin Y, Huang L, Kang Z, Zhan G. Virulence, Structure, and Triadimefon Sensitivity of the Puccinia striiformis f. sp. tritici Population in Shaanxi Province, China. PLANT DISEASE 2025; 109:183-197. [PMID: 39215499 DOI: 10.1094/pdis-07-24-1474-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most destructive fungal disease affecting wheat in China, especially in Shaanxi Province, an important epidemiological region connecting the western Pst oversummer regions and the central and eastern spring epidemic regions in the country. In the present study, 291 Pst isolates from Shaanxi Province were studied for their virulence using two sets of wheat differentials, population structure using single-nucleotide polymorphism (SNP) markers, and sensitivity to triadimefon. When the isolates were tested on the Chinese differentials of 19 wheat cultivars, 72 races were identified, which belonged to three groups, including the Guinong 22 group (48.45%), Hybrid 46 group (31.62%), and Suwon 11 group (19.93%). The three most predominant races were CYR34 (15.46%), G22-14 (11.68%), and CYR32 (10.65%). When the isolates were tested on the 18 Yr single-gene differentials, 95 races were identified, but none of the isolates were virulent to either Yr5 or Yr15. Cluster analyses of the virulence data based on the two sets of differentials and the SNP marker data consistently separated the Shaanxi Pst population into two clusters in the central part and southern part of the province. Triadimefon sensitivity testing across different concentrations showed a broad range of half-maximal effective concentration (EC50) values, from 0.03 to 5.99 μg ml-1, with a mean EC50 value of 0.46 μg ml-1. The majority of isolates (90.72%) were sensitive to the fungicide. The correlation analyses of the virulence, SNP marker, and the triadimefon sensitivity data showed no significant correlations, except a logarithmic relationship between the EC50 value and the number of avirulence factors. This study is the first to determine the relationship of virulence and SNP markers with triadimefon sensitivity in a regional Pst population. The findings provide valuable insights for breeding resistant wheat cultivars and integrated management of stripe rust.
Collapse
Affiliation(s)
- Aihong Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minghao Xia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Yaoxuan Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyun Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjin Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Joubert PM, Krasileva KV. Distinct genomic contexts predict gene presence-absence variation in different pathotypes of Magnaporthe oryzae. Genetics 2024; 226:iyae012. [PMID: 38290434 PMCID: PMC10990425 DOI: 10.1093/genetics/iyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence-absence variation contributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence-absence variation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence-absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed gene presence-absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence-absence variation genes involved in host-pathogen and microbe-microbe interactions may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features of presence-absence variation and observed that proximity to transposable elements, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence-absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene is likely to experience presence-absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found that presence-absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. Our results suggest that genomic and epigenomic features of gene presence-absence variation can be used to better understand and predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
5
|
Surovy MZ, Dutta S, Mahmud NU, Gupta DR, Farhana T, Paul SK, Win J, Dunlap C, Oliva R, Rahman M, Sharpe AG, Islam T. Biological control potential of worrisome wheat blast disease by the seed endophytic bacilli. Front Microbiol 2024; 15:1336515. [PMID: 38529179 PMCID: PMC10961374 DOI: 10.3389/fmicb.2024.1336515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Crop production often faces challenges from plant diseases, and biological control emerges as an effective, environmentally friendly, cost-effective, and sustainable alternative to chemical control. Wheat blast disease caused by fungal pathogen Magnaporthe oryzae Triticum (MoT), is a potential catastrophic threat to global food security. This study aimed to identify potential bacterial isolates from rice and wheat seeds with inhibitory effects against MoT. In dual culture and seedling assays, three bacterial isolates (BTS-3, BTS-4, and BTLK6A) demonstrated effective suppression of MoT growth and reduced wheat blast severity when artificially inoculated at the seedling stage. Genome phylogeny identified these isolates as Bacillus subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A). Whole-genome analysis revealed the presence of genes responsible for controlling MoT through antimicrobial defense, antioxidant defense, cell wall degradation, and induced systemic resistance (ISR). Taken together, our results suggest that the suppression of wheat blast disease by seed endophytic B. subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A) is liked with antibiosis and induced systemic resistance to wheat plants. A further field validation is needed before recommending these endophytic bacteria for biological control of wheat blast.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sudipta Dutta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tarin Farhana
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sanjay Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Dunlap
- Crop Bioprotection Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture (USDA), Peoria, IL, United States
| | | | - Mahfuzur Rahman
- W.V.U. Extension Service, West Virginia University, Morgantown, WV, United States
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
6
|
Ascari JP, Cazón LI, Rahnama M, Lamour K, Fernandes JMC, Farman ML, Ponte EMD. Pyricularia Are Mostly Host-Specialized with Limited Reciprocal Cross-Infection Between Wheat and Endemic Grasses in Minas Gerais, Brazil. PHYTOPATHOLOGY 2024; 114:226-240. [PMID: 37399001 DOI: 10.1094/phyto-01-23-0024-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wheat blast, caused by Pyricularia oryzae Triticum (PoT), is an emerging threat to global wheat production. The current understanding of the population biology of the pathogen and epidemiology of the disease has been based on phylogenomic studies that compared the wheat blast pathogen with isolates collected from grasses that were invasive to Brazilian wheat fields. In this study, we performed a comprehensive sampling of blast lesions in wheat crops and endemic grasses found in and away from wheat fields in Minas Gerais. A total of 1,368 diseased samples were collected (976 leaves of wheat and grasses and 392 wheat heads), which yielded a working collection of 564 Pyricularia isolates. We show that, contrary to earlier implications, PoT was rarely found on endemic grasses, and, conversely, members of grass-adapted lineages were rarely found on wheat. Instead, most lineages were host-specialized, with constituent isolates usually grouping according to their host of origin. With regard to the dominant role proposed for signalgrass in wheat blast epidemiology, we found only one PoT member in 67 isolates collected from signalgrass grown away from wheat fields and only three members of Urochloa-adapted lineages among hundreds of isolates from wheat. Cross-inoculation assays on wheat and a signalgrass used in pastures (U. brizantha) suggested that the limited cross-infection observed in the field may be due to innate compatibility differences. Whether or not the observed level of cross-infection would be sufficient to provide an inoculum reservoir, or serve as a bridge between wheat growing regions, is questionable and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- João P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Luis I Cazón
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
- Department of Biology, Tennessee Tech University, Cookeville, TN 38501, U.S.A
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | | | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
7
|
Farman ML, Ascari JP, Rahnama M, Ponte EMD, Pedley KF, Martinez S, Fernandes JMC, Valent B. A Reevaluation of Phylogenomic Data Reveals that Current Understanding in Wheat Blast Population Biology and Epidemiology Is Obfuscated by Oversights in Population Sampling. PHYTOPATHOLOGY 2024; 114:220-225. [PMID: 37486092 DOI: 10.1094/phyto-01-23-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wheat blast, caused by the Pyricularia oryzae Triticum lineage (PoT), first emerged in Brazil and quickly spread to neighboring countries. Its recent appearance in Bangladesh and Zambia highlights a need to understand the disease's population biology and epidemiology so as to mitigate pandemic outbreaks. Current knowledge is mostly based on characterizations of Brazilian wheat blast isolates and comparison with isolates from non-wheat, endemic grasses. These foregoing studies concluded that the wheat blast population lacks host specificity and, as a result, undergoes extensive gene flow with populations infecting non-wheat hosts. Additionally, based on genetic similarity between wheat blast and isolates infecting Urochloa species, it was proposed that the disease originally emerged via a host jump from this grass and that Urochloa likely plays a central role in wheat blast epidemiology owing to its widespread use as a pasture grass. However, due to inconsistencies with broader phylogenetic studies, we suspected that these seminal studies had not actually sampled the populations normally found on endemic grasses and, instead, had repeatedly isolated members of PoT and the related Lolium pathogen lineage (PoL1). Re-analysis of the Brazilian data as part of a comprehensive, global, phylogenomic dataset that included a small number of South American isolates sampled away from wheat confirmed our suspicion and identified four new P. oryzae lineages on grass hosts. As a result, the conclusions underpinning current understanding in wheat blast's evolution, population biology, and epidemiology are unsubstantiated and could be equivocal.
Collapse
Affiliation(s)
- Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Joao P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Kerry F Pedley
- U.S. Department of Agriculture-Agricultural Research Service, Foreign Disease Weed Science Research Unit, Fort Detrick, MD 21702, U.S.A
| | - Sebastián Martinez
- Instituto Nacional de Investigación Agropecuaria, INIA Treinta y Tres, 33000 Treinta y Tres, Uruguay
| | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
8
|
Rahnama M, Condon B, Ascari JP, Dupuis JR, Del Ponte EM, Pedley KF, Martinez S, Valent B, Farman ML. Recent co-evolution of two pandemic plant diseases in a multi-hybrid swarm. Nat Ecol Evol 2023; 7:2055-2066. [PMID: 37945944 PMCID: PMC10697843 DOI: 10.1038/s41559-023-02237-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Most plant pathogens exhibit host specificity but when former barriers to infection break down, new diseases can rapidly emerge. For a number of fungal diseases, there is increasing evidence that hybridization plays a major role in driving host jumps. However, the relative contributions of existing variation versus new mutations in adapting to new host(s) is unclear. Here we reconstruct the evolutionary history of two recently emerged populations of the fungus Pyricularia oryzae that are responsible for two new plant diseases: wheat blast and grey leaf spot of ryegrasses. We provide evidence that wheat blast/grey leaf spot evolved through two distinct mating episodes: the first occurred ~60 years ago, when a fungal individual adapted to Eleusine mated with another individual from Urochloa. Then, about 10 years later, a single progeny from this cross underwent a series of matings with a small number of individuals from three additional host-specialized populations. These matings introduced non-functional alleles of two key host-specificity factors, whose recombination in a multi-hybrid swarm probably facilitated the host jump. We show that very few mutations have arisen since the founding event and a majority are private to individual isolates. Thus, adaptation to the wheat or Lolium hosts appears to have been instantaneous, and driven entirely by selection on repartitioned standing variation, with no obvious role for newly formed mutations.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
- Department of Biology, Tennesse Tech University, Cookeville, TN, USA
| | - Bradford Condon
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - João P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Julian R Dupuis
- Department of Entomology S-225 Agricultural Science Center, University of Kentucky, Lexington, KY, USA
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Kerry F Pedley
- USDA/ARS/Foreign Disease Weed Science Research Unit, Fort Detrick, Frederick, MD, USA
| | - Sebastián Martinez
- Laboratorio de Patología Vegetal, Instituto Nacional de Investigación Agropecuaria, Treinta y Tres, Uruguay
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Nakamoto AA, Joubert PM, Krasileva KV. Intraspecific Variation of Transposable Elements Reveals Differences in the Evolutionary History of Fungal Phytopathogen Pathotypes. Genome Biol Evol 2023; 15:evad206. [PMID: 37975814 PMCID: PMC10691877 DOI: 10.1093/gbe/evad206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Transposable elements (TEs) contribute to intraspecific variation and play important roles in the evolution of fungal genomes. However, our understanding of the processes that shape TE landscapes is limited, as is our understanding of the relationship between TE content, population structure, and evolutionary history of fungal species. Fungal plant pathogens, which often have host-specific populations, are useful systems in which to study intraspecific TE content diversity. Here, we describe TE dynamics in five lineages of Magnaporthe oryzae, the fungus that causes blast disease of rice, wheat, and many other grasses. We identified differences in TE content across these lineages and showed that recent lineage-specific expansions of certain TEs have contributed to overall greater TE content in rice-infecting and Setaria-infecting lineages. We reconstructed the evolutionary histories of long terminal repeat-retrotransposon expansions and found that in some cases they were caused by complex proliferation dynamics of one element and in others by multiple elements from an older population of TEs multiplying in parallel. Additionally, we found evidence suggesting the recent transfer of a DNA transposon between rice- and wheat-infecting M. oryzae lineages and a region showing evidence of homologous recombination between those lineages, which could have facilitated such a transfer. By investigating intraspecific TE content variation, we uncovered key differences in the proliferation dynamics of TEs in various pathotypes of a fungal plant pathogen, giving us a better understanding of the evolutionary history of the pathogen itself.
Collapse
Affiliation(s)
- Anne A Nakamoto
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Surovy MZ, Rahman S, Rostás M, Islam T, von Tiedemann A. Suppressive Effects of Volatile Compounds from Bacillus spp. on Magnaporthe oryzae Triticum (MoT) Pathotype, Causal Agent of Wheat Blast. Microorganisms 2023; 11:1291. [PMID: 37317265 DOI: 10.3390/microorganisms11051291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The Magnaporthe oryzae Triticum (MoT) pathotype is the causal agent of wheat blast, which has caused significant economic losses and threatens wheat production in South America, Asia, and Africa. Three bacterial strains from rice and wheat seeds (B. subtilis BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) were used to explore the antifungal effects of volatile organic compounds (VOCs) of Bacillus spp. as a potential biocontrol mechanism against MoT. All bacterial treatments significantly inhibited both the mycelial growth and sporulation of MoT in vitro. We found that this inhibition was caused by Bacillus VOCs in a dose-dependent manner. In addition, biocontrol assays using detached wheat leaves infected with MoT showed reduced leaf lesions and sporulation compared to the untreated control. VOCs from B. velezensis BTS-4 alone or a consortium (mixture of B. subtilis BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) of treatments consistently suppressed MoT in vitro and in vivo. Compared to the untreated control, VOCs from BTS-4 and the Bacillus consortium reduced MoT lesions in vivo by 85% and 81.25%, respectively. A total of thirty-nine VOCs (from nine different VOC groups) from four Bacillus treatments were identified by gas chromatography-mass spectrometry (GC-MS), of which 11 were produced in all Bacillus treatments. Alcohols, fatty acids, ketones, aldehydes, and S-containing compounds were detected in all four bacterial treatments. In vitro assays using pure VOCs revealed that hexanoic acid, 2-methylbutanoic acid, and phenylethyl alcohol are potential VOCs emitted by Bacillus spp. that are suppressive for MoT. The minimum inhibitory concentrations for MoT sporulation were 250 mM for phenylethyl alcohol and 500 mM for 2-methylbutanoic acid and hexanoic acid. Therefore, our results indicate that VOCs from Bacillus spp. are effective compounds to suppress the growth and sporulation of MoT. Understanding the MoT sporulation reduction mechanisms exerted by Bacillus VOCs may provide novel options to manage the further spread of wheat blast by spores.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Shahinoor Rahman
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| |
Collapse
|
11
|
Rosa SB, Humphreys G, Langille L, Voldeng H, Henriquez MA, Burt AJ, Randhawa HS, Fetch T, Hiebert CW, Blackwell B, Zegeye T, Cummiskey A, Fortier E, Scheeren PL, Turra C, McCallum B. Characterization of Brazilian spring wheat germplasm and its potential for increasing wheat genetic diversity in Canada. Front Genet 2023; 14:1125940. [PMID: 37007938 PMCID: PMC10063806 DOI: 10.3389/fgene.2023.1125940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.
Collapse
Affiliation(s)
- Silvia Barcellos Rosa
- Centre de recherche sur les grains (CÉROM), Saint-Mathieu-de-Beloeil, QC, Canada
- *Correspondence: Silvia Barcellos Rosa,
| | - Gavin Humphreys
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Linda Langille
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Harvey Voldeng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Maria Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Andrew James Burt
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Harpinder Singh Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tom Fetch
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Barbara Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Taye Zegeye
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Allan Cummiskey
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, PEI, Canada
| | - Eric Fortier
- Centre de recherche sur les grains (CÉROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Pedro Luiz Scheeren
- Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA) Trigo, Passo Fundo, Brazil
| | - Camila Turra
- OR Melhoramento de Sementes, Passo Fundo, Brazil
| | - Brent McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
12
|
Feurtey A, Lorrain C, McDonald MC, Milgate A, Solomon PS, Warren R, Puccetti G, Scalliet G, Torriani SFF, Gout L, Marcel TC, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Goodwin SB, Genissel A, Seidl MF, Stukenbrock EH, Lebrun MH, Kema GHJ, McDonald BA, Croll D. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nat Commun 2023; 14:1059. [PMID: 36828814 PMCID: PMC9958100 DOI: 10.1038/s41467-023-36674-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.
Collapse
Affiliation(s)
- Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Megan C McDonald
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Peter S Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rachael Warren
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332, Stein, Switzerland
| | | | | | - Lilian Gout
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Thierry C Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Frédéric Suffert
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 9472, USA
| | | | - Anne Genissel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Michael F Seidl
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
- Utrecht University, Theoretical Biology and Bioinformatics, Utrecht, The Netherlands
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Gert H J Kema
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Bruce A McDonald
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
13
|
Joubert PM, Krasileva KV. Distinct genomic contexts predict gene presence-absence variation in different pathotypes of a fungal plant pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529015. [PMID: 36824763 PMCID: PMC9949116 DOI: 10.1101/2023.02.17.529015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Background Fungi use the accessory segments of their pan-genomes to adapt to their environments. While gene presence-absence variation (PAV) contributes to shaping these accessory gene reservoirs, whether these events happen in specific genomic contexts remains unclear. Additionally, since pan-genome studies often group together all members of the same species, it is uncertain whether genomic or epigenomic features shaping pan-genome evolution are consistent across populations within the same species. Fungal plant pathogens are useful models for answering these questions because members of the same species often infect distinct hosts, and they frequently rely on gene PAV to adapt to these hosts. Results We analyzed gene PAV in the rice and wheat blast fungus, Magnaporthe oryzae, and found that PAV of disease-causing effectors, antibiotic production, and non-self-recognition genes may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features and data from available datasets for patterns that might help explain these PAV events. We observed that proximity to transposable elements (TEs), gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between PAV genes and conserved genes, among other features. We used these features to construct a random forest classifier that was able to predict whether a gene is likely to experience PAV with high precision (86.06%) and recall (92.88%) in rice-infecting M. oryzae. Finally, we found that PAV in wheat- and rice-infecting pathotypes of M. oryzae differed in their number and their genomic context. Conclusions Our results suggest that genomic and epigenomic features of gene PAV can be used to better understand and even predict fungal pan-genome evolution. We also show that substantial intra-species variation can exist in these features.
Collapse
|
14
|
Surovy MZ, Islam T, von Tiedemann A. Role of seed infection for the near and far distance dissemination of wheat blast caused by Magnaporthe oryzae pathotype Triticum. Front Microbiol 2023; 14:1040605. [PMID: 36819053 PMCID: PMC9929367 DOI: 10.3389/fmicb.2023.1040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Magnaporthe oryzae pathotype Triticum (MoT) is a devastating fungal phytopathogen causing wheat blast disease which threatens wheat production particularly in warmer climate zones. Effective disease control is hampered by the limited knowledge on the life cycle, epidemiology, and pathogenicity of MoT. Since MoT mainly infects and colonizes the inflorescences of wheat, infection, invasion routes and colonization of MoT on wheat ears and in wheat seeds were investigated in order to assess potential seed transmission pathways. MoT was spray inoculated on two wheat cultivars (Sumai 3, susceptible and Milan, resistant) at three ear maturity stages [full ear emergence, growth stage (GS) 59; mid flowering, GS 65; and end of flowering, GS 69]. Incidence of MoT on Sumai 3 seeds was 100% and 20-25% on Milan. MoT sporulation rate on Sumai 3 contaminated seeds was more than 15 times higher than on Milan. Repeated washes of seed samples for removing paraffin fixation hampers seed microscopy. To overcome the damage of seed samples, we used hand-sectioned seed samples instead of paraffin-fixed microtome samples to facilitate microscopy. The colonization of MoT within various seed tissues was followed by light and confocal laser scanning microscopy (CLSM). Invasion of MoT in seeds predominantly occurred in the caryopsis germ region, but entry via other seed parts was also observed, confirming the potential of intense colonization of MoT in wheat grains. Fungal spread in wheat plants growing from MoT infected seeds was monitored through plating, microscopic and molecular techniques. Under greenhouse conditions, no spread of MoT from infected seeds to seedlings later than GS 21 or to ears was detected, neither in Milan nor in Sumai 3. We therefore conclude, that MoT may not systemically contaminate inflorescences and seeds in neither susceptible nor resistant wheat cultivars. However, initial blast symptoms, only found on seedlings of Sumai 3 but not Milan, resulted in the formation of new conidia, which may serve as inoculum source for plant-to-plant dissemination by airborne infection of plant stands in the field (short distance spread). Ultimately the inoculum may infect young inflorescences in the field and contaminate seeds. Our findings again stress the risk of long-distance dissemination of wheat blast across continents through MoT-contaminated seeds. This underlines the importance of mandatory use of healthy seeds in strategies to control any further spread of wheat blast.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Exploration of Novel Scaffolds Targeting Cytochrome b of Pyricularia oryzae. Int J Mol Sci 2023; 24:ijms24032705. [PMID: 36769028 PMCID: PMC9917009 DOI: 10.3390/ijms24032705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of P. oryzae cytochrome bc1 (cyt bc1) complex to perform a high-throughput virtual screening of two commercially available compound libraries. Three chemotypes were selected, from which a small collection of differently substituted analogues was designed and synthesized. The compounds were tested as inhibitors of the cyt bc1 enzyme function and the mycelium growth of both strobilurin-sensitive (WT) and -resistant (RES) P. oryzae strains. This pipeline has permitted the identification of thirteen compounds active against the RES cyt bc1 and five compounds that inhibited the WT cyt bc1 function while inhibiting the fungal mycelia only minimally. Serendipitously, among the studied compounds we identified a new chemotype that is able to efficiently inhibit the mycelium growth of WT and RES strains by ca. 60%, without inhibiting the cyt bc1 enzymatic function, suggesting a different mechanism of action.
Collapse
|
16
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
17
|
Sotiropoulos AG, Arango-Isaza E, Ban T, Barbieri C, Bourras S, Cowger C, Czembor PC, Ben-David R, Dinoor A, Ellwood SR, Graf J, Hatta K, Helguera M, Sánchez-Martín J, McDonald BA, Morgounov AI, Müller MC, Shamanin V, Shimizu KK, Yoshihira T, Zbinden H, Keller B, Wicker T. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun 2022; 13:4315. [PMID: 35882860 PMCID: PMC9315327 DOI: 10.1038/s41467-022-31975-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
The fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease. Here, we study its spread and evolution by analyzing a global sample of 172 mildew genomes. Our analyses show that B.g. tritici emerged in the Fertile Crescent during wheat domestication. After it spread throughout Eurasia, colonization brought it to America, where it hybridized with unknown grass mildew species. Recent trade brought USA strains to Japan, and European strains to China. In both places, they hybridized with local ancestral strains. Thus, although mildew spreads by wind regionally, our results indicate that humans drove its global spread throughout history and that mildew rapidly evolved through hybridization.
Collapse
Affiliation(s)
| | - Epifanía Arango-Isaza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Cowger
- USDA-ARS Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Paweł C Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Roi Ben-David
- Department of Vegetables and Field crops, Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Amos Dinoor
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Koichi Hatta
- Hokkaido Agricultural Research Center Field Crop Research and Development, National Agricultural Research Organization, Sapporo, Hokkaido, Japan
| | - Marcelo Helguera
- Centro de Investigaciones Agropecuarias (CIAP), INTA, Córdoba, Argentina
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alexey I Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Taiki Yoshihira
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Helen Zbinden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Paul SK, Chakraborty M, Rahman M, Gupta DR, Mahmud NU, Rahat AAM, Sarker A, Hannan MA, Rahman MM, Akanda AM, Ahmed JU, Islam T. Marine Natural Product Antimycin A Suppresses Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. J Fungi (Basel) 2022; 8:jof8060618. [PMID: 35736101 PMCID: PMC9225063 DOI: 10.3390/jof8060618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
The application of chemical pesticides to protect agricultural crops from pests and diseases is discouraged due to their harmful effects on humans and the environment. Therefore, alternative approaches for crop protection through microbial or microbe-originated pesticides have been gaining momentum. Wheat blast is a destructive fungal disease caused by the Magnaporthe oryzae Triticum (MoT) pathotype, which poses a serious threat to global food security. Screening of secondary metabolites against MoT revealed that antimycin A isolated from a marine Streptomyces sp. had a significant inhibitory effect on mycelial growth in vitro. This study aimed to investigate the inhibitory effects of antimycin A on some critical life stages of MoT and evaluate the efficacy of wheat blast disease control using this natural product. A bioassay indicated that antimycin A suppressed mycelial growth (62.90%), conidiogenesis (100%), germination of conidia (42%), and the formation of appressoria in the germinated conidia (100%) of MoT at a 10 µg/mL concentration. Antimycin A suppressed MoT in a dose-dependent manner with a minimum inhibitory concentration of 0.005 μg/disk. If germinated, antimycin A induced abnormal germ tubes (4.8%) and suppressed the formation of appressoria. Interestingly, the application of antimycin A significantly suppressed wheat blast disease in both the seedling (100%) and heading stages (76.33%) of wheat at a 10 µg/mL concentration, supporting the results from in vitro study. This is the first report on the inhibition of mycelial growth, conidiogenesis, conidia germination, and detrimental morphological alterations in germinated conidia, and the suppression of wheat blast disease caused by a Triticum pathotype of M. Oryzae by antimycin A. Further study is required to unravel the precise mode of action of this promising natural compound for considering it as a biopesticide to combat wheat blast.
Collapse
Affiliation(s)
- Sanjoy Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Mahfuzur Rahman
- Extension Service, Davis College of Agriculture, West Virginia University, Morgantown, WV 26506, USA;
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Abdul Mannan Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Jalal Uddin Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
- Correspondence:
| |
Collapse
|
19
|
Navia-Urrutia M, Mosquera G, Ellsworth R, Farman M, Trick HN, Valent B. Effector Genes in Magnaporthe oryzae Triticum as Potential Targets for Incorporating Blast Resistance in Wheat. PLANT DISEASE 2022; 106:1700-1712. [PMID: 34931892 DOI: 10.1094/pdis-10-21-2209-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.
Collapse
Affiliation(s)
- Monica Navia-Urrutia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gloria Mosquera
- Rice Pathology, International Center for Tropical Agriculture, Palmira, 763537, Colombia
| | - Rebekah Ellsworth
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
20
|
Khan H, Wani SH, Bhardwaj SC, Rani K, Bishnoi SK, Singh GP. Wheat spike blast: genetic interventions for effective management. Mol Biol Rep 2022; 49:5483-5494. [PMID: 35478296 DOI: 10.1007/s11033-022-07356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The fundamental concepts of the genetics, race classification and epidemiology of the Wheat spike blast causing fungus Magnaporthe oryzae pathotype Triticum (MoT) are still evolving despite of its discovery in 1985 in Brazil for the first time. The fungus seems to defy the research progress that is being made globally by continuously evolving into pathotypes which have already overcome the much celebrated 2NS resistance in wheat lines as well as few of the initially effective fungicides. The compartmentalized i.e. two speed genome of the MoT, conferring the fungus an evolutionary advantage, has emerged as a challenge for the wheat spike blast researchers complicating its already difficult management. The airborne fungus with a range of alternative hosts is finding new geographical niches situated on different continents and is a matter of great apprehension among the nations whose food security is primarily dependent on wheat. The wheat blast outbreak in Bangladesh during 2016 was attributed to an isolate from Latin America escaping through a seed import consignment while the latest Zambian outbreak is still to be studied in detail regarding its origin and entry. The challenges in dealing wheat spike blast are not only on the level of genetics and epidemiology alone but also on the levels of policy making regarding international seed movement and research collaborations. The present review deals with these issues mainly concerning the effective management and controlling the international spread of this deadly disease of wheat, with a particular reference to India. We describe the origin, taxonomy, epidemiology and symptomology of MoT and briefly highlight its impact and management practices from different countries. We also discuss the advances in genomics and genome editing technologies that can be used to develop elite wheat genotypes resistant against different stains of wheat spike blast.
Collapse
Affiliation(s)
- Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, 132001, Karnal, Haryana, India.
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192101, Khudwani, J & K, India
| | - Subhash Chander Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171 002, Shimla, Himachal Pradesh, India
| | - Kirti Rani
- ICAR-Directorate of Groundnut Research (DGR), 362001, Junagadh, Gujarat, India
| | - Santosh Kumar Bishnoi
- ICAR- Indian Institute of Wheat and Barley Research, Seed & Research Farm, 125001, Hisar, Haryana, India
| | | |
Collapse
|
21
|
Phuke RM, He X, Juliana P, Kabir MR, Roy KK, Marza F, Roy C, Singh GP, Chawade A, Joshi AK, Singh PK. Identification of Genomic Regions and Sources for Wheat Blast Resistance through GWAS in Indian Wheat Genotypes. Genes (Basel) 2022; 13:596. [PMID: 35456402 PMCID: PMC9025667 DOI: 10.3390/genes13040596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq® technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions.
Collapse
Affiliation(s)
- Rahul M. Phuke
- ICAR-Indian Agriculture Research Institute, Regional Station, Indore 452001, India;
- ICAR-Central Institute for Cotton Research, Nagpur 440010, India
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico;
| | - Philomin Juliana
- Borlaug Institute for South Asia (BISA)/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz 3798, Bolivia;
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour 813210, India;
| | - Gyanendra P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Maharaja Agarsain Marg, P.O. Box 158, Karnal 132001, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| | - Arun K. Joshi
- Borlaug Institute for South Asia (BISA)/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico;
| |
Collapse
|
22
|
Impact of Fungi on Agriculture Production, Productivity, and Sustainability. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ascari JP, Barro JP, Santana FM, Padua JMV, Maciel JLN, Lau D, Torres GAM, Sbalcheiro CC, Seixas CDS, Goulart ACP, Sussel AAB, Schipanski CA, Chagas DF, Coelho MAO, Montecelli TDN, Amaral DR, Custódio AAP, Moreira LSO, Utiamada CM, Venâncio WS, Goussain RCS, Alves KS, Del Ponte EM. Sequential Post-Heading Applications for Controlling Wheat Blast: A 9-Year Summary of Fungicide Performance in Brazil. PLANT DISEASE 2021; 105:4051-4059. [PMID: 34270912 DOI: 10.1094/pdis-06-21-1183-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat blast, caused by Pyricularia oryzae Triticum lineage, is a major constraint to wheat production, mainly in the tropics of Brazil, where severe epidemics have been more frequent. We analyzed disease and wheat yield data from 42 uniform field trials conducted over 9 years (2012 to 2020) to assess whether the percent control and yield response were influenced by fungicide type, region (tropical or subtropical), and year. Six treatments were selected, all evaluated in at least 19 trials. Two fungicides were applied as solo active ingredients (MANCozeb, and TEBUconazole), and four were premixes (AZOXystrobin plus TEBU, TriFLoXystrobin plus PROThioconazole, TFLX plus TEBU, and PYRAclostrobin plus EPOXiconazole). Percent control, calculated from back-transforming estimates by a meta-analysis network model fitted to the log of the means, ranged from 43 to 58%, with all but PYRA plus EPOX showing efficacy >52% on average, not differing among them. The variation in both efficacy and yield response was explained by region, and all but TEBU performed better in the subtropics than in the tropics. Yield response from using three sequential sprays was approximately two times greater in the subtropics (319 to 532 kg/ha) than in the tropics (149 to 241.3 kg/ha). No significant decline in fungicide efficacy or yield response was observed in 9 years of study for any of the fungicides. These results reinforce the need to improve control by adopting an integrated management approach in the tropics given poorer performance and lower profitability, especially for the premixes, than in the subtropics.
Collapse
Affiliation(s)
- João P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Jhonatan P Barro
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Flávio M Santana
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | - José M V Padua
- Departamento de Agricultura, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - João L N Maciel
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | - Douglas Lau
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | | | | | | | | | | | - Carlos A Schipanski
- G12 Agro Pesquisa e Consultoria Agronômica, Guarapuava, 85015-344, Paraná, Brazil
| | - Débora F Chagas
- G12 Agro Pesquisa e Consultoria Agronômica, Guarapuava, 85015-344, Paraná, Brazil
| | - Maurício A O Coelho
- Empresa de Pesquisa Agropecuária de Minas Gerais, Patos de Minas, 38700-970, Minas Gerais, Brazil
| | | | - Daniel R Amaral
- Instituto Federal do Triângulo Mineiro Uberaba, 38064-790, Minas Gerais, Brazil
| | - Adriano A P Custódio
- Área de Proteção de Plantas, Instituto Agronômico do Paraná, Londrina, 86047-902, Paraná, Brazil
| | - Lucas S O Moreira
- Área de Proteção de Plantas, Instituto Agronômico do Paraná, Londrina, 86047-902, Paraná, Brazil
| | | | - Wilson S Venâncio
- Estação Experimental Agrícola Campos Gerais, Palmeira, 84130-000, Paraná, Brazil
| | - Rita C S Goussain
- Instituto Federal do Mato Grosso, Campo Verde, 78840-000, Mato Grosso, Brazil
| | - Kaique S Alves
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
24
|
Mehta S, Kumar A, Achary VMM, Ganesan P, Rathi N, Singh A, Sahu KP, Lal SK, Das TK, Reddy MK. Antifungal activity of glyphosate against fungal blast disease on glyphosate-tolerant OsmEPSPS transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111009. [PMID: 34482912 DOI: 10.1016/j.plantsci.2021.111009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Weeds, pests, and pathogens are among the pre-harvest constraints in rice farming across rice-growing countries. For weed management, manual weeding and herbicides are widely practiced. Among the herbicides, glyphosate [N-(phosphonomethyl) glycine] is a broad-spectrum systemic chemical extensively used in agriculture. Being a competitive structural analog to phosphoenolpyruvate, it selectively inhibits the conserved 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme required for the biosynthesis of aromatic amino acids and essential metabolites in eukaryotes and prokaryotes. In the present study, we investigated the antifungal and defense elicitor activity of glyphosate against Magnaporthe oryzae on transgenic-rice overexpressing a glyphosate-resistance OsEPSPS gene (T173I + P177S; TIPS OsmEPSPS) for blast disease management. The glyphosate foliar spray on OsmEPSPS transgenic rice lines showed both prophylactic and curative suppression of blast disease comparable to a blasticide, tricyclazole. The glyphosate displayed direct antifungal activity on Magnaporthe oryzae as well as enhanced the levels of antioxidant enzymes and photosynthetic pigments in rice. However, the genes associated with phytohormones-mediated defense (OsPAD4, OsNPR1.3, and OsFMO) and innate immunity pathway (OsCEBiP and OsCERK1) were found repressed upon glyphosate spray. Altogether, the current study is the first report highlighting the overexpression of a crop-specific TIPS mutation in conjugation with glyphosate application showing potential for blast disease management in rice cultivation.
Collapse
Affiliation(s)
- Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakash Ganesan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelmani Rathi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asmita Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shambhu Krishan Lal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - T K Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
25
|
Gupta DR, Khanom S, Rohman MM, Hasanuzzaman M, Surovy MZ, Mahmud NU, Islam MR, Shawon AR, Rahman M, Abd-Elsalam KA, Islam T. Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2127-2139. [PMID: 34629783 PMCID: PMC8484409 DOI: 10.1007/s12298-021-01057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Wheat blast caused by the hemibiotroph fungal pathogen Magnaporthe oryzae Triticum (MoT) pathotype is a destructive disease of wheat in South America, Bangladesh and Zambia. This study aimed to determine and compare the activities of antioxidant enzymes in susceptible (wheat, maize, barley and swamp rice grass) and resistant (rice) plants when interacting with MoT. The activities of reactive oxygen species-detoxifying enzymes; catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione S-transferase (GST), peroxidase (POX) were increased in all plants in response to MoT inoculation with a few exceptions. Interestingly, an early and very high activity of CAT was observed within 24 h after inoculation in wheat, barley, maize and swamp rice grass with lower H2O2 concentration. In contrast, an early and high accumulation of H2O2 was observed in rice at 48 hai with little CAT activity only at a later stage of MoT inoculation. The activities of APX, GST and POD were also high at an early stage of infection in rice. However, these enzymes activities were very high at a later stage in wheat, barley, maize and swamp rice grass. The activity of GPX gradually decreased with the increase of time in rice. Taken together, our results suggest that late and early inductions of most of the antioxidant enzyme activities occurs in susceptible and resistant plants, respectively. This study demonstrates some insights into physiological responses of host and non-host plants when interacting with the devastating wheat blast fungus MoT, which could be useful for developing blast resistant wheat.
Collapse
Affiliation(s)
- Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Sanjida Khanom
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Robyul Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Ashifur Rahman Shawon
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Mahfuzur Rahman
- Agriculture and Natural Resources, Extension Service, West Virginia University, Morgantown, WV 26506 USA
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619 Egypt
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| |
Collapse
|
26
|
Singh PK, Gahtyari NC, Roy C, Roy KK, He X, Tembo B, Xu K, Juliana P, Sonder K, Kabir MR, Chawade A. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:710707. [PMID: 34367228 PMCID: PMC8343232 DOI: 10.3389/fpls.2021.710707] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 05/26/2023]
Abstract
Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.
Collapse
Affiliation(s)
- Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Navin C. Gahtyari
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, BAC, Bihar Agricultural University, Sabour, India
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - B. Tembo
- Zambia Agricultural Research Institute (ZARI), Chilanga, Zambia
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
27
|
Fernández-Campos M, Huang YT, Jahanshahi MR, Wang T, Jin J, Telenko DEP, Góngora-Canul C, Cruz CD. Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:673505. [PMID: 34220894 PMCID: PMC8248543 DOI: 10.3389/fpls.2021.673505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 05/21/2023]
Abstract
Wheat blast is a threat to global wheat production, and limited blast-resistant cultivars are available. The current estimations of wheat spike blast severity rely on human assessments, but this technique could have limitations. Reliable visual disease estimations paired with Red Green Blue (RGB) images of wheat spike blast can be used to train deep convolutional neural networks (CNN) for disease severity (DS) classification. Inter-rater agreement analysis was used to measure the reliability of who collected and classified data obtained under controlled conditions. We then trained CNN models to classify wheat spike blast severity. Inter-rater agreement analysis showed high accuracy and low bias before model training. Results showed that the CNN models trained provide a promising approach to classify images in the three wheat blast severity categories. However, the models trained on non-matured and matured spikes images showing the highest precision, recall, and F1 score when classifying the images. The high classification accuracy could serve as a basis to facilitate wheat spike blast phenotyping in the future.
Collapse
Affiliation(s)
| | - Yu-Ting Huang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
| | - Mohammad R. Jahanshahi
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Tao Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Jian Jin
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Darcy E. P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Carlos Góngora-Canul
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tecnológico Nacional de México/IT Conkal, Conkal, Yucatán, Mexico
| | - C. D. Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Identification of Fusarium head blight resistance loci in two Brazilian wheat mapping populations. PLoS One 2021; 16:e0248184. [PMID: 33684152 PMCID: PMC7939358 DOI: 10.1371/journal.pone.0248184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) is a disease of wheat (Triticum aestivum L.) that causes major yield losses in South America, as well as many other wheat growing regions around the world. FHB results in low quality, contaminated grain due to the production of mycotoxins such as deoxynivalenol (DON). In Brazil, FHB outbreaks are increasing in frequency and are currently controlled by fungicides which are costly and potentially harmful to the wider environment. To identify the genetic basis of resistance to FHB in Brazilian wheat, two mapping populations (Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179) segregating for FHB resistance were phenotyped and quantitative trait loci (QTL) analysis was undertaken to identify genomic regions associated with FHB-related traits. A total of 14 QTL associated with FHB visual symptoms were identified, each of which explained 3.7–17.3% of the phenotypic variance. Two of these QTL were stable across environments. This suggests FHB resistance in Anahuac 75, BR 18-Terena and BRS 179 is controlled by multiple genetic loci that confer relatively minor differences in resistance. A major, novel QTL associated with DON accumulation was also identified on chromosome 4B (17.8% of the phenotypic variance), as well as a major QTL associated with thousand-grain weight on chromosome 6B (16.8% phenotypic variance). These QTL could be useful breeding targets, when pyramided with major sources of resistance such as Fhb1, to improve grain quality and reduce the reliance on fungicides in Brazil and other countries affected by FHB.
Collapse
|
29
|
Mills KB, Salgado JD, Cruz CD, Valent B, Madden LV, Paul PA. Comparing the Temporal Development of Wheat Spike Blast Epidemics in a Region of Bolivia Where the Disease Is Endemic. PLANT DISEASE 2021; 105:96-107. [PMID: 33197378 DOI: 10.1094/pdis-04-20-0876-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epidemics of wheat blast, caused the Triticum pathotype of Magnaporthe oryzae, were studied in the Santa Cruz del la Sierra region of Bolivia to quantify and compare the temporal dynamics of the disease under different growing conditions. Six plots of a susceptible wheat cultivar were planted at Cuatro Cañadas (CC), Okinawa 1 (OK1), and Okinawa 2 (OK2) in 2015. Spike blast incidence (INC) and severity (SEV) and leaf blast severity (LEAF) were quantified in each plot at regular intervals on a 10 × 10 grid (n = 100 clusters of spikes), beginning at head emergence (Feekes growth stage 10.5), for a total of nine assessments at CC, six at OK1, and six at OK2. Spike blast increased over time for 20 to 30 days before approaching a mean INC of 100% and a mean SEV of 60 to 75%. The logistic model was the most appropriate for describing the temporal dynamics of spike blast. The highest absolute rates of disease increase occurred earliest at OK1 and latest at OK2, and in all cases it coincided with major rain events. Estimated y0 values (initial blast intensity) were significantly (P < 0.05) higher at OK1 than at CC or OK2, whereas rL values (the logistic rate parameter) were significantly higher at OK2 than at CC or OK1. It took about 10 fewer days for SEV to reach 10, 15, or 20% at OK1 compared with OK2 and CC. Based on survival analyses, the survivor functions for time to 10, 15 and 20% SEV (ts) were significantly different between OK1 and the other locations, with the probabilities of SEV reaching the thresholds being highest at OK1. LEAF at 21 days after Feekes 10.5 had a significant effect on ts at OK1. For every 5% increase in LEAF, the chance of SEV reaching the thresholds by day 21 increased by 30 to 55%.
Collapse
Affiliation(s)
- Karasi B Mills
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Jorge D Salgado
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Christian D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
30
|
Inoue Y, Vy TTP, Tani D, Tosa Y. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. THE NEW PHYTOLOGIST 2021; 229:488-500. [PMID: 32852846 DOI: 10.1111/nph.16894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Wheat blast caused by the Triticum pathotype of Pyricularia oryzae poses a serious threat to wheat production in South America and Asia and is now becoming a pandemic disease. Here, we show that Rmg8, a promising wheat gene for resistance breeding, is suppressed by PWT4, an effector gene of P. oryzae, and in turn that the suppression is counteracted by Rwt4, a wheat gene recognizing PWT4. When PWT4 was introduced into a wheat blast isolate carrying AVR-Rmg8 (an avirulence gene corresponding to Rmg8), PWT4 suppressed wheat resistance conferred by Rmg8. PWT4 did not alter the expression of AVR-Rmg8, but higher expression of PWT4 led to more efficient suppression. This suppression was observed in rwt4 carriers, but not in Rwt4 carriers, indicating that it is counteracted by Rwt4. PWT4 was assumed to have been horizontally transferred from a weed-associated cryptic species, P. pennisetigena, to an Avena isolate of P. oryzae in Brazil. This implies a potential risk of the acquisition of PWT4 by the wheat blast fungus and the 'breakdown' of Rmg8. We suggest that Rmg8 should be introduced together with Rwt4 into a wheat cultivar when it is used for resistance breeding.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Trinh Thi Phuoug Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Daichi Tani
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
31
|
Weldon WA, Knaus BJ, Grünwald NJ, Havill JS, Block MH, Gent DH, Cadle-Davidson LE, Gadoury DM. Transcriptome-Derived Amplicon Sequencing Markers Elucidate the U.S. Podosphaera macularis Population Structure Across Feral and Commercial Plantings of Humulus lupulus. PHYTOPATHOLOGY 2021; 111:194-203. [PMID: 33044132 DOI: 10.1094/phyto-07-20-0299-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.
Collapse
Affiliation(s)
- William A Weldon
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR 97330
| | - Joshua S Havill
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Mary H Block
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - David H Gent
- U.S. Department of Agriculture-Agricultural Research Service Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Lance E Cadle-Davidson
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
- U.S. Department of Agriculture-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456
| | - David M Gadoury
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
32
|
Mills KB, Madden LV, Paul PA. Quantifying the Effects of Temperature and Relative Humidity on the Development of Wheat Blast Incited by the Lolium Pathotype of Magnaporthe oryzae. PLANT DISEASE 2020; 104:2622-2633. [PMID: 32804014 DOI: 10.1094/pdis-12-19-2709-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Triticum pathotype of Magnaporthe oryzae (MoT) that causes wheat blast has not yet been reported in the U.S., but the closely related M. oryzae Lolium pathotype (MoL), also capable of inciting blast, is found in several wheat growing regions. Since the epidemiology of MoL-incited wheat blast is unknown, it is difficult to project where and under what conditions this pathogen may be of importance. To quantify conditions favorable for MoL infection and temporal development of wheat blast, separate cohorts of wheat spikes were spray or point inoculated at anthesis and immediately subjected to different combinations of temperature (TEMP; 20, 25, and 30°C) and 100% relative humidity (RH) duration (0, 3, 6, 12, 24, and 48 h). Blast developed under all tested conditions, with both incidence (INC) and severity (SEV) increasing over time. The effects of TEMP on angular-transformed INC and SEV (arcINC and arcSEV) were significant (P < 0.05) in most cases, with the magnitude of the TEMP effect influenced by RH duration when spikes were spray-inoculated. Between 12 and 21 days after inoculation (DAI), there were significant, positive linear relationships between hours of high RH and arcINC and arcSEV at 25 and 30°C, but not at 20°C. The estimated rates of increase in transformed INC or SEV per hour increase in high RH duration were significantly higher at 30°C than at 25°C at 12 to 14 DAI, but not at 19 to 21 DAI. The highest estimated temporal rates of increase in INC and SEV and the shortest estimated incubation periods (5 to 8 days) occurred at 25 and 30°C, with 24 and 48 h of high RH immediately after inoculation. These results will contribute to ongoing efforts to better understand the epidemiology of wheat blast incited by MoL as well as MoT.
Collapse
Affiliation(s)
- Karasi B Mills
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
33
|
Crandall SG, Gold KM, Jiménez-Gasco MDM, Filgueiras CC, Willett DS. A multi-omics approach to solving problems in plant disease ecology. PLoS One 2020; 15:e0237975. [PMID: 32960892 PMCID: PMC7508392 DOI: 10.1371/journal.pone.0237975] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The swift rise of omics-approaches allows for investigating microbial diversity and plant-microbe interactions across diverse ecological communities and spatio-temporal scales. The environment, however, is rapidly changing. The introduction of invasive species and the effects of climate change have particular impact on emerging plant diseases and managing current epidemics. It is critical, therefore, to take a holistic approach to understand how and why pathogenesis occurs in order to effectively manage for diseases given the synergies of changing environmental conditions. A multi-omics approach allows for a detailed picture of plant-microbial interactions and can ultimately allow us to build predictive models for how microbes and plants will respond to stress under environmental change. This article is designed as a primer for those interested in integrating -omic approaches into their plant disease research. We review -omics technologies salient to pathology including metabolomics, genomics, metagenomics, volatilomics, and spectranomics, and present cases where multi-omics have been successfully used for plant disease ecology. We then discuss additional limitations and pitfalls to be wary of prior to conducting an integrated research project as well as provide information about promising future directions.
Collapse
Affiliation(s)
- Sharifa G. Crandall
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Kaitlin M. Gold
- Plant Pathology & Plant Microbe Biology Section, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Camila C. Filgueiras
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - Denis S. Willett
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| |
Collapse
|
34
|
Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC, Singh PK, He X, Pedley KF, Peterson GL, Singh RP, Braun HJ. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS One 2020; 15:e0238724. [PMID: 32956369 PMCID: PMC7505438 DOI: 10.1371/journal.pone.0238724] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022] Open
Abstract
Wheat blast caused by Magnaporthe oryzae pathotype Triticum (MoT) is a threat to wheat production especially in the warmer-humid environments. In Zambia, wheat blast symptoms were observed for the first time on wheat (Triticum aestivum L.) grown in experimental plots and five farmers’ fields in Mpika district of Muchinga Province during the 2017–18 rainy season. Infected plants showed the typical wheat blast symptoms with the spike becoming partially or completely bleached with the blackening of the rachis in a short span of time. Incidence of blast symptoms on nearly all wheat heads was high and ranged from 50 to 100%. Examination of diseased plant leaves showed the presence of elliptical, grayish to tan necrotic lesions with dark borders on the leaf often mixed with other foliar diseases. A study was conducted to isolate and identify the causal pathogen(s) using classical and molecular methods and determine the pathogenicity of the detected disease causal agent. Morphobiometrical determination of causal pathogen revealed conidia with characteristic pear shaped 2-septate hyaline spores associated with M. oryzae species. Preliminary polymerase chain reaction screening of six isolates obtained from wheat blast infected samples with diagnostic primers (MoT3F/R) was conducted at ZARI, Zambia, and subsequent analysis of two isolates with MoT3F/R and C17F/R was performed at USDA-ARS, USA. Both experiments confirmed that MoT is the causal agent of wheat blast in Zambia. Further, pathogenicity tests performed with pure culture isolates from samples WS4 and WS5 produced typical blast symptoms on all the six inoculated wheat genotypes. Results of this study indicate that MoT is causing wheat blast in rain-fed wheat grown in Zambia, thus making it the first report of MoT in Zambia and Africa. This inter-continental movement of the pathogen (disease) has serious implication for wheat production and trade that needs to be urgently addressed.
Collapse
Affiliation(s)
- Batiseba Tembo
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Rabson M. Mulenga
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
- * E-mail: (RMM); (PKS)
| | - Suwilanji Sichilima
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Kenneth K. M’siska
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Moses Mwale
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Patrick C. Chikoti
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
- * E-mail: (RMM); (PKS)
| | - Xinyao He
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| | - Kerry F. Pedley
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Ft. Detrick, Maryland, United States of America
| | - Gary L. Peterson
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Ft. Detrick, Maryland, United States of America
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| | - Hans J. Braun
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| |
Collapse
|
35
|
Goddard R, Steed A, Chinoy C, Ferreira JR, Scheeren PL, Maciel JLN, Caierão E, Torres GAM, Consoli L, Santana FM, Fernandes JMC, Simmonds J, Uauy C, Cockram J, Nicholson P. Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC PLANT BIOLOGY 2020; 20:398. [PMID: 32854622 PMCID: PMC7451118 DOI: 10.1186/s12870-020-02592-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/12/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is a global threat to wheat (Triticum aestivum L.) production. Few blast resistance (R) genes have been identified to date, therefore assessing potential sources of resistance in wheat is important. The Brazilian wheat cultivar BR 18-Terena is considered one of the best sources of resistance to blast and has been widely used in Brazilian breeding programmes, however the underlying genetics of this resistance are unknown. RESULTS BR 18-Terena was used as the common parent in the development of two recombinant inbred line (RIL) F6 populations with the Brazilian cultivars Anahuac 75 and BRS 179. Populations were phenotyped for resistance at the seedling and heading stage using the sequenced MoT isolate BR32, with transgressive segregation being observed. Genetic maps containing 1779 and 1318 markers, were produced for the Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179 populations, respectively. Five quantitative trait loci (QTL) associated with seedling resistance, on chromosomes 2B, 4B (2 QTL), 5A and 6A, were identified, as were four QTL associated with heading stage resistance (1A, 2B, 4A and 5A). Seedling and heading stage QTL did not co-locate, despite a significant positive correlation between these traits, indicating that resistance at these developmental stages is likely to be controlled by different genes. BR 18-Terena provided the resistant allele for six QTL, at both developmental stages, with the largest phenotypic effect conferred by a QTL being 24.8% suggesting that BR 18-Terena possesses quantitative resistance. Haplotype analysis of 100 Brazilian wheat cultivars indicates that 11.0% of cultivars already possess a BR 18-Terena-like haplotype for more than one of the identified heading stage QTL. CONCLUSIONS This study suggests that BR 18-Terena possesses quantitative resistance to wheat blast, with nine QTL associated with resistance at either the seedling or heading stage being detected. Wheat blast resistance is also largely tissue-specific. Identification of durable quantitative resistances which can be combined with race-specific R gene-mediated resistance is critical to effectively control wheat blast. Collectively, this work facilitates marker-assisted selection to develop new varieties for cultivation in regions at risk from this emerging disease.
Collapse
Affiliation(s)
- Rachel Goddard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Catherine Chinoy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
36
|
Savary S, Willocquet L. Modeling the Impact of Crop Diseases on Global Food Security. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:313-341. [PMID: 32511041 DOI: 10.1146/annurev-phyto-010820-012856] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant pathology must contribute to improving food security in a safe operating space, which is shrinking as a result of declining natural resources, climate change, and the growing world population. This review analyzes the position of plant pathology in a nexus of relationships, which is mapped and where the coupled dynamics of crop growth, disease, and yield losses are modeled. We derive a hierarchy of pathogens, whereby pathogens reducing radiation interception (RI), radiation use efficiency (RUE), and harvest index increasingly impact crop yields in the approximate proportions: 1:4.5:4,700. Since the dawn of agriculture, plant breeding has targeted the harvest index as a main objective for domesticated plants. Surprisingly, the literature suggests that pathogens that reduce yields by directly damaging harvestable plant tissues have received much less attention than those that reduce RI or RUE. Ecological disease management needs to target diverse production situations and therefore must consider variation in attainable yields; this can be achieved through the reengineering of agrosystems to incorporate built-in dynamic diversity of genes, plants, and crop stands.
Collapse
Affiliation(s)
- Serge Savary
- INRAE, Université de Toulouse, UMR AGIR, F-31320, Castanet-Tolosan, France;
| | | |
Collapse
|
37
|
Chakraborty M, Mahmud NU, Muzahid ANM, Rabby SMF, Islam T. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS One 2020; 15:e0233665. [PMID: 32804955 PMCID: PMC7430738 DOI: 10.1371/journal.pone.0233665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Oligomycins are macrolide antibiotics, produced by Streptomyces spp. that show antagonistic effects against several microorganisms such as bacteria, fungi, nematodes and the oomycete Plasmopara viticola. Conidiogenesis, germination of conidia and formation of appressoria are determining factors pertaining to pathogenicity and successful diseases cycles of filamentous fungal phytopathogens. The goal of this research was to evaluate the in vitro suppressive effects of two oligomycins, oligomycin B and F along with a commercial fungicide Nativo® 75WG on hyphal growth, conidiogenesis, conidial germination, and appressorial formation of the wheat blast fungus, Magnaporthe oryzae Triticum (MoT) pathotype. We also determined the efficacy of these two oligomycins and the fungicide product in vivo in suppressing wheat blast with a detached leaf assay. Both oligomycins suppressed the growth of MoT mycelium in a dose dependent manner. Between the two natural products, oligomycin F provided higher inhibition of MoT hyphal growth compared to oligomycin B with a minimum inhibitory concentration of 0.005 and 0.05 μg/disk, respectively. The application of the compounds completely halted conidial formation of the MoT mycelium in agar medium. Further bioassays showed that these compounds significantly inhibited MoT conidia germination and induced lysis. The compounds also caused abnormal germ tube formation and suppressed appressorial formation of germinated spores. Interestingly, the application of these macrolides significantly inhibited wheat blast on detached leaves of wheat. This is the first report on the inhibition of mycelial growth, conidiogenesis, germination of conidia, deleterious morphological changes in germinated conidia, and suppression of blast disease of wheat by oligomycins from Streptomyces spp. Further study is needed to unravel the precise mode of action of these natural compounds and consider them as biopesticides for controlling wheat blast.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abu Naim Md. Muzahid
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S. M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- * E-mail:
| |
Collapse
|
38
|
Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. ACTA ACUST UNITED AC 2020; 1:332-342. [PMID: 37128085 DOI: 10.1038/s43016-020-0075-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
Emerging fungal and oomycete pathogens infect staple calorie crops and economically important commodity crops, thereby posing a significant risk to global food security. Our current agricultural systems - with emphasis on intensive monoculture practices - and globalized markets drive the emergence and spread of new pathogens and problematic traits, such as fungicide resistance. Climate change further promotes the emergence of pathogens on new crops and in new places. Here we review the factors affecting the introduction and spread of pathogens and current disease control strategies, illustrating these with the historic example of the Irish potato famine and contemporary examples of soybean rust, wheat blast and blotch, banana wilt and cassava root rot. Our Review looks to the future, summarizing what we see as the main challenges and knowledge gaps, and highlighting the direction that research must take to face the challenge of emerging crop pathogens.
Collapse
|
39
|
Evidence for Allele-Specific Levels of Enhanced Susceptibility of Wheat mlo Mutants to the Hemibiotrophic Fungal Pathogen Magnaporthe oryzae pv. Triticum. Genes (Basel) 2020; 11:genes11050517. [PMID: 32392723 PMCID: PMC7720134 DOI: 10.3390/genes11050517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Barley mlo mutants are well known for their profound resistance against powdery mildew disease. Recently, mlo mutant plants were generated in hexaploid bread wheat (Triticum aestivum) with the help of transgenic (transcription-activator-like nuclease, TALEN) and non-transgenic (targeted induced local lesions in genomes, TILLING) biotechnological approaches. While full-gene knockouts in the three wheat Mlo (TaMlo) homoeologs, created via TALEN, confer full resistance to the wheat powdery mildew pathogen (Blumeria graminis f.sp. tritici), the currently available TILLING-derived Tamlo missense mutants provide only partial protection against powdery mildew attack. Here, we studied the infection phenotypes of TALEN- and TILLING-derived Tamlo plants to the two hemibiotrophic pathogens Zymoseptoria tritici, causing Septoria leaf blotch in wheat, and Magnaporthe oryzae pv. Triticum (MoT), the causal agent of wheat blast disease. While Tamlo plants showed unaltered outcomes upon challenge with Z. tritici, we found evidence for allele-specific levels of enhanced susceptibility to MoT, with stronger powdery mildew resistance correlated with more invasive growth by the blast pathogen. Surprisingly, unlike barley mlo mutants, young wheat mlo mutant plants do not show undesired pleiotropic phenotypes such as spontaneous callose deposits in leaf mesophyll cells or signs of early leaf senescence. In conclusion, our study provides evidence for allele-specific levels of enhanced susceptibility of Tamlo plants to the hemibiotrophic wheat pathogen MoT.
Collapse
|
40
|
Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020; 11:e00449-20. [PMID: 32371596 PMCID: PMC7403777 DOI: 10.1128/mbio.00449-20] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom includes at least 6 million eukaryotic species and is remarkable with respect to its profound impact on global health, biodiversity, ecology, agriculture, manufacturing, and biomedical research. Approximately 625 fungal species have been reported to infect vertebrates, 200 of which can be human associated, either as commensals and members of our microbiome or as pathogens that cause infectious diseases. These organisms pose a growing threat to human health with the global increase in the incidence of invasive fungal infections, prevalence of fungal allergy, and the evolution of fungal pathogens resistant to some or all current classes of antifungals. More broadly, there has been an unprecedented and worldwide emergence of fungal pathogens affecting animal and plant biodiversity. Approximately 8,000 species of fungi and Oomycetes are associated with plant disease. Indeed, across agriculture, such fungal diseases of plants include new devastating epidemics of trees and jeopardize food security worldwide by causing epidemics in staple and commodity crops that feed billions. Further, ingestion of mycotoxins contributes to ill health and causes cancer. Coordinated international research efforts, enhanced technology translation, and greater policy outreach by scientists are needed to more fully understand the biology and drivers that underlie the emergence of fungal diseases and to mitigate against their impacts. Here, we focus on poignant examples of emerging fungal threats in each of three areas: human health, wildlife biodiversity, and food security.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Eva H Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - David W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Bruce S Klein
- Department of Pediatrics, Department of Internal Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Canada
| | - John W Taylor
- University of California-Berkeley, Department of Plant and Microbial Biology, Berkeley, California, USA
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory Effects of Linear Lipopeptides From a Marine Bacillus subtilis on the Wheat Blast Fungus Magnaporthe oryzae Triticum. Front Microbiol 2020; 11:665. [PMID: 32425899 PMCID: PMC7203576 DOI: 10.3389/fmicb.2020.00665] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Wheat blast is a devastating fungal disease caused by a filamentous fungus, Magnaporthe oryzae Triticum (MoT) pathotype, which poses a serious threat to food security of South America and South Asia. In the course of screening novel bioactive secondary metabolites, we found that some secondary metabolites from a marine Bacillus subtilis strain 109GGC020 remarkably inhibited the growth of M. oryzae Triticum in vitro at 20 μg/disk. We tested a number of natural compounds derived from microorganisms and plants and found that five recently discovered linear non-cytotoxic lipopeptides, gageopeptides A-D (1-4) and gageotetrin B (5) from the strain 109GGC020 inhibited the growth of MoT mycelia in a dose-dependent manner. Among the five compounds studied, gageotetrin B (5) displayed the highest mycelial growth inhibition of MoT followed by gageopeptide C (3), gageopeptide D (4), gageopeptide A (1), and gageopeptide B (2) with minimum inhibitory concentrations (MICs) of 1.5, 2.5, 2.5, 10.0, and 10.0 μg/disk, respectively. Application of these natural compounds has also completely blocked formation of conidia in the MoT fungal mycelia in the agar medium. Further bioassay revealed that these compounds (1-5) inhibited the germination of MoT conidia and, if germinated, induced deformation of germ tube and/or abnormal appressoria. Interestingly, application of these linear lipopeptides (1-5) significantly suppressed wheat blast disease on detached wheat leaves. This is the first report of the inhibition of mycelial growth, conidiogenesis, conidial germination, and morphological alterations in the germinated conidia and suppression of wheat blast disease by linear lipopeptides from the strain of B. subtilis. A further study is needed to evaluate the mode of action of these natural compounds for considering them as biopesticides for managing this notorious cereal killer.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Fakir Shahidullah Tareq
- Department of Nutrition and Food Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Hee Jae Shin
- Department of Marine Biotechnology, University of Science & Technology, Daejeon, South Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
42
|
Thierry M, Gladieux P, Fournier E, Tharreau D, Ioos R. A Genomic Approach to Develop a New qPCR Test Enabling Detection of the Pyricularia oryzae Lineage Causing Wheat Blast. PLANT DISEASE 2020; 104:60-70. [PMID: 31647693 DOI: 10.1094/pdis-04-19-0685-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid detection is key to managing emerging diseases because it allows their spread around the world to be monitored and limited. The first major wheat blast epidemics were reported in 1985 in the Brazilian state of Paraná. Following this outbreak, the disease quickly spread to neighboring regions and countries and, in 2016, the first report of wheat blast disease outside South America was released. This Asian outbreak was due to the trade of infected South American seed, demonstrating the importance of detection tests in order to avoid importing contaminated biological material into regions free from the pathogen. Genomic analysis has revealed that one particular lineage within the fungal species Pyricularia oryzae is associated with this disease: the Triticum lineage. A comparison of 81 Pyricularia genomes highlighted polymorphisms specific to the Triticum lineage, and this study developed a real-time PCR test targeting one of these polymorphisms. The test's performance was then evaluated in order to measure its analytical specificity, analytical sensitivity, and robustness. The C17 quantitative PCR test detected isolates belonging to the Triticum lineage with high sensitivity, down to 13 plasmid copies or 1 pg of genomic DNA per reaction tube. The blast-based approach developed here to study P. oryzae can be transposed to other emerging diseases.
Collapse
Affiliation(s)
- Maud Thierry
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- ANSES Plant Health Laboratory, Mycology Unit, Domaine de Pixérécourt, Bâtiment E, F-54220 Malzéville, France
| | - Pierre Gladieux
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Elisabeth Fournier
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Didier Tharreau
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Renaud Ioos
- ANSES Plant Health Laboratory, Mycology Unit, Domaine de Pixérécourt, Bâtiment E, F-54220 Malzéville, France
| |
Collapse
|
43
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
44
|
Valent B, Farman M, Tosa Y, Begerow D, Fournier E, Gladieux P, Islam MT, Kamoun S, Kemler M, Kohn LM, Lebrun M, Stajich JE, Talbot NJ, Terauchi R, Tharreau D, Zhang N. Pyricularia graminis-tritici is not the correct species name for the wheat blast fungus: response to Ceresini et al. (MPP 20:2). MOLECULAR PLANT PATHOLOGY 2019; 20:173-179. [PMID: 30697917 PMCID: PMC6637902 DOI: 10.1111/mpp.12778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Barbara Valent
- Department of Plant PathologyKansas State UniversityManhattanKS 66506US
| | - Mark Farman
- Department of Plant PathologyUniversity of KentuckyLexingtonKY 40546USA
| | - Yukio Tosa
- Department of Agrobioscience, Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Dominik Begerow
- Geobotany, Department of Evolution and Biodiversity of PlantsRuhr‐University Bochum44801 BochumGermany
| | - Elisabeth Fournier
- UMR BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro34398 MontpellierFrance
| | - Pierre Gladieux
- UMR BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro34398 MontpellierFrance
| | - M. Tofazzal Islam
- Department of BiotechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur 1706Bangladesh
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwich NR4 7UHUK
| | - Martin Kemler
- Geobotany, Department of Evolution and Biodiversity of PlantsRuhr‐University Bochum44801 BochumGermany
| | - Linda M. Kohn
- Department of BiologyUniversity of TorontoMississaugaON L5L 1C6Canada
| | | | - Jason E. Stajich
- Department of Microbiology & Plant PathologyUniversity of CaliforniaRiversideCA 92521USA
| | - Nicholas J. Talbot
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwich NR4 7UHUK
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research CenterIwate 024‐0003Japan
- Laboratory of Crop Evolution, Graduate School of AgricultureKyoto UniversityKyoto 617‐0001Japan
| | - Didier Tharreau
- CIRAD, UMR BGPIF‐34398 MontpellierFrance
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgroF‐34398 MontpellierFrance
| | - Ning Zhang
- Department of Plant BiologyRutgers UniversityNew BrunswickNJ 08901USA
| |
Collapse
|