1
|
Li Y, Liu Q, Pan CY, Lan XY. The free fatty acid receptor 2 (FFA2): Mechanisms of action, biased signaling, and clinical prospects. Pharmacol Ther 2025; 272:108878. [PMID: 40383399 DOI: 10.1016/j.pharmthera.2025.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Free Fatty Acid Receptor 2 (FFA2), also known as GPR43, is a receptor activated by short-chain fatty acids (SCFAs) with fewer than six carbons in their aliphatic chains. This receptor is expressed in immune cells, adipose tissue, the gastrointestinal tract, and pancreatic islet cells, where it plays a crucial role in the modulation of inflammation, lipid metabolism, insulin secretion, and appetite regulation. Extensive research has been conducted to elucidate the structural attributes and physiological functions of FFA2. Furthermore, several synthetic agonists have been developed for FFA2 that can preferentially activate certain G-proteins, demonstrating potential pharmacological advantages in both in vivo and in vitro studies. Herein, we review the structure and physiological functions of FFA2 and its synthetic ligands, discussing the structural basis of FFA2's biased signaling and the potential role of biased ligands targeting this receptor in the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 710038, China
| | - Chuan-Ying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
3
|
Pedersen SS, Ingerslev LR, Olsen M, Prause M, Billestrup N. Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction. FEBS J 2024; 291:566-583. [PMID: 37985375 DOI: 10.1111/febs.17005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Butyrate, a gut microbial metabolite, has beneficial effects on glucose homeostasis and has become an attractive drug candidate for type 2 diabetes (T2D). Recently, we showed that butyrate protects pancreatic beta cells against cytokine-induced dysfunction. In this study, we explored the underlying mechanisms of butyrate action. Pancreatic mouse islets were exposed to a non-cytotoxic concentration of interleukin-1β (IL-1β) for 10 days to mimic low-grade inflammation in T2D. Similar to the effect of butyrate, an isoform-selective histone deacetylase 3 (HDAC3) inhibitor normalized IL-1β-reduced glucose-stimulated insulin secretion and insulin content. In contrast, free fatty acid receptor 2 and 3 (FFAR2/3) agonists failed to normalize IL-1β-induced beta cell dysfunction. Furthermore, butyrate inhibited HDAC activity and increased the acetylation of histone H3 and H4 by 3- and 10-fold, respectively. Genome-wide analysis of histone H3 lysine 27 acetylation (H3K27ac) revealed that butyrate mainly increased H3K27ac at promoter regions (74%), while H3K27ac peaks regulated by IL-1β were more equally distributed at promoters (38%), introns (23%) and intergenic regions (23%). Gene ontology analysis showed that butyrate increased IL-1β-reduced H3K27ac levels near several genes related to hormone secretion and reduced IL-1β-increased H3K27ac levels near genes associated with inflammatory responses. Butyrate alone increased H3K27ac near many genes related to MAPK signaling, hormone secretion, and differentiation, and decreased H3K27ac at genes involved in cell replication. Together, these results suggest that butyrate prevents IL-1β-induced pancreatic islet dysfunction by inhibition of HDACs resulting in changes in H3K27ac levels at genes relevant for beta cell function and inflammatory responses.
Collapse
Affiliation(s)
- Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mathias Olsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Frampton J, Serrano-Contreras JI, Garcia-Perez I, Franco-Becker G, Penhaligan J, Tan ASY, Cepas de Oliveira AC, Milner AJ, Murphy KG, Frost G, Chambers ES. The impact of acute exercise on appetite regulation: unravelling the potential involvement of gut microbial activity. J Physiol 2024; 602:529-530. [PMID: 38226960 DOI: 10.1113/jp286101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Affiliation(s)
- James Frampton
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jose Ivan Serrano-Contreras
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Isabel Garcia-Perez
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Georgia Franco-Becker
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jack Penhaligan
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Abbigail S Y Tan
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ana Claudia Cepas de Oliveira
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Annabelle J Milner
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
Lee YJ, Son SE, Im DS. Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. Int Immunopharmacol 2024; 127:111428. [PMID: 38159551 DOI: 10.1016/j.intimp.2023.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Free fatty acid 3 receptor (FFA3; previously GPR41) is a G protein-coupled receptor that senses short-chain fatty acids and dietary metabolites produced by the gut microbiota. FFA3 deficiency reportedly exacerbates inflammatory events in asthma. Herein, we aimed to determine the therapeutic potential of FFA3 agonists in treating inflammatory diseases. We investigated the effects of N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxamide (AR420626), an FFA3 agonist, in in vivo models of chemically induced allergic asthma and eczema in BALB/c mice. Administration of AR420626 decreased the number of immune cells in the bronchoalveolar lavage fluid and skin. AR420626 suppressed inflammatory cytokine expression in the lung and skin tissues. Histological examination revealed that AR420626 suppressed inflammation in the lungs and skin. Treatment with AR420626 significantly suppressed the enhanced lymph node size and inflammatory cytokine levels. Overall, FFA3 agonist AR420626 could suppress allergic asthma and eczema, implying that activation of FFA3 might be a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea
| | - So-Eun Son
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.
| |
Collapse
|
6
|
Tough IR, Lund ML, Patel BA, Schwartz TW, Cox HM. Paracrine relationship between incretin hormones and endogenous 5-hydroxytryptamine in the small and large intestine. Neurogastroenterol Motil 2023; 35:e14589. [PMID: 37010838 PMCID: PMC10909488 DOI: 10.1111/nmo.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays. METHODS Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured. KEY RESULTS We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit. CONCLUSIONS & INFERENCES We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.
Collapse
Affiliation(s)
- Iain R. Tough
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| | - Mari L. Lund
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
- Present address:
Chr. Hansen A/S, Human Health ResearchHoersholmDK‐2970Denmark
| | - Bhavik A. Patel
- Centre for Stress and Age‐Related Diseases, School of Applied SciencesUniversity of BrightonBrightonUK
| | - Thue W. Schwartz
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Helen M. Cox
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| |
Collapse
|
7
|
Tang N, Yu Q, Mei C, Wang J, Wang L, Wang G, Zhao J, Chen W. Bifidobacterium bifidum CCFM1163 Alleviated Cathartic Colon by Regulating the Intestinal Barrier and Restoring Enteric Nerves. Nutrients 2023; 15:nu15051146. [PMID: 36904145 PMCID: PMC10005791 DOI: 10.3390/nu15051146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Cathartic colon (CC), a type of slow-transit constipation caused by the long-term use of stimulant laxatives, does not have a precise and effective treatment. This study aimed to evaluate the ability of Bifidobacterium bifidum CCFM1163 to relieve CC and to investigate its underlying mechanism. Male C57BL/6J mice were treated with senna extract for 8 weeks, followed by a 2-week treatment with B. bifidum CCFM1163. The results revealed that B. bifidum CCFM1163 effectively alleviated CC symptoms. The possible mechanism of B. bifidum CCFM1163 in relieving CC was analyzed by measuring the intestinal barrier and enteric nervous system (ENS)-related indices and establishing a correlation between each index and gut microbiota. The results indicated that B. bifidum CCFM1163 changed the gut microbiota by significantly increasing the relative abundance of Bifidobacterium, Faecalibaculum, Romboutsia, and Turicibacter as well as the content of short-chain fatty acids, especially propionic acid, in the feces. This increased the expression of tight junction proteins and aquaporin 8, decreased intestinal transit time, increased fecal water content, and relieved CC. In addition, B. bifidum CCFM1163 also increased the relative abundance of Faecalibaculum in feces and the expression of enteric nerve marker proteins to repair the ENS, promote intestinal motility, and relieve constipation.
Collapse
Affiliation(s)
- Nan Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Gut microbiota: a new avenue to reveal pathological mechanisms of constipation. Appl Microbiol Biotechnol 2022; 106:6899-6913. [PMID: 36190540 DOI: 10.1007/s00253-022-12197-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.
Collapse
|
10
|
Zheng Z, Tang J, Hu Y, Zhang W. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front Med (Lausanne) 2022; 9:961703. [PMID: 35935766 PMCID: PMC9354785 DOI: 10.3389/fmed.2022.961703] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The gastrointestinal (GI) tract harbors trillions of commensal microbes, called the gut microbiota, which plays a significant role in the regulation of GI physiology, particularly GI motility. The GI tract expresses an array of receptors, such as toll-like receptors (TLRs), G-protein coupled receptors, aryl hydrocarbon receptor (AhR), and ligand-gated ion channels, that sense different gut microbiota-derived bioactive substances. Specifically, microbial cell wall components and metabolites, including lipopeptides, peptidoglycan, lipopolysaccharides (LPS), bile acids (BAs), short-chain fatty acids (SCFAs), and tryptophan metabolites, mediate the effect of gut microbiota on GI motility through their close interactions with the enteroendocrine system, enteric nervous system, intestinal smooth muscle, and immune system. In turn, GI motility affects the colonization within the gut microbiota. However, the mechanisms by which gut microbiota interacts with GI motility remain to be elucidated. Deciphering the underlying mechanisms is greatly important for the prevention or treatment of GI dysmotility, which is a complication associated with many GI diseases, such as irritable bowel syndrome (IBS) and constipation. In this perspective, we overview the current knowledge on the role of gut microbiota and its metabolites in the regulation of GI motility, highlighting the potential mechanisms, in an attempt to provide valuable clues for the development of gut microbiota-dependent therapy to improve GI motility.
Collapse
|
11
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
12
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
13
|
Lymperopoulos A, Suster MS, Borges JI. Short-Chain Fatty Acid Receptors and Cardiovascular Function. Int J Mol Sci 2022; 23:3303. [PMID: 35328722 PMCID: PMC8952772 DOI: 10.3390/ijms23063303] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA; (M.S.S.); (J.I.B.)
| | | | | |
Collapse
|
14
|
Fung C, Cools B, Malagola S, Martens T, Tack J, Kazwiny Y, Vanden Berghe P. Luminal short-chain fatty acids and 5-HT acutely activate myenteric neurons in the mouse proximal colon. Neurogastroenterol Motil 2021; 33:e14186. [PMID: 34121274 DOI: 10.1111/nmo.14186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal (GI) function is critically dependent on the control of the enteric nervous system (ENS), which is situated within the gut wall and organized into two ganglionated nerve plexuses: the submucosal and myenteric plexus. The ENS is optimally positioned and together with the intestinal epithelium, is well-equipped to monitor the luminal contents such as microbial metabolites and to coordinate appropriate responses accordingly. Despite the heightened interest in the gut microbiota and its influence on intestinal physiology and pathophysiology, how they interact with the host ENS remains unclear. METHODS Using full-thickness proximal colon preparations from transgenic Villin-CreERT2;R26R-GCaMP3 and Wnt1-Cre;R26R-GCaMP3 mice, which express a fluorescent Ca2+ indicator in their intestinal epithelium or in their ENS, respectively, we examined the effects of key luminal microbial metabolites (SCFAs and 5-HT) on the mucosa and underlying enteric neurons. KEY RESULTS We show that the SCFAs acetate, propionate, and butyrate, as well as 5-HT can, to varying extents, acutely elicit epithelial and neuronal Ca2+ responses. Furthermore, SCFAs exert differential effects on submucosal and myenteric neurons. Additionally, we found that submucosal ganglia are predominantly aligned along the striations of the transverse mucosal folds in the proximal colon. CONCLUSIONS & INFERENCES Taken together, our study demonstrates that different microbial metabolites, including SCFAs and 5-HT, can acutely stimulate Ca2+ signaling in the mucosal epithelium and in enteric neurons.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Bert Cools
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Sergio Malagola
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Tobias Martens
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Youcef Kazwiny
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS) Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Adler GK, Hornik ES, Murray G, Bhandari S, Yadav Y, Heydarpour M, Basu R, Garg R, Tirosh A. Acute effects of the food preservative propionic acid on glucose metabolism in humans. BMJ Open Diabetes Res Care 2021; 9:9/1/e002336. [PMID: 34312159 PMCID: PMC8314753 DOI: 10.1136/bmjdrc-2021-002336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Propionic acid (PA) is a common food preservative generally recognized as safe by the US Food and Drug Administration; however, exogenous PA has effects on glucose metabolism that are not fully understood. Our preclinical studies demonstrated exogenous PA increases glucagon, norepinephrine, and endogenous glucose production (EGP). RESEARCH DESIGN AND METHODS We performed a randomized, placebo-controlled, crossover study in 28 healthy men and women to determine the effect of PA (1500 mg calcium propionate) on these factors. Subjects had two study visits, each preceded by a 1 week, PA-free diet. During each visit, glucose, insulin, glucagon, norepinephrine, epinephrine, and EGP were assessed for 2 hours after oral administration of PA/placebo under resting conditions (protocol 1) and during either a euglycemic (~85-90 mg/dL) or hypoglycemic (~65-70 mg/dL) hyperinsulinemic clamp (protocol 2). RESULTS PA, as compared with placebo, significantly increased: (1) glucagon and norepinephrine during protocol 1; (2) glucagon, norepinephrine, and epinephrine under euglycemic conditions in protocol 2; and (3) norepinephrine, epinephrine, and EGP under hypoglycemic conditions in protocol 2. CONCLUSION Oral consumption of PA leads to inappropriate activation of the insulin counterregulatory hormonal network. This inappropriate stimulation highlights PA as a potential metabolic disruptor.
Collapse
Affiliation(s)
- Gail K Adler
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ezra S Hornik
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Gillian Murray
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shreya Bhandari
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yogesh Yadav
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mahyar Heydarpour
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rita Basu
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rajesh Garg
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amir Tirosh
- Division of Endocrinology, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
16
|
Arora T, Vanslette AM, Hjorth SA, Bäckhed F. Microbial regulation of enteroendocrine cells. MED 2021; 2:553-570. [DOI: 10.1016/j.medj.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
|
17
|
Dalziel JE, Spencer NJ, Young W. Microbial signalling in colonic motility. Int J Biochem Cell Biol 2021; 134:105963. [PMID: 33636395 DOI: 10.1016/j.biocel.2021.105963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Sensory nerve endings within the wall of the gastrointestinal (GI) tract may respond to bacterial signalling, providing the basis for key biological processes that underlie intestinal motility and microbial homeostasis. Enteric neurons and smooth muscle cells are well known to express an array of receptors, including G-protein coupled receptors and ligand-gated ion channels, that can sense chemical ligands and other bacterially-derived substances. These include short chain fatty acids, secondary bile acids and lipopolysaccharide. For neural detection of microbial activators to occur, luminal substances must first interact with enterocytes for direct signalling or cross paracellularly. Recent studies indicate that bacterial-derived microvesicles can cross the gut epithelial barrier and affect motility. This suggests a possible intercellular communication pathway between the GI tract and the ENS. We explore the idea that bacterial microvesicles can behave as a delivery package for communication between microbe and host.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.
| | - Nick J Spencer
- Discipline of Physiology, College of Medicine and Public Health, Flinders University, School of Medicine, Adelaide, SA, Australia
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
18
|
Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem Pharmacol 2021; 186:114483. [PMID: 33631190 DOI: 10.1016/j.bcp.2021.114483] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
The dietary role of macronutrients and their metabolites in cancer has been evident for many decades. Dietary ingestion of fat, carbohydrates, protein, and fiber, as well as probiotics that influence gut microbiota, have all been linked to gastrointestinal (GI) tract health and disease, particularly in the colon, where it has long been known that fat and fiber can regulate inflammation and carcinogenesis. Short-chained fatty acids (SCFA), including acetate, propionate, and butyrate, which are biosynthesized by microbiota-mediated metabolism of dietary fiber, have previously been shown to play important roles in colorectal health, including decreasing inflammation and oxidative stress. Since the 1980s, a growing number of studies have also demonstrated a link between SCFA and colon epithelial cell carcinogenesis and prevention of colorectal cancers (CRC). While the effects of SCFA have historically been associated with their intracellular metabolism and function, the discovery of a family of G protein-coupled free-fatty acid receptors in the early 2000s suggests that many effects of SCFA are cell-surface receptor mediated. Indeed, the SCFA GPCRs FFA2 (previously termed GPR43), FFA3 (previously termed GPR41), and GPR109A are now well established to be expressed within the GI tract, where they modulate a variety of functions in response to luminal SCFA. While the role of SCFA in cancers, including CRC, has been reviewed in detail elsewhere, the goal of this report is to provide a review on the current body of evidence in regard to the effects of SCFA on FFA2, FFA3, and GPR109A in colon cancers.
Collapse
|
19
|
Shaidullov IF, Sorokina DM, Sitdikov FG, Hermann A, Abdulkhakov SR, Sitdikova GF. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol 2021; 21:37. [PMID: 33499840 PMCID: PMC7836204 DOI: 10.1186/s12876-021-01613-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is defined as a multifactorial disorder associated with visceral hypersensitivity, altered gut motility and dysfunction of the brain-gut axis. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. Short chain fatty acids (SCFAs) induce both inhibitory and stimulatory action on colon motility, however, their effects on the IBS model were not investigated. The aim of our study was to investigate the level of SFCAs in feces and their effects on colon motility in a mouse model of IBS. Methods IBS model was induced in mice by intracolonic infusion of 1% acetic acid during the early postnatal period. Mice colon hypersensitivity was assessed by the threshold of the abdominal withdrawal reflex in response to colorectal distention. Colon contractility was studied using proximal colon specimens in isometric conditions. Transit rates were assessed by the pellet propulsion in the isolated colon. Concentrations of SCFAs in feces were measured using gas–liquid chromatography. Results The concentration of SCFAs in feces of IBS model mice was higher compared to the control group. Visceral sensitivity to colorectal distension and colonic transit rate were increased indicating IBS with predominant diarrhea. The frequency and amplitude of spontaneous contractions of proximal colon segments from IBS mice were higher, but carbachol induced contractions were lower compared to control. During acute application of SCFAs (sodium propionate, sodium acetate or butyric acid) dose-dependently (0.5–30 mM) decreased tonic tension, frequency and amplitude of spontaneous and carbachol-evoked contractions. In the mouse IBS group the inhibitory effects SCFAs on spontaneous and carbachol-evoked contractions were less pronounced. At the same time intraluminal administration of butyrate (5 mM) increased the transit rate in the colon of both groups, but its stimulatory effect was more pronounced in mouse IBS model group. Conclusion Our data indicate that the increased transit rate in the mouse IBS model group is associated with a disbalance of activating and inhibiting action of SCFAs due to chronically elevated SCFA levels, which may impact the pathogenesis of IBS with predominant diarrhea syndrome.
Collapse
Affiliation(s)
- Ilnar F Shaidullov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Dina M Sorokina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Farit G Sitdikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Hellbrunnerstr.34, 5020, Salzburg, Austria
| | - Sayar R Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia.
| |
Collapse
|
20
|
Milligan G, Barki N, Tobin AB. Chemogenetic Approaches to Explore the Functions of Free Fatty Acid Receptor 2. Trends Pharmacol Sci 2021; 42:191-202. [PMID: 33495026 DOI: 10.1016/j.tips.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids are generated in large amounts by the intestinal microbiota. They activate both the closely related G protein-coupled receptors free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3) that are considered therapeutic targets in diseases of immuno-metabolism. Limited and species-selective small-molecule pharmacology has restricted our understanding of the distinct roles of these receptors. Replacement of mouse FFA2 with a designer receptor exclusively activated by designer drug form of human FFA2 (hFFA2-DREADD) has allowed definition of specific roles of FFA2 in pharmacological and physiological studies conducted both ex vivo and in vivo, whilst overlay of murine disease models offers opportunities for therapeutic validation prior to human studies. Similar approaches can potentially be used to define roles of other poorly characterised receptors.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
21
|
Dysregulation of epithelial ion transport and neurochemical changes in the colon of a parkinsonian primate. NPJ PARKINSONS DISEASE 2021; 7:9. [PMID: 33479243 PMCID: PMC7820491 DOI: 10.1038/s41531-020-00150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
The pathological changes underlying gastrointestinal (GI) dysfunction in Parkinson’s disease (PD) are poorly understood and the symptoms remain inadequately treated. In this study we compared the functional and neurochemical changes in the enteric nervous system in the colon of adult, L-DOPA-responsive, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset, with naïve controls. Measurement of mucosal vectorial ion transport, spontaneous longitudinal smooth muscle activity and immunohistochemical assessment of intrinsic innervation were each performed in discrete colonic regions of naïve and MPTP-treated marmosets. The basal short circuit current (Isc) was lower in MPTP-treated colonic mucosa while mucosal resistance was unchanged. There was no difference in basal cholinergic tone, however, there was an increased excitatory cholinergic response in MPTP-treated tissues when NOS was blocked with L-Nω-nitroarginine. The amplitude and frequency of spontaneous contractions in longitudinal smooth muscle as well as carbachol-evoked post-junctional contractile responses were unaltered, despite a decrease in choline acetyltransferase and an increase in the vasoactive intestinal polypeptide neuron numbers per ganglion in the proximal colon. There was a low-level inflammation in the proximal but not the distal colon accompanied by a change in α-synuclein immunoreactivity. This study suggests that MPTP treatment produces long-term alterations in colonic mucosal function associated with amplified muscarinic mucosal activity but decreased cholinergic innervation in myenteric plexi and increased nitrergic enteric neurotransmission. This suggests that long-term changes in either central or peripheral dopaminergic neurotransmission may lead to adaptive changes in colonic function resulting in alterations in ion transport across mucosal epithelia that may result in GI dysfunction in PD.
Collapse
|
22
|
Tough IR, Schwartz TW, Cox HM. Synthetic G protein-coupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterol Motil 2020; 32:e13943. [PMID: 32656959 DOI: 10.1111/nmo.13943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The G protein-coupled bile acid (BA) receptor, GPBA (previously named TGR5), mediates BA gastrointestinal (GI) activities. Our aim was to elucidate the mucosal and motility responses to selective GPBA agonists compared with conjugated BA (eg, taurodeoxycholate, TDCA) in mouse and human colon. METHODS Ion transport responses to GPBA agonists or BAs were measured in mucosal preparations with intact submucous innervation, from C57Bl/6, PYY-/-, or GPBA-/- mice and compared with GPBA signaling in human colon. We also investigated the mechanisms underlying GPBA agonism in mucosae and on natural fecal pellet propulsion. KEY RESULTS GPBA agonist Merck V stimulated basolateral responses involving peptide YY (PYY), cholinergic, and 5-HT mechanisms in colonic mucosa. The PYY-mediated GPBA signal was glucose-sensitive. Luminal TDCA crossed the epithelial lining via the apical sodium-dependent BA transporter (ASBT) and its inhibitor, GSK2330672 significantly reduced luminal, but not basolateral TDCA activity. Merck V also slowed natural fecal pellet progression in wild-type and PYY-/- colons but not in GPBA-/- colon, while TDCA increased motility in wild-type colon. The antimotile GPBA effect was reversed by blockade of glucagon-like peptide 1 (GLP-1) receptors or nitric oxide synthase, indicating involvement of GLP-1 and nitric oxide. CONCLUSIONS & INFERENCES We conclude that several different targets within the lamina propria express GPBA, including L cells (that release PYY and GLP-1), enterochromaffin cells and neurons (that release 5-HT), and other enteric neurons. Furthermore, luminal-conjugated BAs require transport across the epithelium via ASBT in order to activate basolateral GPBA.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Thue W Schwartz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, University of Copenhagen, Copenhagen, Denmark
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
23
|
Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. ACTA ACUST UNITED AC 2020; 16:1-9. [PMID: 32835130 PMCID: PMC7332907 DOI: 10.1016/j.coemr.2020.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FFA2 and FFA3 are receptors for short-chain fatty acids which are produced in prodigious amounts by fermentation of poorly digested carbohydrates by gut bacteria. Understanding the roles of these receptors in regulating enteroendocrine, metabolic and immune functions has developed with the production and use of novel pharmacological tools and animal models. A complex (patho)physiological scenario is now emerging in which strategic expression of FFA2 and FFA3 in key cell types and selective modulation of their signalling might regulate body weight management, energy homoeostasis and inflammatory disorders.
Collapse
Key Words
- ALDH1A2, aldehyde dehydrogenase 1 family member
- BAFF, B-cell activating factor
- CMTB, 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide
- DREADD, Designer Receptor Exclusively Activated by Designer Drug
- Enteroendocrine
- FFA2
- FFA3
- G protein–coupled receptors
- GLP-1, glucagon-like peptide 1
- GSIS, glucose-stimulated insulin secretion
- GTT, glucose tolerance test
- HFD, high-fat diet
- ILC3, type 3 innate lymphoid cell
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- Immune cells
- KO, knock-out
- PA, (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide
- PNS, peripheral nervous system
- PYY, peptide YY
- Pancreas
- SCA, small carboxylic acid
- SCFA, short-chain fatty acid
- SCG, superior cervical ganglion
- Short-chain fatty acids
Collapse
Affiliation(s)
- Daniele Bolognini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Domonkos Dedeo
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
24
|
Getachew B, Csoka AB, Bhatti A, Copeland RL, Tizabi Y. Butyrate Protects Against Salsolinol-Induced Toxicity in SH-SY5Y Cells: Implication for Parkinson's Disease. Neurotox Res 2020; 38:596-602. [PMID: 32572814 DOI: 10.1007/s12640-020-00238-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is associated with the destruction of dopamine neurons in the substantia nigra (SN) and the formation of Lewy bodies in basal ganglia. Risk factors for PD include aging, as well as environmental and genetic factors. Recent converging reports suggest a role for the gut microbiome and epigenetic factors in the onset and/or progression of PD. Of particular relevance and potential therapeutic targets in this regard are histone deacetylases (HDACs), enzymes that are involved in chromatin remodeling. Butyrate, a short-chain fatty acid (FA) produced in the gut and presumably acting via several G protein-coupled receptors (GPCRs) including FA3 receptors (FA3Rs), is a well-known HDAC inhibitor that plays an important role in maintaining homeostasis of the gut-brain axis. Recently, its significance in regulation of some critical brain functions and usefulness in neurodegenerative diseases such as PD has been suggested. In this study we sought to determine whether butyrate may have protective effects against salsolionl (SALS)-induced toxicity in SH-SY5Y cells. SALS, an endogenous product of aldehyde and dopamine condensation, may be selectively toxic to dopaminergic neurons. SH-SY5Y cells, derived from human neuroblastoma cells, are used as a model of these neurons. Exposure of SH-SY5Y cells for 24 h to 400 μM SALS resulted in approximately 60% cell death, which was concentration-dependently prevented by butyrate. The effects of butyrate in turn were significantly attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Moreover, a selective FA3R agonist (AR 420626) also provided protective effects against SALS, which was totally blocked by BHB. These findings provide further support that butyrate or an agonist of FA3R may be of therapeutic potential in PD.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Amna Bhatti
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
25
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
26
|
Kuwelker S, Muthyala A, O’Connor M, Bharucha AE. Clinical features and disturbances of gastrointestinal transit in patients with rapid gastric emptying. Neurogastroenterol Motil 2020; 32:e13779. [PMID: 31960554 PMCID: PMC7085445 DOI: 10.1111/nmo.13779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Abstract
AIMS Some patients with upper gastrointestinal symptoms have rapid gastric emptying (GE). We aimed to compare patients with normal and rapid GE and to identify phenotypes among patients with rapid GE. METHODS Among 2798 patients who underwent GE scintigraphy, we compared patients with normal and rapid GE and separately, patients with rapid GE at 1 hour (GE1), 2 hours (GE2), or both (GE12). RESULTS In 2798 patients, GE was normal (74%), delayed (18%), or rapid (8%). Among 211 patients with rapid GE, patterns were rapid GE1 (48%), 2 hours (17%), or 1 and 2 hours (35%); 42 (20%) had diseases that explain rapid GE. A combination of upper and lower gastrointestinal symptoms (54%) was more common that isolated upper (17%) or lower (28%) gastrointestinal symptoms (P < .001). Constipation was more prevalent in patients with rapid GE 2 (72%) than rapid GE 1 (47%) or rapid GE12 hours (67%) (P < .05). Among 179 diabetes mellitus (DM) patients, 15% had rapid GE, which was not associated with the DM phenotype. By multivariable analysis, insulin therapy (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.15-0.88), and weight loss (OR, 0.10; 95% CI, 0.01-0.78) were associated with a lower risk of rapid than normal GE in DM. CONCLUSIONS Eight percent of patients undergoing scintigraphy had rapid GE, which is most frequently associated with upper and lower gastrointestinal symptoms; constipation is common. Insulin therapy and weight loss were associated with a lower risk of rapid than normal GE in DM patients.
Collapse
Affiliation(s)
- Saatchi Kuwelker
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| | - Anjani Muthyala
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| | | | - Adil E. Bharucha
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Bolognini D, Barki N, Butcher AJ, Hudson BD, Sergeev E, Molloy C, Hodge D, Bradley SJ, Le Gouill C, Bouvier M, Tobin AB, Milligan G. Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nat Chem Biol 2019; 15:489-498. [PMID: 30992568 DOI: 10.1038/s41589-019-0270-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022]
Abstract
Differentiating actions of short chain fatty acids (SCFAs) at free fatty acid receptor 2 (FFA2) from other free fatty acid-responsive receptors and from non-receptor-mediated effects has been challenging. Using a novel chemogenetic and knock-in strategy, whereby an engineered variant of FFA2 (FFA2-DREADD) that is unresponsive to natural SCFAs but is instead activated by sorbic acid replaced the wild-type receptor, we determined that activation of FFA2 in differentiated adipocytes and colonic crypt enteroendocrine cells of mouse accounts fully for SCFA-regulated lipolysis and release of the incretin glucagon-like peptide-1 (GLP-1), respectively. In vivo studies confirmed the specific role of FFA2 in GLP-1 release and also demonstrated a direct role for FFA2 in accelerating gut transit. Thereby, we establish the general principle that such a chemogenetic knock-in strategy can successfully define novel G-protein-coupled receptor (GPCR) biology and provide both target validation and establish therapeutic potential of a 'hard to target' GPCR.
Collapse
Affiliation(s)
- Daniele Bolognini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian J Butcher
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eugenia Sergeev
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin Molloy
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daryl Hodge
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sophie J Bradley
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christian Le Gouill
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Quebec, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Quebec, Canada
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
28
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|