1
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
2
|
Shi Y, Deng C, Lu X, Wang Y, Pan Y, Su D, Lu W, Lin Y, Li R, Han J, Hao Y, Chen Y, Abid G, Pirrello J, Bouzayen M, Liu Y, Li Z, Huang B. Cutin formation in tomato is controlled by a multipartite module of synergistic and antagonistic transcription factors. Cell Rep 2025; 44:115258. [PMID: 39891905 DOI: 10.1016/j.celrep.2025.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
Cuticles protect plants from water loss and pathogen attack. We address here the functional significance of SlGRAS9, SlZHD17, and SlMBP3 in regulating cutin formation in tomato fruit. The study unveils the role of the multipartite "SlGRAS9-SlZHD17-SlMBP3-SlMIXTA-like" transcription factor module in cutin biosynthesis. Plants deficient in SlGRAS9, SlZHD17, or SlMBP3 exhibit thickened cuticles and a higher accumulation of cutin monomers, conferring extended fruit shelf life and higher tolerance to postharvest fungal infection. SlGRAS9 regulation of cutin is mediated by SlZHD17, a negative regulator of SlCYP86A69. SlZHD17 acts synergistically with SlMBP3 to repress SlCYP86A69, and its interaction with SlMIXTA-like prevents the binding to the SlCYP86A69 promoter, thereby releasing the repression of cutin biosynthesis. SlZHD17 and SlMBP3 synergistically repress cutin biosynthesis, while SlMIXTA-like and SlCD2 act antagonistically to SlZHD17 and SlMBP3 on this metabolic pathway. The study defines targets for breeding strategies aimed at improving cuticle-associated traits in tomato and potentially other crops.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Changhao Deng
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Xiangyin Lu
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yan Wang
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yaowen Pan
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yuxiang Lin
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Junnan Han
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Ghassen Abid
- Centre of Biotechnology of Borj-Cedria, Laboratory of Legumes and Sustainable Agrosystems, P.B. 901, Hammam-Lif 2050, Tunisia
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Toulouse-INP, CNRS, UPS, Universite de Toulouse, Toulouse, France
| | - Mondher Bouzayen
- Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China; Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Toulouse-INP, CNRS, UPS, Universite de Toulouse, Toulouse, France.
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
4
|
Wu M, Zhou Y, Ma H, Xu X, Liu M, Deng W. SlMYB72 interacts with SlTAGL1 to regulate the cuticle formation in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1591-1604. [PMID: 39395118 DOI: 10.1111/tpj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
The cuticle is the first physical barrier covering the surface of tomatoes and plays an important role in multiple stress responses. But the molecular regulatory networks of cuticle formation are not fully understood. In this study, we found that SlMYB72 can interact with SlTAGL1 to regulate the formation of fruit cuticle in tomato. Downregulating the expression of SlMYB72 inhibits the formation of fruit cuticle, resulting in a reduced fruit cuticle thickness, accelerated postharvest water loss, and increased susceptibility to Botrytis cinerea. RNA sequencing analysis showed that downregulation of the SlMYB72 gene decreased the expression levels of genes related to fatty acid and cuticle metabolism. SlMYB72 regulates the cuticle formation by directly binding to the promoter of long-chain acyl-coA synthetases (SlLACS1) and medium-chain alkane hydroxylase (SlMAH1). Moreover, SlMYB72 interacts with SlTAGL1, which can enhance the transcriptional activation of SlMYB72 on the SlMAH1 promoter. Overall, our study expands our understanding of the regulation of cuticle formation by SlMYB72 and provides new insights into fruit shelf life extension via manipulation of cuticle content.
Collapse
Affiliation(s)
- Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuanyi Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Haifeng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| |
Collapse
|
5
|
Chen Y, Tang X, Fei Z, Giovannoni JJ. Fruit ripening and postharvest changes in very early-harvested tomatoes. HORTICULTURE RESEARCH 2024; 11:uhae199. [PMID: 39263630 PMCID: PMC11387008 DOI: 10.1093/hr/uhae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 09/13/2024]
Abstract
It is well known that if a fruit is harvested extremely early its development and function are interrupted, and it may never attain full maturity and optimal quality. Reports revealing insights regarding the alterations of maturation, ripening and postharvest quality in very early picked fruits are rare. We examined the effects of early harvesting on tomatoes by characterizing different accessions at the molecular, physiological, and biochemical levels. We found that even very early-harvested fruits could achieve postharvest maturation and ripening though with some defects in pigment and cuticle formation, and seeds from very early-harvested fruits could still germinate and develop as normal and healthy plants. One critical regulator of tomato cuticle integrity, SlCER1-2, was shown to contribute to cuticle defects in very early-harvested fruits. Very early fruit harvest still allowing ripening and seed development indicate that the genetic and physiological programs of later maturation and ripening are set into motion early in fruit development and are not dependent on complete fruit expansion nor attachment to the plant.
Collapse
Affiliation(s)
- Yao Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - Xuemei Tang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
- US Department of Agriculture-Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- US Department of Agriculture-Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
He S, Gao J, Li B, Luo Z, Liu P, Xu X, Wu M, Yang J, He X, Wang Z. NtWIN1 regulates the biosynthesis of scopoletin and chlorogenic acid by targeting NtF6'H1 and NtCCoAMT genes in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108937. [PMID: 39018774 DOI: 10.1016/j.plaphy.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Scopoletin and chlorogenic acid (CGA) are important polyphenols that regulate plant growth, development, and stress resistance. The ERF transcription factor WAX INDUCER1 (WIN1) promotes the biosynthesis of cutin, suberine, and wax. However, its full roles in regulating the accumulation of plant secondary metabolites still remain to be further clarified. In this study, NtWIN1 gene encoding a SHINE-type AP2/ERF transcription factor of the Va subgroup was identified from N. tabacum. NtWIN1 showed high expression levels in tobacco stems, sepals, and pistils. Overexpression (OE) and knock-out of NtWIN1 showed that it promoted the accumulation of total polyphenols and altered their composition. Compare to that of WT plants, the CGA contents significantly increased by 25%-50% in the leaves, flowers, and capsules of OE lines, while the scopoletin contents in the OE plants significantly decreased by 30%-67%. In contrast, the CGA contents in ntwin1 lines reduced by 23%-26%, and the scopoletin contents in ntwin1 increased by 38%-75% compare to that of WT plants. Chromatin immunoprecipitation and Dual-Luc transcription activation assays showed that NtWIN1 could bind to the promoters of NtF6'H1 and NtCCoAMT, thereby modulating their expression. The scopoletin content in ntwin1/ntf6'h1 double mutant was significantly lower than that in ntwin1 and WT plants, but showed no significant differences with that in ntf6'h1 mutant, further indicating that the inhibition of NtWIN1 on scopoletin accumulation depends on the activity of NtF6'H1. Our study illustrates the new roles of NtWIN1, and provides a possible target for regulating the synthesis of polyphenols in tobacco.
Collapse
Affiliation(s)
- Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Bingyu Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China.
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
8
|
Straube J, Hurtado G, Zeisler-Diehl V, Schreiber L, Knoche M. Cuticle deposition ceases during strawberry fruit development. BMC PLANT BIOLOGY 2024; 24:623. [PMID: 38951751 PMCID: PMC11218262 DOI: 10.1186/s12870-024-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Grecia Hurtado
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Viktoria Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany.
| |
Collapse
|
9
|
Tourdot E, Martin PGP, Maza E, Mauxion JP, Djari A, Gévaudant F, Chevalier C, Pirrello J, Gonzalez N. Ploidy-specific transcriptomes shed light on the heterogeneous identity and metabolism of developing tomato pericarp cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:997-1015. [PMID: 38281284 DOI: 10.1111/tpj.16646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| |
Collapse
|
10
|
Liu GS, Huang H, Grierson D, Gao Y, Ji X, Peng ZZ, Li HL, Niu XL, Jia W, He JL, Xiang LT, Gao HY, Qu GQ, Zhu HL, Zhu BZ, Luo YB, Fu DQ. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1903-1918. [PMID: 37856192 DOI: 10.1093/jxb/erad410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ying Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Ji
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhen-Zhen Peng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao-Lin Niu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jian-Lin He
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lan-Ting Xiang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Yan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gui-Qin Qu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
12
|
Straube J, Suvarna S, Chen YH, Khanal BP, Knoche M, Debener T. Time course of changes in the transcriptome during russet induction in apple fruit. BMC PLANT BIOLOGY 2023; 23:457. [PMID: 37775771 PMCID: PMC10542230 DOI: 10.1186/s12870-023-04483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Russeting is a major problem in many fruit crops. Russeting is caused by environmental factors such as wounding or moisture exposure of the fruit surface. Despite extensive research, the molecular sequence that triggers russet initiation remains unclear. Here, we present high-resolution transcriptomic data by controlled russet induction at very early stages of fruit development. During Phase I, a patch of the fruit surface is exposed to surface moisture. For Phase II, moisture exposure is terminated, and the formerly exposed surface remains dry. We targeted differentially expressed transcripts as soon as 24 h after russet induction. RESULTS During moisture exposure (Phase I) of 'Pinova' apple, transcripts associated with the cell cycle, cell wall, and cuticle synthesis (SHN3) decrease, while those related to abiotic stress increase. NAC35 and MYB17 were the earliest induced genes during Phase I. They are therefore linked to the initial processes of cuticle microcracking. After moisture removal (Phase II), the expression of genes related to meristematic activity increased (WOX4 within 24 h, MYB84 within 48 h). Genes related to lignin synthesis (MYB52) and suberin synthesis (MYB93, WRKY56) were upregulated within 3 d after moisture removal. WOX4 and AP2B3 are the earliest differentially expressed genes induced in Phase II. They are therefore linked to early events in periderm formation. The expression profiles were consistent between two different seasons and mirrored differences in russet susceptibility in a comparison of cultivars. Furthermore, expression profiles during Phase II of moisture induction were largely identical to those following wounding. CONCLUSIONS The combination of a unique controlled russet induction technique with high-resolution transcriptomic data allowed for the very first time to analyse the formation of cuticular microcracks and periderm in apple fruit immediately after the onset of triggering factors. This data provides valuable insights into the spatial-temporal dynamics of russeting, including the synthesis of cuticles, dedifferentiation of cells, and impregnation of cell walls with suberin and lignin.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Shreya Suvarna
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Bishnu P Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
13
|
Lopez-Ortiz C, Reddy UK, Zhang C, Natarajan P, Nimmakayala P, Benedito VA, Fabian M, Stommel J. QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1200999. [PMID: 37615029 PMCID: PMC10443646 DOI: 10.3389/fpls.2023.1200999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Chong Zhang
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | | | - Matthew Fabian
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - John Stommel
- The Genetic Improvement for Fruits & Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
14
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
15
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
16
|
Marinov O, Nomberg G, Sarkar S, Arya GC, Karavani E, Zelinger E, Manasherova E, Cohen H. Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties. HORTICULTURE RESEARCH 2023; 10:uhad036. [PMID: 37799628 PMCID: PMC10548408 DOI: 10.1093/hr/uhad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 10/07/2023]
Abstract
The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.
Collapse
Affiliation(s)
- Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Einat Zelinger
- Center for Scientific Imaging (CSI), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
17
|
Wang C, Chen T, Li Y, Liu H, Qin W, Wu Z, Peng B, Wang X, Yan X, Fu X, Li L, Tang K. AaWIN1, an AP2/ERF protein, positively regulates glandular secretory trichome initiation in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111602. [PMID: 36690278 DOI: 10.1016/j.plantsci.2023.111602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Exploring the genetic network of glandular trichomes and manipulating genes relevant to secondary metabolite biosynthesis are of great importance and value. Artemisinin, a key antimalarial drug ingredient, is synthesized and stored in glandular secretory trichomes (GSTs) in Artemisia annua. WIN/SHN proteins, a clade of AP2/ERF family, are known as regulators for cuticle biosynthesis. However, their function in glandular trichome development is less unknown. In this study, we identified a WIN/SHN gene from A. annua and named it as AaWIN1. AaWIN1 was predominantly expressed in buds, flowers and trichomes, and encoded a nuclear-localized protein. Overexpressing AaWIN1 in A. annua significantly increased the density of GST as well as the artemisinin content. Furthermore, AaGSW2 was reported to play an important role in promoting GST initiation, and the expression of AaGSW2 was induced in AaWIN1-overexpression lines. AaMIXTA1, a MYB protein positively regulating trichome initiation and cuticle biosynthesis, was confirmed to interact with AaWIN1. In addition, the ectopic expression of AaWIN1 resulted in slender and curled leaves, fewer trichomes, and rising expressions of cuticle biosynthesis genes in Arabidopsis thaliana. Taken together, based on phenotype observations, content measurements and gene expression detections, AaWIN1 was considered as a positive regulator for GST initiation in A. annua.
Collapse
Affiliation(s)
- Chen Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangkuanyu Wu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuyun Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Wang J, Shan Q, Yi T, Ma Y, Zhou X, Pan L, Miao W, Zou X, Xiong C, Liu F. Fine mapping and candidate gene analysis of CaFCD1 affecting cuticle biosynthesis in Capsicum annuum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:46. [PMID: 36912954 DOI: 10.1007/s00122-023-04330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
CaFCD1 gene regulates pepper cuticle biosynthesis. Pepper (Capsicum annuum L.) is an economically important vegetable crop that easily loses water after harvesting, which seriously affects the quality of its product. The cuticle is the lipid water-retaining layer on the outside of the fruit epidermis, which regulates the biological properties and reduces the rate of water-loss. However, the key genes involved in pepper fruit cuticle development are poorly understood. In this study, a pepper fruit cuticle development mutant fcd1 (fruit cuticle deficiency 1) was obtained by ethyl methanesulfonate mutagenesis. The mutant has great defects in fruit cuticle development, and the fruit water-loss rate of fcd1is significantly higher than that of the wild-type '8214' line. Genetic analysis suggested that the phenotype of the mutant fcd1 cuticle development defect was controlled by a recessive candidate gene CaFCD1 (Capsicum annuum fruit cuticle deficiency 1) on chromosome 12, which is mainly transcribed during fruit development. In fcd1, a base substitution within the CaFCD1 domain resulted in the premature termination of transcription, which affected cutin and wax biosynthesis in pepper fruit, as revealed by the GC-MS and RNA-seq analysis. Furthermore, the yeast one-hybrid and dual-luciferase reporter assays verified that the cutin synthesis protein CaCD2 was directly bound to the promoter of CaFCD1, suggesting that CaFCD1 may be a hub node in the cutin and wax biosynthetic regulatory network in pepper. This study provides a reference for candidate genes of cuticle synthesis and lays a foundation for breeding excellent pepper varieties.
Collapse
Affiliation(s)
- Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingyun Shan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Ting Yi
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Yanqing Ma
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoxun Zhou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., LTD, Changsha, China
| | - Xuexiao Zou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Cheng Xiong
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
20
|
Jiao Y, Long Y, Xu K, Zhao F, Zhao J, Li S, Geng S, Gao W, Sun P, Deng X, Chen Q, Li C, Qu Y. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes for Fuzz Development in Gossypium hirsutum. Genes (Basel) 2023; 14:208. [PMID: 36672949 PMCID: PMC9858766 DOI: 10.3390/genes14010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yilei Long
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kaixiang Xu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fuxiang Zhao
- Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Geng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Peng Sun
- Xinjiang Kuitun Agricultural and Rural Bureau, KuiTun 833200, China
| | - Xiaojuan Deng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chunpin Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
21
|
Amanullah S, Li S, Osae BA, Yang T, Abbas F, Gao M, Wang X, Liu H, Gao P, Luan F. Primary mapping of quantitative trait loci regulating multivariate horticultural phenotypes of watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1034952. [PMID: 36714694 PMCID: PMC9877429 DOI: 10.3389/fpls.2022.1034952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Watermelon fruits exhibit a remarkable diversity of important horticultural phenotypes. In this study, we initiated a primary quantitative trait loci (QTL) mapping to identify the candidate regions controlling the ovary, fruit, and seed phenotypes. Whole genome sequencing (WGS) was carried out for two differentiated watermelon lines, and 350 Mb (96%) and 354 Mb (97%) of re-sequenced reads covered the reference de novo genome assembly, individually. A total of 45.53% non-synonymous single nucleotide polymorphism (nsSNPs) and 54.47% synonymous SNPs (sSNPs) were spotted, which produced 210 sets of novel SNP-based cleaved amplified polymorphism sequence (CAPS) markers by depicting 46.25% co-dominant polymorphism among parent lines and offspring. A biparental F2:3 mapping population comprised of 100 families was used for trait phenotyping and CAPS genotyping, respectively. The constructed genetic map spanned a total of 2,398.40 centimorgans (cM) in length and averaged 11.42 cM, with 95.99% genome collinearity. A total of 33 QTLs were identified at different genetic positions across the eight chromosomes of watermelon (Chr-01, Chr-02, Chr-04, Chr-05, Chr-06, Chr-07, Chr-10, and Chr-11); among them, eight QTLs of the ovary, sixteen QTLs of the fruit, and nine QTLs of the seed related phenotypes were classified with 5.32-25.99% phenotypic variance explained (PVE). However, twenty-four QTLs were identified as major-effect and nine QTLs were mapped as minor-effect QTLs across the flanking regions of CAPS markers. Some QTLs were exhibited as tightly localized across the nearby genetic regions and explained the pleiotropic effects of multigenic nature. The flanking QTL markers also depicted significant allele specific contributions and accountable genes were predicted for respective traits. Gene Ontology (GO) functional enrichment was categorized in molecular function (MF), cellular components (CC), and biological process (BP); however, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were classified into three main classes of metabolism, genetic information processing, and brite hierarchies. The principal component analysis (PCA) of multivariate phenotypes widely demonstrated the major variability, consistent with the identified QTL regions. In short, we assumed that our identified QTL regions provide valuable genetic insights regarding the watermelon phenotypes and fine genetic mapping could be used to confirm them.
Collapse
Affiliation(s)
- Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shenglong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Benjamin Agyei Osae
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Meiling Gao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
22
|
Moyroud E, Airoldi CA, Ferria J, Giorio C, Steimer SS, Rudall PJ, Prychid CJ, Halliwell S, Walker JF, Robinson S, Kalberer M, Glover BJ. Cuticle chemistry drives the development of diffraction gratings on the surface of Hibiscus trionum petals. Curr Biol 2022; 32:5323-5334.e6. [PMID: 36423640 DOI: 10.1016/j.cub.2022.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Plants combine both chemical and structural means to appear colorful. We now have an extensive understanding of the metabolic pathways used by flowering plants to synthesize pigments, but the mechanisms remain obscure whereby cells produce microscopic structures sufficiently regular to interfere with light and create an optical effect. Here, we combine transgenic approaches in a novel model system, Hibiscus trionum, with chemical analyses of the cuticle, both in transgenic lines and in different species of Hibiscus, to investigate the formation of a semi-ordered diffraction grating on the petal surface. We show that regulating both cuticle production and epidermal cell growth is insufficient to determine the type of cuticular pattern produced. Instead, the chemical composition of the cuticle plays a crucial role in restricting the formation of diffraction gratings to the pigmented region of the petal. This suggests that buckling, driven by spatiotemporal regulation of cuticle chemistry, could pattern the petal surface at the nanoscale.
Collapse
Affiliation(s)
- Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah S Steimer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | - Shannon Halliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Markus Kalberer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
23
|
Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. ABIOTECH 2022; 3:250-266. [PMID: 36533263 PMCID: PMC9755798 DOI: 10.1007/s42994-022-00085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
PLIP lipases can initiate jasmonic acid (JA) biosynthesis. However, little is known about the transcriptional regulation of this process. In this study, an ERF transcription factor (CsESE3) was found to be co-expressed with all necessary genes for JA biosynthesis and several key genes for wax biosynthesis in transcriptomes of 'Newhall' navel orange. CsESE3 shows partial sequence similarity to the well-known wax regulator SHINEs (SHNs), but lacks a complete MM protein domain. Ectopic overexpression of CsESE3 in tomato (OE) resulted in reduction of fruit surface brightness and dwarf phenotype compared to the wild type. The OE tomato lines also showed significant increases in the content of wax and JA and the expression of key genes related to their biosynthesis. Overexpression of CsESE3 in citrus callus and fruit enhanced the JA content and the expression of JA biosynthetic genes. Furthermore, CsESE3 could bind to and activate the promoters of two phospholipases from the PLIP gene family to initiate JA biosynthesis. Overall, this study indicated that CsESE3 could mediate JA biosynthesis by activating PLIP genes and positively modulate wax biosynthesis. The findings provide important insights into the coordinated control of two defense strategies of plants represented by wax and JA biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00085-2.
Collapse
|
24
|
Zhang XX, Ren XL, Qi XT, Yang ZM, Feng XL, Zhang T, Wang HJ, Liang P, Jiang QY, Yang WJ, Fu Y, Chen M, Fu ZX, Xu B. Evolution of the CBL and CIPK gene families in Medicago: genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC PLANT BIOLOGY 2022; 22:512. [PMID: 36324083 PMCID: PMC9632064 DOI: 10.1186/s12870-022-03884-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calcineurin B-like proteins (CBLs) are ubiquitous Ca2+ sensors that mediate plant responses to various stress and developmental processes by interacting with CBL-interacting protein kinases (CIPKs). CBLs and CIPKs play essential roles in acclimatization of crop plants. However, evolution of these two gene families in the genus Medicago is poorly understood. RESULTS A total of 68 CBL and 135 CIPK genes have been identified in five genomes from Medicago. Among these genomes, the gene number of CBLs and CIPKs shows no significant difference at the haploid genome level. Phylogenetic and comprehensive characteristic analyses reveal that CBLs and CIPKs are classified into four clades respectively, which is validated by distribution of conserved motifs. The synteny analysis indicates that the whole genome duplication events (WGDs) have contributed to the expansion of both families. Expression analysis demonstrates that two MsCBLs and three MsCIPKs are specifically expressed in roots, mature leaves, developing flowers and nitrogen fixing nodules of Medicago sativa spp. sativa, the widely grown tetraploid species. In particular, the expression of these five genes was highly up-regulated in roots when exposed to salt and drought stress, indicating crucial roles in stress responses. CONCLUSIONS Our study leads to a comprehensive understanding of evolution of CBL and CIPK gene families in Medicago, but also provides a rich resource to further address the functions of CBL-CIPK complexes in cultivated species and their closely related wild relatives.
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Long Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Tong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Min Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Xiao-Lei Feng
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Jie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Ying Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jun Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhi-Xi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
25
|
Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley. Nat Commun 2022; 13:6050. [PMID: 36229435 PMCID: PMC9561702 DOI: 10.1038/s41467-022-33300-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley's distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO2 conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal.
Collapse
|
26
|
Wang YZ, Dai MS, Cai DY, Shi ZB. Solving the regulation puzzle of periderm development using advances in fruit skin. FRONTIERS IN PLANT SCIENCE 2022; 13:1006153. [PMID: 36247566 PMCID: PMC9558172 DOI: 10.3389/fpls.2022.1006153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Periderm protects enlarged organs of most dicots and gymnosperms as a barrier to water loss and disease invasion during their secondary growth. Its development undergoes a complex process with genetically controlled and environmental stress-induced characters. Different development of periderm makes the full and partial russet of fruit skin, which diverges in inheritance with qualitative and quantitative characters, respectively, in pear pome. In addition to its specific genetics, fruit periderm has similar development and structure as that of stem and other organs, making it an appropriate material for periderm research. Recently, progress in histochemical as well as transcriptome and proteome analyses, and quantitative trait locus (QTL) mapping have revealed the regulatory molecular mechanism in the periderm based on the identification of switch genes. In this review, we concentrate on the periderm development, propose the conservation of periderm regulation between fruit and other plant organs based on their morphological and molecular characteristics, and summarize a regulatory network with the elicitors and repressors for the tissue development. Spontaneous programmed-cell death (PCD) or environmental stress produces the original signal that triggers the development of periderm. Spatio-temporal specific PCD produced by PyPPCD1 gene and its homologs can play a key role in the coordinated regulation of cell death related tissue development.
Collapse
Affiliation(s)
| | | | | | - Ze-bin Shi
- *Correspondence: Yue-zhi Wang, ; Ze-bin Shi,
| |
Collapse
|
27
|
Zhang A, Huang Q, Li J, Zhu W, Liu X, Wu X, Zha D. Comparative Transcriptome Analysis Reveals Gene Expression Differences in Eggplant ( Solanum melongena L.) Fruits with Different Brightness. Foods 2022; 11:foods11162506. [PMID: 36010506 PMCID: PMC9407171 DOI: 10.3390/foods11162506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit brightness is an important quality trait that affects the market value of eggplant. However, few studies have been conducted on eggplant brightness. In this study, we aimed to identify genes related to this trait in three varieties of eggplant with different fruit brightness between 14 and 22 days after pollination. Using RNA-Seq Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that wax- and cutin-related pathways and differentially expressed genes displayed significant differences among different development stages and varieties. Scanning electron microscopy revealed that the wax layer was thinner in '30-1' and 'QPCQ' than in '22-1'. Gas chromatography-mass spectrometry analysis revealed that wax content was significantly lower in '30-1' than in '22-1', which indicated that wax may be an important factor determining fruit brightness. We further identified and analyzed the KCS gene family, which encodes the rate-limiting enzyme of FA elongation in wax synthesis. The results provide an insight into the molecular mechanisms of fruit brightness in eggplants and further eggplant breeding programs.
Collapse
Affiliation(s)
- Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qianru Huang
- College of Life Science, Shanghai Normal University, Shanghai 201418, China
| | - Jianyong Li
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaohui Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence:
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
28
|
Shi L, Chen Y, Hong J, Shen G, Schreiber L, Cohen H, Zhang D, Aharoni A, Shi J. AtMYB31 is a wax regulator associated with reproductive development in Arabidopsis. PLANTA 2022; 256:28. [PMID: 35781548 DOI: 10.1007/s00425-022-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
AtMYB31, a R2R3-MYB transcription factor that modulates wax biosynthesis in reproductive tissues, is involved in seed development in Arabidopsis. R2R3-MYB transcription factors play important roles in plant development; yet, the exact role of each of them remains to be resolved. Here we report that the Arabidopsis AtMYB31 is required for wax biosynthesis in epidermis of reproductive tissues, and is involved in seed development. AtMYB31 was ubiquitously expressed in both vegetative and reproductive tissues with higher expression levels in siliques and seeds, while AtMYB31 was localized to the nucleus and cytoplasm. Loss of function of AtMYB31 reduced wax accumulation in the epidermis of silique and flower tissues, disrupted seed coat epidermal wall development and mucilage production, altered seed proanthocyanidin and polyester content. AtMYB31 could direct activate expressions of several wax biosynthetic target genes. Altogether, AtMYB31, a R2R3-MYB transcription factor, regulates seed development in Arabidopsis.
Collapse
Affiliation(s)
- Lei Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqin Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaodian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, 53115, Bonn, Germany
| | - Hagai Cohen
- Institute of Plant Sciences, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Bres C, Petit J, Reynoud N, Brocard L, Marion D, Lahaye M, Bakan B, Rothan C. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. MOLECULAR HORTICULTURE 2022; 2:14. [PMID: 37789465 PMCID: PMC10515250 DOI: 10.1186/s43897-022-00035-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/03/2022] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model for studying plant cuticle because of its thick cuticle covering and embedding the epidermal cells of the fruit. In this study, we screened an EMS mutant collection of the miniature tomato cultivar Micro-Tom for fruit cracking mutants and found a mutant displaying a glossy fruit phenotype. By using an established mapping-by-sequencing strategy, we identified the causal mutation in the SlSHN2 transcription factor that is specifically expressed in outer epidermis of growing fruit. The point mutation in the shn2 mutant introduces a K to N amino acid change in the highly conserved 'mm' domain of SHN proteins. The cuticle from shn2 fruit showed a ~ fivefold reduction in cutin while abundance and composition of waxes were barely affected. In addition to alterations in cuticle thickness and properties, epidermal patterning and polysaccharide composition of the cuticle were changed. RNAseq analysis further highlighted the altered expression of hundreds of genes in the fruit exocarp of shn2, including genes associated with cuticle and cell wall formation, hormone signaling and response, and transcriptional regulation. In conclusion, we showed that a point mutation in the transcriptional regulator SlSHN2 causes major changes in fruit cuticle formation and its coordination with epidermal patterning.
Collapse
Affiliation(s)
- Cécile Bres
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Johann Petit
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000, Bordeaux, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Christophe Rothan
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France.
- INRA, UMR 1332 Biologie du Fruit Et Pathologie, 71 Av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
30
|
Zhang H, Wang Y, Tan J, Weng Y. Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber, Cucumis sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2101-2119. [PMID: 35524817 DOI: 10.1007/s00122-022-04100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Fruit skin netting in cucumber (Cucumis sativus) is associated with important fruit quality attributes. Two simply inherited genes H (Heavy netting) and Rs (Russet skin) control skin netting, but their molecular basis is unknown. Here, we reported map-based cloning and functional characterization of the candidate gene for the Rs locus that encodes CsSHINE1 (CsSHN1), an AP2 domain containing ethylene-responsive transcription factor protein. Comparative phenotypic analysis in near-isogenic lines revealed that fruit with netted skin had different epidermal structures from that with smooth skin including thicker cuticles, smaller, palisade-shaped epidermal and sub-epidermal cells with heavily suberized and lignified cell walls, higher peroxidase activities, which suggests multiple functions of CsSHN1 in regulating fruit skin netting and epidermal cell patterning. Among three representative cucumber inbred lines, three haplotypes at three polymorphic sites were identified inside CsSHN1: a functional copy in Gy14 (wild type) with light fruit skin netting, a copy number variant with two tandemly arrayed functional copies in WI7120 with heavy skin netting, and a loss-of-function copy in 9930 with smooth skin. The expression level of CsSHN1 in fruit exocarp of three lines was positively correlated with the skin netting intensity. Comparative analysis between cucumber and melon revealed conserved and divergent genetic mechanisms underlying fruit skin netting/reticulation that may reflect the different selection histories in the two crops. A discussion was made on genetic basis of fruit skin netting in the context of natural and artificial selections of fruit quality-related epidermal features during cucumber breeding.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 10000, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
31
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
32
|
Yang Q, Yang X, Wang L, Zheng B, Cai Y, Ogutu CO, Zhao L, Peng Q, Liao L, Zhao Y, Zhou H, Han Y. Two R2R3-MYB genes cooperatively control trichome development and cuticular wax biosynthesis in Prunus persica. THE NEW PHYTOLOGIST 2022; 234:179-196. [PMID: 35023174 DOI: 10.1111/nph.17965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The fruit surface has an enormous impact on the external appearance and postharvest shelf-life of fruit. Here, we report two functionally redundant genes, PpMYB25 and PpMYB26, involved in regulation of fruit skin texture in peach. PpMYB25 can activate transcription of PpMYB26 and they both induce trichome development and cuticular wax accumulation, resulting in peach fruit with a fuzzy and dull appearance. By contrast, nonfunctional mutation of PpMYB25 caused by an insertional retrotransposon in the last exon in nectarine fails to activate transcription of PpMYB26, resulting in nectarine fruit with a smooth and shiny appearance due to loss of trichome initiation and decreased cuticular wax accumulation. Secondary cell wall biosynthesis in peach fruit pubescence is controlled by a transcriptional regulatory network, including the master regulator PpNAC43 and its downstream MYB transcription factors such as PpMYB42, PpMYB46 and PpMYB83. Our results show that PpMYB25 and PpMYB26 coordinately regulate fruit pubescence and cuticular wax accumulation and their simultaneous perturbation results in the origin of nectarine, which is botanically classified as a subspecies of peach.
Collapse
Affiliation(s)
- Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xianpeng Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Qian Peng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
33
|
Amanullah S, Osae BA, Yang T, Abbas F, Liu S, Liu H, Wang X, Gao P, Luan F. Mapping of genetic loci controlling fruit linked morphological traits of melon using developed CAPS markers. Mol Biol Rep 2022; 49:5459-5472. [PMID: 35235158 DOI: 10.1007/s11033-022-07263-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fruit morphology traits are important commercial traits that directly affect the market value. However, studying the genetic basis of these traits in un-explored botanical groups is a fundamental objective for crop genetic improvement through marker-assisted breeding. METHODS AND RESULTS In this study, a quantitative trait loci (QTLs) mapping strategy was used for dissecting the genomic regions of fruit linked morphological traits by single nucleotide polymorphism (SNP) based cleaved amplified polymorphism sequence (CAPS) molecular markers. Next-generation sequencing was done for the genomic sequencing of two contrasted melon lines (climacteric and non-climacteric), which revealed 97% and 96% of average coverage over the reference melon genome database, respectively. A total of 57.51% non-synonymous SNPs and 42.49% synonymous SNPs were found, which produced 149 sets of codominant markers with a 24% polymorphism rate. Total 138-F2 derived plant populations were genotyped for linkage mapping and composite interval mapping based QTL mapping exposed 6 genetic loci, positioned over distinct chromosomes (02, 04, 08, 09, and 12) between the flanking intervals of CAPS markers, which explained an unlinked polygenic architecture in genome. Three minor QTLs of fruit weight (FWt2.1, FWt4.1, FWt9.1), one major QTL of fruit firmness (FrFir8.1), one major QTL of fruit length (FL12.1), and one major QTL of fruit shape (FS12.1) were determined and collectively explained the phenotypic variance from 5.64 to 15.64%. Fruit phenotypic correlation exhibited the significant relationship and principal component analysis also identified the potential variability. Multiple sequence alignments also indicated the significant base-mutations in the detected genetic loci, respectively. CONCLUSION In short, our illustrated genetic loci are expected to provide the reference insights for fine QTL mapping and candidate gene(s) mining through molecular genetic breeding approaches aimed at developing the new varieties.
Collapse
Affiliation(s)
- Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Benjamin Agyei Osae
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Farhat Abbas
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, 150030, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
34
|
Berhin A, Nawrath C, Hachez C. Subtle interplay between trichome development and cuticle formation in plants. THE NEW PHYTOLOGIST 2022; 233:2036-2046. [PMID: 34704619 DOI: 10.1111/nph.17827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes and cuticles are key protective epidermal specializations. This review highlights the genetic interplay existing between trichome and cuticle formation in a variety of species. Controlling trichome development, the biosynthesis of trichome-derived specialized metabolites as well as cuticle biosynthesis and deposition can be viewed as different aspects of a common defensive strategy adopted by plants to protect themselves from environmental stresses. Existence of such interplay is based on the mining of published transcriptomic data as well as on phenotypic observations in trichome or cuticle mutants where the morphology of both structures often appear to be concomitantly altered. Given the existence of several trichome developmental pathways depending on the plant species and the types of trichomes, genetic interactions between cuticle formation and trichome development are complex to decipher and not easy to generalize. Based on our review of the literature, a schematic overview of the gene network mediating this transcriptional interplay is presented for two model plant species: Arabidopsis thaliana and Solanum lycopersicum. In addition to fundamental new insights on the regulation of these processes, identifying key transcriptional switches controlling both processes could also facilitate more applied investigations aiming at improving much desired agronomical traits in plants.
Collapse
Affiliation(s)
- Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Christiane Nawrath
- Department of Molecular Plant Biology, University of Lausanne, Unil-Sorge, 1015, Lausanne, Switzerland
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
35
|
Wang T, Wei Q, Wang Z, Liu W, Zhao X, Ma C, Gao J, Xu Y, Hong B. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:741-755. [PMID: 34889055 DOI: 10.1111/jipb.13201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress that limits plant growth and development. Adaptive mechanisms have evolved to mitigate drought stress, including the capacity to adjust water loss rate and to modify the morphology and structure of the epidermis. Here, we show that the expression of CmNF-YB8, encoding a nuclear factor Y (NF-Y) B-type subunit, is lower under drought conditions in chrysanthemum (Chrysanthemum morifolium). Transgenic chrysanthemum lines in which transcript levels of CmNF-YB8 were reduced by RNA interference (CmNF-YB8-RNAi) exhibited enhanced drought resistance relative to control lines, whereas lines overexpressing CmNF-YB8 (CmNF-YB8-OX) were less tolerant to drought. Compared to wild type (WT), CmNF-YB8-RNAi plants showed reduced stomatal opening and a thicker epidermal cuticle that correlated with their water loss rate. We also identified genes involved in stomatal adjustment (CBL-interacting protein kinase 6, CmCIPK6) and cuticle biosynthesis (CmSHN3) that are more highly expressed in CmNF-YB8-RNAi lines than in WT, CmCIPK6 being a direct downstream target of CmNF-YB8. Virus-induced gene silencing of CmCIPK6 or CmSHN3 in the CmNF-YB8-RNAi background abolished the effects of CmNF-YB8-RNAi on stomatal closure and cuticle deposition, respectively. CmNF-YB8 thus regulates CmCIPK6 and CmSHN3 expression to alter stomatal movement and cuticle thickness in the leaf epidermis, thereby affecting drought resistance.
Collapse
Affiliation(s)
- Tianle Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiling Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenwen Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Zhao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
Yan X, Cui L, Liu X, Cui Y, Wang Z, Zhang H, Chen L, Cui H. NbJAZ3 is required for jasmonate-meditated glandular trichome development in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2022; 174:e13666. [PMID: 35285962 PMCID: PMC10084120 DOI: 10.1111/ppl.13666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 06/01/2023]
Abstract
Exogenous methyl jasmonate (MeJA) treatment induces glandular trichome development in Nicotiana benthamiana, but the function of JAZ proteins, acting as core repressors, and their downstream genes have not been clearly shown in plants. Here, a bioinformatics analysis of 71 JAZ genes from tobacco, Arabidopsis thaliana, and tomato was carried out and shown to share highly conserved domains. Then, the expression profile of 17 NbJAZs in different tissues was analyzed, and NbJAZ3 was highly expressed in trichome. Through transgenic technology, we demonstrated that the glandular trichome density of NbJAZ3-overexpression lines significantly decreased with lower expression levels of NbWo, NbCycB2, and NbMIXTA. In contrast, the trichome density of NbJAZ3 RNAi lines slightly increased with higher expression level of NbWo. Given the negative protein feedback regulation relationship between NbCycB2 and NbWo, we verified that MeJA induced NbWo expression. NbWo was a direct target gene of NbJAZ3 and further demonstrated that NbJAZ3 inhibited the transcriptional activation of NbCycB2 by NbWo. Together, our findings outline a novel JA-meditated glandular trichome development model consisting of the NbJAZ3-NbWo-NbCycB2 axis.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
| | - Lipeng Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiangyang Liu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life SciencesXiamen UniversityXiamenChina
| | - Zhaojun Wang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
| | - Hongying Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life SciencesXiamen UniversityXiamenChina
| | - Hong Cui
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
37
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
38
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
39
|
Jiang B, Liu R, Fang X, Tong C, Chen H, Gao H. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait). Food Chem 2022; 368:130757. [PMID: 34404000 DOI: 10.1016/j.foodchem.2021.130757] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/04/2022]
Abstract
The cuticular wax layer in fruit is a hydrophobic barrier which protects fruit from biotic and abiotic stress. The cuticular wax also affect fruit quality. This paper investigated the effects of salicylic acid on fruit quality and the cuticular wax in blueberry fruit during storage at room temperature (25 °C). 'Powderblue' blueberries (Vaccinium virgatum Ait) were treated with 1.0 mmol L-1 salicylic acid. The composition of cuticular wax layer and structure of epicuticular wax layer were analyzed at 4 d intervals during storage. Salicylic acid could efficiently delay the reduction of total wax content and affected the proportions of its constituents, including triterpenoids, esters, sterols, fatty acids, alcohols and alkanes. Our results also showed that there was no significant difference on the structure of epicuticular wax in salicylic acid treated fruits compared with that of the control. Salicylic acid delayed deterioration of blueberry fruit and enhanced its resistance to disease during storage.
Collapse
Affiliation(s)
- Bo Jiang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Chuan Tong
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| |
Collapse
|
40
|
Lemaire-Chamley M, Koutouan C, Jorly J, Assali J, Yoshida T, Nogueira M, Tohge T, Ferrand C, Peres LEP, Asamizu E, Ezura H, Fraser PD, Hajirezaei MR, Fernie AR, Rothan C. A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. PLANT & CELL PHYSIOLOGY 2022; 63:120-134. [PMID: 34665867 DOI: 10.1093/pcp/pcab150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.
Collapse
Affiliation(s)
- Martine Lemaire-Chamley
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Claude Koutouan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Joana Jorly
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Julien Assali
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Takuya Yoshida
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Marilise Nogueira
- Department of Biological Sciences, Holloway University of London, Egham Hill, Egham, UK
| | - Takayuki Tohge
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Carine Ferrand
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Lázaro E P Peres
- Department of Biological Science, São Paulo University, Avenida Pádua Dias, Piracicaba 13418-900, Brazil
| | - Erika Asamizu
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Paul D Fraser
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstraße 3, Seeland 06466, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Christophe Rothan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| |
Collapse
|
41
|
Carvajal F, Castro-Cegrí A, Jiménez-Muñoz R, Jamilena M, Garrido D, Palma F. Changes in Morphology, Metabolism and Composition of Cuticular Wax in Zucchini Fruit During Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:778745. [PMID: 34950169 PMCID: PMC8691734 DOI: 10.3389/fpls.2021.778745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Cuticle composition is an important economic trait in agriculture, as it is the first protective barrier of the plant against environmental conditions. The main goal of this work was to study the role of the cuticular wax in maintaining the postharvest quality of zucchini fruit, by comparing two commercial varieties with contrasting behavior against low temperatures; the cold-tolerant variety 'Natura', and the cold-sensitive 'Sinatra', as well as 'Sinatra' fruit with induced-chilling tolerance through a preconditioning treatment (15°C for 48 h). The freshly-harvested 'Natura' fruit had a well-detectable cuticle with a significant lower permeability and a subset of 15 up-regulated cuticle-related genes. SEM showed that zucchini epicuticular waxes mainly consisted of round-shaped crystals and clusters of them, and areas with more dense crystal deposition were found in fruit of 'Natura' and of preconditioned 'Sinatra'. The cuticular wax load per surface was higher in 'Natura' than in 'Sinatra' fruit at harvest and after 14 days at 4°C. In addition, total cuticular wax load only increased in 'Natura' and preconditioned 'Sinatra' fruit with cold storage. With respect to the chemical composition of the waxes, the most abundant components were alkanes, in both 'Natura' and 'Sinatra', with similar values at harvest. The total alkane content only increased in 'Natura' fruit and in the preconditioned 'Sinatra' fruit after cold storage, whereas the amount of total acids decreased, with the lowest values observed in the fruit that showed less chilling injury (CI) and weight loss. Two esters were detected, and their content also decreased with the storage in both varieties, with a greater reduction observed in the cold-tolerant variety in response to low temperature. Gene expression analysis showed significant differences between varieties, especially in CpCER1-like and CpCER3-like genes, involved in alkane production, as well as in the transcription factors CpWIN1-like and CpFUL1-like, associated with cuticle development and epidermal wax accumulation in other species. These results suggest an important role of the alkane biosynthetic pathway and cuticle morphology in maintaining the postharvest quality of zucchini fruit during the storage at low temperatures.
Collapse
Affiliation(s)
- Fátima Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Raquel Jiménez-Muñoz
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Petit J, Bres C, Reynoud N, Lahaye M, Marion D, Bakan B, Rothan C. Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 12:778131. [PMID: 34912361 PMCID: PMC8667768 DOI: 10.3389/fpls.2021.778131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
The tomato (Solanum lycopersicum) fruit has a thick, astomatous cuticle that has become a model for the study of cuticle formation, structure, and properties in plants. Tomato is also a major horticultural crop and a long-standing model for research in genetics, fruit development, and disease resistance. As a result, a wealth of genetic resources and genomic tools have been established, including collections of natural and artificially induced genetic diversity, introgression lines of genome fragments from wild relatives, high-quality genome sequences, phenotype and gene expression databases, and efficient methods for genetic transformation and editing of target genes. This mini-review reports the considerable progresses made in recent years in our understanding of cuticle by using and generating genetic diversity for cuticle-associated traits in tomato. These include the synthesis of the main cuticle components (cutin and waxes), their role in the structure and properties of the cuticle, their interaction with other cell wall polymers as well as the regulation of cuticle formation. It also addresses the opportunities offered by the untapped germplasm diversity available in tomato and the current strategies available to exploit them.
Collapse
Affiliation(s)
- Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | | |
Collapse
|
43
|
Trivedi P, Nguyen N, Klavins L, Kviesis J, Heinonen E, Remes J, Jokipii-Lukkari S, Klavins M, Karppinen K, Jaakola L, Häggman H. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chem 2021; 354:129517. [PMID: 33756336 DOI: 10.1101/2020.04.01.019893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 05/18/2023]
Abstract
In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty acids in the cuticular wax. Especially CER26-like, FAR2, CER3-like, LTP, MIXTA, and BAS genes showed fruit skin preferential expression patterns indicating their role in cuticular wax biosynthesis and secretion.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Esa Heinonen
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
44
|
Macnee N, Hilario E, Tahir J, Currie A, Warren B, Rebstock R, Hallett IC, Chagné D, Schaffer RJ, Bulley SM. Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC PLANT BIOLOGY 2021; 21:334. [PMID: 34261431 PMCID: PMC8278711 DOI: 10.1186/s12870-021-03025-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/10/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin (exocarp) of fleshy fruit is hugely diverse across species. Most fruit types have a live epidermal skin covered by a layer of cuticle made up of cutin while a few create an outermost layer of dead cells (peridermal layer). RESULTS In this study we undertook crosses between epidermal and peridermal skinned kiwifruit, and showed that epidermal skin is a semi-dominant trait. Furthermore, backcrossing these epidermal skinned hybrids to a peridermal skinned fruit created a diverse range of phenotypes ranging from epidermal skinned fruit, through fruit with varying degrees of patches of periderm (russeting), to fruit with a complete periderm. Quantitative trait locus (QTL) analysis of this population suggested that periderm formation was associated with four loci. These QTLs were aligned either to ones associated with russet formation on chromosome 19 and 24, or cuticle integrity and coverage located on chromosomes 3, 11 and 24. CONCLUSION From the segregation of skin type and QTL analysis, it appears that skin development in kiwifruit is controlled by two competing factors, cuticle strength and propensity to russet. A strong cuticle will inhibit russeting while a strong propensity to russet can create a continuous dead skinned periderm.
Collapse
Affiliation(s)
- Nikolai Macnee
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Science, The University of Auckland, Auckland, 1146, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Jibran Tahir
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Auckland, 1146, New Zealand
- PFR, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand
| | - Sean M Bulley
- PFR, 412 No 1 Road RD 2, Te Puke, 3182, New Zealand.
| |
Collapse
|
45
|
Xin A, Fry SC. Cutin:xyloglucan transacylase (CXT) activity covalently links cutin to a plant cell-wall polysaccharide. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153446. [PMID: 34051591 DOI: 10.1016/j.jplph.2021.153446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 05/26/2023]
Abstract
The shoot epidermal cell wall in land-plants is associated with a polyester, cutin, which controls water loss and possibly organ expansion. Covalent bonds between cutin and its neighbouring cell-wall polysaccharides have long been proposed. However, the lack of biochemical evidence makes cutin-polysaccharide linkages largely conjectural. Here we optimised a portfolio of radiochemical assays to look for cutin-polysaccharide ester bonds in the epidermis of pea epicotyls, ice-plant leaves and tomato fruits, based on the hypothesis that a transacylase remodels cutin in a similar fashion to cutin synthase and cutin:cutin transacylase activities. Through in-situ enzyme assays and chemical degradations coupled with chromatographic analysis of the 3H-labelled products, we observed that among several wall-related oligosaccharides tested, only a xyloglucan oligosaccharide ([3H]XXXGol) could acquire ester-bonds from endogenous cutin, suggesting a cutin:xyloglucan transacylase (CXT). CXT activity was heat-labile, time-dependent, and maximal at near-neutral pH values. In-situ CXT activity peaked in nearly fully expanded tomato fruits and ice-plant leaves. CXT activity positively correlated with organ growth rate, suggesting that it contributes to epidermal integrity during rapid expansion. This study uncovers hitherto unappreciated re-structuring processes in the plant epidermis and provides a step towards the identification of CXT and its engineering for biotechnological applications.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
46
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
47
|
Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, Mucciolo A, Guerault A, Liu J, Zeisler-Diehl V, Aharoni A, Schreiber L, Bakan B, Clausen MH, Geisler M, Nawrath C. ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr Biol 2021; 31:2111-2123.e9. [PMID: 33756108 DOI: 10.1016/j.cub.2021.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.
Collapse
Affiliation(s)
| | - Ignacio Martinez San Segundo
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Imène Garroum
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurence Charrier
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland; Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aurore Guerault
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Bénédicte Bakan
- INRAE, Biopolymers Interactions Assemblies UR1268, 44316 Nantes Cedex 3, France
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
Liang B, Sun Y, Wang J, Zheng Y, Zhang W, Xu Y, Li Q, Leng P. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2403-2418. [PMID: 33345282 DOI: 10.1093/jxb/eraa593] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) plays a vital role in coordinating physiological processes during fresh fruit ripening. Binding of ABA to receptors facilitates the interaction and inhibition of type 2C phosphatase (PP2C) co-receptors. However, the exact mechanism of PP2C during fruit ripening is unclear. In this study, we determined the role of the tomato ABA co-receptor type 2C phosphatase SlPP2C3, a negative regulator of ABA signaling and fruit ripening. SlPP2C3 selectively interacted with monomeric ABA receptors and SlSnRK2.8 kinase in both yeast and tobacco epidermal cells. Expression of SlPP2C3 was ABA-inducible, which was negatively correlated with fruit ripening. Tomato plants with suppressed SlPP2C3 expression exhibited enhanced sensitivity to ABA, while plants overexpressing SlPP2C3 were less sensitive to ABA. Importantly, lack of SlPP2C3 expression accelerated the onset of fruit ripening and affected fruit glossiness by altering the outer epidermis structure. There was a significant difference in the expression of cuticle-related genes in the pericarp between wild-type and SlPP2C3-suppressed lines based on RNA sequencing (RNA-seq) analysis. Taken together, our findings demonstrate that SlPP2C3 plays an important role in the regulation of fruit ripening and fruit glossiness in tomato.
Collapse
Affiliation(s)
- Bin Liang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yufei Sun
- College of Horticulture, China Agricultural University, Beijing, PR China
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, PR China
| |
Collapse
|
49
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
50
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|