1
|
Shang Q, Wang Z, Wang S, Zhang W, Wang Q, Wang R, Huang D, Pan X. Integrated transcriptomics and metabolomics elucidate how arbuscular mycorrhizal fungi alleviate drought stress in Juglans sigillata. Microbiol Res 2025; 296:128135. [PMID: 40056711 DOI: 10.1016/j.micres.2025.128135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Walnut (Juglans sigillata), an economically significant ecotype of the Juglans genus in the Juglandaceae family, is cultivated mainly in southwest China, a region prone to seasonal drought. Drought significantly reduced both the yield and quality of walnuts in this area. Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots and play crucial roles in enhancing plant drought resistance. This study investigated the effects of AMF on the alleviation of drought stress. Compared to non-inoculated drought-stressed plants, AMF inoculation improved plant growth, increased photosynthetic capacity, enhanced reactive oxygen species (ROS) scavenging ability, and significantly activities of superoxide Dismutase, peroxidase, and catalase were significantly increased by 19.90 %, 18.43 %, and 8.39 %, respectively. malondialdehyde, Superoxide anion, and Hydrogen peroxide levels decreased by 18.39 %, 20.75 %, and 21.44 %, respectively, and soluble sugar and proline concentrations also significantly increased (P < 0.05), helping to maintain the osmotic balance. In addition, transcriptome results showed that ATP-binding cassette transporter related to drought resistance were significantly enriched in plants inoculated with AMF, and genes related to growth, such as IAA and CKT synthesis, transcription factors (BZIP, WRKY, and GTE), and related antioxidant enzymes. The mitogen-activated protein kinases pathway-related genes were upregulated in the inoculated drought treatment group, whereas pinobanksin and homoeriodictyol were upregulated in the inoculated drought treatment group, both of which provide support for drought resistance. In summary, AMF alleviated drought stress and promoted Juglans sigillata growth by modulating key physiological, biochemical, and molecular mechanisms involved in drought resistance. This study offers important theoretical insights that support the application of AMF in sustainable agricultural practices.
Collapse
Affiliation(s)
- Qing Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhifan Wang
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuyu Wang
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ruipu Wang
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Xuejun Pan
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zhu G, Nong H, Fang S, Qin S, Zhang Y. Arbuscular mycorrhizal symbiosis reshapes the drought adaptation strategies of a dominant sand-fixation shrub species in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177135. [PMID: 39471960 DOI: 10.1016/j.scitotenv.2024.177135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Drylands are home to over 38 % of the world's population and are among the areas most sensitive to climate change and human activity. Most xerophytes rely on arbuscular mycorrhizal fungi (AMF) for improved drought tolerance. Although research has focused on crops and economically significant plants, the response of sand-fixation shrubs to AMF under drought conditions remains underexplored. This study aims to investigate how AMF affects the drought adaptation strategies of the sand-fixation shrub Artemisia ordosica. A culture system for A. ordosica and the main symbiotic partner Funneliformis mosseae was established, and phenotypic, metabolomic, and transcriptomic analyses were conducted to assess physiological changes induced by arbuscular mycorrhizal symbiosis (AMS) under varying drought stress conditions. AMS influenced A. ordosica's metabolic pathways and its drought adaptation strategies, promoted the redistribution of sugars and flavonoids, and shaped different metabolic patterns of seedlings and adult A. ordosica. AMS had an important shaping ability in the accumulation of proline at A. ordosica seedlings, but had a significant influence on the accumulation of sugars of A. ordosica at the adult growth stage. AMS enhanced the ability of the host to adapt to extreme drought by modulating metabolites at the adult growth stage of A. ordosica. AMS also facilitated an accumulation of key metabolites under well-watered conditions but also intensified interactions with pathogens, leading to a trade-off between drought adaptation and immune capacity under extreme drought of A. ordosica during the adult growth stage. This study uses metabolome and transcriptome methods to explore AMS effects on A. ordosica's drought adaptation strategies, revealing a significant trade-off between drought adaptation and immune capacity. The findings highlight AMS's role in modifying the drought adaptation strategies of A. ordosica in desert ecosystems, and enhance our understanding of key species for sand fixation and ecological restoration, and maintain ecological security.
Collapse
Affiliation(s)
- Guannan Zhu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Haojun Nong
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Shuyi Fang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China; Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China; State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
4
|
Romero-Munar A, Muñoz-Carrasco M, Balestrini R, De Rose S, Giovannini L, Aroca R, Ruiz-Lozano JM. Differential root and cell regulation of maize aquaporins by the arbuscular mycorrhizal symbiosis highlights its role in plant water relations. PLANT, CELL & ENVIRONMENT 2024; 47:4337-4353. [PMID: 38965812 DOI: 10.1111/pce.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
This study aims to elucidate if the regulation of plant aquaporins by the arbuscular mycorrhizal (AM) symbiosis occurs only in roots or cells colonized by the fungus or at whole root system. Maize plants were cultivated in a split-root system, with half of the root system inoculated with the AM fungus and the other half uninoculated. Plant growth and hydraulic parameters were measured and aquaporin gene expression was determined in each root fraction and in microdissected cells. Under well-watered conditions, the non-colonized root fractions of AM plants grew more than the colonized root fraction. Total osmotic and hydrostatic root hydraulic conductivities (Lo and Lpr) were higher in AM plants than in non-mycorrhizal plants. The expression of most maize aquaporin genes analysed was different in the mycorrhizal root fraction than in the non-mycorrhizal root fraction of AM plants. At the cellular level, differential aquaporin expression in AM-colonized cells and in uncolonized cells was also observed. Results indicate the existence of both, local and systemic regulation of plant aquaporins by the AM symbiosis and suggest that such regulation is related to the availability of water taken up by fungal hyphae in each root fraction and to the plant need of water mobilization.
Collapse
Affiliation(s)
- Antonia Romero-Munar
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María Muñoz-Carrasco
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Silvia De Rose
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Luca Giovannini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Ricardo Aroca
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
5
|
Fan L, Zhang C, Li J, Zhao Z, Liu Y. Metabolomics Revealed the Tolerance and Growth Dynamics of Arbuscular Mycorrhizal Fungi (AMF) to Soil Salinity in Licorice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2652. [PMID: 39339628 PMCID: PMC11435364 DOI: 10.3390/plants13182652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Several studies have been devoted to seeking some beneficial plant-related microorganisms for a long time, and on this basis, it has been found that arbuscular mycorrhizal fungi (AMF) have a considerable positive impact on plant health as a biological fungal agent. In this study, we focused on the effects of different AMF on the growth dynamics and root configuration of licorice under saline and alkali conditions. The metabolites of licorice under different AMF were assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Funneliformis mosseae (Fm) and Rhizophagus intraradices (Ri) were added as different AMF treatments, while the sterilized saline-alkali soil was treated as a control. Samples were taken in the R1 period (15 d after AMF treatment) and the R2 period (45 d after AMF treatment). The results showed that the application of AMF significantly increased the root growth of licorice and significantly increased the biomass of both shoot and root. A total of 978 metabolites were detected and divided into 12 groups including lipids, which accounted for 15.44%; organic acids and their derivatives, at 5.83%; benzene compounds and organic heterocyclic compounds, at 5.42%; organic oxides, at 3.78%; and ketones, accounting for 3.17%. Compared with the control, there were significant changes in the differential metabolites with treatment inoculated with AMF; the metabolic pathways and biosynthesis of secondary metabolites were the main differential metabolite enrichment pathways in the R1 period, and those in the R2 period were microbial metabolism in diverse environments and the degradation of aromatic compounds. In conclusion, the use of AMF as biofertilizer can effectively improve the growth of licorice, especially in terms of the root development and metabolites, in saline-alkali soil conditions.
Collapse
Affiliation(s)
- Li Fan
- Horticultural and Crop Protection College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen Zhang
- Horticultural and Crop Protection College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiafeng Li
- Horticultural and Crop Protection College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhongtao Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Yan Liu
- Horticultural and Crop Protection College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Wu XH, Ma CY, Jiang HJ, Zhang XY, Wang HM, Li HR, Zhao ZH, Sun K, Zhang W, Dai CC. Root Endophyte-Manipulated Alteration in Rhizodeposits Stimulates Claroideoglomus in the Rhizosphere to Enhance Drought Resistance in Peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20211-20223. [PMID: 39197047 DOI: 10.1021/acs.jafc.4c05009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Drought dramatically affects plant growth and yield. A previous study indicated that endophytic fungus Phomopsis liquidambaris can improve the drought resistance of peanuts, which is related with the root arbuscular mycorrhizal fungi (AMF) community; however, how root endophytes mediate AMF assembly to affect plant drought resistance remains unclear. Here, we explored the mechanism by which endophytic fungus recruits AMF symbiotic partners via rhizodeposits to improve host drought resistance. The results showed that Ph. liquidambaris enhanced peanut drought resistance by enriching the AMF genus Claroideoglomus of the rhizosphere. Furthermore, metabolomic analysis indicated that Ph. liquidambaris significantly promoted isoformononetin and salicylic acid (SA) synthesis in rhizodeposits, which were correlated with the increase in Claroideoglomus abundance following Ph. liquidambaris inoculation. Coinoculation experiments confirmed that isoformononetin and SA could enrich Claroideoglomus etunicatum in the rhizosphere, thereby improving the drought resistance. This study highlights the crucial role of fungal consortia in plant stress resistance.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xiang-Yu Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ming Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Li
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Zi-Han Zhao
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
7
|
Wang S, Han L, Ren Y, Hu W, Xie X, Chen H, Tang M. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:2207-2222. [PMID: 38481316 DOI: 10.1111/nph.19677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
Wang D, Ni Y, Xie K, Li Y, Wu W, Shan H, Cheng B, Li X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2024; 25:4205. [PMID: 38673792 PMCID: PMC11050007 DOI: 10.3390/ijms25084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| |
Collapse
|
9
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
10
|
Das S, Sarkar S. Arbuscular mycorrhizal fungal contribution towards plant resilience to drought conditions. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1355999. [PMID: 38434188 PMCID: PMC10904651 DOI: 10.3389/ffunb.2024.1355999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Climate changes cause altering rainfall patterns resulting in an increase in drought occurrences globally. These events are disrupting plants and agricultural productivity. To evade droughts, plants try to adapt and modify in the best capacities possible. The plants have adapted by structurally modifying roots, stems, and leaves, as well as modifying functions. Lately, the association of microbial communities with plants has also been proven to be an important factor in aiding resilience. The fungal representatives of the microbial community also help safeguard the plants against drought. We discuss how these fungi associate with plants and contribute to evading drought stress. We specifically focus on Arbuscular mycorrhizal fungi (AMF) mediated mechanisms involving antioxidant defenses, phytohormone mediations, osmotic adjustments, proline expressions, fungal water absorption and transport, morphological modifications, and photosynthesis. We believe understanding the mechanisms would help us to optimize the use of fungi in agricultural practices. That way we could better prepare the plants for the anticipated future drought events.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Soumyadev Sarkar
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Xing S, Shen Q, Ji C, You L, Li J, Wang M, Yang G, Hao Z, Zhang X, Chen B. Arbuscular mycorrhizal symbiosis alleviates arsenic phytotoxicity in flooded Iris tectorum Maxim. dependent on arsenic exposure levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122841. [PMID: 37940019 DOI: 10.1016/j.envpol.2023.122841] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Arsenic (As) pollution in wetlands has emerged as a serious global concern, posing potential threat to the growth of wetland plants. Arbuscular mycorrhizal fungi (AMF) can alleviate As phytotoxicity to host plants, but their ecological functions in wetland plants under flooding conditions remain largely unknown. Thus, a pot experiment was conducted using Rhizophagus irregularis and Iris tectorum Maxim. exposed to light (15 and 30 mg/kg As) and high (75 and 100 mg/kg As) levels of As, to investigate the intrinsic mechanisms underlying the effects of mycorrhizal inoculation on plant As tolerance under flooding conditions. The mycorrhizal colonization rates ranged from 31.47 ± 3.92 % to 60.69 ± 5.58 %, which were higher than the colonization rate (29.55 ± 13.60%) before flooding. AMF significantly increased biomass of I. tectorum under light As levels, together with increased phosphorus (P) and As uptake. Moreover, expression of arsenate reductase gene RiarsC and a trace of dimethylarsenic (1.87 mg/kg in shoots) were detected in mycorrhizal plants, suggesting As transformation and detoxification by AMF exposed to light levels of As. However, under high As levels, AMF inhibited As translocation from roots to shoots, and facilitated the formation of iron plaque. The immobilized As concentrations in iron plaque of mycorrhizal plants were respectively 1133.68 ± 179.17 mg/kg and 869.11 ± 248.90 mg/kg at 75 and 100 mg/kg As addition level, both significantly higher than that in non-inoculated plants. Irrespective of As exposure levels, mycorrhizal symbiosis decreased soil As bioavailability. Overall, the study provides insights into the alleviation of As phytotoxicity in natural wetland plants through mycorrhizal symbiosis, and potentially indicates function diversity of AMF under flooding conditions and As stress, supporting the subsequent phytoremediation and restoration of As-contaminated wetlands.
Collapse
Affiliation(s)
- Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihui Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuning Ji
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; China University of Mining and Technology, Xuzhou, 221116, China
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meng Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Keller-Pearson M, Bortolazzo A, Willems L, Smith B, Peterson A, Ané JM, Silva EM. A Dual Transcriptomic Approach Reveals Contrasting Patterns of Differential Gene Expression During Drought in Arbuscular Mycorrhizal Fungus and Carrot. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:821-832. [PMID: 37698455 DOI: 10.1094/mpmi-04-23-0038-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While arbuscular mycorrhizal (AM) fungi are known for providing host plants with improved drought tolerance, we know very little about the fungal response to drought in the context of the fungal-plant relationship. In this study, we evaluated the drought responses of the host and symbiont, using the fungus Rhizophagus irregularis with carrot (Daucus carota) as a plant model. Carrots inoculated with spores of R. irregularis DAOM 197198 were grown in a greenhouse. During taproot development, carrots were exposed to a 10-day water restriction. Compared with well-watered conditions, drought caused diminished photosynthetic activity and reduced plant growth in carrot with and without AM fungi. Droughted carrots had lower root colonization. For R. irregularis, 93% of 826 differentially expressed genes (DEGs) were upregulated during drought, including phosphate transporters, several predicted transport proteins of potassium, and the aquaporin RiAQPF2. In contrast, 78% of 2,486 DEGs in AM carrot were downregulated during drought, including the symbiosis-specific genes FatM, RAM2, and STR, which are implicated in lipid transfer from the host to the fungus and were upregulated exclusively in AM carrot during well-watered conditions. Overall, this study provides insight into the drought response of an AM fungus in relation to its host; the expression of genes related to symbiosis and nutrient exchange were downregulated in carrot but upregulated in the fungus. This study reveals that carrot and R. irregularis exhibit contrast in their regulation of gene expression during drought, with carrot reducing its apparent investment in symbiosis and the fungus increasing its apparent symbiotic efforts. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Anthony Bortolazzo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Luke Willems
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Brendan Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Annika Peterson
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, U.S.A
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Erin M Silva
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
14
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
15
|
Fan X, Xie H, Huang X, Zhang S, Nie Y, Chen H, Xie X, Tang M. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. THE NEW PHYTOLOGIST 2023; 240:1497-1518. [PMID: 37370253 DOI: 10.1111/nph.19077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutualistic endosymbiosis with > 70% of land plants for obtaining fatty acids and sugars, in return, AM fungi promote plant nutrients and water acquisition to enhance plant fitness. However, how AM fungi orchestrate its own signaling components in response to drought stress remains elusive. Here, we identify a transcription factor containing C2H2 zinc finger domains, RiMsn2 from Rhizophagus irregularis. To characterize the RiMsn2, we combined heterologous expression, subcellular localization in yeasts, and biochemical and molecular studies with reverse genetics approaches during the in planta phase. The results indicate that RiMsn2 is highly conserved across AM fungal species and induced during the early stages of symbiosis. It is significantly upregulated in mycorrhizal roots under severe drought conditions. The nucleus-localized RiMsn2 regulates osmotic homeostasis and trehalose contents of yeasts. Importantly, gene silencing analyses indicate that RiMsn2 is essential for arbuscule formation and enhances plant tolerance to drought stress. Results from yeasts and biochemical experiments suggest that the RiHog1-RiMsn2-STREs module controls the drought stress-responsive genes in AM fungal symbiont. In conclusion, our findings reveal that a module centered on the transcriptional activator RiMsn2 from AM fungus regulates drought stress tolerance in host plant.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinru Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Hua Z, Teng X, Huang J, Zhou J, Zhao Y, Huang L, Yuan Y. The Armillaria response to Gastrodia elata is partially mediated by strigolactone-induced changes in reactive oxygen species. Microbiol Res 2023; 278:127536. [PMID: 39491259 DOI: 10.1016/j.micres.2023.127536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Armillaria root diseases, caused by Armillaria spp., pose a significant threat to woody plants worldwide and result in substantial economic losses. However, certain species in the genus Armillaria can establish a unique symbiotic relationship with Gastrodia elata, which is the only known example of a plant benefiting from Armillaria. Although various plant signals that play a role in this interaction have been identified, the mechanism remains largely unknown from the Armillaria's perspective. In this study, we performed whole-genome sequencing of an Armillaria gallica strain named NRC001 isolated from G. elata. Comparative genomic analysis showed it is low-pathogenic Armillaria spp., which possesses 169 expanded gene families compared to high-pathogenic Armillaria spp. Among these expanded families, transcriptomic analysis revealed a significant increase in expression levels of four reactive oxygen species (ROS)-related gene families in A. gallica on G. elata compared to A. gallica on wood. Thus, a systematic survey of ROS-related gene families was carried out, and a total of 218 genes belonging to 44 ROS-related gene families in A. gallica were identified. Physiological experiments and transcriptome analysis showed that strigolactones (SLs) released by G. elata have a mediation impact on ROS, particularly enhancing the ROS scavenging activities by increasing the expression level and activity of several enzymes, such as catalase and glutathione reductase. Among the ROS-related genes, the aquaporin (AQP) is crucial as it is responsible for transporting hydrogen peroxide (H2O2) across the cell membrane. Five orthologs of AQP genes in A. gallica were identified and overexpressed in yeast. Only AgAQPA from the so-called 'other aquaglyceroporin' subfamily was demonstrated to be capable of mediating H2O2 transport in A. gallica. To our best knowledge, this is the first 'other aquaglyceroporins' gene in fungi to be identified as having transporter capacity. This study not only provides new insights into the mechanisms by which SL signaling regulates interactions between Armillaria and G. elata, but also sheds light on the function of fungal AQPs.
Collapse
Affiliation(s)
- Zhongyi Hua
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiying Teng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingwen Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junhui Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
17
|
Abdalla M, Bitterlich M, Jansa J, Püschel D, Ahmed MA. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4808-4824. [PMID: 37409696 DOI: 10.1093/jxb/erad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.
Collapse
Affiliation(s)
- Mohanned Abdalla
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Michael Bitterlich
- Humboldt-Universität zu Berlin, Thaer-Institute, Division Urban Plant Ecophysiology, Berlin, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Püschel
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mutez A Ahmed
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
18
|
Gong M, Bai N, Wang P, Su J, Chang Q, Zhang Q. Co-Inoculation with Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes under Drought Stress: Synergistic or Competitive Effects on Maize Growth, Photosynthesis, Root Hydraulic Properties and Aquaporins? PLANTS (BASEL, SWITZERLAND) 2023; 12:2596. [PMID: 37514211 PMCID: PMC10383269 DOI: 10.3390/plants12142596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSE) were simultaneously colonized in the root cells of maize. Single AMF and DSE symbiosis have been proven to improve the drought tolerance of maize. However, the effects of both fungi coexisting in maize roots under drought stress are not yet known. In this study, pot experiments of maize seedlings were conducted through four inoculation treatments (single AMF inoculation of Rhizophagus irregularis, single DSE inoculation of Exophiala pisciphila, co-inoculation of AMF + DSE and non-mycorrhizal inoculation) under well-watered (WW) and drought-stressed (DS) conditions. AMF and DSE colonization status, maize physiology and aquaporin gene expression in maize roots were investigated. The objective of this paper was to evaluate whether AMF and DSE had competitive, independent or synergistic effects on regulating the drought tolerance of maize. When maize seedlings of three inoculation treatments were subjected to drought stress, single AMF inoculation had the highest shoot and root dry weight, plant height, root length, osmotic root hydraulic conductivity and hydrostatic root hydraulic conductivity in maize seedlings. However, co-inoculation of AMF + DSE induced the highest stomatal conductance in maize leaves and the lowest H2O2 and O2•- concentration, membrane electrolyte leakage, intercellular CO2 concentration and gene expression level of ZmPIP1;1, ZmPIP1;2, ZmPIP2;1, ZmPIP2;5 and ZmPIP2;6. In addition, co-inoculation of AMF + DSE also obviously down-regulated the GintAQPF1 and GintAQPF2 expression in R. irregularis compared with single AMF inoculation treatment. Under DS stress, there were competitive relationships between AMF and DSE with regard to regulating mycorrhizal colonization, maize growth, root hydraulic conductivity and the gene expression of aquaporins in R. irregularis, but there were synergistic relationships with regard to regulating membrane electrolyte leakage, oxidative damage, photosynthesis and the aquaporin gene expression of maize seedlings. The obtained results improve our knowledge about how the mechanisms of AMF and DSE coexist, promoting the drought tolerance of host plants.
Collapse
Affiliation(s)
- Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Pengfei Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiajie Su
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Qiaoming Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
19
|
Vahter T, Lillipuu EM, Oja J, Öpik M, Vasar M, Hiiesalu I. Do commercial arbuscular mycorrhizal inoculants contain the species that they claim? MYCORRHIZA 2023; 33:211-220. [PMID: 36786883 DOI: 10.1007/s00572-023-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 06/08/2023]
Abstract
The use of arbuscular mycorrhizal (AM) fungal inoculants as a means to promote plant growth is gaining momentum worldwide. Although there is an increasing number of commercial products available for various applications, the quality of these remains uncertain. We determined the AM fungal species composition in eleven inoculants from four producers by using DNA metabarcoding and compared them to the AM fungal species declared on the product labels. Our DNA metabarcoding of the inoculants revealed a concerning discrepancy between the declared and detected AM fungal species compositions of the products. While nine products contained at least one declared species, two did not contain any matching species and all inoculants but one contained additional species not declared on the product label. These findings highlight the need for better guidelines and industry standards to ensure consumer protection in the AM fungal inoculum market. Additionally, we call for caution when using commercial AM fungal inoculants in scientific experiments without confirmatory information about their species composition.
Collapse
Affiliation(s)
- Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia.
| | - Epp Maria Lillipuu
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| |
Collapse
|
20
|
Laothanachareon T, Asin-Garcia E, Volkers RJM, Tamayo-Ramos JA, Martins Dos Santos VAP, Schaap PJ. Identification of Aspergillus niger Aquaporins Involved in Hydrogen Peroxide Signaling. J Fungi (Basel) 2023; 9:jof9040499. [PMID: 37108953 PMCID: PMC10144872 DOI: 10.3390/jof9040499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus niger is a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been uncovered. The results of that study show hydrogen peroxide, a by-product of the extracellular conversion of glucose to gluconate, has a pivotal role as a signaling molecule in the induction of this system. In this study, the facilitated diffusion of hydrogen peroxide via aquaporin water channels (AQPs) was studied. AQPs are transmembrane proteins of the major intrinsic proteins (MIPs) superfamily. In addition to water and glycerol, they may also transport small solutes such as hydrogen peroxide. The genome sequence of A. niger N402 was screened for putative AQPs. Seven AQPs were found and could be classified into three main groups. One protein (AQPA) belonged to orthodox AQP, three (AQPB, AQPD, and AQPE) were grouped in aquaglyceroporins (AQGP), two (AQPC and AQPF) were in X-intrinsic proteins (XIPs), and the other (AQPG) could not be classified. Their ability to facilitate diffusion of hydrogen peroxide was identified using yeast phenotypic growth assays and by studying AQP gene knock-outs in A. niger. The X-intrinsic protein AQPF appears to play roles in facilitating hydrogen peroxide transport across the cellular membrane in both Saccharomyces cerevisiae and A. niger experiments.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani 12120, Thailand
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Biomanufacturing and Digital Twins, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Juan Antonio Tamayo-Ramos
- ITENE Research Center, Industrial Biotechnology Area, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- UNLOCK Large Scale Infrastructure for Microbial Communities, Wageningen University & Research, Delft University of Technology, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
Wang S, Xie X, Che X, Lai W, Ren Y, Fan X, Hu W, Tang M, Chen H. Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:866-883. [PMID: 36609693 PMCID: PMC10037146 DOI: 10.1111/pbi.14006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form beneficial associations with the most terrestrial vascular plant species. AM fungi not only facilitate plant nutrient acquisition but also enhance plant tolerance to various environmental stresses such as drought stress. However, the molecular mechanisms by which AM fungal mitogen-activated protein kinase (MAPK) cascades mediate the host adaptation to drought stimulus remains to be investigated. Recently, many studies have shown that virus-induced gene silencing (VIGS) and host-induced gene silencing (HIGS) strategies are used for functional studies of AM fungi. Here, we identify the three HOG1 (High Osmolarity Glycerol 1)-MAPK cascade genes RiSte11, RiPbs2 and RiHog1 from Rhizophagus irregularis. The expression levels of the three HOG1-MAPK genes are significantly increased in mycorrhizal roots of the plant Astragalus sinicus under severe drought stress. RiHog1 protein was predominantly localized in the nucleus of yeast in response to 1 M sorbitol treatment, and RiPbs2 interacts with RiSte11 or RiHog1 directly by pull-down assay. Importantly, VIGS or HIGS of RiSte11, RiPbs2 or RiHog1 hampers arbuscule development and decreases relative water content in plants during AM symbiosis. Moreover, silencing of HOG1-MAPK cascade genes led to the decreased expression of drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3) in the AM fungal symbiont in response to drought stress. Taken together, this study demonstrates that VIGS or HIGS of AM fungal HOG1-MAPK cascade inhibits arbuscule development and expression of AM fungal drought-resistant genes under drought stress.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
22
|
Li X, Sun HF, Fan JH, Li YY, Ma LJ, Wang LL, Li XM. Transcriptome modulation by endophyte drives rice seedlings response to Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114740. [PMID: 36907094 DOI: 10.1016/j.ecoenv.2023.114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the growth, SPAD value, chlorophyll fluorescence and transcriptome response of endophyte uninoculated and inoculated rice seedlings under Pb stress after treatment of 1 d and 5 d. Inoculation of endophytes significantly improved the plant height, SPAD value, Fv/F0, Fv/Fm and PIABS by 1.29, 1.73, 0.16, 1.25 and 1.90 times on the 1 d, by 1.07, 2.45, 0.11, 1.59 and 7.90 times on the 5 d, respectively, however, decreased the root length by 1.11 and 1.65 times on the 1 d and 5 d, respectively under Pb stress. Analysis of rice seedlings leaves by RNA-seq, there were 574 down-regulated and 918 up-regulated genes after treatment of 1 d, 205 down-regulated and 127 up-regulated genes after treatment of 5 d, of which 20 genes (11 up-regulated and 9 down-regulated) exhibited the same changing pattern after treatment of 1 d and 5 d. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate these DEGs, and it was found that many of DEGs involved in photosynthesis, oxidative detoxification, hormone synthesis and signal transduction, protein phosphorylation/kinase and transcription factors. These findings provide new insights into the molecular mechanism of interaction between endophyte and plants under heavy metal stress, and contribute to agricultural production in limited environments.
Collapse
Affiliation(s)
- Xin Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - He-Fei Sun
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Jia-Hui Fan
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Yue-Ying Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lian-Ju Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lan-Lan Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xue-Mei Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China.
| |
Collapse
|
23
|
Wang S, Ren Y, Han L, Nie Y, Zhang S, Xie X, Hu W, Chen H, Tang M. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Eucalyptus grandis Tolerance to Drought Stress. Microbiol Spectr 2023; 11:e0438122. [PMID: 36927000 PMCID: PMC10100883 DOI: 10.1128/spectrum.04381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Drought stress has a negative impact on plant growth and production. Arbuscular mycorrhizal (AM) fungi, which establish symbioses with most terrestrial vascular plant species, play important roles in improving host plant mineral nutrient acquisition and resistance to drought. However, the physiological and molecular regulation mechanisms occurring in mycorrhizal Eucalyptus grandis coping with drought stress remain unclear. Here, we studied the physiological changes and mitogen-activated protein kinase (MAPK) cascade gene expression profiles of E. grandis associated with AM fungi under drought stress. The results showed that colonization by AM fungi significantly enhanced plant growth, with higher plant biomass, shoot height, root length, and relative water content (RWC) under drought conditions. Mycorrhizal plants had lower levels of accumulation of proline, malondialdehyde (MDA), H2O2, and O2·- than seedlings not colonized with AM fungi. In addition, mycorrhizal E. grandis also had higher peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities under drought conditions, improving the antioxidant system response. Eighteen MAPK cascade genes were isolated from E. grandis, and the expression levels of the MAPK cascade genes were positively induced by symbiosis with AM fungi, which was correlated with changes in the proline, MDA, H2O2, and O2·- contents and POD, SOD, and CAT activities. In summary, our results showed that AM symbiosis enhances E. grandis drought tolerance by regulating plant antioxidation abilities and MAPK cascade gene expression. IMPORTANCE Arbuscular mycorrhizal (AM) fungi play an important role in improving plant growth and development under drought stress. The MAPK cascade may regulate many physiological and biochemical processes in plants in response to drought stress. Previous studies have shown that there is a complex regulatory network between the plant MAPK cascade and drought stress. However, the relationship between the E. grandis MAPK cascade and AM symbiosis in coping with drought remains to be investigated. Our results suggest that AM fungi could improve plant drought tolerance mainly by improving the antioxidant ability to protect plants from reactive oxygen species (ROS) and alleviate oxidative stress damage. The expression of the MAPK cascade genes was induced in mycorrhizal E. grandis seedlings under drought stress. This study revealed that MAPK cascade regulation is of special significance for improving the drought tolerance of E. grandis. This study provides a reference for improving mycorrhizal seedling cultivation under stress.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses. Int J Mol Sci 2023; 24:ijms24065193. [PMID: 36982272 PMCID: PMC10049376 DOI: 10.3390/ijms24065193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.
Collapse
|
25
|
Che X, Wang S, Ren Y, Xie X, Hu W, Chen H, Tang M. A Eucalyptus Pht1 Family Gene EgPT8 Is Essential for Arbuscule Elongation of Rhizophagus irregularis. Microbiol Spectr 2022; 10:e0147022. [PMID: 36227088 PMCID: PMC9769952 DOI: 10.1128/spectrum.01470-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
The majority of vascular flowering plants can establish arbuscular mycorrhizal (AM) symbiosis with AM fungi. These associations contribute to plant health and plant growth against various environmental stresses. In the mutualistic endosymbiosis, the AM fungi deliver phosphate (Pi) to the host root through highly branched hyphae called arbuscules. The molecular mechanisms of Pi transfer from AM fungi to the plant have been determined, which are dominated by AM-specific Pi transporters belonging to the PHOSPHATE TRANSPORTER 1 (Pht1) family within the subfamily I. However, it is unknown whether Pht1 family proteins are involved in other regulations in AM symbiosis. Here, we report that the expression of EgPT8 is specifically activated by AM fungus Rhizophagus irregularis and is localized in root cortical cells containing arbuscules. Interestingly, knockdown of EgPT8 function does not affect the Eucalyptus grandis growth, total phosphorous (P) concentration, and arbuscule formation; however, the size of mature arbuscules was significantly suppressed in the RNAi-EgPT8 lines. Heterogeneous expression of EgPT4, EgPT5, and EgPT8 in the Medicago truncatula mutant mtpt4-2 indicates that EgPT4 and EgPT5 can fully complement the defects of mutant mtpt4-2 in mycorrhizal Pi uptake and arbuscule formation, while EgPT8 cannot complement the defective AM phenotype of the mtpt4-2 mutant. Based on our results, we propose that the AM fungi-specific subfamily I transporter EgPT8 has novel functions and is essential to arbuscule elongation. IMPORTANCE Arbuscular mycorrhizal (AM) formation in host root cortical cells is initiated by exchanges of diffusible molecules, among which Pi uptake is known as the important feature of AM fungi on symbiosis functioning. Over the last two decades, it has been repeatedly proven that most vascular plants harbor two or more AM-specific Pht1 proteins; however, there is no direct evidence regarding the potential link among these Pi transporters at the symbiotic interface. This work revealed a novel function of a structurally conserved protein involved in lateral arbuscule development. In total, we confirmed that three AM-specific Pht1 family proteins are nonredundant in Eucalyptus grandis and that EgPT8 is responsible for fungal arbuscule elongation of Rhizophagus irregularis.
Collapse
Affiliation(s)
- Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
26
|
Cross Talk between GlAQP and NOX Modulates the Effects of ROS Balance on Ganoderic Acid Biosynthesis of Ganoderma lucidum under Water Stress. Microbiol Spectr 2022; 10:e0129722. [PMID: 36321895 PMCID: PMC9784773 DOI: 10.1128/spectrum.01297-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Water stress affects both the growth and development of filamentous fungi; however, the mechanisms underlying their response to water stress remain unclear. In this study, water stress was found to increase intracellular reactive oxygen species (ROS) level, ganoderic acid (GA) content, and NADPH oxidase (NOX) activity of Ganoderma lucidum by 148.45%, 75.32%, and 161.61%, respectively. Water stress induced the expression of the G. lucidum aquaporin (GlAQP) gene, which facilitated water transfer for microbial growth. Compared to wild type (WT), exposure to water stress increased growth inhibition rate, ROS level, and GA content of GlAQP-silenced strains by 37 to 41%, 36 to 38%, and 25%, respectively. Furthermore, at the early stage of fermentation in GlAQP-silenced strains, water stress resulted in 16 to 17% and 9 to 10% lower ROS level and GA content compared to WT, respectively. However, in GlAQP-overexpressing strains, ROS level and GA content were 22 to 24% and 12 to 13% higher than in WT, respectively. In GlAQP-silenced strains, water stress at the late stage resulted in 35 to 37% and 29 to 30% higher ROS level and GA content, respectively, while in GlAQP-overexpressing strains, levels were 16 to 17% and 9% lower than WT, respectively. Cross talk between GlAQP and NOX positively regulated the GA biosynthesis of G. lucidum via ROS under water stress at the early stage but this regulation became negative at the late stage. This study deepens the understanding of fungal signaling transduction under water stress and provides a reference for analyzing environmental factors that influence the regulation of the fungal secondary metabolism. IMPORTANCE Ganoderma lucidum is an advanced basidiomycete that produces medicinally active secondary metabolites (especially ganoderic acid [GA]) with high commercial value. Water stress imposes an important environmental challenge to G. lucidum. The mechanism of GA biosynthesis under water stress and the role of G. lucidum aquaporin (GlAQP) during its biosynthesis remain unclear. Moreover, the effect of the relationship between GlAQP and NADPH oxidase (NOX) on the level of reactive oxygen species and GA production under water stress is unknown. This study provides information on the biological response mechanism of G. lucidum to water stress. A new theory on the cell signaling cascade of G. lucidum tolerance to water stress is provided that also incorporates the biosynthesis of secondary metabolites involved in NOX and GlAQP.
Collapse
|
27
|
Li M, Yuan C, Zhang X, Pang W, Zhang P, Xie R, Lian C, Zhang T. The Transcriptional Responses of Ectomycorrhizal Fungus, Cenococcum geophilum, to Drought Stress. J Fungi (Basel) 2022; 9:15. [PMID: 36675836 PMCID: PMC9864566 DOI: 10.3390/jof9010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
With global warming, drought has become one of the major environmental pressures that threaten the development of global agricultural and forestry production. Cenococcum geophilum (C. geophilum) is one of the most common ectomycorrhizal fungi in nature, which can form mycorrhiza with a large variety of host trees of more than 200 tree species from 40 genera of both angiosperms and gymnosperms. In this study, six C. geophilum strains with different drought tolerance were selected to analyze their molecular responses to drought stress with treatment of 10% polyethylene glycol. Our results showed that drought-sensitive strains absorbed Na and K ions to regulate osmotic pressure and up-regulated peroxisome pathway genes to promote the activity of antioxidant enzymes to alleviate drought stress. However, drought-tolerant strains responded to drought stress by up-regulating the functional genes involved in the ubiquinone and other terpenoid-quinone biosynthesis and sphingolipid metabolism pathways. The results provided a foundation for studying the mechanism of C. geophilum response to drought stress.
Collapse
Affiliation(s)
- Mingtao Li
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yuan
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Insights into the molecular aspects of salt stress tolerance in mycorrhizal plants. World J Microbiol Biotechnol 2022; 38:253. [DOI: 10.1007/s11274-022-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
29
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
30
|
Ciadamidaro L, Pfendler S, Girardclos O, Zappelini C, Binet P, Bert V, Khasa D, Blaudez D, Chalot M. Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. FRONTIERS IN PLANT SCIENCE 2022; 13:993301. [PMID: 36388565 PMCID: PMC9650387 DOI: 10.3389/fpls.2022.993301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
AIMS Afforestation of trace-element contaminated soils, notably with fast growing trees, has been demonstrated to be an attractive option for bioremediation due to the lower costs and dispersion of contaminants than conventional cleanup methods. Mycorrhizal fungi form symbiotic associations with plants, contributing to their tolerance towards toxic elements and actively participating to the biorestoration processes. The aim of this study was to deepen our understanding on the effects of mycorrhizal inoculation on plant development and fungal community at two trace-element contaminated sites (Pierrelaye and Fresnes-sur-Escaut, France) planted with poplar (Populus trichocarpa x Populus maximowiczii). METHODS The 2 sites were divided into 4 replicated field blocks with a final plant density of 2200 tree h-1. Half of the trees were inoculated with a commercial inoculum made of a mix of mycorrhizal species. The sites presented different physico-chemical characteristics (e.g., texture: sandy soil versus silty-loam soil and organic matter: 5.7% versus 3.4% for Pierrelaye and Fresnes-sur-Escaut, respectively) and various trace element contamination levels. RESULTS After 7 years of plantation, inoculation showed a significant positive effect on poplar biomass production at the two sites. Fungal composition study demonstrated a predominance of the phylum Ascomycota at both sites, with a dominance of Geopora Arenicola and Mortierella elongata, and a higher proportion of ectomycorrhizal and endophytic fungi (with the highest values observed in Fresnes-sur-Escaut: 45% and 28% for ECM and endophytic fungi, respectively), well known for their capacity to have positive effects on plant development in stressful conditions. Furthermore, Pierrelaye site showed higher frequency (%) of mycorrhizal tips for ectomycorrhizal fungi (ECM) and higher intensity (%) of mycorrhizal root cortex colonization for arbuscular mycorrhizal fungi (AMF) than Fresnes-sur-Escaut site, which translates in a higher level of diversity. CONCLUSIONS Finally, this study demonstrated that this biofertilization approach could be recommended as an appropriate phytomanagement strategy, due to its capacity to significantly improve poplar productivity without any perturbations in soil mycobiomes.
Collapse
Affiliation(s)
- Lisa Ciadamidaro
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphane Pfendler
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Girardclos
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Cyril Zappelini
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Philippe Binet
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Valerie Bert
- INERIS, Clean Technologies and Circular Economy Unit, SIT, Parc Technologique Alata, BP2, Verneuil-en- Halatte, France
| | - Damase Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | | | - Michel Chalot
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
- Université de Lorraine, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
31
|
Kakouridis A, Hagen JA, Kan MP, Mambelli S, Feldman LJ, Herman DJ, Weber PK, Pett‐Ridge J, Firestone MK. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. THE NEW PHYTOLOGIST 2022; 236:210-221. [PMID: 35633108 PMCID: PMC9543596 DOI: 10.1111/nph.18281] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat. We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants. Plants grown with AMF that had access to a physically separated compartment containing 18 O-labeled water transpired almost twice as much as plants with AMF excluded from that compartment. Using an isotopic mixing model, we estimated that water transported by AMF across the air gap accounted for 34.6% of the water transpired by host plants. In addition, a fluorescent dye indicated that hyphae were able to transport some water via an extracytoplasmic pathway. Our study provides direct evidence that AMF can act as extensions of the root system along the soil-plant-air continuum of water movement, with plant transpiration driving water flow along hyphae outside of the hyphal cell membrane.
Collapse
Affiliation(s)
- Anne Kakouridis
- University of California BerkeleyBerkeleyCA94720USA
- Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | | | - Megan P. Kan
- University of California BerkeleyBerkeleyCA94720USA
- Lawrence Livermore National LaboratoryLivermoreCA94550USA
| | - Stefania Mambelli
- University of California BerkeleyBerkeleyCA94720USA
- Center for Stable Isotope BiogeochemistryBerkeleyCA94720USA
| | | | - Donald J. Herman
- University of California BerkeleyBerkeleyCA94720USA
- Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Peter K. Weber
- Lawrence Livermore National LaboratoryLivermoreCA94550USA
| | - Jennifer Pett‐Ridge
- Lawrence Livermore National LaboratoryLivermoreCA94550USA
- University of California MercedMercedCA95344USA
| | | |
Collapse
|
32
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
33
|
Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:919166. [PMID: 35873982 PMCID: PMC9298553 DOI: 10.3389/fpls.2022.919166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 05/14/2023]
Abstract
Drought stress (DS) is a serious abiotic stress and a major concern across the globe as its intensity is continuously climbing. Therefore, it is direly needed to develop new management strategies to mitigate the adverse effects of DS to ensure better crop productivity and food security. The use of arbuscular mycorrhizal fungi (AMF) has emerged as an important approach in recent years to improve crop productivity under DS conditions. AMF establishes a relationship with 80% of land plants and it induces pronounced impacts on plant growth and provides protection to plants from abiotic stress. Drought stress significantly reduces plant growth and development by inducing oxidative stress, disturbing membrane integrity, plant water relations, nutrient uptake, photosynthetic activity, photosynthetic apparatus, and anti-oxidant activities. However, AMF can significantly improve the plant tolerance against DS. AMF maintains membrane integrity, improves plant water contents, nutrient and water uptake, and water use efficiency (WUE) therefore, improve the plant growth under DS. Moreover, AMF also protects the photosynthetic apparatus from drought-induced oxidative stress and improves photosynthetic efficiency, osmolytes, phenols and hormone accumulation, and reduces the accumulation of reactive oxygen species (ROS) by increasing anti-oxidant activities and gene expression which provide the tolerance to plants against DS. Therefore, it is imperative to understand the role of AMF in plants grown under DS. This review presented the different functions of AMF in different responses of plants under DS. We have provided a detailed picture of the different mechanisms mediated by AMF to induce drought tolerance in plants. Moreover, we also identified the potential research gaps that must be fulfilled for a promising future for AMF. Lastly, nitrogen (N) is an important nutrient needed for plant growth and development, however, the efficiency of applied N fertilizers is quite low. Therefore, we also present the information on how AMF improves N uptake and nitrogen use efficiency (NUE) in plants.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Liang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jianqun Miao
- School of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
34
|
Chongtham SK, Devi EL, Samantara K, Yasin JK, Wani SH, Mukherjee S, Razzaq A, Bhupenchandra I, Jat AL, Singh LK, Kumar A. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. PLANTA 2022; 256:24. [PMID: 35767119 DOI: 10.1007/s00425-022-03923-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Collapse
Affiliation(s)
- Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, CAEPHT, CAU, Ranipool, Gangtok, Sikkim, 737135, India
| | | | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Odisha, 761211, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, 192101, Jammu and Kashmir, India.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ingudam Bhupenchandra
- ICAR-KVK Tamenglong, ICAR RC for NEH Region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Aanandi Lal Jat
- Castor-Mustard Research Station, SDAU, S.K. Nagar, Banaskantha, Gujarat, 385 506, India
| | - Laishram Kanta Singh
- ICAR-KVK Imphal West, ICAR RC for NEH region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Tadong, Sikkim Centre, 737102, India
| |
Collapse
|
35
|
Fu W, Chen B, Rillig MC, Jansa J, Ma W, Xu C, Luo W, Wu H, Hao Z, Wu H, Zhao A, Yu Q, Han X. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. THE NEW PHYTOLOGIST 2022; 234:2003-2017. [PMID: 34449895 DOI: 10.1111/nph.17692] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Climate extremes pose enormous threats to natural ecosystems. Arbuscular mycorrhizal (AM) fungi are key plant symbionts that can affect plant community dynamics and ecosystem stability. However, knowledge about how AM fungal communities respond to climate extremes in natural ecosystems remains elusive. Based on a grassland extreme drought experiment in Inner Mongolia, we investigated the response of AM fungal communities to extreme drought in association with plant communities. The experiment simulated two types of extreme drought (chronic/intense) of once-in-20-year occurrence. AM fungal richness and community composition exhibited high sensitivity to extreme drought and were more sensitive to intense drought than chronic drought. This community sensitivity (i.e. decline in richness and shifts in community composition) of AM fungi can be jointly explained by soil moisture, plant richness, and aboveground productivity. Notably, the robustness of the plant-AM fungal community co-response increased with drought intensity. Our results indicate that AM fungal communities are sensitive to climate extremes, and we propose that the plant community mediates AM fungal community responses. Given the ubiquitous nature of AM associations, their climate sensitivity may have profound consequences on plant communities and ecosystem stability under climate change.
Collapse
Affiliation(s)
- Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Wang Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Chong Xu
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Honghui Wu
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Xingguo Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
36
|
Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ. The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. PHYSIOLOGIA PLANTARUM 2022; 174:e13715. [PMID: 35560043 PMCID: PMC9328347 DOI: 10.1111/ppl.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 05/29/2023]
Abstract
Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.
Collapse
Affiliation(s)
- Nathan Howard
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonUK
| | - Ryan S. Kaye
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tim J. Daniell
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
37
|
Xie X, Lai W, Che X, Wang S, Ren Y, Hu W, Chen H, Tang M. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2022; 234:650-671. [PMID: 35037255 DOI: 10.1111/nph.17973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/22/2021] [Indexed: 05/28/2023]
Abstract
Reciprocal symbiosis of > 70% of terrestrial vascular plants with arbuscular mycorrhizal (AM) fungi provides the fungi with fatty acids and sugars. In return, AM fungi facilitate plant phosphate (Pi) uptake from soil. However, how AM fungi handle Pi transport and homeostasis at the symbiotic interface of AM symbiosis is poorly understood. Here, we identify an SPX (SYG1/Pho81/XPR1) domain-containing phosphate transporter, RiPT7 from Rhizophagus irregularis. To characterize the RiPT7 transporter, we combined subcellular localization and heterologous expression studies in yeasts with reverse genetics approaches during the in planta phase. The results show that RiPT7 is conserved across fungal species and expressed in the intraradical mycelia. It is expressed in the arbuscules, intraradical hyphae and vesicles, independently of Pi availability. The plasma membrane-localized RiPT7 facilitates bidirectional Pi transport, depending on Pi gradient across the plasma membrane, whereas the SPX domain of RiPT7 inhibits Pi transport activity and mediates the vacuolar targeting of RiPT7 in yeast in response to Pi starvation. Importantly, RiPT7 silencing hampers arbuscule development of R. irregularis and symbiotic Pi delivery under medium- to low-Pi conditions. Collectively, our findings reveal a role for RiPT7 in fine-tuning of Pi homeostasis across the fungal membrane to maintain the AM development.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
38
|
Xiao X, Chen J, Liao X, Yan Q, Liang G, Liu J, Wang D, Guan R. Different Arbuscular Mycorrhizal Fungi Established by Two Inoculation Methods Improve Growth and Drought Resistance of Cinnamomum Migao Seedlings Differently. BIOLOGY 2022; 11:biology11020220. [PMID: 35205086 PMCID: PMC8869179 DOI: 10.3390/biology11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Drought is a global climatic phenomenon and one of the main factors that negatively affect plant growth. Karst is a unique type of ecosystem where ecological degradation is becoming more and more serious due to the aggravation of global drought. Vegetation restoration is an effective method for preventing ecological degradation in Karst ecosystems. Cinnamomum migao is selected as the tree species for vegetation restoration, because it is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) are an important component of the soil biota in ecosystems and alleviate drought stress in plants by forming a mutualistic symbiosis. Most previous studies just considered the effects of AMF species on drought resistance but did not evaluate different inoculation methods. The aim of the present study was to compare the effects of different AMF resulting from the use of different inoculation methods on the growth and drought resistance of C. migao seedlings in Karst soil. The findings of this study will improve the success rate of reforestation programs in Karst ecosystems through the utilization of these important microorganisms. Abstract Drought stress is one of the greatest obstacles affecting field crop productivity in arid and semi-arid regions, and its severity and frequency are expected to increase due to human-induced changes to the environment and climate. Drought has led to rocky desertification in Karst regions. Cinnamomum migao is a unique, fast-growing medicinal plant of Southwest China that only thrives in Karst regions. Arbuscular mycorrhizal fungi (AMF) symbiosis alleviates drought stress in plants; however, establishment and function of the symbiotic interaction between AMF host plant in relation to the inoculation method remain unclear. Therefore, we conducted an experiment to investigate the effects of AMF species (Glomus etunicatum and Funneliformis mosseae) and two inoculation methods (seed vs. seedling inoculation) under drought stress on C. migao seedlings, and quantified mycorrhizal colonization, AMF spore density, root vigor, relative water content, C. migao growth, antioxidant enzyme activities, and osmotic adjustment. Inoculation with AMF (G. etunicatum and F. mosseae) positively affected the growth and root vigor of Cinnamomum migao under drought stress, regardless of the inoculation method. Additionally, both AMF species markedly upregulated antioxidant enzyme activities and osmotic adjustment substances, regardless of the inoculation method. Our results showed that the collective stimulatory effect of G. etunicatum is more efficient than that of F. mosseae. AMF application could promote afforestation with C. migao to prevent rocky desertification in Karst regions where water is the greatest limiting factor on plant growth and yield.
Collapse
Affiliation(s)
- Xuefeng Xiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jingzhong Chen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Xiaofeng Liao
- Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China;
| | - Qiuxiao Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Gelin Liang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Jiming Liu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
- Correspondence: ; Tel.: +86-139-8501-5398
| | - Deng Wang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| | - Ruiting Guan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China; (X.X.); (J.C.); (Q.Y.); (G.L.); (D.W.); (R.G.)
| |
Collapse
|
39
|
Berrío RT, Nelissen H, Inzé D, Dubois M. Increasing yield on dry fields: molecular pathways with growing potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:323-341. [PMID: 34695266 PMCID: PMC7612350 DOI: 10.1111/tpj.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Corresponding Author: Dirk Inzé VIB Center for Plant Systems Biology Ghent University, Department of Plant Biotechnology Technologiepark 71 B-9052 Ghent (Belgium) Tel.: +32 9 3313800; Fax: +32 9 3313809;
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
40
|
Yin R, Hao Z, Zhou X, Wu H, Feng Z, Yuan X, Chen B. Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. MYCORRHIZA 2022; 32:33-43. [PMID: 34981189 DOI: 10.1007/s00572-021-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/20/2021] [Indexed: 05/12/2023]
Abstract
Enriched surface ozone (O3) can impose harmful effects on plants. Conversely, arbuscular mycorrhizal (AM) symbiosis can enhance plant tolerance to various environmental stresses and facilitate plant growth. The interaction of AM fungi and O3 on plant performance, however, seldom has been investigated. In this study, alfalfa (Medicago sativa L.) was used as a test plant to study the effects of O3 and AM symbiosis on plant physiology and growth under two O3 levels (ambient air and elevated O3 with 60 nmol·mol-1 O3 enrichment) and three AM inoculation treatments (inoculation with exogenous or indigenous AM fungi and non-inoculation control). The results showed that elevated O3 decreased plant net photosynthetic rate and biomass, and increased malondialdehyde concentration, while AM inoculation (with both exogenous and indigenous AM fungi) could promote plant nutrient acquisition and growth irrespective of O3 levels. The positive effects of AM symbiosis on plant nutrient acquisition and antioxidant enzyme (superoxide dismutase and peroxidase) activities were most likely offset by increased stomatal conductance and O3 intake. As a result, AM inoculation and O3 generally showed no significant interactions on plant performance: although elevated O3 did not diminish the beneficial effects of AM symbiosis on alfalfa plants, AM symbiosis also did not alleviate the harmful effects of O3 on plants.
Collapse
Affiliation(s)
- Rongbin Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Xiang Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- China University of Geosciences, Beijing, 100191, People's Republic of China
| | - Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
41
|
Cheng S, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front Microbiol 2021; 12:809473. [PMID: 35003041 PMCID: PMC8733408 DOI: 10.3389/fmicb.2021.809473] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
Collapse
Affiliation(s)
- Shen Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
42
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Li J, Chen B, Zhang X, Hao Z, Zhang X, Zhu Y. Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125390. [PMID: 33611032 DOI: 10.1016/j.jhazmat.2021.125390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/27/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
It is well known that arbuscular mycorrhizal (AM) fungi can enhance plant arsenic (As) resistance by influencing As uptake, translocation, and speciation; however, As transformation and volatilization by an entire plant inoculated with AM fungus remains uninvestigated. In the present study, AM symbiosis of Rhizophagus irregularis with unbroken Medicago sativa was successfully established in vitro. Afterwards, five concentrations of arsenate were applied to the culture media. The results showed that AM inoculation could methylate inorganic As into dimethylarsinic acid (DMA), dimethylarsine (DMAsH), and trimethylarsine (TMAs), which were detected in the plants, media, or air. Volatile As, accounting for a small proportion of total organic As, appeared under high arsenate exposure, accompanied by remarkable upregulation of root RiMT-11, an arsenite methyltransferase gene in R. irregularis. In addition, AM colonization significantly increased arsenite percentages in plant tissues and external media. Regardless of As species, AM inoculation tended to release the transformed As into the environment rather than transfer them to plant tissues. Our present study, for the first time, comprehensively verified As methylation, volatilization, and reduction by AM fungus associated with the entire plant under absolute axenic conditions and gained a deeper insight into As metabolism in AM symbionts.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
44
|
Zou YN, Wu QS, Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:50-57. [PMID: 32745347 DOI: 10.1111/plb.13161] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 05/21/2023]
Abstract
With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems. AMF produce a limited oxidative burst in the arbuscule-containing root cortical cells. Similar to plants, AMF modulate a fungal network in enzymatic (e.g. GmarCuZnSOD and GintSOD1) and non-enzymatic (e.g. GintMT1, GinPDX1 and GintGRX1) antioxidant defence systems to scavenge ROS. Plants also respond to mycorrhization to enhance stress tolerance via metabolites and the induction of genes. The present review provides an overview of the network of plant - arbuscular mycorrhizal fungus dialogue in mitigating oxidative stress. Future studies should involve identifying genes and transcription factors from both AMF and host plants in response to drought stress, and utilize transcriptomics, proteomics and metabolomics to clarify a clear dialogue mechanism between plants and AMF in mitigating oxidative burst.
Collapse
Affiliation(s)
- Y-N Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Q-S Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - K Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
45
|
Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, Sharma A, El-Sawah AM. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC PLANT BIOLOGY 2021; 21:195. [PMID: 33888066 PMCID: PMC8061216 DOI: 10.1186/s12870-021-02949-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). RESULTS Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. CONCLUSIONS The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, 210014, China.
| | - Dina Fathi Ismail Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500, Prague, Czech Republic
- Department of Plant Physiology, Slovak University of Agriculture, 94911, Nitra, Slovakia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500, Prague, Czech Republic
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511, Egypt
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 123, Al-Khoud, Oman
| | - Anket Sharma
- State Key Laboratory of Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
46
|
Ma X, Geng Q, Zhang H, Bian C, Chen HYH, Jiang D, Xu X. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. THE NEW PHYTOLOGIST 2021; 229:2957-2969. [PMID: 33188641 DOI: 10.1111/nph.17077] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Despite widespread anthropogenic nutrient enrichment, it remains unclear how nutrient enrichment influences plant-arbuscular mycorrhizal fungi (AMF) symbiosis and ecosystem multifunctionality at the global scale. Here, we conducted a meta-analysis to examine the worldwide effects of nutrient enrichment on AMF and plant diversity and ecosystem multifunctionality using data of field experiments from 136 papers. Our analyses showed that nutrient addition simultaneously decreased AMF diversity and abundance belowground and plant diversity aboveground at the global scale. The decreases in AMF diversity and abundance associated with nutrient addition were more pronounced with increasing experimental duration, mean annual temperature (MAT) and mean annual precipitation (MAP). Nutrient addition-induced changes in soil pH and available phosphorus (P) predominantly regulated the responses of AMF diversity and abundance. Furthermore, AMF diversity correlated with ecosystem multifunctionality under nutrient addition worldwide. Our findings identify the negative effects of nutrient enrichment on AMF and plant diversity and suggest that AMF diversity is closely linked with ecosystem function. This study offers an important advancement in our understanding of plant-AMF interactions and their likely responses to ongoing global change.
Collapse
Affiliation(s)
- Xiaocui Ma
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qinghong Geng
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Huiguang Zhang
- Center for Scientific Research and Monitoring, Wuyishan National Park, Wuyishan, Fujian, 354300, China
| | - Chenyu Bian
- Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Dalong Jiang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xia Xu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
47
|
Fungal X-Intrinsic Protein Aquaporin from Trichoderma atroviride: Structural and Functional Considerations. Biomolecules 2021; 11:biom11020338. [PMID: 33672420 PMCID: PMC7927018 DOI: 10.3390/biom11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
The major intrinsic protein (MIP) superfamily is a key part of the fungal transmembrane transport network. It facilitates the transport of water and low molecular weight solutes across biomembranes. The fungal uncharacterized X-Intrinsic Protein (XIP) subfamily includes the full protein diversity of MIP. Their biological functions still remain fully hypothetical. The aim of this study is still to deepen the diversity and the structure of the XIP subfamily in light of the MIP counterparts—the aquaporins (AQPs) and aquaglyceroporins (AQGPs)—and to describe for the first time their function in the development, biomass accumulation, and mycoparasitic aptitudes of the fungal bioagent Trichoderma atroviride. The fungus-XIP clade, with one member (TriatXIP), is one of the three clades of MIPs that make up the diversity of T. atroviride MIPs, along with the AQPs (three members) and the AQGPs (three members). TriatXIP resembles those of strict aquaporins, predicting water diffusion and possibly other small polar solutes due to particularly wider ar/R constriction with a Lysine substitution at the LE2 position. The XIP loss of function in ∆TriatXIP mutants slightly delays biomass accumulation but does not impact mycoparasitic activities. ∆TriatMIP forms colonies similar to wild type; however, the hyphae are slightly thinner and colonies produce rare chlamydospores in PDA and specific media, most of which are relatively small and exhibit abnormal morphologies. To better understand the molecular causes of these deviant phenotypes, a wide-metabolic survey of the ∆TriatXIPs demonstrates that the delayed growth kinetic, correlated to a decrease in respiration rate, is caused by perturbations in the pentose phosphate pathway. Furthermore, the null expression of the XIP gene strongly impacts the expression of four expressed MIP-encoding genes of T. atroviride, a plausible compensating effect which safeguards the physiological integrity and life cycle of the fungus. This paper offers an overview of the fungal XIP family in the biocontrol agent T. atroviride which will be useful for further functional analysis of this particular MIP subfamily in vegetative growth and the environmental stress response in fungi. Ultimately, these findings have implications for the ecophysiology of Trichoderma spp. in natural, agronomic, and industrial systems.
Collapse
|
48
|
Santander C, Aroca R, Cartes P, Vidal G, Cornejo P. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:396-409. [PMID: 33248899 DOI: 10.1016/j.plaphy.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
The aim was to identify the effects of AM symbiosis on the expression patterns of genes associated with K+ and Na+ compartmentalization and translocation and on K+/Na+ homeostasis in some lettuce (Lactuca sativa) cultivars as well as the effects of the relative abundance of plant AQPs on plant water status. Two AM fungi species (Funneliformis mosseae and Claroideoglomus lamellosum) isolated from the hyper-arid Atacama Desert (northern Chile) were inoculated to two lettuce cultivars (Grand Rapids and Lollo Bionda), and watered with 0 and 60 mM NaCl. At 60 days of plant growth, the AM symbiotic development, biomass production, nutrient content (Pi, Na+, K+), physiological parameters, gene expressions of ion channels and transporters (NHX and HKT1), and aquaporins proteins abundance (phosphorylated and non-phosphorylated) were evaluated. Salinity increased the AM root colonization by both inocula. AM lettuce plants showed an improved growth, increased relative water content and improved of K/Na ratio in root. In Grand Rapids cultivar, the high efficiency of photosystem II was higher than Lollo Bionda cultivar; on the contrary, stomatal conductance was higher in Lollo Bionda. Nevertheless, both parameters were increased by AM colonization. In the same way, LsaHKT1;1, LsaHKT1;6, LsaNHX2, LsaNHX4, LsaNHX6 and LsaNHX8 genes and aquaporins PIP2 were up-regulated differentially by both AM fungi. The improved plant growth was closely related to a higher water status due to increased PIP2 abundance, as well as to the upregulation of LsaNHX gene expression, which concomitantly improved plant nutrition and K+/Na+ homeostasis maintenance.
Collapse
Affiliation(s)
- Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Universidad Arturo Prat, Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Vivar 493 2nd floor, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Paula Cartes
- Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
49
|
Kavroulakis N, Tsiknia M, Ipsilantis I, Kavadia A, Stedel C, Psarras G, Tzerakis C, Doupis G, Karpouzas DG, Papadopoulou KK, Ehaliotis C. Arbuscular mycorrhizal fungus inocula from coastal sand dunes arrest olive cutting growth under salinity stress. MYCORRHIZA 2020; 30:475-489. [PMID: 32519068 DOI: 10.1007/s00572-020-00963-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of olive trees covers large coastal areas of land in Mediterranean regions, many of them characterized by low soil fertility and exposed to salinity and seasonal drought. In this frame, we developed mixed community inocula of arbuscular mycorrhizal fungi (AMF) derived from the extreme, seasonally arid environments of six Mediterranean sand dunes and evaluated their effects, in the form of community inocula, on rooted semi-woody olive tree cuttings (Olea europaea cv. Koroneiki). The plantlets were grown in the greenhouse for 10 months under 50 mM and 100 mM concentrations of NaCl, successively applied to induce osmotic stress. Inoculation had a positive effect on plant growth and nutrient uptake. However, the three best-performing inocula in early colonization and in plant growth enhancement also resulted in high plant sensitivity to high salinity, which was not observed for the other three inocula. This was expressed by decreased nutrient uptake and drastically lower plant growth, plant photosynthesis, and stomatal conductance (generally an over 50% reduction compared to no salinity application). Amplicon sequencing analysis of the olive plants under salinity stress showed that the AMF communities in the roots were clearly differentiated by inoculation treatment. We could not, however, consistently associate the plant responses observed under high salinity with specific shared AMF community membership or assembly attributes. The observed physiological overreaction to osmotic stress may be an adaptation trait, potentially brought about by host selection coupled to abiotic environmental filtering, in the harsh conditions from which the AMF inocula were derived. The overreaction may, however, be undesirable if conveyed to allochthonous plants at an agronomic level.
Collapse
Affiliation(s)
- N Kavroulakis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization "Demeter", Chania, Crete, Greece
| | - M Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
| | - I Ipsilantis
- Faculty of Agriculture, Soil Science Laboratory, Aristotle University, Thessaloniki, Greece
| | - A Kavadia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
| | - C Stedel
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - G Psarras
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization "Demeter", Chania, Crete, Greece
| | - C Tzerakis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization "Demeter", Chania, Crete, Greece
| | - G Doupis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization "Demeter", Chania, Crete, Greece
| | - D G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - K K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - C Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece.
| |
Collapse
|
50
|
Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:245-255. [PMID: 32087536 DOI: 10.1016/j.plaphy.2020.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can form a symbiotic relationships with most terrestrial plants and play an important role in plant growth and adaptation to various stresses. To study the role of AMF in regulating drought resistance in apple, the effects of drought stress on Malus hupehensis inoculated with AMF were investigated. Inoculation of AMF enhanced apple plants growth. Mycorrhizal plants had higher total chlorophyll concentrations but lower relative electrolyte leakage under drought stress. Mycorrhizal plants increased net photosynthetic rate, stomatal conductance, and transpiration rate under drought stress, however, they showed lower inhibition in the quantum yield of PSII photochemistry. Mycorrhizal plants also had higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities under drought conditions. Thus, mycorrhizal plants had lower accumulated MDA, H2O2, and O2- than non-mycorrhizal seedlings. Total sugar and proline concentrations also significantly increased, helping maintain the osmotic balance. Furthermore, mitogen-activated protein kinase (MAPK) cascades, which participate in the regulation of responses of plants and microorganisms to biotic and abiotic stress, were up-regulated in apple plants and AMF during drought. We saw that there were at least two motifs that were identical in MAPK proteins and many elements that responded to hormones and stress from these MAPK genes. In summary, our results showed that mycorrhizal colonization enhanced apple drought tolerance by improving gas exchange capacity, increasing chlorophyll fluorescence parameters, creating a greater osmotic adjustment capacity, increasing scavenging of reactive oxygen species (ROS), and using MAPK signals for interactions between AMF and their apple plant hosts.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maoxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|