1
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024; 22:773-790. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Richardson JA, Rose BD, Garcia K. X-ray fluorescence and XANES spectroscopy revealed diverse potassium chemistries and colocalization with phosphorus in the ectomycorrhizal fungus Paxillus ammoniavirescens. Fungal Biol 2024; 128:2054-2061. [PMID: 39174240 DOI: 10.1016/j.funbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Ectomycorrhizal (ECM) fungi play a major role in forest ecosystems and managed tree plantations. Particularly, they facilitate mineral weathering and nutrient transfer towards colonized roots. Among nutrients provided by these fungi, potassium (K) has been understudied compared to phosphorus (P) or nitrogen (N). The ECM fungus Paxillus ammoniavirescens is a generalist species that interacts with the root of many trees and can directly transfer K to them, including loblolly pine. However, the forms of K that ECM fungi can store is still unknown. Here, we used synchrotron potassium X-ray fluorescence (XRF) and K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy on P. ammoniavirescens growing in axenic conditions to investigate the K chemistries accumulating in the center and the edge of the mycelium. We observed that various K forms accumulated in different part of the mycelium, including K-nitrate (KNO3), K-C-O compounds (such as K-tartrate K2(C4H4O6) and K-oxalate (K2C2O4)), K-S and K-P compounds. Saprotrophic fungi have been shown to excrete carboxylic acids, which in turn play a role in soil mineral weathering. Our finding of several K counter-ions to carboxylic acids may suggest that, besides their direct transfer to colonized roots, K ions can also be involved in the production of compounds necessary for sourcing nutrients from their surrounding environment by ECM fungi. Additionally, this work reveals that XANES spectroscopy can be used to identify the various forms of K accumulating in biological systems.
Collapse
Affiliation(s)
- Jocelyn A Richardson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
4
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
6
|
A bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis 2023. [DOI: 10.1007/s13199-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
8
|
Duan S, Declerck S, Feng G, Zhang L. Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula. Environ Microbiol 2023; 25:867-879. [PMID: 36588345 DOI: 10.1111/1462-2920.16333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant-fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown. Here, the effects of phosphate-solubilizing bacteria (PSB) Rahnella aquatilis dwelling at the surface of the extraradical hyphae of Rhizophagus irregularis was analysed based on the expression of genes involved in C-P exchange at the peri-arbuscular space (PAS) in Medicago truncatula. The interaction between AM fungus and PSB resulted in an increase in uptake and transport of Pi along the extraradical hyphae and its transfer from AM fungus to plant. In return, this was remunerated by a transfer of C from plant to AM fungus, improving the C-P exchange at the PAS. These results demonstrated that a microorganism (i.e., a PSB) developing at the hyphosphere interface can affect the C-P exchange at the PAS between plant and AM fungus, suggesting a fine-tuned communication operated between three organisms via two distantly connected interfaces.
Collapse
Affiliation(s)
- Shilong Duan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Louvain-la-Neuve, Belgium
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Che X, Wang S, Ren Y, Xie X, Hu W, Chen H, Tang M. A Eucalyptus Pht1 Family Gene EgPT8 Is Essential for Arbuscule Elongation of Rhizophagus irregularis. Microbiol Spectr 2022; 10:e0147022. [PMID: 36227088 PMCID: PMC9769952 DOI: 10.1128/spectrum.01470-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
The majority of vascular flowering plants can establish arbuscular mycorrhizal (AM) symbiosis with AM fungi. These associations contribute to plant health and plant growth against various environmental stresses. In the mutualistic endosymbiosis, the AM fungi deliver phosphate (Pi) to the host root through highly branched hyphae called arbuscules. The molecular mechanisms of Pi transfer from AM fungi to the plant have been determined, which are dominated by AM-specific Pi transporters belonging to the PHOSPHATE TRANSPORTER 1 (Pht1) family within the subfamily I. However, it is unknown whether Pht1 family proteins are involved in other regulations in AM symbiosis. Here, we report that the expression of EgPT8 is specifically activated by AM fungus Rhizophagus irregularis and is localized in root cortical cells containing arbuscules. Interestingly, knockdown of EgPT8 function does not affect the Eucalyptus grandis growth, total phosphorous (P) concentration, and arbuscule formation; however, the size of mature arbuscules was significantly suppressed in the RNAi-EgPT8 lines. Heterogeneous expression of EgPT4, EgPT5, and EgPT8 in the Medicago truncatula mutant mtpt4-2 indicates that EgPT4 and EgPT5 can fully complement the defects of mutant mtpt4-2 in mycorrhizal Pi uptake and arbuscule formation, while EgPT8 cannot complement the defective AM phenotype of the mtpt4-2 mutant. Based on our results, we propose that the AM fungi-specific subfamily I transporter EgPT8 has novel functions and is essential to arbuscule elongation. IMPORTANCE Arbuscular mycorrhizal (AM) formation in host root cortical cells is initiated by exchanges of diffusible molecules, among which Pi uptake is known as the important feature of AM fungi on symbiosis functioning. Over the last two decades, it has been repeatedly proven that most vascular plants harbor two or more AM-specific Pht1 proteins; however, there is no direct evidence regarding the potential link among these Pi transporters at the symbiotic interface. This work revealed a novel function of a structurally conserved protein involved in lateral arbuscule development. In total, we confirmed that three AM-specific Pht1 family proteins are nonredundant in Eucalyptus grandis and that EgPT8 is responsible for fungal arbuscule elongation of Rhizophagus irregularis.
Collapse
Affiliation(s)
- Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Micheluz A, Pinzari F, Rivera-Valentín EG, Manente S, Hallsworth JE. Biophysical Manipulation of the Extracellular Environment by Eurotium halophilicum. Pathogens 2022; 11:1462. [PMID: 36558795 PMCID: PMC9781259 DOI: 10.3390/pathogens11121462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth's biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and-under some conditions-down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.
Collapse
Affiliation(s)
- Anna Micheluz
- Conservation Science Department, Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy, Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 30170 Venice, Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
11
|
Sugimura Y, Kawahara A, Maruyama H, Ezawa T. Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:903539. [PMID: 35860530 PMCID: PMC9290524 DOI: 10.3389/fpls.2022.903539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ai Kawahara
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical, Co., Ltd., Takarazuka, Japan
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Xie X, Lai W, Che X, Wang S, Ren Y, Hu W, Chen H, Tang M. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2022; 234:650-671. [PMID: 35037255 DOI: 10.1111/nph.17973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/22/2021] [Indexed: 05/28/2023]
Abstract
Reciprocal symbiosis of > 70% of terrestrial vascular plants with arbuscular mycorrhizal (AM) fungi provides the fungi with fatty acids and sugars. In return, AM fungi facilitate plant phosphate (Pi) uptake from soil. However, how AM fungi handle Pi transport and homeostasis at the symbiotic interface of AM symbiosis is poorly understood. Here, we identify an SPX (SYG1/Pho81/XPR1) domain-containing phosphate transporter, RiPT7 from Rhizophagus irregularis. To characterize the RiPT7 transporter, we combined subcellular localization and heterologous expression studies in yeasts with reverse genetics approaches during the in planta phase. The results show that RiPT7 is conserved across fungal species and expressed in the intraradical mycelia. It is expressed in the arbuscules, intraradical hyphae and vesicles, independently of Pi availability. The plasma membrane-localized RiPT7 facilitates bidirectional Pi transport, depending on Pi gradient across the plasma membrane, whereas the SPX domain of RiPT7 inhibits Pi transport activity and mediates the vacuolar targeting of RiPT7 in yeast in response to Pi starvation. Importantly, RiPT7 silencing hampers arbuscule development of R. irregularis and symbiotic Pi delivery under medium- to low-Pi conditions. Collectively, our findings reveal a role for RiPT7 in fine-tuning of Pi homeostasis across the fungal membrane to maintain the AM development.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
13
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Nguyen CT, Saito K. Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. FRONTIERS IN PLANT SCIENCE 2021; 12:725939. [PMID: 34616416 PMCID: PMC8488203 DOI: 10.3389/fpls.2021.725939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal fungi provide plants with soil mineral nutrients, particularly phosphorus. In this symbiotic association, the arbuscular interface is the main site for nutrient exchange. To understand phosphorus transfer at the interface, we analyzed the subcellular localization of polyphosphate (polyP) in mature arbuscules of Rhizophagus irregularis colonizing roots of Lotus japonicus wild-type (WT) and H+-ATPase ha1-1 mutant, which is defective in phosphorus acquisition through the mycorrhizal pathway. In both, the WT and the ha1-1 mutant, polyP accumulated in the cell walls of trunk hyphae and inside fine branch modules close to the trunk hyphae. However, many fine branches lacked polyP. In the mutant, most fine branch modules showed polyP signals compared to the WT. Notably, polyP was also observed in the cell walls of some fine branches formed in the ha1-1 mutant, indicating phosphorus release from fungal cells to the apoplastic regions. Intense acid phosphatase (ACP) activity was detected in the periarbuscular spaces around the fine branches. Furthermore, double staining of ACP activity and polyP revealed that these had contrasting distribution patterns in arbuscules. These observations suggest that polyP in fungal cell walls and apoplastic phosphatases may play an important role in phosphorus transfer at the symbiotic interface in arbuscules.
Collapse
Affiliation(s)
- Cuc Thi Nguyen
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Katsuharu Saito
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
15
|
Bhalla K, Qu X, Kretschmer M, Kronstad JW. The phosphate language of fungi. Trends Microbiol 2021; 30:338-349. [PMID: 34479774 DOI: 10.1016/j.tim.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Phosphate is an essential macronutrient for fungal proliferation as well as a key mediator of antagonistic, beneficial, and pathogenic interactions between fungi and other organisms. In this review, we summarize recent insights into the integration of phosphate metabolism with mechanisms of fungal adaptation that support growth and survival. In particular, we highlight aspects of phosphate sensing important for responses to stress and regulation of cell-surface changes with an impact on fungal pathogenesis, host immune responses, and disease outcomes. Additionally, new studies provide insights into the influence of phosphate availability on cooperative or antagonistic interactions between fungi and other microbes, the associations of mycorrhizal and endophytic fungi with plants, and connections with plant immunity. Overall, phosphate homeostasis is emerging as an integral part of fungal metabolism and communication to support diverse lifestyles.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy--Galet BX, Leivers S, Horn SJ, Shapaval V. Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi. J Fungi (Basel) 2021; 7:jof7040300. [PMID: 33920847 PMCID: PMC8071181 DOI: 10.3390/jof7040300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
- Correspondence: or
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Kasper Reitzel
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Benjamin Xavier Dupuy--Galet
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Shaun Leivers
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| |
Collapse
|
17
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
18
|
Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides. J Fungi (Basel) 2020; 6:jof6040260. [PMID: 33143254 PMCID: PMC7711463 DOI: 10.3390/jof6040260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate.
Collapse
|
19
|
Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. MYCORRHIZA 2020; 30:589-600. [PMID: 32533256 DOI: 10.1007/s00572-020-00972-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, Pisa Unit, 56124, Pisa, Italy.
| |
Collapse
|
20
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
21
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
22
|
Vangelisti A, Turrini A, Sbrana C, Avio L, Giordani T, Natali L, Giovannetti M, Cavallini A. Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis. MYCORRHIZA 2020; 30:373-387. [PMID: 32227272 DOI: 10.1007/s00572-020-00950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy.
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Kameoka H, Maeda T, Okuma N, Kawaguchi M. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. PLANT & CELL PHYSIOLOGY 2019; 60:2272-2281. [PMID: 31241164 DOI: 10.1093/pcp/pcz122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of processes in AMF, such as nutrient absorption from soil, metabolism and exchange with host plants, and the genes involved. However, the spatial regulation of the genes within the structures comprising each developmental stage is not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures (BAS), immature spores and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical mycelium and arbuscule. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to nutrient transport and metabolism. Of note, the transcriptional profiles suggest distinct functions of BAS in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Nao Okuma
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
24
|
Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat Microbiol 2019; 4:1654-1660. [PMID: 31235957 DOI: 10.1038/s41564-019-0485-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that depend on living host plants to complete their life cycle1,2. This feature, which leads to their unculturability in the absence of plants, strongly hinders basic research and agricultural application of AM fungi. However, at least one AM fungus can grow and develop fertile spores independently of a host plant in co-culture with the bacterium Paenibacillus validus3. The bacteria-derived substances are thought to act as stimulants or nutrients for fungal sporulation, but these molecules have not been identified. Here, we show that (S)-12-methyltetradecanoic acid4,5, a methyl branched-chain fatty acid isolated from bacterial cultures, stimulates the branching of hyphae germinated from mother spores and the formation of secondary spores in axenic culture of the AM fungus Rhizophagus irregularis. Extensive testing of fatty acids revealed that palmitoleic acid induces more secondary spores than the bacterial fatty acid in R. irregularis. These induced spores have the ability to infect host plant roots and to generate daughter spores. Our work shows that, in addition to a major source of organic carbon6-9, fatty acids act as stimulants to induce infection-competent secondary spores in the asymbiotic stage and could provide the key to developing the axenic production of AM inoculum.
Collapse
|
25
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
26
|
Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:441-447. [PMID: 30824024 DOI: 10.1016/j.plantsci.2018.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is a poorly available macronutrient essential for plant growth and development and consequently for successful crop yield and ecosystem productivity. To cope with P limitations plants have evolved strategies for enhancing P uptake and/or improving P efficiency use. The universal 450-million-yr-old arbuscular mycorrhizal (AM) (fungus-root) symbioses are one of the most successful and widespread strategies to maximize access of plants to available P. AM fungi biotrophically colonize the root cortex of most plant species and develop an extraradical mycelium which overgrows the nutrient depletion zone of the soil surrounding plant roots. This hyphal network is specialized in the acquisition of low mobility nutrients from soil, particularly P. During the last years, molecular biology techniques coupled to novel physiological approaches have provided fascinating contributions to our understanding of the mechanisms of symbiotic P transport. Mycorrhiza-specific plant phosphate transporters, which are required not only for symbiotic P transfer but also for maintenance of the symbiosis, have been identified. The present review provides an overview of the contribution of AM fungi to plant P acquisition and an update of recent findings on the physiological, molecular and regulatory mechanisms of P transport in the AM symbiosis.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain.
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
27
|
Sha Z, Watanabe T, Chu Q, Oka N, Osaki M, Shinano T. A Reduced Phosphorus Application Rate Using a Mycorrhizal Plant as the Preceding Crop Maintains Soybean Seeds' Nutritional Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:32-42. [PMID: 30525606 DOI: 10.1021/acs.jafc.8b05288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We tested whether introducing an arbuscular mycorrhizal fungi (AMF)-host plant with a reduced P application rate could maintain soybean seeds' nutrient quality. The dynamic variation of 14 nutrients was analyzed in source and sink organs during the seed-filling stage. The AMF-host and non-AMF-host plants, sunflower and mustard, were grown as preceding crops (PCs). Soybeans, the succeeding crops, were planted with three different phosphorus levels, namely, 0, 50, and 150 kg P2O5 ha-1. The results showed that the AMF-host PC with a reduced P application rate maintained the seed's yield and nutrients quality. During the seed-filling stage, the AMF-host PC with a reduced P application rate increased the uptake of most nutrients compared to the non-AMF-host PC, and improved the remobilization efficiency of all nutrients except Mn, Fe, and Se, compared to the optimal P application rate. These results could help improve the utilization efficiency of P fertilizers and protect soybeans' nutritional value.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture and Biology , Shanghai Jiaotong University , 200240 , Shanghai , China
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Qingnan Chu
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
- Institute of Agricultural Resources and Environment , Jiangsu Academy of Agricultural Sciences , Nanjing , 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham NG2500F , U.K
| | - Norikuni Oka
- Hokkaido Agricultural Research Center/NARO , Sapporo , 062-8555 , Japan
| | - Mitsuru Osaki
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Takuro Shinano
- Tohoku Agricultural Research Center/NARO , Fukushima , 960-2156 , Japan
| |
Collapse
|
28
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
29
|
Ezawa T, Saito K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. THE NEW PHYTOLOGIST 2018; 220:1116-1121. [PMID: 29701874 DOI: 10.1111/nph.15187] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 05/09/2023]
Abstract
Contents Summary 1116 I. Introduction 1116 II. Foraging for phosphate 1117 III. Fine-tuning of phosphate homeostasis 1117 IV. The frontiers: phosphate translocation and export 1119 V. Conclusions and outlook 1120 Acknowledgements 1120 References 1120 SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism.
Collapse
Affiliation(s)
- Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
- Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
| |
Collapse
|
30
|
Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S, Dalpé Y, Séguin S, Farinelli L, Stajich JE, Corradi N. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Res 2018; 25:217-227. [PMID: 29211832 PMCID: PMC5909441 DOI: 10.1093/dnares/dsx051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are a group of soil microorganisms that establish symbioses with the vast majority of land plants. To date, generation of AMF coding information has been limited to model genera that grow well axenically; Rhizoglomus and Gigaspora. Meanwhile, data on the functional gene repertoire of most AMF families is non-existent. Here, we provide primary large-scale transcriptome data from eight poorly studied AMF species (Acaulospora morrowiae, Diversispora versiforme, Scutellospora calospora, Racocetra castanea, Paraglomus brasilianum, Ambispora leptoticha, Claroideoglomus claroideum and Funneliformis mosseae) using ultra-low input ribonucleic acid (RNA)-seq approaches. Our analyses reveals that quiescent spores of many AMF species harbour a diverse functional diversity and solidify known evolutionary relationships within the group. Our findings demonstrate that RNA-seq data obtained from low-input RNA are reliable in comparison to conventional RNA-seq experiments. Thus, our methodology can potentially be used to deepen our understanding of fungal microbial function and phylogeny using minute amounts of RNA material.
Collapse
Affiliation(s)
- Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie Mathieu
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Yolande Dalpé
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada
| | - Sylvie Séguin
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada
| | - Laurent Farinelli
- Fasteris SA, Chemin du Pont-du-Centenaire 109, Geneva 1228, Switzerland
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
31
|
Bürger P, Flores-Alsina X, Arellano-Garcia H, Gernaey KV. Improved Prediction of Phosphorus Dynamics in Biotechnological Processes by Considering Precipitation and Polyphosphate Formation: A Case Study on Antibiotic Production with Streptomyces coelicolor. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Bürger
- Department of Particle Technology, Brandenburg University of Technology Cottbus-Senftenberg, Building LG 4/3, Burger Chaussee 2, Cottbus, D-03046, Germany
| | - Xavier Flores-Alsina
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, Kgs. Lyngby, 2800, Denmark
| | - Harvey Arellano-Garcia
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7HX, United Kingdom
| | - Krist V. Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
32
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Zhang H, Wei S, Hu W, Xiao L, Tang M. Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression of Genes Encoding Potassium Channels in Lycium barbarum. FRONTIERS IN PLANT SCIENCE 2017; 8:440. [PMID: 28424720 PMCID: PMC5372814 DOI: 10.3389/fpls.2017.00440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/14/2017] [Indexed: 05/29/2023]
Abstract
Potassium in plants accounts for up to 10% dry weight, and participates in different physiological processes. Under drought stress, plant requires more potassium but potassium availability in soil solutes is lowered by decreased soil water content. Forming symbiosis with arbuscular mycorrhizal (AM) fungi not only enlarges exploration range of plant for mineral nutrients and water in soil, but also improves plant drought tolerance. However, the regulation of AM fungi on plant root potassium uptake and translocation from root to shoot was less reported. In current study, the effect of an AM fungus (Rhizophagus irregularis), potassium application (0, 2, and 8 mM), and drought stress (30% field capacity) on Lycium barbarum growth and potassium status was analyzed. Ten weeks after inoculation, R. irregularis colonized more than 58% roots of L. barbarum seedlings, and increased plant growth as well as potassium content. Potassium application increased colonization rate of R. irregularis, plant growth, potassium content, and decreased root/shoot ratio. Drought stress increased colonization rate of R. irregularis and potassium content. Expression of two putative potassium channel genes in root, LbKT1 and LbSKOR, was positively correlated with potassium content in root and leaves, as well as the colonization rate of R. irregularis. The increased L. barbarum growth, potassium content and genes expression, especially under drought stress, suggested that R. irregularis could improve potassium uptake of L. barbarum root and translocation from root to shoot. Whether AM fungi could form a specific mycorrhizal pathway for plant potassium uptake deserves further studies.
Collapse
Affiliation(s)
- Haoqiang Zhang
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Suzhen Wei
- College of Forestry, Northwest A&F UniversityYangling, China
- Weihai Ocean Vocational CollegeRongcheng, China
| | - Wentao Hu
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Longmin Xiao
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Ming Tang
- College of Forestry and Landscape Architecture, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
34
|
Sugimura Y, Saito K. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. MYCORRHIZA 2017; 27:139-146. [PMID: 27766430 DOI: 10.1007/s00572-016-0735-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 05/23/2023]
Abstract
The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
- Research Center for Fungal & Microbial Dynamism, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
35
|
Torres-Aquino M, Becquer A, Le Guernevé C, Louche J, Amenc LK, Staunton S, Quiquampoix H, Plassard C. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study. PLANT, CELL & ENVIRONMENT 2017; 40:190-202. [PMID: 27743400 DOI: 10.1111/pce.12847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/23/2023]
Abstract
Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.
Collapse
Affiliation(s)
- Margarita Torres-Aquino
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
- Colegio de Postgraduados, Campus San Luis Potosí, Agustín de Iturbide N 73, CP 78600, San Luis Potosí, Mexico
| | - Adeline Becquer
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Christine Le Guernevé
- INRA, UMR SPO (1083) Sciences pour l'Oenologie, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Julien Louche
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Laurie K Amenc
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Siobhan Staunton
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Hervé Quiquampoix
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Claude Plassard
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| |
Collapse
|
36
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
37
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
38
|
Zhang L, Jiang C, Zhou J, Declerck S, Tian C, Feng G. Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. MYCORRHIZA 2016; 26:909-918. [PMID: 27468824 DOI: 10.1007/s00572-016-0722-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 05/11/2023]
Abstract
Plants associated with arbuscular mycorrhizal fungi (AMF) acquire phosphorus via roots and extraradical hyphae. How soil P level affects P accumulation within hyphae and how P in hyphae influences the accumulation of metal minerals remains little explored. A bi-compartmented in vitro cultivation system separating a root compartment (RC), containing a Ri T-DNA transformed carrot root associated to the AMF Rhizophagus irregularis DAOM 197198, from a hyphal compartment (HC), containing only the extraradical hyphae, was used. The HC contained a liquid growth medium (i.e., the modified Strullu-Romand medium containing P in the form of KH2PO4) without (0 μM) or adjusted to 35, 100, and 700 μM of KH2PO4. The accumulation of P and metal minerals (Ca, Mg, K, Na, Fe, Cu, Mn) within extraradical hyphae and AMF-colonized roots, and the expression of the phosphate transporter gene GintPT were assessed. The expression of GintPT in the extraradical hyphae did not differ in absence of KH2PO4 or in presence of 35 and 100 μM KH2PO4 in the HC but was markedly reduced in presence of 700 μM KH2PO4. Hyphal P concentration was significantly lowest in absence of KH2PO4, intermediate at 35 and 100 μM KH2PO4 and significantly highest in presence of 700 μM KH2PO4 in the HC. The concentrations of K, Mg, and Na were positively associated with the concentration of P in the extraradical hyphae developing in the HC. Similarly, P concentration in extraradical hyphae in the HC was related to P concentration in the growth medium and influenced the concentration of K, Mg, and Na. The accumulation of the metal mineral K, Mg, and Na in the extraradical hyphae developing in the HC was possibly related to their function in neutralizing the negative charges of PolyP accumulated in the hyphae.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Caiyun Jiang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Jiachao Zhou
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Abstract
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
Collapse
|
40
|
Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C, Ezawa T. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. THE NEW PHYTOLOGIST 2016; 211:1202-8. [PMID: 27136716 DOI: 10.1111/nph.14016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi translocate polyphosphate through hyphae over a long distance to deliver to the host. More than three decades ago, suppression of host transpiration was found to decelerate phosphate delivery of the fungal symbiont, leading us to hypothesize that transpiration provides a primary driving force for polyphosphate translocation, probably via creating hyphal water flow in which fungal aquaporin(s) may be involved. The impact of transpiration suppression on polyphosphate translocation through hyphae of Rhizophagus clarus was evaluated. An aquaporin gene expressed in intraradical mycelia was characterized and knocked down by virus-induced gene silencing to investigate the involvement of the gene in polyphosphate translocation. Rhizophagus clarus aquaporin 3 (RcAQP3) that was most highly expressed in intraradical mycelia encodes an aquaglyceroporin responsible for water transport across the plasma membrane. Knockdown of RcAQP3 as well as the suppression of host transpiration decelerated polyphosphate translocation in proportion to the levels of knockdown and suppression, respectively. These results provide the first insight into the mechanism underlying long-distance polyphosphate translocation in mycorrhizal associations at the molecular level, in which host transpiration and the fungal aquaporin play key roles. A hypothetical model of the translocation is proposed for further elucidation of the mechanism.
Collapse
Affiliation(s)
- Yusuke Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ryo Ohtomo
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Sapporo, 062-8555, Japan
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, 399-4598, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
41
|
Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. MYCORRHIZA 2016; 26:609-621. [PMID: 27075897 DOI: 10.1007/s00572-016-0697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.
| | - Simone Belmondo
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Hassine Radhouane Khouja
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
42
|
Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. THE NEW PHYTOLOGIST 2016; 210:1022-32. [PMID: 27074400 DOI: 10.1111/nph.13838] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/28/2015] [Indexed: 05/22/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) transfer plant photosynthate underground which can stimulate soil microbial growth. In this study, we examined whether there was a potential link between carbon (C) release from an AMF and phosphorus (P) availability via a phosphate-solubilizing bacterium (PSB). We investigated the outcome of the interaction between the AMF and the PSB by conducting a microcosm and two Petri plate experiments. An in vitro culture experiment was also conducted to determine the direct impact of AMF hyphal exudates on growth of the PSB. The AMF released substantial C to the environment, triggering PSB growth and activity. In return, the PSB enhanced mineralization of organic P, increasing P availability for the AMF. When soil available P was low, the PSB competed with the AMF for P, and its activity was not stimulated by the fungus. When additional P was added to increase soil available P, the PSB enhanced AMF hyphal growth, and PSB activity was also stimulated by the fungus. Our results suggest that an AMF and a free-living PSB interacted to the benefit of each other by providing the C or P that the other microorganism required, but these interactions depended upon background P availability.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Minggang Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Angela Hodge
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gu Feng
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
43
|
Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 2015; 209:3-9. [PMID: 26523947 DOI: 10.1016/j.molbiopara.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/04/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Acidocalcisomes are acidic calcium stores that have been found from bacteria to human cells. They are rich in phosphorus compounds in the form of orthophosphate (Pi), pyrophosphate (PPi), and polyphosphate (polyP) and their acidity is maintained by proton pumps such as the vacuolar proton pyrophosphatase (V-H+-PPase, or VP1), the vacuolar proton ATPase (V-H+-ATPase), or both. Recent studies in trypanosomatids and in other species have revealed their role in phosphate metabolism, and cation and water homeostasis, as suggested by the presence of novel pumps, transporters, and channels. An important role in autophagy has also been described. The study of the biogenesis of acidocalcisomes as well as of the interactions of these lysosome-related organelles with other organelles have uncovered important roles in calcium signaling and osmoregulation. Significantly, despite conservation of acidocalcisomes across all of cellular life, there is evidence for intimate integration of these organelles with eukaryotic cellular functions, and which are directly relevant to parasites.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Global Emerging Diseases and Department of Cellular Biology, University of Georgia, Athens 30602, USA; Departamento de Patología Clínica, Universidade Estadual de Campinas, São Paulo 13083-877, Brazil.
| |
Collapse
|
44
|
Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. MYCORRHIZA 2015; 25:533-46. [PMID: 25708401 DOI: 10.1007/s00572-015-0631-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/02/2015] [Indexed: 05/20/2023]
Abstract
Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.
Collapse
Affiliation(s)
- Jerry A Mensah
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Alexander M Koch
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - E Toby Kiers
- Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Miranda Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
45
|
Kobae Y, Kawachi M, Saito K, Kikuchi Y, Ezawa T, Maeshima M, Hata S, Fujiwara T. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. MYCORRHIZA 2015; 25:411-417. [PMID: 25564438 DOI: 10.1007/s00572-014-0623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi colonize roots and form two kinds of mycelium, intraradical mycelium (IRM) and extraradical mycelium (ERM). Arbuscules are characteristic IRM structures that highly branch within host cells in order to mediate resource exchange between the symbionts. They are ephemeral structures and at the end of their life span, arbuscular branches collapse from the tip, fungal cytoplasm withdraws, and the whole arbuscule shrinks into fungal clumps. The exoskeleton of an arbuscule contains structured chitin, which is a polymer of N-acetylglucosamine (GlcNAc), whereas a collapsed arbuscule does not. The molecular mechanisms underlying the turnover of chitin in AM fungi remain unknown. Here, a GlcNAc transporter, RiNGT, was identified from the AM fungus Rhizophagus irregularis. Yeast mutants defective in endogenous GlcNAc uptake and expressing RiNGT took up (14)C-GlcNAc, and the optimum uptake was at acidic pH values (pH 4.0-4.5). The transcript levels of RiNGT in IRM in mycorrhizal Lotus japonicus roots were over 1000 times higher than those in ERM. GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) genes, which are related to the GlcNAc catabolism pathway, were also induced in IRM. Altogether, data suggest the existence of an enhanced recycling mode of GlcNAc in IRM of AM fungi.
Collapse
Affiliation(s)
- Yoshihiro Kobae
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan,
| | | | | | | | | | | | | | | |
Collapse
|