1
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Moneme C, Olutoye OO, Sobstel MF, Zhang Y, Zhou X, Kaminer JL, Hsu BA, Shen C, Mandal A, Li H, Yu L, Balaji S, Keswani SG, Cheng LS. Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro. Front Mol Neurosci 2024; 17:1474025. [PMID: 39759870 PMCID: PMC11695422 DOI: 10.3389/fnmol.2024.1474025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS. Methods Enteric neural crest-derived progenitor cells (ENPC) were isolated from adult mouse intestine and propagated in culture as neurospheres. ENPC-derived neurons were then subject to in vitro stretch in the presence or absence of Piezo1 antagonist (GsMTx4). Transcriptomes of stretched and unstretched ENPC-derived cells were compared using bulk RNA sequencing. Enteric neurons were also cultured under static conditions in the presence of Piezo1 agonist (Yoda1) or antagonist. Neuronal phenotype, migration, and recovery from injury were compared between groups. Results Though stretch did not cause upregulation of Piezo1 expression in enteric neurons, both stretch and Piezo1 activation produced similar alterations in neuronal morphology. Compared to control, neurite length was significantly shorter when stretched and in the presence of Piezo1 activation. Piezo1 inhibition prevented a significant reduction in neurite length in stretched neurons. Piezo1 inhibition also led to significantly increased neuronal migration, whereas Piezo1 activation resulted in significantly decreased neuronal migration and slower neuronal recovery from injury. Conclusion Mechanotransduction plays an important role in regulating normal GI function. Our results suggest that the Piezo1 mechanoreceptor may play an important role in the ENS as its activation leads to decreased neuronal growth and migration. Piezo1 could be an important target for diseases of ENS dysfunction and development.
Collapse
Affiliation(s)
- Chioma Moneme
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Oluyinka O. Olutoye
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Michał F. Sobstel
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Yuwen Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Jacob L. Kaminer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Britney A. Hsu
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Arabinda Mandal
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Hui Li
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ling Yu
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Swathi Balaji
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Lily S. Cheng
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
3
|
Ziogas IA, Kuruvilla KP, Fu M, Gosain A. Hirschsprung-associated enterocolitis: a comprehensive review. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000878. [PMID: 39410939 PMCID: PMC11474670 DOI: 10.1136/wjps-2024-000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Hirschsprung-associated enterocolitis (HAEC) is an important cause of morbidity and the leading cause of mortality in patients with Hirschsprung disease. The pathophysiology of disease includes dysmotility of the enteric nervous system, dysbiosis of the microbiota, failure of the intestinal barrier, and impaired immunity. Common manifestations include fever, abdominal distension, lethargy, vomiting, and diarrhea. Given the non-specific signs and symptoms of HAEC, high clinical suspicion is warranted, especially in patients with risk factors. Diagnosis and management of HAEC depend on the severity of disease presentation. Several preoperative and postoperative modalities have been explored to prevent HAEC. The current review elaborates on the risk factors, pathogenesis, diagnosis, treatment, and prevention of HAEC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Korah P Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ming Fu
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Stavely R, Rahman AA, Mueller JL, Leavitt AR, Han CY, Pan W, Kaiser KN, Ott LC, Ohkura T, Guyer RA, Burns AJ, Koppes AN, Hotta R, Goldstein AM. Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. Neuron 2024; 112:3143-3160.e6. [PMID: 39019043 PMCID: PMC11427168 DOI: 10.1016/j.neuron.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kyla N Kaiser
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail N Koppes
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Dershowitz LB, Kaltschmidt JA. Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology. Cell Mol Gastroenterol Hepatol 2024; 18:101332. [PMID: 38479486 PMCID: PMC11176954 DOI: 10.1016/j.jcmgh.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Yang Q, Wang F, Wang Z, Guo J, Chang T, Dalielihan B, Yang G, Lei C, Dang R. mRNA sequencing provides new insights into the pathogenesis of Hirschsprung's disease in mice. Pediatr Surg Int 2023; 39:268. [PMID: 37676292 DOI: 10.1007/s00383-023-05544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE The aim of this study is to use RNA sequencing and RT-qPCR to identify the main susceptibility genes linked to the occurrence and development of Hirschsprung disease in the colonic tissues of EDNRBm1yzcm and wild mice. METHODS RNA was extracted from colon tissues of 3 mutant homozygous mice and 3 wild mice. RNA degradation, contamination concentration, and integrity were then measured. The extracted RNA was then sequenced using the Illumina platform. The obtained sequence data are filtered to ensure data quality and compared to the reference genome for further analysis. DESeq2 was used for gene expression analysis of the raw data. In addition, graphene oxide enrichment analysis and RT-qPCR validation were also performed. RESULTS This study identified 8354 differentially expressed genes in EDNRBm1yzcm and wild mouse colon tissues by RNA sequencing, including 4346 upregulated genes and 4005 downregulated genes. Correspondingly, the results of RT-qPCR analysis showed good correlation with the transcriptome data. In addition, GO and KEGG enrichment results suggested that there were 8103 terms and 320 pathways in all DEGs. When P < 0.05, 1081 GO terms and 320 KEGG pathways reached a significant level. Finally, through the existing studies and the enrichment results of differentially expressed genes, it was determined that axon guidance and the focal adhesion pathway may be closely related to the occurrence of HSCR. CONCLUSIONS This study analyzed and identified the differential genes in colonic tissues between EDNRBm1yzcm mice and wild mice, which provided new insight for further mining the potential pathogenic genes of Hirschsprung's disease.
Collapse
Affiliation(s)
- Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Jiajun Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Tingjin Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Baligen Dalielihan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China.
| |
Collapse
|
8
|
Gershon EM, Rodriguez L, Arbizu RA. Hirschsprung's disease associated enterocolitis: A comprehensive review. World J Clin Pediatr 2023; 12:68-76. [PMID: 37342453 PMCID: PMC10278080 DOI: 10.5409/wjcp.v12.i3.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a congenital disorder characterized by failure of the neural crest cells to migrate and populate the distal bowel during gestation affecting different lengths of intestine leading to a distal functional obstruction. Surgical treatment is needed to correct HSCR once the diagnosis is confirmed by demonstrating the absence of ganglion cells or aganglionosis of the affected bowel segment. Hirschsprung's disease associated enterocolitis (HAEC) is an inflammatory complication associated with HSCR that can present either in the pre- or postoperative period and associated with increased morbidity and mortality. The pathogenesis of HAEC remains poorly understood, but intestinal dysmotility, dysbiosis and impaired mucosal defense and intestinal barrier function appear to play a significant role. There is no clear definition for HAEC, but the diagnosis is primarily clinical, and treatment is guided based on severity. Here, we aim to provide a comprehensive review of the clinical presentation, etiology, pathophysiology, and current therapeutic options for HAEC.
Collapse
Affiliation(s)
- Eric M Gershon
- Section of Pediatric Gastroenterology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Leonel Rodriguez
- Section of Pediatric Gastroenterology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Ricardo A Arbizu
- Section of Pediatric Gastroenterology, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
9
|
Edwards BS, Stiglitz ES, Davis BM, Smith-Edwards KM. Abnormal enteric nervous system and motor activity in the ganglionic proximal bowel of Hirschsprung's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531750. [PMID: 36945585 PMCID: PMC10028932 DOI: 10.1101/2023.03.08.531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Hirschsprung's disease (HSCR) is a congenital defect in which the enteric nervous system (ENS) does not develop in the distal bowel, requiring surgical removal of the portions of bowel without ENS ganglia ('aganglionic') and reattachment of the 'normal' proximal bowel with ENS ganglia. Unfortunately, many HSCR patients have persistent dysmotility (e.g., constipation, incontinence) and enterocolitis after surgery, suggesting that the remaining bowel is not normal despite having ENS ganglia. Anatomical and neurochemical alterations have been observed in the ENS-innervated proximal bowel from HSCR patients and mice, but no studies have recorded ENS activity to define the circuit mechanisms underlying post-surgical HSCR dysfunction. Here, we generated a HSCR mouse model with a genetically-encoded calcium indicator to map the ENS connectome in the proximal colon. We identified abnormal spontaneous and synaptic ENS activity in proximal colons from GCaMP-Ednrb -/- mice with HSCR that corresponded to motor dysfunction. Many HSCR-associated defects were also observed in GCaMP-Ednrb +/- mice, despite complete ENS innervation. Results suggest that functional abnormalities in the ENS-innervated bowel contribute to post-surgical bowel complications in HSCR patients, and HSCR-related mutations that do not cause aganglionosis may cause chronic colon dysfunction in patients without a HSCR diagnosis.
Collapse
|
10
|
Zhang Z, Li B, Jiang Q, Li Q, Pierro A, Li L. Hirschsprung-Associated Enterocolitis: Transformative Research from Bench to Bedside. Eur J Pediatr Surg 2022; 32:383-390. [PMID: 35649434 DOI: 10.1055/s-0042-1745780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hirschsprung disease (HSCR) is a congenital disease that is characterized by the absence of intrinsic ganglion cells in the submucosal and myenteric plexuses of the distal colon and is the most common cause of congenital intestinal obstruction. Hirschsprung-associated enterocolitis (HAEC) is a life-threatening complication of HSCR, which can occur either before or after surgical resection of the aganglionic bowel. Even though HAEC is a leading cause of death in HSCR patients, its etiology and pathophysiology remain poorly understood. Various factors have been associated with HAEC, including the mucus barrier, microbiota, immune function, obstruction of the colon, and genetic variations. In this review, we examine our current mouse model of HAEC and how it informs our understanding of the disease. We also describe current emerging research that highlights the potential future of HAEC treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
| | - Bo Li
- Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
| | - Agostino Pierro
- Department of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
| |
Collapse
|
11
|
Bhave S, Guyer RA, Picard N, Omer M, Hotta R, Goldstein AM. Ednrb−/− mice with hirschsprung disease are missing Gad2-expressing enteric neurons in the ganglionated small intestine. Front Cell Dev Biol 2022; 10:917243. [PMID: 35959491 PMCID: PMC9360620 DOI: 10.3389/fcell.2022.917243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Hirschsprung disease is most often characterized by aganglionosis limited to the distal colon and rectum, and mice lacking the Endothelin receptor type B (Ednrb) faithfully recapitulate this phenotype. However, despite the presence of enteric ganglia in the small intestine, both human patients and Ednrb−/− mice suffer from dysmotility and altered gastrointestinal function, thus raising the possibility of enteric nervous system (ENS) abnormalities proximal to the aganglionic region. We undertook the present study to determine whether abnormalities with the ENS in ganglionated regions may account for abnormal gastrointestinal function. We performed single-cell RNA sequencing on ENS cells from the small intestine of Ednrb−/− mice and compared the results to a published single-cell dataset. Our results identified a missing population of neurons marked by the enzyme Gad2, which catalyzes the production of γ-Aminobutyric acid (GABA), in the small intestine of Ednrb−/− animals. This result was confirmed by immunostaining enteric ganglia from Ednrb−/− mice and their wild-type littermates. These data show for the first time that ganglionated regions of the Hirschsprung gut lack a neuronal subpopulation, which may explain the persistent gastrointestinal dysfunction after surgical correction of Hirschsprung disease.
Collapse
|
12
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
13
|
Current understanding of Hirschsprung-associated enterocolitis: Pathogenesis, diagnosis and treatment. Semin Pediatr Surg 2022; 31:151162. [PMID: 35690459 PMCID: PMC9523686 DOI: 10.1016/j.sempedsurg.2022.151162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hirschsprung-associated enterocolitis (HAEC) was described in 1886 by Harald Hirschsprung and is a potentially deadly complication of Hirschsprung Disease. HAEC is classically characterized by abdominal distension, fever, and diarrhea, although there can be a variety of other associated symptoms, including colicky abdominal pain, lethargy, and the passage of blood-stained stools. HAEC occurs both pre-operatively and post-operatively, is the presenting symptom of HSCR in up to 25% of infants and varies in overall incidence from 20 to 60%. This article reviews our current understanding of HAEC pathogenesis, diagnosis, and treatment with discussion of areas of ongoing research, controversy, and future investigation.
Collapse
|
14
|
Verkuijl SJ, Friedmacher F, Harter PN, Rolle U, Broens PMA. Persistent bowel dysfunction after surgery for Hirschsprung's disease: A neuropathological perspective. World J Gastrointest Surg 2021; 13:822-833. [PMID: 34512906 PMCID: PMC8394380 DOI: 10.4240/wjgs.v13.i8.822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung's disease (HD) is a congenital disorder, characterized by aganglionosis in the distal part of the gastrointestinal tract. Despite complete surgical resection of the aganglionic segment, both constipation and fecal incontinence persist in a considerable number of patients with limited treatment options. There is growing evidence for structural abnormalities in the ganglionic bowel proximal to the aganglionosis in both humans and animals with HD, which may play a role in persistent bowel dysfunction. These abnormalities include: (1) Histopathological abnormalities of enteric neural cells; (2) Imbalanced expression of neurotransmitters and neuroproteins; (3) Abnormal expression of enteric pacemaker cells; (4) Abnormalities of smooth muscle cells; and (5) Abnormalities within the extracellular matrix. Hence, a better understanding of these previously unrecognized neuropathological abnormalities may improve follow-up and treatment in patients with HD suffering from persistent bowel dysfunction following surgical correction. In the long term, further combination of clinical and neuropathological data will hopefully enable a translational step towards more individual treatment for HD.
Collapse
Affiliation(s)
- Sanne J Verkuijl
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt 60590, Germany
- Neurological Institute (Edinger-Institute), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt 60528, Germany
- Department of Surgery, Division of Pediatric Surgery, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands
| | - Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt 60590, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger-Institute), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt 60528, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt 60590, Germany
| | - Paul MA Broens
- Department of Surgery, Division of Pediatric Surgery, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
15
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
16
|
Bhave S, Arciero E, Baker C, Ho WL, Guyer RA, Hotta R, Goldstein AM. Pan-enteric neuropathy and dysmotility are present in a mouse model of short-segment Hirschsprung disease and may contribute to post-pullthrough morbidity. J Pediatr Surg 2021; 56:250-256. [PMID: 32414519 PMCID: PMC7572464 DOI: 10.1016/j.jpedsurg.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Hirschsprung disease (HSCR) is characterized by distal intestinal aganglionosis. While surgery is lifesaving, gastrointestinal (GI) motility disorders persist in many patients. Our objective was to determine whether enteric nervous system (ENS) abnormalities exist in the ganglionated portions of the GI tract far proximal to the aganglionic region and whether these are associated with GI dysmotility. METHODS Using Ednrb-null mice, a model of HSCR, immunohistochemical analysis was performed to evaluate quantitatively ENS structure in proximal colon, small intestine, and stomach. Gastric emptying and intestinal transit were measured in vivo and small and large bowel contractility was assessed by spatiotemporal mapping ex vivo. RESULTS Proximal colon of HSCR mice had smaller ganglia and decreased neuronal fiber density, along with a marked reduction in migrating motor complexes. The distal small intestine exhibited significantly fewer ganglia and decreased neuronal fiber density, and this was associated with delayed small intestinal transit time. Finally, in the stomach of HSCR mice, enteric neuronal packing density was increased and gastric emptying was faster. CONCLUSIONS ENS abnormalities and motility defects are present throughout the ganglionated portions of the GI tract in Ednrb-deficient mice. This may explain the GI morbidity that often occurs following pull-through surgery for HSCR.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Corey Baker
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Wing Lam Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
17
|
Lewit RA, Veras LV, Cowles RA, Fowler K, King S, Lapidus-Krol E, Langer JC, Park CJ, Youssef F, Vavilov S, Gosain A. Reducing Underdiagnosis of Hirschsprung-Associated Enterocolitis: A Novel Scoring System. J Surg Res 2021; 261:253-260. [PMID: 33460971 DOI: 10.1016/j.jss.2020.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hirschsprung-Associated Enterocolitis (HAEC) is a life-threatening and difficult to diagnose complication of Hirschsprung Disease (HSCR). The goal of this study was to evaluate existing HAEC scoring systems and develop a new scoring system. METHODS Retrospective, multi-institutional data collection was performed. For each patient, all encounters were analyzed. Data included demographics, symptomatology, laboratory and radiographic findings, and treatments received. A "true" diagnosis of HAEC was defined as receipt of treatment with rectal irrigations, antibiotics, and bowel rest. The Pastor and Frykman scoring systems were evaluated for sensitivity/specificity and univariate and multivariate logistic regression performed to create a new scoring system. RESULTS Four centers worldwide provided data on 200 patients with 1450 encounters and 369 HAEC episodes. Fifty-seven percent of patients experienced one or more episodes of HAEC. Long-segment colonic disease was associated with a higher risk of HAEC on univariate analysis (OR 1.92, 95% CI 1.43-2.57). Six variables were significantly associated with HAEC on multivariate analysis. Using published diagnostic cutoffs, sensitivity/specificity for existing systems were found to be 38.2%/96% for Pastor's and 56.4%/86.9% for Frykman's score. A new scoring system with a sensitivity/specificity of 67.8%/87.9% was created by stepwise multivariate analysis. The new score outperformed the existing scores by decreasing underdiagnosis in this patient cohort. CONCLUSIONS Existing scoring systems perform poorly in identifying episodes of HAEC, resulting in significant underdiagnosis. The proposed scoring system may be better at identifying those underdiagnosed in the clinical setting. Head-to-head comparison of HAEC scoring systems using prospective data collection may be beneficial to achieve standardization in the field.
Collapse
Affiliation(s)
- Ruth A Lewit
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Laura V Veras
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert A Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kathryn Fowler
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sebastian King
- Department of Paediatric Surgery, The Royal Children's Hospital, and Surgical Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Eveline Lapidus-Krol
- Division of Pediatric General and Thoracic Surgery, Hospital for Sick Children, and Department of Surgery, University of Toronto, Toronto, Canada
| | - Jacob C Langer
- Division of Pediatric General and Thoracic Surgery, Hospital for Sick Children, and Department of Surgery, University of Toronto, Toronto, Canada
| | - Christine J Park
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Fouad Youssef
- Division of Pediatric General and Thoracic Surgery, Hospital for Sick Children, and Department of Surgery, University of Toronto, Toronto, Canada
| | - Sergey Vavilov
- Department of Paediatric Surgery, The Royal Children's Hospital, and Surgical Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ankush Gosain
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.
| |
Collapse
|
18
|
Dariel A, Grynberg L, Auger M, Lefèvre C, Durand T, Aubert P, Le Berre-Scoul C, Venara A, Suply E, Leclair MD, de Vries P, Levard G, Parmentier B, Podevin G, Schmitt F, Couvrat V, Irtan S, Hervieux E, Villemagne T, Lardy H, Capito C, Muller C, Sarnacki S, Mosnier JF, Galmiche L, Derkinderen P, Boudin H, Brochard C, Neunlist M. Analysis of enteric nervous system and intestinal epithelial barrier to predict complications in Hirschsprung's disease. Sci Rep 2020; 10:21725. [PMID: 33303794 PMCID: PMC7729910 DOI: 10.1038/s41598-020-78340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In Hirschsprung’s disease (HSCR), postoperative course remains unpredictable. Our aim was to define predictive factors of the main postoperative complications: obstructive symptoms (OS) and Hirschsprung-associated enterocolitis (HAEC). In this prospective multicentre cohort study, samples of resected bowel were collected at time of surgery in 18 neonates with short-segment HSCR in tertiary care hospitals. OS and HAEC were noted during postoperative follow-up. We assessed the enteric nervous system and the intestinal epithelial barrier (IEB) in ganglionic segments by combining immunohistochemical, proteomic and transcriptomic approaches, with functional ex vivo analysis of motility and para/transcellular permeability. Ten HSCR patients presented postoperative complications (median follow-up 23.5 months): 6 OS, 4 HAEC (2 with OS), 2 diarrhoea (without OS/HAEC). Immunohistochemical analysis showed a significant 41% and 60% decrease in median number of nNOS-IR myenteric neurons per ganglion in HSCR with OS as compared to HSCR with HAEC/diarrhoea (without OS) and HSCR without complications (p = 0.0095; p = 0.002, respectively). Paracellular and transcellular permeability was significantly increased in HSCR with HAEC as compared to HSCR with OS/diarrhoea without HAEC (p = 0.016; p = 0.009) and HSCR without complications (p = 0.029; p = 0.017). This pilot study supports the hypothesis that modulating neuronal phenotype and enhancing IEB permeability may treat or prevent postoperative complications in HSCR.
Collapse
Affiliation(s)
- Anne Dariel
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France. .,Paediatric Surgery Department, La Timone-Enfants Hospital, Assistance Publique des Hôpitaux de Marseille, 264 rue Saint Pierre, 13385, Marseille, France. .,Paediatric Surgery Department, University Hospital of Nantes, Nantes, France.
| | - Lucie Grynberg
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Marie Auger
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Chloé Lefèvre
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Tony Durand
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Philippe Aubert
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Catherine Le Berre-Scoul
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Aurélien Venara
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Etienne Suply
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Marc-David Leclair
- Paediatric Surgery Department, University Hospital of Nantes, Nantes, France
| | - Philine de Vries
- Paediatric Surgery Department, University Hospital of Brest, Brest, France
| | - Guillaume Levard
- Paediatric Surgery Department, University Hospital of Poitiers, Poitiers, France
| | - Benoit Parmentier
- Paediatric Surgery Department, University Hospital of Poitiers, Poitiers, France
| | - Guillaume Podevin
- Paediatric Surgery Department, University Hospital of Angers, Angers, France
| | - Françoise Schmitt
- Paediatric Surgery Department, University Hospital of Angers, Angers, France
| | | | - Sabine Irtan
- Paediatric Surgery Department, Armand Trousseau Hospital, Paris, France
| | - Erik Hervieux
- Paediatric Surgery Department, Armand Trousseau Hospital, Paris, France
| | - Thierry Villemagne
- Paediatric Surgery Department, University Hospital of Tours, Tours, France
| | - Hubert Lardy
- Paediatric Surgery Department, University Hospital of Tours, Tours, France
| | - Carmen Capito
- Paediatric Surgery Department, Necker Enfants Malades Hospital, Paris, France
| | - Cécile Muller
- Paediatric Surgery Department, Necker Enfants Malades Hospital, Paris, France
| | - Sabine Sarnacki
- Paediatric Surgery Department, Necker Enfants Malades Hospital, Paris, France
| | | | - Louise Galmiche
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Pathology Department, Necker Enfants Malades Hospital, Paris, France
| | - Pascal Derkinderen
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Charlène Brochard
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunlist
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
19
|
Soret R, Schneider S, Bernas G, Christophers B, Souchkova O, Charrier B, Righini-Grunder F, Aspirot A, Landry M, Kembel SW, Faure C, Heuckeroth RO, Pilon N. Glial Cell-Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology 2020; 159:1824-1838.e17. [PMID: 32687927 DOI: 10.1053/j.gastro.2020.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a life-threatening birth defect in which the distal colon is devoid of enteric neural ganglia. HSCR is treated by surgical removal of aganglionic bowel, but many children continue to have severe problems after surgery. We studied whether administration of glial cell derived neurotrophic factor (GDNF) induces enteric nervous system regeneration in mouse models of HSCR. METHODS We performed studies with four mouse models of HSCR: Holstein (HolTg/Tg, a model for trisomy 21-associated HSCR), TashT (TashTTg/Tg, a model for male-biased HSCR), Piebald-lethal (Ednrbs-l//s-l, a model for EDNRB mutation-associated HSCR), and Ret9/- (with aganglionosis induced by mycophenolate). Mice were given rectal enemas containing GDNF or saline (control) from postnatal days 4 through 8. We measured survival times of mice, and colon tissues were analyzed by histology, immunofluorescence, and immunoblots. Neural ganglia regeneration and structure, bowel motility, epithelial permeability, muscle thickness, and neutrophil infiltration were studied in colon tissues and in mice. Stool samples were collected, and microbiomes were analyzed by 16S rRNA gene sequencing. Time-lapse imaging and genetic cell-lineage tracing were used to identify a source of GDNF-targeted neural progenitors. Human aganglionic colon explants from children with HSCR were cultured with GDNF and evaluated for neurogenesis. RESULTS GDNF significantly prolonged mean survival times of HolTg/Tg mice, Ednrbs-l//s-l mice, and male TashTTg/Tg mice, compared with control mice, but not Ret9/- mice (which had mycophenolate toxicity). Mice given GDNF developed neurons and glia in distal bowel tissues that were aganglionic in control mice, had a significant increase in colon motility, and had significant decreases in epithelial permeability, muscle thickness, and neutrophil density. We observed dysbiosis in fecal samples from HolTg/Tg mice compared with feces from wild-type mice; fecal microbiomes of mice given GDNF were similar to those of wild-type mice except for Bacteroides. Exogenous luminal GDNF penetrated aganglionic colon epithelium of HolTg/Tg mice, inducing production of endogenous GDNF, and new enteric neurons and glia appeared to arise from Schwann cells within extrinsic nerves. GDNF application to cultured explants of human aganglionic bowel induced proliferation of Schwann cells and formation of new neurons. CONCLUSIONS GDNF prolonged survival, induced enteric neurogenesis, and improved colon structure and function in 3 mouse models of HSCR. Application of GDNF to cultured explants of aganglionic bowel from children with HSCR induced proliferation of Schwann cells and formation of new neurons. GDNF might be developed for treatment of HSCR.
Collapse
Affiliation(s)
- Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sabine Schneider
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Guillaume Bernas
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Briana Christophers
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Ouliana Souchkova
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Baptiste Charrier
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Franziska Righini-Grunder
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Ann Aspirot
- Division de chirurgie pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Landry
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Robert O Heuckeroth
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Cardinal T, Bergeron KF, Soret R, Souchkova O, Faure C, Guillon A, Pilon N. Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression. PLoS Genet 2020; 16:e1009008. [PMID: 32898154 PMCID: PMC7500598 DOI: 10.1371/journal.pgen.1009008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder of neural crest development resulting in incomplete formation of the enteric nervous system (ENS). This life-threatening neurocristopathy affects 1/5000 live births, with a currently unexplained male-biased ratio. To address this lack of knowledge, we took advantage of the TashT mutant mouse line, which is the only HSCR model to display a robust male bias. Our prior work revealed that the TashT insertional mutation perturbs a Chr.10 silencer-enriched non-coding region, leading to transcriptional dysregulation of hundreds of genes in neural crest-derived ENS progenitors of both sexes. Here, through sex-stratified transcriptome analyses and targeted overexpression in ENS progenitors, we show that male-biased ENS malformation in TashT embryos is not due to upregulation of Sry-the murine ortholog of a candidate gene for the HSCR male bias in humans-but instead involves upregulation of another Y-linked gene, Ddx3y. This discovery might be clinically relevant since we further found that the DDX3Y protein is also expressed in the ENS of a subset of male HSCR patients. Mechanistically, other data including chromosome conformation captured-based assays and CRISPR/Cas9-mediated deletions suggest that Ddx3y upregulation in male TashT ENS progenitors is due to increased transactivation by p53, which appears especially active in these cells yet without triggering apoptosis. Accordingly, in utero treatment of TashT embryos with the p53 inhibitor pifithrin-α decreased Ddx3y expression and abolished the otherwise more severe ENS defect in TashT males. Our data thus highlight novel pathogenic roles for p53 and DDX3Y during ENS formation in mice, a finding that might help to explain the intriguing male bias of HSCR in humans.
Collapse
Affiliation(s)
- Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Karl-Frédérik Bergeron
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Lipid Metabolism Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Amélina Guillon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Resection Margin Histology May Predict Intermediate-Term Outcomes in Children with Rectosigmoid Hirschsprung Disease. Pediatr Surg Int 2020; 36:875-882. [PMID: 32504125 PMCID: PMC7332381 DOI: 10.1007/s00383-020-04689-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Recent studies suggest that some of the post-surgical morbidity in Hirschsprung disease (HSCR) is due to enteric nervous system structural defects in the proximal, ganglionated bowel that remains after surgery. We hypothesized that resection margin histology would predict intermediate-term outcomes in HSCR patients. METHODS Following IRB approval, HSCR patients with rectosigmoid disease born between 2009 and 2016 were reviewed and tissue blocks were obtained for new analyses. Proximal resection margins were analyzed for ganglion size, Hu + neurons/ganglion, and % nitric oxide synthase (NOS) neurons/ganglion as compared to control (non-HSCR) patient samples. Chart reviews were performed for 1- and 2-year outcomes. Patients were contacted for survey to determine Rintala bowel function score. RESULTS 45 patients had recto-sigmoid disease and were further analyzed. HSCR patients had significantly smaller individual ganglion size (4533 μm2, range 1744-16,287 vs. 6492 μm2, range 1932-30,838, p = 0.0192) and fewer HuC/D + neurons per ganglion (15, range 5.2-34 vs. 21, range 5.2-6.7, p = 0.0214). HSCR patients demonstrated a markedly increased percentage of NOS (relaxation neurotransmitter) neurons (50, range 22-85 vs. 37, range 16-80, p = 0.0266). None of the histology measures correlated with presence/absence of constipation at 1-2 year follow-up (p = NS). However, smaller ganglion size and higher percentage of NOS neurons correlated with decreased patient-reported quality of life (r = 0.3838, r = - 0.1809). CONCLUSION 1-2 year follow-up may be insufficient to determine if resection margin histology correlates with outcomes. Patient-reported quality of life surveys, although limited in number, suggest that neurotransmitter imbalance at the resection margin may predict poor outcomes in HSCR patients. This study supports the concept that the ganglionated portion of the remaining colon post-surgery may not sustain normal bowel function.
Collapse
|
22
|
Fu M, Barlow-Anacker AJ, Kuruvilla KP, Bowlin GL, Seidel CW, Trainor PA, Gosain A. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J 2020; 34:10931-10947. [PMID: 32592286 DOI: 10.1096/fj.202000699r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Enteric nervous system (ENS) development is governed by interactions between neural crest cells (NCC) and the extracellular matrix (ECM). Hirschsprung disease (HSCR) results from incomplete NCC migration and failure to form an appropriate ENS. Prior studies implicate abnormal ECM in NCC migration failure. We performed a comparative microarray of the embryonic distal hindgut of wild-type and EdnrBNCC-/- mice that model HSCR and identified laminin-β1 as upregulated in EdnrBNCC-/- colon. We identified decreased expression of 37/67 kDa laminin receptor (LAMR), which binds laminin-β1, in human HSCR myenteric plexus and EdnrBNCC-/- NCC. Using a combination of in vitro gut slice cultures and ex vivo organ cultures, we determined the mechanistic role of LAMR in NCC migration. We found that enteric NCC express LAMR, which is downregulated in human and murine HSCR. Binding of LAMR by the laminin-β1 analog YIGSR promotes NCC migration. Silencing of LAMR abrogated these effects. Finally, applying YIGSR to E13.5 EdnrBNCC-/- colon explants resulted in 80%-100% colonization of the hindgut. This study adds LAMR to the large list of receptors through which NCC interact with their environment during ENS development. These results should be used to inform ongoing integrative, regenerative medicine approaches to HSCR.
Collapse
Affiliation(s)
- Ming Fu
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Amanda J Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Korah P Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | | | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
23
|
Kapur RP, Smith C, Ambartsumyan L. Postoperative Pullthrough Obstruction in Hirschsprung Disease: Etiologies and Diagnosis. Pediatr Dev Pathol 2020; 23:40-59. [PMID: 31752599 DOI: 10.1177/1093526619890735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some patients continue to have obstructive symptoms and/or incontinence after pullthrough surgery for Hirschsprung disease. Incontinence can be due to injury to the anal sphincter and/or dentate line, abnormal colonic motility (nonretentive), or a chronic large stool burden (retentive). A diagnostic algorithm based on clinical and pathological evaluations can be applied to distinguish potential etiologies for obstructive symptoms, which segregate into anatomic (mechanical or histopathological) or physiologic subgroups. Valuable clinical information may be obtained by anorectal examination under anesthesia, radiographic studies, and anorectal or colonic manometry. In addition, histopathological review of a patient's original resection specimen(s) as well as postoperative biopsies of the neorectum usually are an important component of the diagnostic workup. Goals for the surgical pathologist are to exclude incomplete resection of the aganglionic segment or transition zone and to identify other neuromuscular pathology that might explain the patient's dysmotility. Diagnoses established from a combination of clinical and pathological data dramatically alter management strategies. In rare instances, reoperative pullthrough surgery is required, in which case the pathologist must be aware of histopathological features specific to redo pullthrough resection specimens.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Pathology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Caitlin Smith
- Department of Pediatric Surgery, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Lusine Ambartsumyan
- Department of Gastroenterology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Sun T, Li D, Hu S, Huang L, Sun H, Yang S, Wu B, Ji F, Zhou D. Aging-dependent decrease in the numbers of enteric neurons, interstitial cells of Cajal and expression of connexin43 in various regions of gastrointestinal tract. Aging (Albany NY) 2019; 10:3851-3865. [PMID: 30530917 PMCID: PMC6326649 DOI: 10.18632/aging.101677] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
Aging is a significant risk factor for gastrointestinal dysmotility, but aging-associated differences between different organs and the exact time to start degenerating have remained obscure. Here we evaluated alterations of interstitial cells of Cajal, enteric neurons and connexin43 expression in the stomach, jejunum and colon in 2-, 12-, 16-, 20- and 24-month-old mice, as well as in aged human colon. Interstitial cells of Cajal, cholinergic and nitrergic neurons within the whole digestive tract were reduced over time, but their loss first appeared in stomach, then in intestine, helping to understand that gastric function was first impaired during aging. The decrease of connexin43 expression occurred before interstitial cells of Cajal and neurons loss, suggesting that connexin43 might be the major target influenced during senescence. Furthermore, changes in expressions of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin-1β, interleukin-6) and apoptosis-related proteins (B-cell lymphoma-2, caspase-3) which indicated “inflammaging”, might contribute to the loss of enteric neurons and interstitial cells of Cajal in aged gastrointestinal tract. Our results provide possible therapeutic time window for beneficial intervention for geriatric patients with gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Tingyi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Dandan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shilong Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Li Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| |
Collapse
|
25
|
Associations of SLC6A20 genetic polymorphisms with Hirschsprung's disease in a Southern Chinese population. Biosci Rep 2019; 39:BSR20182290. [PMID: 31358688 PMCID: PMC6692567 DOI: 10.1042/bsr20182290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/06/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a neurodevelopmental disorder characterized by the absence of nerves in intestine with strong genetic components. SLC6A20 was found to be associated with HSCR in Korean population waiting for replication in an independent cohort. In the present study, ten single nucleotide polymorphisms (SNPs) in the SLC6A20 were selected from Southern Chinese with 1470 HSCR cases and 1473 ethnically matched healthy controls. Our results indicated that SNP rs7640009 was associated with HSCR and SLC6A20 has a gene-dose effect in the extent of the aganglionic segment during enteric nervous system (ENS) development. It is the first time to reveal the relationship between SNP rs2191026 and HSCR-associated enterocolitis (HAEC) susceptibility.
Collapse
|
26
|
Bondurand N, Dufour S, Pingault V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev Biol 2018; 444 Suppl 1:S156-S169. [PMID: 30171849 DOI: 10.1016/j.ydbio.2018.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
Abstract
The endothelin system is a vertebrate-specific innovation with important roles in regulating the cardiovascular system and renal and pulmonary processes, as well as the development of the vertebrate-specific neural crest cell population and its derivatives. This system is comprised of three structurally similar 21-amino acid peptides that bind and activate two G-protein coupled receptors. In 1994, knockouts of the Edn3 and Ednrb genes revealed their crucial function during development of the enteric nervous system and melanocytes, two neural-crest derivatives. Since then, human and mouse genetics, combined with cellular and developmental studies, have helped to unravel the role of this signaling pathway during development and adulthood. In this review, we will summarize the known functions of the EDN3/EDNRB pathway during neural crest development, with a specific focus on recent scientific advances, and the enteric nervous system in normal and pathological conditions.
Collapse
Affiliation(s)
- Nadege Bondurand
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.
| | - Sylvie Dufour
- INSERM, U955, Equipe 06, Créteil 94000, France; Université Paris Est, Faculté de Médecine, Créteil 94000, France
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France; Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
27
|
Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis. Pediatr Res 2017; 82:490-500. [PMID: 28422949 DOI: 10.1038/pr.2017.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
BackgroundNeonatal necrotizing enterocolitis (NEC) is associated with alterations of the enteric nervous system (ENS), with loss of neuronal nitric oxide synthase (nNOS)-expressing neurons in the intestine. The aim of this study was to investigate the roles of heparin-binding EGF-like growth factor (HB-EGF) in neural stem cell (NSC) differentiation, nNOS expression, and effects on ENS integrity during experimental NEC.MethodsThe effects of HB-EGF on NSC differentiation and nNOS production were determined using cultured enteric NSCs. Myenteric neuronal subpopulations were examined in HB-EGF knockout mice. Rat pups were exposed to experimental NEC, and the effects of HB-EGF treatment on nNOS production and intestinal neuronal apoptosis were determined.ResultsHB-EGF promotes NSC differentiation, with increased nNOS production in differentiated neurons and glial cells. Moreover, loss of nNOS-expressing neurons in the myenteric plexus and impaired neurite outgrowth were associated with absence of the HB-EGF gene. In addition, administration of HB-EGF preserves nNOS expression in the myenteric plexus and reduces enteric neuronal apoptosis during experimental NEC.ConclusionHB-EGF promotes the differentiation of enteric NSCs into neurons in a nitric oxide (NO)-dependent manner, and protects the ENS from NEC-induced injury, providing new insights into potential therapeutic strategies for the treatment of NEC in the future.
Collapse
|
28
|
Barlow-Anacker AJ, Fu M, Erickson CS, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep 2017; 7:45645. [PMID: 28349968 PMCID: PMC5368681 DOI: 10.1038/srep45645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Neural crest cells (NCC) are multi-potent cells of ectodermal origin that colonize diverse organs, including the gastrointestinal tract to form the enteric nervous system (ENS) and hematopoietic organs (bone marrow, thymus) where they participate in lymphocyte trafficking. Recent studies have implicated the spleen as an anatomic site for integration of inflammatory signals from the intestine with efferent neural inputs. We have previously observed alterations in splenic lymphocyte subsets in animals with defective migration of NCC that model Hirschsprung's disease, leading us to hypothesize that there may be a direct cellular contribution of NCC to the spleen. Here, we demonstrate that NCC colonize the spleen during embryogenesis and persist into adulthood. Splenic NCC display markers indicating a glial lineage and are arranged anatomically adjacent to blood vessels, pericytes and nerves, suggesting an astrocyte-like phenotype. Finally, we identify similar neural-crest derived cells in both the avian and non-human primate spleen, showing evolutionary conservation of these cells.
Collapse
Affiliation(s)
- Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ming Fu
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | | | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
29
|
Cheng LS, Schwartz DM, Hotta R, Graham HK, Goldstein AM. Bowel dysfunction following pullthrough surgery is associated with an overabundance of nitrergic neurons in Hirschsprung disease. J Pediatr Surg 2016; 51:1834-1838. [PMID: 27570241 PMCID: PMC5065396 DOI: 10.1016/j.jpedsurg.2016.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE Recent evidence suggests that patients with Hirschsprung disease (HD) have abnormal neurotransmitter expression in the ganglionated proximal colon. These alterations may cause persistent bowel dysfunction even after pullthrough surgery. We sought to quantify the proportion of nitrergic neurons in the ganglionic colon of HD patients and relate these findings to functional outcome. METHODS The proximal resection margin from 17 patients with colonic HD who underwent a pullthrough procedure and colorectal tissue from 4 age-matched controls were immunohistochemically examined to quantify the proportion of nitrergic neurons. The incidence of constipation, incontinence, and enterocolitis in HD patients was assessed retrospectively and correlated with the proportion of nitric oxide synthase (NOS) expressing neurons. Neuronal subtypes in the ganglionic colon of the Edrnb-/- mouse model of HD were also studied. RESULTS Mice with HD had a significantly higher proportion of NOS+ neurons in ganglionic colon than normal littermates (32.0±5.6% vs. 19.8±1.2%, p<0.01). Patients with HD also had significantly more NOS+ neurons than controls (18.4±4.6% vs. 13.1±1.9%, p<0.01). Patients who experienced constipation or enterocolitis postoperatively tended toward a higher proportion of NOS+ neurons (21.4±3.9% vs. 17.1±4.1%, p=0.06). Furthermore, patients with a proportion of NOS+ neurons above the median of all HD patients (18.3%) were significantly more likely to have constipation than those below the median (75% vs. 14%, p<0.05). CONCLUSION An overabundance of nitrergic neurons in the proximal resection margin is associated with HD and may predict bowel dysfunction following pullthrough surgery.
Collapse
Affiliation(s)
- Lily S Cheng
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114; Department of Surgery, University of California San Francisco, 500 Parnassus Ave, San Francisco, CA 94143
| | - Dana M Schwartz
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114
| | - Ryo Hotta
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114
| | - Hannah K Graham
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114
| | - Allan M Goldstein
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114.
| |
Collapse
|
30
|
Touré AM, Charrier B, Pilon N. Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterol Motil 2016; 28:1494-507. [PMID: 27278627 DOI: 10.1111/nmo.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND In Hirschsprung disease (HSCR), the absence of myenteric neural ganglia in the distal bowel prevents motility and thereby causes functional intestinal obstruction. Although surgical resection of the aganglionic segment allows HSCR children to survive this condition, a number of patients still suffer from impaired motility despite having myenteric ganglia in their postoperative distal bowel. Such phenomenon is also observed in patients suffering from other enteric neuropathies and, in both cases, colonic dysmotility is believed to result from abnormalities of myenteric ganglia and/or associated interstitial cells of Cajal (ICC). To better understand this, we used a recently described HSCR mouse model called TashT. METHODS Intestinal motility parameters were assessed and correlated with extent of aganglionosis and with neuronal density in ganglionated regions. The neural composition of the myenteric plexus and the status of ICC networks was also evaluated using immunofluorescence. KEY RESULTS TashT(Tg/Tg) mice display a strong male bias in the severity of both colonic aganglionosis and hypoganglionosis, which are associated with male-specific reduced colonic motility. TashT(Tg/Tg) male mice also exhibit a specific increase in nNos(+) neurons that is restricted to the most distal ganglionated regions. In contrast, Calretinin(+) myenteric neurons, Sox10(+) myenteric glial cells, and cKit(+) ICC are not affected in TashT(Tg/Tg) mice. CONCLUSIONS AND INFERENCES Male-specific impairment of colonic motility in TashT(Tg/Tg) mice is associated with both severe hypoganglionosis and myenteric neuronal imbalance. Considering these parameters in the clinic might be important for the management of postoperative HSCR patients.
Collapse
Affiliation(s)
- A M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - B Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - N Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada.
| |
Collapse
|
31
|
Shi Y, Chen Q, Huang Y, Ni L, Liu J, Jiang J, Li N. Function and clinical implications of short-chain fatty acids in patients with mixed refractory constipation. Colorectal Dis 2016; 18:803-10. [PMID: 26921846 DOI: 10.1111/codi.13314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
AIM The present study was designed to investigate the function and clinical implications of stool short-chain fatty acids (SCFAs) in patients with mixed refractory constipation. METHOD Ascending colon specimens obtained from 30 patients with ascending colon cancer were regarded as the control group. Ascending colon specimens obtained from patients with mixed refractory constipation were regarded as the experimental group and were divided into three subgroups, according to Wexner scores [A constipation scoring system to simplify evaluation and management of constipated patients. Dis Colon Rectum 1996; 39: 681-5] of 16-20, 21-25 and 26-30, with 30 patients in each group. The stool SCFAs were extracted and quantitatively analysed using gas chromatography-mass spectrometry (GC-MS). The expression of G protein-coupled receptor 43 (GPR43) and of choline acetyltransferase (ChAT) were detected by immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting of colon samples. RESULTS The levels of acetate, propionate and butyrate were significantly lower in the experimental group than in the control group (P < 0.05). Compared with the control group, the densitometric quantification and mean density of GPR43 and ChAT proteins, and expression of GPR43 and CHAT genes, were significantly decreased in the patients with mixed refractory constipation (P < 0.05). CONCLUSION In the patients with mixed refractory constipation, the levels of stool SCFAs, including acetate, propionate and butyrate, as well as the levels of GPR43 and ChAT expressed in the colon, which were all negatively correlated with the Wexner score, were decreased and may be associated with the pathogenesis of mixed refractory constipation.
Collapse
Affiliation(s)
- Y Shi
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Q Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Y Huang
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China
| | - L Ni
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - J Liu
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Jiangsu, China
| | - J Jiang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - N Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Coyle D, O'Donnell AM, Gillick J, Puri P. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease. J Pediatr Surg 2016; 51:762-9. [PMID: 26951962 DOI: 10.1016/j.jpedsurg.2016.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/07/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. METHODS Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. RESULTS ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. CONCLUSION Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients.
Collapse
Affiliation(s)
- David Coyle
- Temple Street Children's University Hospital, Dublin 1, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - John Gillick
- Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| |
Collapse
|
33
|
Veleanu M, Axen TE, Kristensen MP, Kohlmeier KA. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology. J Neurosci Methods 2016; 263:23-35. [DOI: 10.1016/j.jneumeth.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 01/16/2023]
|
34
|
Uyttebroek L, Shepherd IT, Vanden Berghe P, Hubens G, Timmermans JP, Van Nassauw L. The zebrafish mutant lessen: an experimental model for congenital enteric neuropathies. Neurogastroenterol Motil 2016; 28:345-57. [PMID: 26685876 DOI: 10.1111/nmo.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Congenital enteric neuropathies of the distal intestine (CEN) are characterized by the partial or complete absence of enteric neurons. Over the last decade, zebrafish has emerged as a leading model organism in experimental research. Our aim was to demonstrate that the mutant zebrafish, lessen, expressing CEN characteristics, is an equally valuable animal model alongside mammalian models for CEN, by studying its enteric phenotype. METHODS The effect of the lessen mutation on the development of the enteric nervous system (ENS), interstitial cells of Cajal (ICC), and intestinal motility in each intestinal region of mutant and wild-type (wt) zebrafish embryos at 3-6 dpf, was analyzed by immunofluorescent detection of neurochemical markers and motility assays. KEY RESULTS Development of intestinal motility in the mutant was delayed and the majority of the observed contractions were disturbed. A significant disturbance in ENS development resulted in a distal intestine that was almost free of neuronal elements, in reduced neuronal density in the proximal and mid-intestine, and in a defect in the expression of neurochemical markers. Furthermore, markedly disturbed development of ICC gave rise to a less dense network of ICC. CONCLUSIONS & INFERENCES The observed alterations in intestinal motility, intrinsic innervation and ICC network of the mutant in comparison with the wt zebrafish, are similar to those seen in the oligo- and aganglionic regions of the intestine of CEN patients. It is concluded that the zebrafish mutant lessen is an appropriate animal model to investigate CEN.
Collapse
Affiliation(s)
- L Uyttebroek
- Laboratory of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium
| | - I T Shepherd
- Department of Biology, Emory University, Atlanta, GA, USA
| | - P Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research in GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - G Hubens
- Laboratory of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium
| | - J-P Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen, Belgium
| | - L Van Nassauw
- Laboratory of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
35
|
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cell migration. Rodent animal models of aganglionosis have contributed greatly to our understanding of the genetic basis of HSCR. Several natural or target mutations in specific genes have been reported to produce developmental defects in neural crest migration, differentiation or survival. The aim of this study was to review the currently available knockout models of HSCR to better understand the molecular basis of HSCR. METHODS A review of the literature using the keywords "Hirschsprung's disease", "aganglionosis", "megacolon" and "knockout mice model" was performed. Resulting publications were reviewed for relevant mouse models of human aganglionosis. Reference lists were screened for additional relevant studies. RESULTS 16 gene knockout mouse models were identified as relevant rodent models of human HSCR. Due to the deletion of a specific gene, the phenotypes of these knockout models are diverse and range from small bowel dilatation and muscular hypertrophy to total intestinal aganglionosis. CONCLUSIONS Mouse models of aganglionosis have been instrumental in the discovery of the causative genes of HSCR. Although important advances have been made in understanding the genetic basis of HSCR, animal models of aganglionosis in future should further help to identify the unknown susceptibility genes in HSCR.
Collapse
Affiliation(s)
- J Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | |
Collapse
|
36
|
Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease. PLoS One 2015; 10:e0128822. [PMID: 26061883 PMCID: PMC4465674 DOI: 10.1371/journal.pone.0128822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
Hirschsprung’s disease (HSCR) is characterized by aganglionosis from failure of neural crest cell (NCC) migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung’s-associated enterocolitis (HAEC), with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI) mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/-) resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P) 21–24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer’s Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer’s Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature) B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted to the aganglionic colon but extend proximally, even into the ganglionated small intestine and immune cells.
Collapse
|
37
|
Barlow-Anacker AJ, Erickson CS, Epstein ML, Gosain A. Immunostaining to visualize murine enteric nervous system development. J Vis Exp 2015:e52716. [PMID: 25993536 PMCID: PMC4541606 DOI: 10.3791/52716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.
Collapse
Affiliation(s)
| | | | - Miles L Epstein
- Department of Neurosciences, University of Wisconsin School of Medicine and Public Health
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health; Department of Neurosciences, University of Wisconsin School of Medicine and Public Health; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health;
| |
Collapse
|
38
|
Rego SL, Raghavan S, Zakhem E, Bitar KN. Enteric neural differentiation in innervated, physiologically functional, smooth muscle constructs is modulated by bone morphogenic protein 2 secreted by sphincteric smooth muscle cells. J Tissue Eng Regen Med 2015; 11:1251-1261. [PMID: 25926098 DOI: 10.1002/term.2027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) functions, including motility and digestion, which are impaired in ENS disorders. Differentiation of enteric neurons is mediated by factors released by the gut mesenchyme, including smooth muscle cells (SMCs). SMC-derived factors involved in adult enteric neural progenitor cells (NPCs) differentiation remain elusive. Furthermore, physiologically relevant in vitro models to investigate the innervations of various regions of the gut, such as the pylorus and lower oesophageal sphincter (LES), are not available. Here, neural differentiation in bioengineered innervated circular constructs composed of SMCs isolated from the internal anal sphincter (IAS), pylorus, LES and colon of rabbits was investigated. Additionally, SMC-derived factors that induce neural differentiation were identified to optimize bioengineered construct innervations. Sphincteric and non-sphincteric bioengineered constructs aligned circumferentially and SMCs maintained contractile phenotypes. Sphincteric constructs generated spontaneous basal tones. Higher levels of excitatory and inhibitory motor neuron differentiation and secretion of bone morphogenic protein 2 (BMP2) were observed in bioengineered, innervated, sphincteric constructs compared to non-sphincteric constructs. The addition of BMP2 to non-sphincteric colonic SMC constructs increased nitrergic innervations, and inhibition of BMP2 with noggin in sphincteric constructs decreased functional relaxation. These studies provide: (a) the first bioengineered innervated pylorus and LES constructs; (b) physiologically relevant models to investigate SMCs and adult NPCs interactions; and (c) evidence of the region-specific effects of SMCs on neural differentiation mediated by BMP2. Furthermore, this study paves the way for the development of innervated bioengineered GI tissue constructs tailored to specific disorders and locations within the gut. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen L Rego
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
39
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
40
|
Musser MA, Correa H, Southard-Smith EM. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10Dom/+ Hirschsprung mouse model. Cell Mol Gastroenterol Hepatol 2015; 1:87-101. [PMID: 25844395 PMCID: PMC4380251 DOI: 10.1016/j.jcmgh.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In Hirschsprung disease (HSCR), neural crest-derived progenitors (NCPs) fail to completely colonize the intestine so that the enteric nervous system (ENS) is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC)-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. METHODS Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wildtype controls. RESULTS Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as Calretinin+ and nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4-weeks of age, and at 6-weeks, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6-weeks of age had little or no colonic inflammation when compared to wildtype littermates, suggesting that these changes in GI motility are neurally mediated. CONCLUSIONS The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects GI motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification.
Collapse
Affiliation(s)
- Melissa A. Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hernan Correa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
41
|
Pierre JF, Barlow-Anacker AJ, Erickson CS, Heneghan AF, Leverson GE, Dowd SE, Epstein ML, Kudsk KA, Gosain A. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung's disease. J Pediatr Surg 2014; 49:1242-51. [PMID: 25092084 PMCID: PMC4122863 DOI: 10.1016/j.jpedsurg.2014.01.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Hirschsprung's disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprung's-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in an HSCR model. METHODS Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16-18 and P21-24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of Escherichia coli into ileal explants was measured using an ex vivo organ culture system. RESULTS EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16-18. However, by P21-24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. CONCLUSIONS Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Aaron F. Heneghan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Glen E. Leverson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scot E. Dowd
- Research and Testing Laboratory, Lubbock, Texas, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kenneth A. Kudsk
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
42
|
Erickson CS, Lee SJ, Barlow-Anacker AJ, Druckenbrod NR, Epstein ML, Gosain A. Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines. Neurogastroenterol Motil 2014; 26:874-84. [PMID: 24712519 PMCID: PMC4037379 DOI: 10.1111/nmo.12343] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cholinergic neurons have been identified with the acetylcholine synthetic enzyme choline acetyltransferase (ChAT). However, ChAT is difficult to localize in newly differentiated peripheral neurons making the study of cholinergic neuronal development problematic. Consequently, researchers have used mouse reporter lines to indicate the presence of ChAT. METHODS Our objective was to determine which ChAT reporter line was the most sensitive indicator of ChAT expression. We utilized two different fluorescent ChAT reporter lines (ChAT-GFP and ChAT-Cre;R26R:floxSTOP:tdTomato) together with immunolocalization of ChAT protein (ChAT-IR) to characterize the spatial and temporal expression of ChAT in myenteric neurons throughout enteric nervous system (ENS) development. KEY RESULTS ChAT-IR cells were first seen in the intestine at E10.5, even within the migration wavefront of neural precursors. Myenteric neurons within the distal small intestine (dSI) and proximal colon were first labeled by ChAT-IR, then ChAT-GFP, and finally ChAT-Cre tdTomato. The percentage of ChAT-IR neurons is equivalent to adult levels in the dSI by E13.5 and proximal colon by P0. After these stages, the percentages remained relatively constant throughout development despite dramatic changes in neuronal density. CONCLUSIONS & INFERENCES These observations indicate that neurotransmitter expression occurs early and there is only a brief gap between neurogenesis and neurotransmitter expression. Our finding that the proportion of ChAT myenteric neurons reached adult levels during embryonic development suggests that the fate of cholinergic neurons is tightly regulated and that their differentiation might influence further neuronal development. ChAT-GFP is a more accurate indicator of early ENS cholinergic neuronal differentiation than the ChAT-Cre;R26R:floxSTOP:tdTomato reporter mouse.
Collapse
Affiliation(s)
- Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scott J. Lee
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Noah R. Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Erickson CS, Barlow AJ, Pierre JF, Heneghan AF, Epstein ML, Kudsk KA, Gosain A. Colonic enteric nervous system analysis during parenteral nutrition. J Surg Res 2013; 184:132-7. [PMID: 23601532 DOI: 10.1016/j.jss.2013.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 01/03/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Parenteral nutrition (PN) is a necessary therapy used to feed patients with gastrointestinal dysfunction. Unfortunately, PN results in intestinal atrophy and changes to host immune function. PN may also induce additional effects on gut motility that we hypothesized would result from changes in the enteric nervous system. METHODS Mice received an intravenous (i.v.) catheter and were randomized to chow (n = 5), i.v. PN (n = 6), or i.v. PN + bombesin (BBS, 15 μg/kg, 3×/d) (n = 6) for 5 d. Colons were removed and dissected to measure the length and circumference. Enteric neuronal density and neurotransmitter expression were determined by co-immunostaining whole-mount tissue with Hu and neuronal nitric oxide synthase (nNOS). RESULTS The number of myenteric neurons expressing Hu and nNOS increased per unit length in the mid-colon during PN treatment compared with chow. This increase was abrogated by the addition of BBS to the PN regimen. However, the percentage of nNOS-expressing neurons was not significantly altered by PN. Morphometric analysis revealed a decrease in the length and circumference of the colon during PN administration that was partially normalized by supplementation of PN with BBS. A significant reduction in total fecal output was observed in PN animals compared with chow and was increased by mice receiving BBS in addition to PN. CONCLUSIONS PN causes a constriction of the bowel wall, reducing not only the length but also the circumference of the colon. These changes cause a condensation of enteric neurons but no difference in neurotransmitter expression. BBS supplementation partially restores the constriction and increases the fecal output during PN treatment compared with PN treatment alone.
Collapse
Affiliation(s)
- Christopher S Erickson
- Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Musser MA, Michelle Southard-Smith E. Balancing on the crest - Evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol 2013; 382:356-64. [PMID: 23376538 DOI: 10.1016/j.ydbio.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/28/2023]
Abstract
Normal enteric nervous system (ENS) development relies on numerous factors, including appropriate migration, proliferation, differentiation, and maturation of neural crest (NC) derivatives. Incomplete rostral to caudal migration of enteric neural crest-derived progenitors (ENPs) down the gut is at least partially responsible for the absence of enteric ganglia that is a hallmark feature of Hirschsprung disease (HSCR). The thought that ganglia proximal to aganglionosis are normal has guided surgical procedures for HSCR patients. However, chronic gastrointestinal dysfunction suffered by a subset of patients after surgery as well as studies in HSCR mouse models suggest that aberrant NC segregation and differentiation may be occurring in ganglionated regions of the intestine. Studies in mouse models that possess enteric ganglia throughout the length of the intestine (non-HSCR) have also found that certain genetic alterations affect neural crest lineage balance and interestingly many of these mutants also have functional gastrointestinal (GI) defects. It is possible that many GI disorders can be explained in part by imbalances in NC-derived lineages. Here we review studies evaluating ENS defects in HSCR and non-HSCR mouse models, concluding with clinical implications while highlighting areas requiring further study.
Collapse
Affiliation(s)
- Melissa A Musser
- Division of Genetic Medicine, Department of Medicine and the PhD Program in Human Genetics, Center for Human Genetic Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|