1
|
Choudhary A, Kumar A, Sharma R, Sharma S, Kaur M, Goyal L, Kaur H, Singh M, Devgan M, Saini V. Heavy metals and ethylene: shaping plant responses through signaling. PLANTA 2025; 262:9. [PMID: 40423820 DOI: 10.1007/s00425-025-04725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Heavy metal (HM) contamination is an escalating global issue, significantly affecting crop quality and productivity, and this problem is further exacerbated by rapid population growth. HMs impact plant productivity by interfering with a range of morphologic, biochemical, physiologic, and molecular functions, as documented in numerous studies. Upon entry into plant cells, these metals compromise cell membrane integrity, induce reactive oxygen species production in excess, disrupt enzymatic activities, damage photosynthetic pigments and photosystems, and disturb water and nutrient uptake mechanisms. Within the cellular environment, several signaling pathways are either activated or repressed, adjusting cellular responses in accordance with their genetic potential. Phytohormones are key regulators in these processes, utilizing signaling cascades such as mitogen-activated-protein-kinase and calcium dependent pathways. Among them, ethylene, traditionally known for its role in exhibiting critical role in modulating plant responses to HM stress. This review focuses on ethylene's interaction under HM stress, examining its crosstalk with other plant hormones. In addition, it explores HM sources, bioavailability, implications for human health, plant responses to HM exposure, and the influence of ethylene biosynthesis and signaling pathways in the regulation of HM-induced stress responses.
Collapse
Affiliation(s)
- Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Radhika Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Shivam Sharma
- Department of Vegetable Science and Floriculture, CSKHPKV, Palampur, Himachal Pradesh, 176062, India
| | - Manjeet Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mohar Singh
- Division of Agrotechnology, CSIR-IHBT, Palampur, 176061, India
| | - Manik Devgan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Vishal Saini
- Division of Biotechnology, CSIR-IHBT, Palampur, 176061, India
| |
Collapse
|
2
|
Faseela P, Veena M, Sen A, Anjitha KS, Aswathi KPR, Sruthi P, Puthur JT. Elicitors fortifies the plant resilience against metal and metalloid stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:372-389. [PMID: 39491331 DOI: 10.1080/15226514.2024.2420328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.
Collapse
Affiliation(s)
- Parammal Faseela
- Department of Botany, Korambayil Ahamed Haji Memorial Unity Women's College, Malappuram, Kerala, India
| | - Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - Akhila Sen
- Department of Botany, Mar Athanasius College, Ernakulam, Kerala, India
| | - K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - K P Raj Aswathi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | | | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| |
Collapse
|
3
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Alves de Oliveira E, Cavalheiro da Silva L, Antônio de Andrade E, Dênis Battirola L, Lopes Tortorela de Andrade R. Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1076-1086. [PMID: 38059299 DOI: 10.1080/15226514.2023.2288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Soil contamination by toxic metals threatens global public health, highlighting the need for cost-effective and ecologically sound site remediation. In this study, we assessed phytoremediation of Hg-contaminated soils by Emilia fosbergii Nicolson (Asteraceae). Pot experiment was conducted using a substrate of sand and vermiculite (1:1 volume ratio), treatments consisted of five Hg concentrations (0, 1, 3, 5, and 7 mg kg-1). Metal transfer rates were calculated, including accumulation (BAF), translocation (TF) and bioconcentration (BCF) factors. E. fosbergii roots exhibited greater Hg accumulation than other tissues, but biomass production and plant health were not significantly affected at the concentrations tested, as indicated by elongation factors and tolerance index. The results revealed BAF values between 2.18 and 7.14, TF values ranged between 0.15 and 0.52, and the BCF index varied between 8.97 and 26.58. Treatments with Hg content of 5 mg kg-1 and 7 mg kg-1 recorded the highest total Hg concentrations of 66 mg kg-1 and 65.53 mg kg-1 (roots), and 9.18 mg kg-1 and 33.88 mg kg-1 (aerial), respectively. E. fosbergii demonstrated promise for Hg phytoremediation due to its high accumulation capacity, indicated by regular TF and high BCF and BAF indexes, thus classifying it as a high Hg accumulator.
Collapse
Affiliation(s)
- Evandro Alves de Oliveira
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Larissa Cavalheiro da Silva
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| |
Collapse
|
5
|
Xie Q, Deng W, Su Y, Ma L, Yang H, Yao F, Lin W. Transcriptome Analysis Reveals Novel Insights into the Hyperaccumulator Phytolacca acinosa Roxb. Responses to Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:297. [PMID: 38256850 PMCID: PMC10819451 DOI: 10.3390/plants13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that causes serious damage to plant and human health. Phytolacca acinosa Roxb. has a large amount of aboveground biomass and a rapid growth rate, and it has been identified as a novel type of Cd hyperaccumulator that can be harnessed for phytoremediation. However, the molecular mechanisms underlying the response of P. acinosa to Cd2+ stress remain largely unclear. In this study, the phenotype, biochemical, and physiological traits of P. acinosa seeds and seedlings were analyzed under different concentrations of Cd2+ treatments. The results showed higher Cd2+ tolerance of P. acinosa compared to common plants. Meanwhile, the Cd2+ content in shoots reached 449 mg/kg under 10 mg/L Cd2+ treatment, which was obviously higher than the threshold for Cd hyperaccumulators. To investigate the molecular mechanism underlying the adaptability of P. acinosa to Cd stress, RNA-Seq was used to examine transcriptional responses of P. acinosa to Cd stress. Transcriptome analysis found that 61 genes encoding TFs, 48 cell wall-related genes, 35 secondary metabolism-related genes, 133 membrane proteins and ion transporters, and 96 defense system-related genes were differentially expressed under Cd2+ stress, indicating that a series of genes were involved in Cd2+ stress, forming a complex signaling regulatory mechanism. These results provide new scientific evidence for elucidating the regulatory mechanisms of P. acinosa response to Cd2+ stress and new clues for the molecular breeding of heavy metal phytoremediation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Wentao Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Liying Ma
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Feihong Yao
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
The Early Oxidative Stress Induced by Mercury and Cadmium Is Modulated by Ethylene in Medicago sativa Seedlings. Antioxidants (Basel) 2023; 12:antiox12030551. [PMID: 36978799 PMCID: PMC10045221 DOI: 10.3390/antiox12030551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cadmium (Cd) and mercury (Hg) are ubiquitous soil pollutants that promote the accumulation of reactive oxygen species, causing oxidative stress. Tolerance depends on signalling processes that activate different defence barriers, such as accumulation of small heat sock proteins (sHSPs), activation of antioxidant enzymes, and the synthesis of phytochelatins (PCs) from the fundamental antioxidant peptide glutathione (GSH), which is probably modulated by ethylene. We studied the early responses of alfalfa seedlings after short exposure (3, 6, and 24 h) to moderate to severe concentration of Cd and Hg (ranging from 3 to 30 μM), to characterize in detail several oxidative stress parameters and biothiol (i.e., GSH and PCs) accumulation, in combination with the ethylene signalling blocker 1-methylcyclopropene (1-MCP). Most changes occurred in roots of alfalfa, with strong induction of cellular oxidative stress, H2O2 generation, and a quick accumulation of sHSPs 17.6 and 17.7. Mercury caused the specific inhibition of glutathione reductase activity, while both metals led to the accumulation of PCs. These responses were attenuated in seedlings incubated with 1-MCP. Interestingly, 1-MCP also decreased the amount of PCs and homophytochelatins generated under metal stress, implying that the overall early response to metals was controlled at least partially by ethylene.
Collapse
|
7
|
Ma X, Jin Q, Wang Y, Wang X, Wang X, Yang M, Ye C, Yang Z, XU Y. Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress. BMC Genomics 2023; 24:82. [PMID: 36809964 PMCID: PMC9945721 DOI: 10.1186/s12864-023-09176-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Tropical water lily is an aquatic plant with high ornamental value, but it cannot overwinter naturally at high latitudes. The temperature drop has become a key factor restricting the development and promotion of the industry. RESULTS The responses of Nymphaea lotus and Nymphaea rubra to cold stress were analyzed from the perspective of physiology and transcriptomics. Under the cold stress, Nymphaea rubra had obvious leaf edge curling and chlorosis. The degree of peroxidation of its membrane was higher than that of Nymphaea lotus, and the content of photosynthetic pigments also decreased more than that of Nymphaea lotus. The soluble sugar content, SOD enzyme activity and CAT enzyme activity of Nymphaea lotus were higher than those of Nymphaea rubra. This indicated that there were significant differences in the cold sensitivity of the two varieties. GO enrichment and KEGG pathway analysis showed that many stress response genes and pathways were affected and enriched to varying degrees under the cold stress, especially plant hormone signal transduction, metabolic pathways and some transcription factor genes were from ZAT gene family or WKRY gene family. The key transcription factor ZAT12 protein in the cold stress response process has a C2H2 conserved domain, and the protein is localized in the nucleus. Under the cold stress, overexpression of the NlZAT12 gene in Arabidopsis thaliana increased the expression of some cold-responsive protein genes. The content of reactive oxygen species and MDA in transgenic Arabidopsis thaliana was lower, and the content of soluble sugar was higher, indicating that overexpression of NlZAT12 can improve the cold tolerance of Arabidopsis thaliana. CONCLUSION We demonstrate that ethylene signalling and reactive oxygen species signalling play critical roles in the response of the two cultivars to cold stress. The key gene NlZAT12 for improving cold tolerance was identified. Our study provides a theoretical basis for revealing the molecular mechanism of tropical water lily in response to cold stress.
Collapse
Affiliation(s)
- Xiangyu Ma
- grid.27871.3b0000 0000 9750 7019College of Horticulture, Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, East China Key Laboratory of Flower Biology, Key Laboratory of Flower Biology and Germplasm Creation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, State Forestry and Grassland Administration, 210095 Nanjing, China
| | - Qijiang Jin
- grid.27871.3b0000 0000 9750 7019College of Horticulture, Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, East China Key Laboratory of Flower Biology, Key Laboratory of Flower Biology and Germplasm Creation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, State Forestry and Grassland Administration, 210095 Nanjing, China
| | - Yanjie Wang
- grid.27871.3b0000 0000 9750 7019College of Horticulture, Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, East China Key Laboratory of Flower Biology, Key Laboratory of Flower Biology and Germplasm Creation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, State Forestry and Grassland Administration, 210095 Nanjing, China
| | - Xiaowen Wang
- grid.27871.3b0000 0000 9750 7019College of Horticulture, Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, East China Key Laboratory of Flower Biology, Key Laboratory of Flower Biology and Germplasm Creation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, State Forestry and Grassland Administration, 210095 Nanjing, China
| | - Xuelian Wang
- grid.411680.a0000 0001 0514 4044College of Agriculture, Shihezi University, Shihezi, 832000 China
| | - Meihua Yang
- grid.411680.a0000 0001 0514 4044College of Agriculture, Shihezi University, Shihezi, 832000 China
| | - Chunxiu Ye
- grid.413251.00000 0000 9354 9799College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052 China
| | - Zhijuan Yang
- Hainan University Sanya Nanfan Research Institute, Sanya, 572000 China
| | - Yingchun XU
- grid.27871.3b0000 0000 9750 7019College of Horticulture, Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, East China Key Laboratory of Flower Biology, Key Laboratory of Flower Biology and Germplasm Creation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, State Forestry and Grassland Administration, 210095 Nanjing, China
| |
Collapse
|
8
|
Overexpression of acdS in Petunia hybrida Improved Flower Longevity and Cadmium-Stress Tolerance by Reducing Ethylene Production in Floral and Vegetative Tissues. Cells 2022; 11:cells11203197. [PMID: 36291065 PMCID: PMC9600315 DOI: 10.3390/cells11203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022] Open
Abstract
The role of acdS, which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic Petunia hybrida cv. ‘Mirage Rose’ overexpressing acdS and wild-type (WT) plants. The overexpression of acdS reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers. Under Cd stress, acdS significantly reduced Cd-induced ethylene production in vegetable tissues of transgenic plants through suppression of ethylene-related genes. This resulted in a lower accumulation of ethylene-induced reactive oxygen species (ROS) in the transgenic plants than in WT plants. In addition, expression of the genes involved in the activities of antioxidant and proline synthesis as well as the metal chelation process was also higher in the former than in the latter. Moreover, Cd accumulation was significantly higher in WT plants than in the transgenic plants. These results are linked to the greater tolerance of transgenic plants to Cd stress than the WT plants, which was determined based on plant growth and physiological performance. These results highlight the potential applicability of using acdS to extend flower longevity of ornamental bedding plants and also reveal the mechanism by which acdS improves Cd-stress tolerance. We suggest that acdS overexpression in plants can extend flower longevity and also help reduce the negative impact of Cd-induced ethylene on plant growth when the plants are unavoidably cultivated in Cd-contaminated soil.
Collapse
|
9
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|
10
|
Santoro DF, Sicilia A, Testa G, Cosentino SL, Lo Piero AR. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genomics 2022; 23:427. [PMID: 35672691 PMCID: PMC9175368 DOI: 10.1186/s12864-022-08605-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
The expected increase of sustainable energy demand has shifted the attention towards bioenergy crops. Due to their know tolerance against abiotic stress and relatively low nutritional requirements, they have been proposed as election crops to be cultivated in marginal lands without disturbing the part of lands employed for agricultural purposes. Arundo donax L. is a promising bioenergy crop whose behaviour under water and salt stress has been recently studied at transcriptomic levels. As the anthropogenic activities produced in the last years a worrying increase of cadmium contamination worldwide, the aim of our work was to decipher the global transcriptomic response of A. donax leaf and root in the perspective of its cultivation in contaminated soil. In our study, RNA-seq libraries yielded a total of 416 million clean reads and 10.4 Gb per sample. De novo assembly of clean reads resulted in 378,521 transcripts and 126,668 unigenes with N50 length of 1812 bp and 1555 bp, respectively. Differential gene expression analysis revealed 5,303 deregulated transcripts (3,206 up- and 2,097 down regulated) specifically observed in the Cd-treated roots compared to Cd-treated leaves. Among them, we identified genes related to “Protein biosynthesis”, “Phytohormone action”, “Nutrient uptake”, “Cell wall organisation”, “Polyamine metabolism”, “Reactive oxygen species metabolism” and “Ion membrane transport”. Globally, our results indicate that ethylene biosynthesis and the downstream signal cascade are strongly induced by cadmium stress. In accordance to ethylene role in the interaction with the ROS generation and scavenging machinery, the transcription of several genes (NADPH oxidase 1, superoxide dismutase, ascorbate peroxidase, different glutathione S-transferases and catalase) devoted to cope the oxidative stress is strongly activated. Several small signal peptides belonging to ROTUNDIFOLIA, CLAVATA3, and C-TERMINALLY ENCODED PEPTIDE 1 (CEP) are also among the up-regulated genes in Cd-treated roots functioning as messenger molecules from root to shoot in order to communicate the stressful status to the upper part of the plants. Finally, the main finding of our work is that genes involved in cell wall remodelling and lignification are decisively up-regulated in giant reed roots. This probably represents a mechanism to avoid cadmium uptake which strongly supports the possibility to cultivate giant cane in contaminated soils in the perspective to reserve agricultural soil for food and feed crops.
Collapse
Affiliation(s)
- Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
11
|
Perspective of ACC-deaminase producing bacteria in stress agriculture. J Biotechnol 2022; 352:36-46. [PMID: 35597331 DOI: 10.1016/j.jbiotec.2022.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) enzyme plays an important role in stress alleviation of both biotic and abiotic stressors in plants and thereby enhances their growth under harsh environmental conditions. In-depth analysis of AcdS gene encoding for ACC deaminase reveals its presence in diverse microorganisms including bacteria and fungi. Particularly, plant growth-promoting bacteria (PGPB) containing ACCD supports plant growth by modulating the level of 'stress ethylene' and cleaving its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) into α-ketobutyrate and ammonia, enabling PGPB to utilize ACC as a carbon and nitrogen source. The reduced synthesis of ethylene in plants further relieves the ethylene inhibition of plant growth and development, and improves plant resistance to various stressors. Therefore, the dual role of microbial ACCD makes it a cost-effective and eco-friendly biocatalyst for sustainable agricultural productions. The inducible ACCD encoding gene AcdS is differentially regulated by varying environmental conditions. Successful generation of transgenic plants with microbial AcdS gene enhanced biotic and abiotic stress tolerance in plants. In the present review, we discuss the importance of ACCD-producing PGPB for their ability to reduce ethylene production and the promotion of plant growth under stress conditions. We also highlighted the development of transgenic plants by overexpressing bacterial AcdS gene to improve their performance under stress conditions.
Collapse
|
12
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
13
|
Yang L, Yang H, Bian Z, Lu H, Zhang L, Chen J. The Defensive Role of Endogenous H2S in Brassica rapa against Mercury-Selenium Combined Stress. Int J Mol Sci 2022; 23:ijms23052854. [PMID: 35269996 PMCID: PMC8910845 DOI: 10.3390/ijms23052854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
Plants are always exposed to the environment, polluted by multiple trace elements. Hydrogen sulfide (H2S), an endogenous gaseous transmitter in plant cells, can help plant combat single elements with excess concentration. Until now, little has been known about the regulatory role of H2S in response to combined stress of multiple elements. Here we found that combined exposure of mercury (Hg) and selenium (Se) triggered endogenous H2S signal in the roots of Brasscia rapa. However, neither Hg nor Se alone worked on it. In roots upon Hg + Se exposure, the defensive role of endogenous H2S was associated to the decrease in reactive oxygen species (ROS) level, followed by alleviating cell death and recovering root growth. Such findings extend our knowledge of plant H2S in response to multiple stress conditions.
Collapse
Affiliation(s)
- Lifei Yang
- Department of Horticulture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (H.Y.); (Z.B.)
- Hexian New Countryside Development Research Institute, Nanjing Agricultural University, Hexian 238200, China
| | - Huimin Yang
- Department of Horticulture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (H.Y.); (Z.B.)
| | - Zhiwei Bian
- Department of Horticulture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (H.Y.); (Z.B.)
| | - Haiyan Lu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Li Zhang
- Department of Tobacco, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Jian Chen
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| |
Collapse
|
14
|
Wang C, Zhang M, Zhou J, Gao X, Zhu S, Yuan L, Hou X, Liu T, Chen G, Tang X, Shan G, Hou J. Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics 2022; 23:137. [PMID: 35168556 PMCID: PMC8848729 DOI: 10.1186/s12864-022-08311-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
Background Wucai suffers from low temperature during the growth period, resulting in a decline in yield and poor quality. But the molecular mechanisms of cold tolerance in wucai are still unclear. Results According to the phenotypes and physiological indexes, we screened out the cold-tolerant genotype “W18” (named CT) and cold-sensitive genotype “Sw-1” (named CS) in six wucai genotypes. We performed transcriptomic analysis using seedling leaves after 24 h of cold treatment. A total of 3536 and 3887 differentially expressed genes (DEGs) were identified between the low temperature (LT) and control (NT) comparative transcriptome in CT and CS, respectively, with 1690 DEGs specific to CT. The gene ontology (GO) analysis showed that the response to cadmium ion (GO:0,046,686), response to jasmonic acid (GO:0,009,753), and response to wounding (GO:0,009,611) were enriched in CT (LT vs NT). The DEGs were enriched in starch and sucrose metabolism and glutathione metabolism in both groups, and α-linolenic acid metabolism was enriched only in CT (LT vs NT). DEGs in these processes, including glutathione S-transferases (GSTs), 13S lipoxygenase (LOX), and jasmonate ZIM-domain (JAZ), as well as transcription factors (TFs), such as the ethylene-responsive transcription factor 53 (ERF53), basic helix-loop-helix 92 (bHLH92), WRKY53, and WRKY54.We hypothesize that these genes play important roles in the response to cold stress in this species. Conclusions Our data for wucai is consistent with previous studies that suggest starch and sucrose metabolism increased the content of osmotic substances, and the glutathione metabolism pathway enhance the active oxygen scavenging. These two pathways may participated in response to cold stress. In addition, the activation of α-linolenic acid metabolism may promote the synthesis of methyl jasmonate (MeJA), which might also play a role in the cold tolerance of wucai. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08311-3.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Mengyun Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xilin Hou
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tongkun Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guolei Shan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China. .,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China. .,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
15
|
Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Pathogens 2021; 11:pathogens11010035. [PMID: 35055983 PMCID: PMC8780726 DOI: 10.3390/pathogens11010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.
Collapse
|
16
|
Deckers J, Hendrix S, Prinsen E, Vangronsveld J, Cuypers A. Glutathione Is Required for the Early Alert Response and Subsequent Acclimation in Cadmium-Exposed Arabidopsis thaliana Plants. Antioxidants (Basel) 2021; 11:6. [PMID: 35052510 PMCID: PMC8773091 DOI: 10.3390/antiox11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Pollution by cadmium (Cd) is a worldwide problem, posing risks to human health and impacting crop yield and quality. Cadmium-induced phytotoxicity arises from an imbalance between antioxidants and pro-oxidants in favour of the latter. The Cd-induced depletion of the major antioxidant glutathione (GSH) strongly contributes to this imbalance. Rather than being merely an adverse effect of Cd exposure, the rapid depletion of root GSH levels was proposed to serve as an alert response. This alarm phase is crucial for an optimal stress response, which defines acclimation later on. To obtain a better understanding on the importance of GSH in the course of these responses and how these are defined by the rapid GSH depletion, analyses were performed in the GSH-deficient cadmium-sensitive 2-1 (cad2-1) mutant. Cadmium-induced root and leaf responses related to oxidative challenge, hydrogen peroxide (H2O2), GSH, ethylene, and 1-aminocyclopropane-1-carboxylic acid (ACC) were compared between wild-type (WT) and mutant Arabidopsis thaliana plants. Although the cad2-1 mutant has significantly lower GSH levels, root GSH depletion still occurred, suggesting that the chelating capacity of GSH is prioritised over its antioxidative function. We demonstrated that responses related to GSH metabolism and ACC production were accelerated in mutant roots and that stress persisted due to suboptimal acclimation. In general, the redox imbalance in cad2-1 mutant plants and the lack of proper transient ethylene signalling contributed to this suboptimal acclimation, resulting in a more pronounced Cd effect.
Collapse
Affiliation(s)
- Jana Deckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium;
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| |
Collapse
|
17
|
Naing AH, Maung TT, Kim CK. The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 173:1992-2012. [PMID: 34487352 DOI: 10.1111/ppl.13545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 05/02/2023]
Abstract
Global climate change results in frequent occurrences and/or long durations of abiotic stress. Field grown plants are affected by abiotic stress, and they modulate ethylene in response to abiotic stress exposure and use it as a signaling molecule in stress tolerance mechanisms. However, frequent occurrences and/or long durations of stress conditions can cause plants to induce ethylene levels higher than their thresholds, resulting in a reduction of plant growth and crop productivity. The use of plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase has increased in various plant species to ameliorate the deleterious effects of stress-induced ethylene and promote plant growth despite abiotic stress conditions. Unfortunately, there are restrictions that limit the use of ACC deaminase-producing PGPB to protect plants from abiotic stresses. This review describes how abiotic stress induces ethylene and how stress-induced ethylene adversely affects plant growth. In addition, this review emphasizes the importance of the compatibility of PGPB strains and specific host plants and ACC deaminase activities in the reduction of stress ethylene and the promotion of plant growth, based on the research published in the last 10 years. Moreover, due to the restrictions in PGPB use, this review highlights the potential generation of transgenic plants expressing the AcdS gene that encodes the ACC deaminase enzyme as a substitute for PGPB in the future to support and uplift agricultural sustainability and food security globally.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, Korea
| | - The-Thiri Maung
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Korea
| |
Collapse
|
18
|
Saini S, Kaur N, Pati PK. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112578. [PMID: 34352573 DOI: 10.1016/j.ecoenv.2021.112578] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) stress in plants has received considerable global attention as it threatens sustainable growth in agriculture worldwide. Hence, desperate efforts have been undertaken for combating the effects of this stress in plants. Interestingly, the use of phytohormones in reducing the impact of HM toxicity has gained much momentum in the recent past. Phytohormones act as chemical messengers that improve the HM stress resistance in plants, thus allowing them to retain their growth and developmental plasticity. Their exogenous application as well as manipulation of endogenous levels through precise targeting of their biosynthesis/signaling components is a promising approach for providing a protective shield against HM stress in plants. However, for the successful use of phytohormones for field plants exposed to HM toxicity, in-depth knowledge of the key pathways regulated by them is of prime importance. Hence, the present review mainly summarizes the key conceptual developments on the involvement of phytohormones in the mitigation of HM stress in plants. The role of various genes, proteins, and signaling components involved in phytohormones associated HM stress tolerance and their modulation has also been discussed. Thus, this update will pave the way for improving HM stress tolerance in plants with the advent of phytohormones for sustainable agriculture growth in the future.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Botany, GGDSD College, Sector-32C, Chandigarh, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
19
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
20
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:7-22. [PMID: 33074580 DOI: 10.1002/etc.4909] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Heavy metals can represent a threat to the health of aquatic ecosystems. Unlike organic chemicals, heavy metals cannot be eliminated by natural processes such as their degradation into less toxic compounds, and this creates unique challenges for their remediation from soil, water, and air. Phytoremediation, defined as the use of plants for the removal of environmental contaminants, has many benefits compared to other pollution-reducing methods. Phytoremediation is simple, efficient, cost-effective, and environmentally friendly because it can be carried out at the polluted site, which simplifies logistics and minimizes exposure to humans and wildlife. Macrophytes represent a unique tool to remediate diverse environmental media because they can accumulate heavy metals from contaminated sediment via roots, from water via submerged leaves, and from air via emergent shoots. In this review, a synopsis is presented about how plants, especially macrophytes, respond to heavy metal stress; and we propose potential roles that phytohormones can play in the alleviation of metal toxicity in the aquatic environment. We focus on the uptake, translocation, and accumulation mechanisms of heavy metals in organs of macrophytes and give examples of how phytohormones interact with plant defense systems under heavy metal exposure. We advocate for a more in-depth understanding of these processes to inform more effective metal remediation techniques from metal-polluted water bodies. Environ Toxicol Chem 2021;40:7-22. © 2020 SETAC.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
21
|
Leng Y, Li Y, Wen Y, Zhao H, Wang Q, Li SW. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111098. [PMID: 32798749 DOI: 10.1016/j.ecoenv.2020.111098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a detrimental element that can be toxic to plants. The physiological and biochemical responses of plants to Cd stress have been extensively studied, but the molecular mechanisms remain unclear. The present study showed that Cd severely inhibited the growth of roots and shoots and reduced plant biomass of mung bean seedlings. To further investigate the gene profiles and molecular processes in response Cd stress, transcriptome analyses of mung bean roots exposed to 100 μM Cd for 1, 5, and 9 days were performed. Cd treatment significantly decreased global gene expression levels at 5 and 9 d compared with the control. A total of 6737, 10279, and 9672 differentially expressed genes (DEGs) were identified in the 1-, 5-, and 9-day Cd-treated root tissues compared with the controls, respectively. Based on the analysis of DEG function annotation and enrichment, a pattern of mung bean roots response to Cd stress was proposed. The processes detoxification and antioxidative defense were involved in the early response of mung bean roots to Cd. Cd stress downregulated the expressions of a series of genes involved in cell wall biosynthesis, cell division, DNA replication and repair, and photosynthesis, while genes involved in signal transduction and regulation, transporters, secondary metabolisms, defense systems, and mitochondrial processes were upregulated in response to Cd, which might be contributed to the improvement of plant tolerance. Our results provide some novel insights into the molecular processes for growth and adaption of mung bean roots in response to Cd and many candidate genes for further biotechnological manipulations to improve plant tolerance to heavy metals.
Collapse
Affiliation(s)
- Yan Leng
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yi Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ya Wen
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hui Zhao
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qiang Wang
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Shi-Weng Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Wang Y, Yuan M, Li Z, Niu Y, Jin Q, Zhu B, Xu Y. Effects of ethylene biosynthesis and signaling on oxidative stress and antioxidant defense system in Nelumbo nucifera G. under cadmium exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40156-40170. [PMID: 32661968 DOI: 10.1007/s11356-020-09918-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 05/27/2023]
Abstract
Water contamination with cadmium (Cd) is a global environmental problem and its remediation becomes urgent. Phytoremediation using ornamental plants has attracted much attention for its advantages of cost-effectiveness and beautification of the environment. Nelumbo nucifera G. is a popular ornamental aquatic macrophyte with fast growth, large biomass, and high capacities for Cd accumulation and removal. However, information about Cd resistance and defense responses in N. nucifera is rather scarce, which restricts its large-scale utilization for phytoremediation. The phytohormone ethylene plays an important role in plant resistance to Cd stress, but the underlying mechanism remains unclear. In this study, we investigated morphophysiological responses of N. nucifera seedlings to Cd stress, and focused on the effects of ethylene on oxidative damage, Cd accumulation, and antioxidant defense system at the metabolic and transcript levels in leaves under Cd stress. Our results showed that Cd exposure led to leaf chlorosis and necrosis, coupled with an increase in contents of hydrogen peroxide, electrolyte leakage, and malondialdehyde, and decrease in chlorophyll content. Exogenous ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) application intensified Cd-induced stress responses and Cd accumulation, and increased ethylene production by inducing ACC synthase (ACS) gene NnACS. Such enhanced ethylene emission inhibited catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities, and modulated ascorbate (AsA) and glutathione (GSH) accumulation through transcriptional regulation of their respective metabolic genes. After ethylene action inhibitor silver thiosulfate (STS) supplementation, Cd-induced oxidative damage was abolished, and Cd content declined but still at a relatively high level. Blocking of ethylene perception by STS inhibited ethylene biosynthesis; enhanced CAT, APX, and GR activities and their transcript levels; increased AsA accumulation via inducing its biosynthetic genes; but reduced GSH content and NnGSH2 expression level. These results suggest that ethylene biosynthesis and signaling play an important role in N. nucifera response to Cd stress, and maintaining appropriate ethylene level and low ethylene sensitivity could improve its Cd tolerance via efficient antioxidant defenses.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Man Yuan
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Zexin Li
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Yeqing Niu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Qijiang Jin
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Bin Zhu
- Department of Biology, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT, 06117, USA
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
23
|
Identifying the Pressure Points of Acute Cadmium Stress Prior to Acclimation in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21176232. [PMID: 32872315 PMCID: PMC7503646 DOI: 10.3390/ijms21176232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/01/2023] Open
Abstract
The toxic metal cadmium (Cd) is a major soil pollutant. Knowledge on the acute Cd-induced stress response is required to better understand the triggers and sequence of events that precede plant acclimation. Therefore, we aimed to identify the pressure points of Cd stress using a short-term exposure set-up ranging from 0 h to 24 h. Acute responses related to glutathione (GSH), hydrogen peroxide (H2O2), 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene and the oxidative challenge were studied at metabolite and/or transcript level in roots and leaves of Arabidopsis thaliana either exposed or not to 5 µM Cd. Cadmium rapidly induced root GSH depletion, which might serve as an alert response and modulator of H2O2 signalling. Concomitantly, a stimulation of root ACC levels was observed. Leaf responses were delayed and did not involve GSH depletion. After 24 h, a defined oxidative challenge became apparent, which was most pronounced in the leaves and concerted with a strong induction of leaf ACC synthesis. We suggest that root GSH depletion is required for a proper alert response rather than being a merely adverse effect. Furthermore, we propose that roots serve as command centre via a.o. root-derived ACC/ethylene to engage the leaves in a proper stress response.
Collapse
|
24
|
Dong W, Ma X, Jiang H, Zhao C, Ma H. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC PLANT BIOLOGY 2020; 20:362. [PMID: 32736517 PMCID: PMC7393922 DOI: 10.1186/s12870-020-02559-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/19/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. 'Baron' (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as "starch and sucrose metabolism", "protein processing in endoplasmic reticulum", "phenylalanine metabolism" and "glycolysis/gluconeogenesis" were significantly enriched in PQ, and "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "galactose metabolism" and "glutathione metabolism" were significantly enriched in PB. In addition, the "glycolysis" and "citrate cycle (TCA cycle)" pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype.
Collapse
Affiliation(s)
- Wenke Dong
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiang Ma
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, 810016, China
| | - Hanyu Jiang
- Department of Physic, Nanjing Normal University, Nanjing, 210097, China
| | - Chunxu Zhao
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huiling Ma
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
25
|
Liu A, Zhang P, Bai B, Bai F, Jin T, Ren J. Volatile Organic Compounds of Endophytic Burkholderia pyrrocinia Strain JK-SH007 Promote Disease Resistance in Poplar. PLANT DISEASE 2020; 104:1610-1620. [PMID: 32271644 DOI: 10.1094/pdis-11-19-2366-re] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) play important roles in the regulation of plant growth and pathogen resistance. However, little is known about the influence of VOCs released from endophytic strains (Burkholderia pyrrocinia strain JK-SH007) on controlling pathogens or inducing systemic resistance in poplar. In this study, we found that VOCs produced by strain JK-SH007 inhibit three poplar canker pathogens (Cytospora chrysosperma, Phomopsis macrospora, and Fusicoccum aesculi) and promote defense enzyme activity and malondialdehyde (MDA) and total phenol (TP) accumulation. Thirteen kinds of VOC components were identified using the solid-phase microextraction combined with gas chromatography-mass spectrometry method. Dimethyl disulfide (DMDS) accounted for the largest proportion of these VOCs. Treatments of poplar seedlings with different volumes of VOC standards (DMDS, benzothiazole, dimethylthiomethane, and phenylacetone) showed that DMDS had the greatest effects on various defense enzyme activities and MDA and TP accumulation. We also found that the inhibitory effect of the VOCs on the three pathogens was gradually enhanced with increasing standard volume. Moreover, the treatment of samples with DMDS significantly reduced the severity and development of the disease caused by three poplar canker pathogens. Comparative transcriptomics analysis of poplar seedlings treated with DMDS showed that there were 1,586 differentially expressed genes in the leaves and stems, and quantitative PCR showed that the gene expression trends were highly consistent with the transcriptome sequencing results. The most significant transcriptomic changes induced by VOCs were related to hormone signal transduction, transcriptional regulation of plant-pathogen interactions, and energy metabolism. Moreover, 137 transcription factors, including members of the ethylene response factor, NAC, WRKY, G2-like, and basic helix-loop-helix protein families, were identified to be involved in the VOC-induced process. This study elucidates the resistance induced by Burkholderia pyrrocinia strain JK-SH007 to poplar canker at the molecular level and can make possible a new method for the comprehensive prevention and control of poplar disease.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Pengfei Zhang
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Bianxia Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Fenglin Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Tingting Jin
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Jiahong Ren
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| |
Collapse
|
26
|
Wang YM, Yang Q, Xu H, Liu YJ, Yang HL. Physiological and transcriptomic analysis provide novel insight into cobalt stress responses in willow. Sci Rep 2020; 10:2308. [PMID: 32047223 PMCID: PMC7012891 DOI: 10.1038/s41598-020-59177-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Cobalt (Co) is an essential component of several enzymes and coenzymes in living organisms. Excess Co is highly toxic to plants. The knowledge of molecular response mechanisms to cobalt stress in plants is still limited, especially in woody plants. The responses of weeping willow (Salix babylonica) seedlings to Co stress were studied using morphological and physiochemical measurements and RNA-seq analysis. The physiological and biochemical indexes such as growth rate, the content of chlorophyll and soluble sugar, photosynthesis and peroxidase activity were all changed in willow seedlings under Co stress. The metal ion concentrations in willow including Cu, Zn and Mg were disturbed due to excess Co. Of 2002 differentially expressed genes (DEGs), 1165 were root-specific DEGs and 837 were stem and leaf-specific DEGs. Further analysis of DEGs showed there were multiple complex cascades in the response network at the transcriptome level under Co stress. Detailed elucidation of responses to oxidative stress, phytohormone signaling-related genes and transcription factors (TFs), and detoxification of excess cellular Co ion indicated the various defense mechanisms in plants respond to cobalt stress. Our findings provide new and comprehensive insights into the plant tolerance to excess Co stress.
Collapse
Affiliation(s)
- Yi-Ming Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden.,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hui Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hai-Ling Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
27
|
Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. BMC PLANT BIOLOGY 2019; 19:570. [PMID: 31856702 PMCID: PMC6923997 DOI: 10.1186/s12870-019-2189-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Oilseed rape is an excellent candidate for phytoremediation of cadmium (Cd) contaminated soils given its advantages of high biomass, fast growth, moderate metal accumulation, ease of harvesting, and metal tolerance, but the cadmium response pathways in this species (Brassica napus) have yet to be fully elucidated. A combined analysis of miRNA and mRNA expression to infer Cd-induced regulation has not been reported in B. napus. RESULTS We characterized concurrent changes in miRNA and mRNA profiles in the roots and shoots of B. napus seedlings after 10 days of 10 mg/L Cd2+ treatment. Cd treatment significantly affected the expression of 22 miRNAs belonging to 11 families in the root and 29 miRNAs belonging to 14 miRNA families in the shoot. Five miRNA families (MIR395, MIR397, MIR398, MIR408 and MIR858) and three novel miRNAs were differentially expressed in both tissues. A total of 399 differentially expressed genes (DEGs) in the root and 389 DEGs in the shoot were identified, with very little overlap between tissue types. Eight anti-regulation miRNA-mRNA interaction pairs in the root and eight in the shoot were identified in response to Cd and were involved in key plant stress response pathways: for example, four genes targeted by miR398 were involved in a pathway for detoxification of superoxide radicals. Cd stress significantly impacted the photosynthetic pathway. Transcription factor activation, antioxidant response pathways and secondary metabolic processes such as glutathione (GSH) and phenylpropanoid metabolism were identified as major components for Cd-induced response in both roots and shoots. CONCLUSIONS Combined miRNA and mRNA profiling revealed miRNAs, genes and pathways involved in Cd response which are potentially critical for adaptation to Cd stress in B. napus. Close crosstalk between several Cd-induced miRNAs and mRNAs was identified, shedding light on possible mechanisms for response to Cd stress in underground and aboveground tissues in B. napus. The pathways, genes, and miRNAs identified here will be valuable targets for future improvement of cadmium tolerance in B. napus.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
28
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
29
|
Deng S, Ma J, Zhang L, Chen F, Sang Z, Jia Z, Ma L. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC PLANT BIOLOGY 2019; 19:321. [PMID: 31319815 PMCID: PMC6637634 DOI: 10.1186/s12870-019-1933-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Magnolia wufengensis is a new species of Magnolia L. and has considerable ornamental and economic value due to its unique characteristics. However, because of its characteristic of poor low temperature resistance, M. wufengensis is hardly popularization and application in the north of China. Furthermore, the mechanisms of gene regulation and signaling pathways involved in the cold-stress response remained unclear in this species. In order to solve the above-mentioned problems, we performed de novo transcriptome assembly and compared the gene expression under the natural (25 °C) and cold (4 °C) conditions for M. wufengensis seedlings. RESULTS More than 46 million high-quality clean reads were produced from six samples (RNA was extracted from the leaves) and were used for performing de novo transcriptome assembly. A total of 59,764 non-redundant unigenes with an average length of 899 bp (N50 = 1,110) were generated. Among these unigenes, 31,038 unigenes exhibited significant sequence similarity to known genes, as determined by BLASTx searches (E-value ≤1.0E-05) against the Nr, SwissProt, String, GO, KEGG, and Cluster of COG databases. Based on a comparative transcriptome analysis, 3,910 unigenes were significantly differentially expressed (false discovery rate [FDR] < 0.05 and |log2FC (CT/CK)| ≥ 1) in the cold-treated samples, and 2,616 and 1,294 unigenes were up- and down-regulated by cold stress, respectively. Analysis of the expression patterns of 16 differentially expressed genes (DEGs) by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Gene Ontology and KEGG pathway functional enrichment analyses allowed us to better understand these differentially expressed unigenes. The most significant transcriptomic changes observed under cold stress were related to plant hormone and signal transduction pathways, primary and secondary metabolism, and photosynthesis. In addition, 113 transcription factors, including members of the AP2-EREBP, bHLH, WRKY, MYB, NAC, HSF, and bZIP families, were identified as cold responsive. CONCLUSION We generated a genome-wide transcript profile of M. wufengensis and a de novo-assembled transcriptome that can be used to analyze genes involved in biological processes. In this study, we provide the first report of transcriptome sequencing of cold-stressed M. wufengensis. Our findings provide important clues not only for understanding the molecular mechanisms of cold stress in plants but also for introducing cold hardiness into M. wufengensis.
Collapse
Affiliation(s)
- Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Lili Zhang
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Faju Chen
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province 443002 People’s Republic of China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province 443400 People’s Republic of China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
30
|
Li Y, Li H, Li YF, Zhao J, Guo J, Wang R, Li B, Zhang Z, Gao Y. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 2018; 50:435-440. [PMID: 29066364 DOI: 10.1016/j.jtemb.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
Abstract
Mercury (Hg) is a hazardous chemical in the environment and can accumulate in the food chain. Selenium (Se) is a necessary element for human health and has antagonistic effects on Hg toxicity. In this work, we investigated the effect of Se on Hg containing and Hg-responsive proteins in rice using 1, 2-dimensional electrophoresis combined with SR-XRF techniques. Two weeks old rice seedlings were exposed to Hg and/or Se compounds. After 21days proteins in the rice roots were separated by electrophoresis and their metal contents were determined by X-ray fluorescence to identify Hg and Se responsive biomolecules. The results show that under Hg stress alone Hg is bound to proteins with molecular weights of 15-25kDa. With the addition of Se, a new Hg-containing protein band in the 55-70kDa range was also found, while the content of Hg in the 15-25kDa proteins decreased. Ten and nine new protein spots were identified after adding Se to inorganic Hg and methylmercury exposed roots, respectively. Adding Se regulates the abundance of proteins associated with carbohydrate and energy metabolism, stress response, cell cycle, and DNA replication indicating that these proteins mediate the antagonism of Se against Hg toxicity. This study helps us to better understand the molecular mechanism of Hg tolerance as well as the molecular antagonism between Hg and Se in rice plants.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China; College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yu-Feng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| | - Jingxia Guo
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ru Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bai Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
31
|
Molecular Effects of Inorganic and Methyl Mercury in Aquatic Primary Producers: Comparing Impact to A Macrophyte and A Green Microalga in Controlled Conditions. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments, because of its toxicity and high biomagnification in food webs. In phytoplankton and macrophytes, Hg compounds at high concentration have been reported to affect the growth, photosynthesis, and nutrient metabolism, as well as to induce oxidative stress and damage. Here, we reviewed the recent knowledge gained on cellular toxicity of inorganic and methyl Hg (IHg; MeHg) in aquatic primary producers at more relevant environmental concentrations, with a particular focus on omics data. In addition, we compared a case study conducted with transcriptomic on the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. At lower concentrations, IHg and MeHg influenced similar gene categories, including energy metabolism, cell structure, and nutrition. In addition, genes involved in the cell motility in the microalgae, and in hormone metabolism in the macrophyte were regulated. At equivalent intracellular concentration, MeHg regulated more genes than IHg supporting a higher molecular impact of the former. At the organism level in C. reinhardtii, MeHg increased reactive oxygen species, while both IHg and MeHg increased photosynthesis efficiency, whereas in E. nuttallii MeHg induced anti-oxidant responses and IHg reduced chlorophyll content. Data showed differences, according to species and characteristics of life cycle, in responses at the gene and cellular levels, but evidenced a higher molecular impact of MeHg than IHg and different cellular toxicity pathways in aquatic primary producers.
Collapse
|
32
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
33
|
Jian H, Yang B, Zhang A, Ma J, Ding Y, Chen Z, Li J, Xu X, Liu L. Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape ( Brassica napus L.) Using High-Throughput Sequencing. Int J Mol Sci 2018; 19:ijms19051431. [PMID: 29748489 PMCID: PMC5983666 DOI: 10.3390/ijms19051431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) have important roles in regulating stress-response genes in plants. However, identification of miRNAs and the corresponding target genes that are induced in response to cadmium (Cd) stress in Brassica napus remains limited. In the current study, we sequenced three small-RNA libraries from B. napus after 0 days, 1 days, and 3 days of Cd treatment. In total, 44 known miRNAs (belonging to 27 families) and 103 novel miRNAs were identified. A comprehensive analysis of miRNA expression profiles found 39 differentially expressed miRNAs between control and Cd-treated plants; 13 differentially expressed miRNAs were confirmed by qRT-PCR. Characterization of the corresponding target genes indicated functions in processes including transcription factor regulation, biotic stress response, ion homeostasis, and secondary metabolism. Furthermore, we propose a hypothetical model of the Cd-response mechanism in B. napus. Combined with qRT-PCR confirmation, our data suggested that miRNAs were involved in the regulations of TFs, biotic stress defense, ion homeostasis and secondary metabolism synthesis to respond Cd stress in B. napus.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Bo Yang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Aoxiang Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinqi Ma
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Yiran Ding
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhiyou Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xinfu Xu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
34
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
35
|
Beauvais-Flück R, Slaveykova VI, Cosio C. Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:103-111. [PMID: 29172129 DOI: 10.1016/j.aquatox.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The effects of two methylmercury (CH3Hg+, MeHg) concentrations, representative of environmental level and extreme contamination, were investigated on the macrophyte Elodea nuttallii during a 2h-exposure combining transcriptomic (RNA-Seq), physiological endpoints (pigment contents, activity of anti-oxidative stress enzymes) and bioaccumulation. Exposure to MeHg induced the up- and down-regulation of numerous genes (4389 and 16853 for 10ngL-1 and 10μgL-1 MeHg exposure, respectively) involved in sugar, amino acid and secondary metabolism (e.g. cinnamic acid, flavonoids) at both concentrations. Genes coding for photosynthesis, membrane integrity, metal homeostasis, water transport and anti-oxidative enzymes were additionally up- and down-regulated at the higher concentration. At the physiological level, exposure to both MeHg concentrations resulted in a strong increase of anthocyanin content in shoots. Chlorophyll content and antioxidant enzyme activities were unchanged. The data suggest that the macrophyte was able to efficiently cope with the stress resulting from MeHg exposure, possibly by using anthocyanin as anti-oxidant and S-rich amino acids (such as cysteine and methionine) as chelators. Transcriptomics analysis enabled gaining novel insights on molecular effects of MeHg in primary producers, which are one of the main entry pathway of hazardous MeHg in aquatic food webs.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Claudia Cosio
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, 1211 Genève 4, Switzerland.
| |
Collapse
|
36
|
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1867. [PMID: 29163592 PMCID: PMC5671638 DOI: 10.3389/fpls.2017.01867] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
37
|
Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z. Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:253. [PMID: 28286514 PMCID: PMC5323375 DOI: 10.3389/fpls.2017.00253] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
This work aims at identifying the effects of ethylene on the response of Arabidopsis thaliana root system to cadmium chloride (CdCl2) stress. Two ethylene-insensitive mutants, ein2-5 and ein3-1eil1-1, were subjected to (25, 50, 75, and 100 μM) CdCl2 concentrations, from which 75 μM concentration decreased root growth by 40% compared with wild type Col-0 as a control. Ethylene biosynthesis increased in response to CdCl2 treatment. The length of primary root and root tip in ein2-5 and ein3-1eil1-1 decreased compared with wild type after CdCl2 treatment, suggesting that ethylene play a role in root system response to Cd stress. The superoxide concentration in roots of ein2-5 and ein3-1eil1-1 was greater than in wild type seedlings under Cd stress. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) (a precursor of ethylene biosynthesis) in different concentrations (0.01, 0.05 and 0.5 μM) decreased superoxide accumulation in Col-0 root tips and increased the activities of superoxide dismutase (SOD) isoenzymes under Cd stress. This result was reversed with 5 μM of aminoisobutyric acid AIB (an inhibitor of ethylene biosynthesis). Moreover, it was accompanied by increase in lateral roots number and root hairs length, indicating the essential role of ethylene in modulating root system development by controlling superoxide accumulation through SOD isoenzymes activities. The suppressed Cd-induced superoxide accumulation in wild type plants decreased the occurrence of cells death while programmed cell death (PCD) was initiated in the root tip zone, altering root morphogenesis (decreased primary root length, more lateral roots and root hairs) to minimize the damage caused by Cd stress, whereas this response was absent in the ein2-5 and ein3-1eil1-1 seedlings. Hence, ethylene has a role in modulating root morphogenesis during CdCl2 stress in A. thaliana by increasing the activity of SOD isoenzymes to control superoxide accumulation.
Collapse
Affiliation(s)
- Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
- Botany Department, Faculty of Science, Menoufia UniversityShibin El Kom, Egypt
| | - Zuojia Ying
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
- The College of Landscape, Northeast Forestry UniversityHarbin, China
| | - Yingchao Lin
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
- Guizhou Academy of Tobacco ResearchGuiyang, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Zhang
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
38
|
Fu J, Miao Y, Shao L, Hu T, Yang P. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics 2016; 17:870. [PMID: 27814694 PMCID: PMC5097361 DOI: 10.1186/s12864-016-3222-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Elymus nutans Griseb., is an important alpine perennial forage of Pooideae subfamily with strong inherited cold tolerance. To get a deeper insight into its molecular mechanisms of cold tolerance, we compared the transcriptome profiling by RNA-Seq in two genotypes of Elymus nutans Griseb. the tolerant Damxung (DX) and the sensitive Gannan (GN) under cold stress. RESULTS The new E. nutans transcriptomes were assembled and comprised 200,520 and 181,331 transcripts in DX and GN, respectively. Among them, 5436 and 4323 genes were differentially expressed in DX and GN, with 170 genes commonly expressed over time. Early cold responses involved numerous genes encoding transcription factors and signal transduction in both genotypes. The AP2/EREBP famliy of transcription factors was predominantly expressed in both genotypes. The most significant transcriptomic changes in the later phases of cold stress are associated with oxidative stress, primary and secondary metabolism, and photosynthesis. Higher fold expressions of fructan, trehalose, and alpha-linolenic acid metabolism-related genes were detected in DX. The DX-specific dehydrins may be promising candidates to improve cold tolerance. Twenty-six hub genes played a central role in both genotypes under cold stress. qRT-PCR analysis of 26 genes confirmed the RNA-Seq results. CONCLUSIONS The stronger transcriptional differentiation during cold stress in DX explains its better cold tolerance compared to GN. The identified fructan biosynthesis, alpha-linolenic acid metabolism, and DX-specific dehydrin-related genes may provide genetic resources for the improvement of cold-tolerant characters in DX. Our findings provide important clues for further studies of the molecular mechanisms underlying cold stress responses in plants.
Collapse
Affiliation(s)
- Juanjuan Fu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanjun Miao
- College of Plant Science, Agriculture and Animal Husbandry College of Tibet University, Linzhi, Tibet, 860000, China
| | - Linhui Shao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100101, China
| | - Tianming Hu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Peizhi Yang
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
39
|
Beauvais-Flück R, Slaveykova VI, Cosio C. Transcriptomic and Physiological Responses of the Green Microalga Chlamydomonas reinhardtii during Short-Term Exposure to Subnanomolar Methylmercury Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7126-7134. [PMID: 27254783 DOI: 10.1021/acs.est.6b00403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of short-term exposure to subnanomolar methyl-mercury (MeHg) concentrations, representative of contaminated environments, on the microalga Chlamydomonas reinhardtii were assessed using both physiological end points and gene expression analysis. MeHg bioaccumulated and induced significant increase of the photosynthesis efficiency, while the algal growth, oxidative stress, and chlorophyll fluorescence were unaffected. At the molecular level, MeHg significantly dysregulated the expression of genes involved in motility, energy metabolism, lipid metabolism, metal transport, and antioxidant enzymes. Data suggest that the cells were able to cope with subnanomolar MeHg exposure, but this tolerance resulted in a significant cost to the cell energy and reserve metabolism as well as ample changes in the nutrition and motility of C. reinhardtii. The present results allowed gaining new insights on the effects and uptake mechanisms of MeHg at subnanomolar concentrations in aquatic primary producers.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Vera I Slaveykova
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Claudia Cosio
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| |
Collapse
|
40
|
Masood A, Khan MIR, Fatma M, Asgher M, Per TS, Khan NA. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:1-10. [PMID: 26998941 DOI: 10.1016/j.plaphy.2016.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 05/20/2023]
Abstract
The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.
Collapse
Affiliation(s)
- Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - M Iqbal R Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Tasir S Per
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
41
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Dong C, Xue Z, Jin Q, Xu Y. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii. Gene 2016; 576:126-35. [PMID: 26435192 DOI: 10.1016/j.gene.2015.09.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
Paeonia ostii, an important ornamental and medicinal plant, grows normally on copper (Cu) mines with widespread Cu contamination of soils, and it has the ability to lower Cu contents in the Cu-contaminated soils. However, very little molecular information concerned with Cu resistance of P. ostii is available. In this study, high-throughput de novo transcriptome sequencing was carried out for P. ostii with and without Cu treatment using Illumina HiSeq 2000 platform. A total of 77,704 All-unigenes were obtained with a mean length of 710 bp. Of these unigenes, 47,461 were annotated with public databases based on sequence similarities. Comparative transcript profiling allowed the discovery of 4324 differentially expressed genes (DEGs), with 2207 up-regulated and 2117 down-regulated unigenes in Cu-treated library as compared to the control counterpart. Based on these DEGs, Gene Ontology (GO) enrichment analysis indicated Cu stress-relevant terms, such as 'membrane' and 'antioxidant activity'. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis uncovered some important pathways, including 'biosynthesis of secondary metabolites' and 'metabolic pathways'. In addition, expression patterns of 12 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses, suggesting that all the 12 genes were authentically involved in Cu tolerance in P. ostii. This is the first report to identify genes related to Cu stress responses in P. ostii, which could offer valuable information on the molecular mechanisms of Cu resistance, and provide a basis for further genomics research on this and related ornamental species for phytoremediation.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chunlan Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zeyun Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qijiang Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
43
|
Bjornson M, Dandekar A, Dehesh K. Determinants of timing and amplitude in the plant general stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:119-26. [PMID: 26108530 DOI: 10.1111/jipb.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/06/2023]
Abstract
Plants have evolved intricate signaling cascades to rapidly and effectively respond to biotic and abiotic challenges. The precise timing of these responses enables optimal resource reallocation to maintain the balance between stress adaptation and growth. Thus, an in-depth understanding of the immediate and long-term mechanisms regulating resource allocation is critical in deciphering how plants withstand environmental challenges. To date however, understanding of this tradeoff has focused on the amplitude of long-term responses, rather than the timing of rapid stress responses. This review presents current knowledge on kinetics of secondary messengers involved in regulation of rapid and general stress responses, followed by rapid stress responsive transduction machinery, and finally the transcriptional response of a functional general stress responsive cis-element. Within this context we discuss the role of timing of initial peak activation and later oscillating peak responses, and explore hormonal and stress signaling crosstalk confounding greater understanding of these cascades.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
45
|
Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Cui L, Li B, Gao Y, Chai Z. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 2016; 8:663-71. [DOI: 10.1039/c5mt00264h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The toxicity mechanisms of rice roots under inorganic mercury (IHg) or methylmercury (MeHg) stress were investigated using metalloproteomic approaches.
Collapse
Affiliation(s)
- Yunyun Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Jiating Zhao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yu-Feng Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Xiaohan Xu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bowen Zhang
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongjie Liu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Liwei Cui
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bai Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Zhifang Chai
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
46
|
Gul A, Ahad A, Akhtar S, Ahmad Z, Rashid B, Husnain T. Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 2015; 38:527-43. [PMID: 26667130 DOI: 10.1007/s10529-015-2010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Environmental factors, such as drought, salinity, extreme temperature, ozone poisoning, metal toxicity etc., significantly affect crops. To study these factors and to design a possible remedy, biological experimental data concerning these crops requires the quantification of gene expression and comparative analyses at high throughput level. Development of microarrays is the platform to study the differential expression profiling of the targeted genes. This technology can be applied to gene expression studies, ranging from individual genes to whole genome level. It is now possible to perform the quantification of the differential expression of genes on a glass slide in a single experiment. This review documents recently published reports on the use of microarrays for the identification of genes in different plant species playing their role in different cellular networks under abiotic stresses. The regulation pattern of differentially-expressed genes, individually or in group form, may help us to study different pathways and functions at the cellular and molecular level. These studies can provide us with a lot of useful information to unravel the mystery of abiotic stresses in important crop plants.
Collapse
Affiliation(s)
- Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Ammara Ahad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Sidra Akhtar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Zarnab Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| |
Collapse
|
47
|
Possible reasons for tolerance to mercury of Lupinus albus cv. G1 inoculated with Hg-resistant and sensitive Bradyrhizobium canariense strains. Symbiosis 2015. [DOI: 10.1007/s13199-015-0362-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Schellingen K, Van Der Straeten D, Remans T, Vangronsveld J, Keunen E, Cuypers A. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:137-146. [PMID: 26398798 DOI: 10.1016/j.plantsci.2015.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed.
Collapse
Affiliation(s)
- Kerim Schellingen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Dominique Van Der Straeten
- Laboratory for Functional Plant Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Els Keunen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
49
|
Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran LSP. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress. PLANT PHYSIOLOGY 2015; 169:73-84. [PMID: 26246451 PMCID: PMC4577409 DOI: 10.1104/pp.15.00663] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/05/2015] [Indexed: 05/18/2023]
Abstract
Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - M Iqbal R Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Mohd Asgher
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nafees A Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Lam-Son Phan Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| |
Collapse
|
50
|
Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2901-11. [PMID: 25750419 DOI: 10.1093/jxb/erv063] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
Collapse
Affiliation(s)
- Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - M Belén Montero-Palmero
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain † Present address: Aula Dei Experimental Research Station-CSIC, Avd. Montañana, ES- 50059 Zaragoza, Spain
| | - M Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Carolina Escobar
- Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| |
Collapse
|