1
|
Wang J, Gao J, Guo J, Ma L, Jiang X, Yu H, Li J, Hu Y, Daniel G, Yin Y. Dynamic changes of heterogeneous cell wall macromolecules in differentiating conifer xylem using cytochemical localization. Int J Biol Macromol 2025; 284:138150. [PMID: 39613068 DOI: 10.1016/j.ijbiomac.2024.138150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Tracing dynamic changes of heterogeneous cell wall components during xylem differentiation is essential for understanding the intricate architecture of wood cell walls at the individual secondary cell wall layer level. Here we employ histochemical- and immunological approaches to visualize the deposition of cellular polymers during xylem differentiation in Pinus bungeana. In axial tracheids, deposition of crystalline cellulose and glucomannan preceded xylan and lignin. Lignification was initiated in primary cell wall corners during development of the S1 layer and intensified with cell wall thickening. Immunofluorescence labeling showed an earlier deposition of glucomannan than xylan with strong presence in S1 layer corner regions at early stages of differentiation. Quantification of immunogold-labeled xylan and glucomannan showed distinct increasing trends during thickening of tracheid wall layers with xylan labeling of the S1 and S2 layers at the S3 stage greater than the S2 stage. Differential cell wall polymer deposition was evident in mature tracheid areas with glucomannan absent in warty layers. Pectins were highly concentrated in unlignified primary cell walls but decreased with axial tracheid wall differentiation. The sequence of polymer deposition in ray cells was similar but lagged behind axial tracheids with ray parenchyma remaining unlignified with thinner cell walls than ray tracheids.
Collapse
Affiliation(s)
- Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden; Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Jie Gao
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Juan Guo
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Lingyu Ma
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Hong Yu
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Jiatao Li
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Yao Hu
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Geoffrey Daniel
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| |
Collapse
|
2
|
Guo Y, Jiao L, Wang J, Ma L, Lu Y, Zhang Y, Guo J, Yin Y. Analyses of high spatial resolution datasets identify genes associated with multi-layered secondary cell wall thickening in Pinus bungeana. ANNALS OF BOTANY 2024; 133:953-968. [PMID: 38366549 PMCID: PMC11089263 DOI: 10.1093/aob/mcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.
Collapse
Affiliation(s)
- Yu Guo
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Lichao Jiao
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Jie Wang
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Lingyu Ma
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Yang Lu
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Yonggang Zhang
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Juan Guo
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Yafang Yin
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
3
|
Nguyen TTT, Kim MH, Park EJ, Lee H, Ko JH. Seasonal Developing Xylem Transcriptome Analysis of Pinus densiflora Unveils Novel Insights for Compression Wood Formation. Genes (Basel) 2023; 14:1698. [PMID: 37761838 PMCID: PMC10531420 DOI: 10.3390/genes14091698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Wood is the most important renewable resource not only for numerous practical utilizations but also for mitigating the global climate crisis by sequestering atmospheric carbon dioxide. The compressed wood (CW) of gymnosperms, such as conifers, plays a pivotal role in determining the structure of the tree through the reorientation of stems displaced by environmental forces and is characterized by a high content of lignin. Despite extensive studies on many genes involved in wood formation, the molecular mechanisms underlying seasonal and, particularly, CW formation remain unclear. This study examined the seasonal dynamics of two wood tissue types in Pinus densiflora: CW and opposite wood (OW). RNA sequencing of developing xylem for two consecutive years revealed comprehensive transcriptome changes and unique differences in CW and OW across seasons. During growth periods, such as spring and summer, we identified 2255 transcripts with differential expression in CW, with an upregulation in lignin biosynthesis genes and significant downregulation in stress response genes. Notably, among the laccases critical for monolignol polymerization, PdeLAC17 was found to be specifically expressed in CW, suggesting its vital role in CW formation. PdeERF4, an ERF transcription factor preferentially expressed in CW, seems to regulate PdeLAC17 activity. This research provides an initial insight into the transcriptional regulation of seasonal CW development in P. densiflora, forming a foundation for future studies to enhance our comprehension of wood formation in gymnosperms.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| |
Collapse
|
4
|
Kim MH, Cho JS, Tran TNA, Nguyen TTT, Park EJ, Im JH, Han KH, Lee H, Ko JH. Comparative functional analysis of PdeNAC2 and AtVND6 in the tracheary element formation. TREE PHYSIOLOGY 2023:tpad042. [PMID: 37014763 DOI: 10.1093/treephys/tpad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tracheary elements (i.e., vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC transcription factor family (e.g., AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall (SCW) formation and programmed cell death (PCD). Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative direct targets, respectively, but only 17 genes were identified as common direct targets. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30, and pit-forming ROP signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jong-Hee Im
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Lou H, Song L, Li X, Zi H, Chen W, Gao Y, Zheng S, Fei Z, Sun X, Wu J. The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis. Nat Commun 2023; 14:1315. [PMID: 36898990 PMCID: PMC10006428 DOI: 10.1038/s41467-023-37038-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Torreya plants produce dry fruits with assorted functions. Here, we report the 19-Gb chromosome-level genome assembly of T. grandis. The genome is shaped by ancient whole-genome duplications and recurrent LTR retrotransposon bursts. Comparative genomic analyses reveal key genes involved in reproductive organ development, cell wall biosynthesis and seed storage. Two genes encoding a C18 Δ9-elongase and a C20 Δ5-desaturase are identified to be responsible for sciadonic acid biosynthesis and both are present in diverse plant lineages except angiosperms. We demonstrate that the histidine-rich boxes of the Δ5-desaturase are crucial for its catalytic activity. Methylome analysis reveals that methylation valleys of the T. grandis seed genome harbor genes associated with important seed activities, including cell wall and lipid biosynthesis. Moreover, seed development is accompanied by DNA methylation changes that possibly fuel energy production. This study provides important genomic resources and elucidates the evolutionary mechanism of sciadonic acid biosynthesis in land plants.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA. .,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China. .,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Tu M, Zeng J, Zhang J, Fan G, Song G. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics. FRONTIERS IN PLANT SCIENCE 2022; 13:1038109. [PMID: 36570898 PMCID: PMC9773216 DOI: 10.3389/fpls.2022.1038109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
RNA-seq has become a state-of-the-art technique for transcriptomic studies. Advances in both RNA-seq techniques and the corresponding analysis tools and pipelines have unprecedently shaped our understanding in almost every aspects of plant sciences. Notably, the integration of huge amount of RNA-seq with other omic data sets in the model plants and major crop species have facilitated plant regulomics, while the RNA-seq analysis has still been primarily used for differential expression analysis in many less-studied plant species. To unleash the analytical power of RNA-seq in plant species, especially less-studied species and biomass crops, we summarize recent achievements of RNA-seq analysis in the major plant species and representative tools in the four types of application: (1) transcriptome assembly, (2) construction of expression atlas, (3) network analysis, and (4) structural alteration. We emphasize the importance of expression atlas, coexpression networks and predictions of gene regulatory relationships in moving plant transcriptomes toward regulomics, an omic view of genome-wide transcription regulation. We highlight what can be achieved in plant research with RNA-seq by introducing a list of representative RNA-seq analysis tools and resources that are developed for certain minor species or suitable for the analysis without species limitation. In summary, we provide an updated digest on RNA-seq tools, resources and the diverse applications for plant research, and our perspective on the power and challenges of short-read RNA-seq analysis from a regulomic point view. A full utilization of these fruitful RNA-seq resources will promote plant omic research to a higher level, especially in those less studied species.
Collapse
Affiliation(s)
- Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
7
|
Nickolov K, Gauthier A, Hashimoto K, Laitinen T, Väisänen E, Paasela T, Soliymani R, Kurusu T, Himanen K, Blokhina O, Fagerstedt KV, Jokipii-Lukkari S, Tuominen H, Häggman H, Wingsle G, Teeri TH, Kuchitsu K, Kärkönen A. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca 2+ binding and phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:978586. [PMID: 36311083 PMCID: PMC9608432 DOI: 10.3389/fpls.2022.978586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.
Collapse
Affiliation(s)
- Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- UniLaSalle, Agro-Ecology, Hydrogeochemistry, Environments & Resources, UP 2018.C101 of the Ministry in Charge of Agriculture (AGHYLE) Research Unit CS UP 2018.C101, Mont-Saint-Aignan, France
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Enni Väisänen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Dev. Biology, University of Helsinki, Biomedicum-Helsinki, Helsinki, Finland
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kristiina Himanen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kurt V. Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Soile Jokipii-Lukkari
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| |
Collapse
|
8
|
Chen ZQ, Zan Y, Zhou L, Karlsson B, Tuominen H, García-Gil MR, Wu HX. Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce. FRONTIERS IN PLANT SCIENCE 2022; 13:927673. [PMID: 36017254 PMCID: PMC9396349 DOI: 10.3389/fpls.2022.927673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover ~130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yanjun Zan
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Hannele Tuominen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria Rosario García-Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) National Collection Research Australia, Black Mountain Laboratory, Canberra, ACT, Australia
| |
Collapse
|
9
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
10
|
Wei S, Yang G, Yang Y, Yin T. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis. TREE PHYSIOLOGY 2022; 42:877-890. [PMID: 34761273 DOI: 10.1093/treephys/tpab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Elucidating the genetic factors underlying long-term biological processes remains challenging since the relevant genes and their effects may vary across different developmental stages. In this study, we carried out a large-scale field trial of the progeny of an F1 full-sib pedigree of Salix suchowensis and measured plant height and ground diameter periodically over a time course of 240 days. With the obtained data, we characterized plant growth rhythms and performed time-sequential analyses of quantitative trait loci underlying the dynamic growth of the plants. The dynamic mapping of quantitative trait loci revealed that stem height and ground diameter were under the control of four quantitative trait loci, and the effects of these quantitative trait loci varied greatly throughout the growth process, in which two quantitative trait loci were found to exert a pleiotropic effect determining the correlation between stem height and ground diameter. The analysis of candidate genes in the target genetic intervals showed that the pleiotropic effect of the two quantitative trait loci arises from the colocalization of genes with independent effects on stem height and ground diameter. Further examination of the expression patterns of the candidate genes indicated that height and circumference growth involve different activities of leaf and cambium tissues. This study provides unprecedented information to help us understand the dynamic growth of plants and presents an applicable strategy for elucidating the genetic mechanism underlying a long-term biological process by using plant growth as an example.
Collapse
Affiliation(s)
- Suyun Wei
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| | - Guo Yang
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
- School of Life Science, Shaoxing University, 508# Huancheng West Road, Shaoxing 312000, Zhejiang, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, 163# Xianlin Road, Nanjing 210093, China
| | - Tongming Yin
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| |
Collapse
|
11
|
Li X, Chaves AM, Dees DCT, Mansoori N, Yuan K, Speicher TL, Norris JH, Wallace IS, Trindade LM, Roberts AW. Cellulose synthesis complexes are homo-oligomeric and hetero-oligomeric in Physcomitrium patens. PLANT PHYSIOLOGY 2022; 188:2115-2130. [PMID: 35022793 PMCID: PMC8968406 DOI: 10.1093/plphys/kiac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/03/2021] [Indexed: 05/27/2023]
Abstract
The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthesis complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assemble and function in planta only when all the required isoforms are present. The moss Physcomitrium (Physcomitrella) patens has seven CESA genes that can be grouped into two functionally and phylogenetically distinct classes. Previously, we showed that PpCESA3 and/or PpCESA8 (class A) together with PpCESA6 and/or PpCESA7 (class B) form obligate hetero-oligomeric complexes required for normal secondary cell wall deposition. Here, we show that gametophore morphogenesis requires a member of class A, PpCESA5, and is sustained in the absence of other PpCESA isoforms. PpCESA5 also differs from the other class A PpCESAs as it is able to self-interact and does not co-immunoprecipitate with other PpCESA isoforms. These results are consistent with the hypothesis that homo-oligomeric CSCs containing only PpCESA5 subunits synthesize cellulose required for gametophore morphogenesis. Analysis of mutant phenotypes also revealed that, like secondary cell wall deposition, normal protonemal tip growth requires class B isoforms (PpCESA4 or PpCESA10), along with a class A partner (PpCESA3, PpCESA5, or PpCESA8). Thus, P. patens contains both homo-oligomeric and hetero-oligomeric CSCs.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Arielle M Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Dianka C T Dees
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nasim Mansoori
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kai Yuan
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Joanna H Norris
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Luisa M Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alison W Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
12
|
Christie N, Mannapperuma C, Ployet R, van der Merwe K, Mähler N, Delhomme N, Naidoo S, Mizrachi E, Street NR, Myburg AA. qtlXplorer: an online systems genetics browser in the Eucalyptus Genome Integrative Explorer (EucGenIE). BMC Bioinformatics 2021; 22:595. [PMID: 34911434 PMCID: PMC8672637 DOI: 10.1186/s12859-021-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Affordable high-throughput DNA and RNA sequencing technologies are allowing genomic analysis of plant and animal populations and as a result empowering new systems genetics approaches to study complex traits. The availability of intuitive tools to browse and analyze the resulting large-scale genetic and genomic datasets remain a significant challenge. Furthermore, these integrative genomics approaches require innovative methods to dissect the flow and interconnectedness of biological information underlying complex trait variation. The Plant Genome Integrative Explorer (PlantGenIE.org) is a multi-species database and domain that houses online tools for model and woody plant species including Eucalyptus. Since the Eucalyptus Genome Integrative Explorer (EucGenIE) is integrated within PlantGenIE, it shares genome and expression analysis tools previously implemented within the various subdomains (ConGenIE, PopGenIE and AtGenIE). Despite the success in setting up integrative genomics databases, online tools for systems genetics modelling and high-resolution dissection of complex trait variation in plant populations have been lacking. RESULTS We have developed qtlXplorer ( https://eucgenie.org/QTLXplorer ) for visualizing and exploring systems genetics data from genome-wide association studies including quantitative trait loci (QTLs) and expression-based QTL (eQTL) associations. This module allows users to, for example, find co-located QTLs and eQTLs using an interactive version of Circos, or explore underlying genes using JBrowse. It provides users with a means to build systems genetics models and generate hypotheses from large-scale population genomics data. We also substantially upgraded the EucGenIE resource and show how it enables users to combine genomics and systems genetics approaches to discover candidate genes involved in biotic stress responses and wood formation by focusing on two multigene families, laccases and peroxidases. CONCLUSIONS qtlXplorer adds a new dimension, population genomics, to the EucGenIE and PlantGenIE environment. The resource will be of interest to researchers and molecular breeders working in Eucalyptus and other woody plant species. It provides an example of how systems genetics data can be integrated with functional genetics data to provide biological insight and formulate hypotheses. Importantly, integration within PlantGenIE enables novel comparative genomics analyses to be performed from population-scale data.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Karen van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden.
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
13
|
Bag P, Lihavainen J, Delhomme N, Riquelme T, Robinson KM, Jansson S. An atlas of the Norway spruce needle seasonal transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1815-1829. [PMID: 34624161 DOI: 10.1111/tpj.15530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Boreal conifers possess a tremendous ability to survive and remain evergreen during harsh winter conditions and resume growth during summer. This is enabled by coordinated regulation of major cellular functions at the level of gene expression, metabolism, and physiology. Here we present a comprehensive characterization of the annual changes in the global transcriptome of Norway spruce (Picea abies) needles as a resource to understand needle development and acclimation processes throughout the year. In young, growing needles (May 15 until June 30), cell walls, organelles, etc., were formed, and this developmental program heavily influenced the transcriptome, explained by over-represented Gene Ontology (GO) categories. Later changes in gene expression were smaller but four phases were recognized: summer (July-August), autumn (September-October), winter (November-February), and spring (March-April), where over-represented GO categories demonstrated how the needles acclimated to the various seasons. Changes in the seasonal global transcriptome profile were accompanied by differential expression of members of the major transcription factor families. We present a tentative model of how cellular activities are regulated over the year in needles of Norway spruce, which demonstrates the value of mining this dataset, accessible in ConGenIE together with advanced visualization tools.
Collapse
Affiliation(s)
- Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Swedish University of Agricultural, Sciences (SLU) and Umeå University, Umeå, Sweden
| | - Thomas Riquelme
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Li H, Dai X, Huang X, Xu M, Wang Q, Yan X, Sederoff RR, Li Q. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1906-1921. [PMID: 34347368 DOI: 10.1111/jipb.13159] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 05/24/2023]
Abstract
High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengxuan Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
15
|
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. TREE PHYSIOLOGY 2021; 41:1918-1937. [PMID: 33847364 PMCID: PMC8498939 DOI: 10.1093/treephys/tpab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Dormancy release and reactivation of temperate-zone trees involve the temperature-modulated expression of cell-cycle genes. However, information on the detailed regulatory mechanism is limited. Here, we compared the transcriptomes of the stems of active and dormant larch trees, emphasizing the expression patterns of cell-cycle genes and transcription factors and assessed their relationships and responses to temperatures. Twelve cell-cycle genes and 31 transcription factors were strongly expressed in the active stage. Promoter analysis suggested that these 12 genes might be regulated by transcription factors from 10 families. Altogether, 73 cases of regulation between 16 transcription factors and 12 cell-cycle genes were predicted, while the regulatory interactions between LaMYB20 and LaCYCB1;1, and LaRAV1 and LaCDKB1;3 were confirmed by yeast one-hybrid and dual-luciferase assays. Last, we found that LaRAV1 and LaCDKB1;3 had almost the same expression patterns during dormancy release and reactivation induced naturally or artificially by temperature, indicating that the LaRAV1-LaCDKB1;3 module functions in the temperature-modulated dormancy release and reactivation of larch trees. These results provide new insights into the link between temperature and cell-cycle gene expression, helping to understand the temperature control of tree growth and development in the context of climate change.
Collapse
Affiliation(s)
- Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yanhui Kang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| |
Collapse
|
16
|
Lyczakowski JJ, Yu L, Terrett OM, Fleischmann C, Temple H, Thorlby G, Sorieul M, Dupree P. Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan. THE NEW PHYTOLOGIST 2021; 231:1720-1733. [PMID: 34086997 DOI: 10.1111/nph.17531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Wood of coniferous trees (softwood), is a globally significant carbon sink and an important source of biomass. Despite that, little is known about the genetic basis of softwood cell wall biosynthesis. Branching of xylan, one of the main hemicelluloses in softwood secondary cell walls, with glucuronic acid (GlcA) is critical for biomass recalcitrance. Here, we investigate the decoration patterns of xylan by conifer GlucUronic acid substitution of Xylan (GUX) enzymes. Through molecular phylogenetics we identify two distinct conifer GUX clades. Using transcriptional profiling we show that the genes are preferentially expressed in secondary cell wall forming tissues. With in vitro and in planta assays we demonstrate that conifer GUX enzymes from both clades are active glucuronyltransferases. Conifer GUX enzymes from each clade have different specific activities. While members of clade one add evenly spaced GlcA branches, the members of clade two are also capable of glucuronidating two consecutive xyloses. Importantly, these types of xylan patterning are present in softwood. As xylan patterning might modulate xylan-cellulose and xylan-lignin interactions, our results further the understanding of softwood cell wall biosynthesis and provide breeding or genetic engineering targets that can be used to modify softwood properties.
Collapse
Affiliation(s)
- Jan J Lyczakowski
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - Henry Temple
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
17
|
An Overview of the Practices and Management Methods for Enhancing Seed Production in Conifer Plantations for Commercial Use. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flowering, the beginning of the reproductive growth, is a significant stage in the growth and development of plants. Conifers are economically and ecologically important, characterized by straight trunks and a good wood quality and, thus, conifer plantations are widely distributed around the world. In addition, conifer species have a good tolerance to biotic and abiotic stress, and a stronger survival ability. Seeds of some conifer species, such as Pinus koraiensis, are rich in vitamins, amino acids, mineral elements and other nutrients, which are used for food and medicine. Although conifers are the largest (giant sequoia) and oldest living plants (bristlecone pine), their growth cycle is relatively long, and the seed yield is unstable. In the present work, we reviewed selected literature and provide a comprehensive overview on the most influential factors and on the methods and techniques that can be adopted in order to improve flowering and seed production in conifers species. The review revealed that flowering and seed yields in conifers are affected by a variety of factors, such as pollen, temperature, light, water availability, nutrients, etc., and a number of management techniques, including topping off, pruning, fertilization, hormone treatment, supplementary pollination, etc. has been developed for improving cone yields. Furthermore, several flowering-related genes (FT, Flowering locus T and MADS-box, MCMI, AGAMOUS, DEFICIENCES and SRF) that play a crucial role in flowering in coniferous trees were identified. The results of this study can be useful for forest managers and for enhancing seed yields in conifer plantations for commercial use.
Collapse
|
18
|
Kim MH, Tran TNA, Cho JS, Park EJ, Lee H, Kim DG, Hwang S, Ko JH. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation. TREE PHYSIOLOGY 2021; 41:1289-1305. [PMID: 33440425 DOI: 10.1093/treephys/tpab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Although conifers have significant ecological and economic value, information on transcriptional regulation of wood formation in conifers is still limited. Here, to gain insight into secondary cell wall (SCW) biosynthesis and tracheid formation in conifers, we performed wood tissue-specific transcriptome analyses of Pinus densiflora (Korean red pine) using RNA sequencing. In addition, to obtain full-length transcriptome information, PacBio single molecule real-time iso-sequencing was carried out using RNAs from 28 tissues of P. densiflora. Subsequent comparative tissue-specific transcriptome analysis successfully pinpointed critical genes encoding key proteins involved in biosynthesis of the major secondary wall components (cellulose, galactoglucomannan, xylan and lignin). Furthermore, we predicted a total of 62 NAC (NAM, ATAF1/2 and CUC2) family transcription factor members and identified seven PdeNAC genes preferentially expressed in developing xylem tissues in P. densiflora. Protoplast-based transcriptional activation analysis found that four PdeNAC genes, homologous to VND, NST and SND/ANAC075, upregulated GUS activity driven by an SCW-specific cellulose synthase promoter. Consistently, transient overexpression of the four PdeNACs induced xylem vessel cell-like SCW deposition in both tobacco (Nicotiana benthamiana) and Arabidopsis leaves. Taken together, our data provide a foundation for further research to unravel transcriptional regulation of wood formation in conifers, especially SCW formation and tracheid differentiation.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|
19
|
Baison J, Zhou L, Forsberg N, Mörling T, Grahn T, Olsson L, Karlsson B, Wu HX, Mellerowicz EJ, Lundqvist SO, García-Gil MR. Genetic control of tracheid properties in Norway spruce wood. Sci Rep 2020; 10:18089. [PMID: 33093525 PMCID: PMC7581746 DOI: 10.1038/s41598-020-72586-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce.
Collapse
Affiliation(s)
- J Baison
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Linghua Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Nils Forsberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Tommy Mörling
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Thomas Grahn
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Lars Olsson
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo 2250, 268 90, Svalov, Sweden
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Sven-Olof Lundqvist
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
- IIC, Rosenlundsgatan 48B, 11863, Stockholm, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden.
| |
Collapse
|
20
|
Väisänen E, Takahashi J, Obudulu O, Bygdell J, Karhunen P, Blokhina O, Laitinen T, Teeri TH, Wingsle G, Fagerstedt KV, Kärkönen A. Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6379-6395. [PMID: 32777074 PMCID: PMC7586744 DOI: 10.1093/jxb/eraa368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 05/02/2023]
Abstract
Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissue-cultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the Km value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.
Collapse
Affiliation(s)
- Enni Väisänen
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Junko Takahashi
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ogonna Obudulu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Bygdell
- Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Pirkko Karhunen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Teresa Laitinen
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Teemu H Teeri
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kurt V Fagerstedt
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Kärkönen
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, Finland
| |
Collapse
|
21
|
Elfstrand M, Baison J, Lundén K, Zhou L, Vos I, Capador HD, Åslund MS, Chen Z, Chaudhary R, Olson Å, Wu HX, Karlsson B, Stenlid J, García-Gil MR. Association genetics identifies a specifically regulated Norway spruce laccase gene, PaLAC5, linked to Heterobasidion parviporum resistance. PLANT, CELL & ENVIRONMENT 2020; 43:1779-1791. [PMID: 32276288 DOI: 10.1111/pce.13768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
It is important to improve the understanding of the interactions between the trees and pathogens and integrate this knowledge about disease resistance into tree breeding programs. The conifer Norway spruce (Picea abies) is an important species for the forest industry in Europe. Its major pathogen is Heterobasidion parviporum, causing stem and root rot. In this study, we identified 11 Norway spruce QTLs (Quantitative trait loci) that correlate with variation in resistance to H. parviporum in a population of 466 trees by association genetics. Individual QTLs explained between 2.1 and 5.2% of the phenotypic variance. The expression of candidate genes associated with the QTLs was analysed in silico and in response to H. parviporum hypothesizing that (a) candidate genes linked to control of fungal sapwood growth are more commonly expressed in sapwood, and; (b) candidate genes associated with induced defences are respond to H. parviporum inoculation. The Norway spruce laccase PaLAC5 associated with control of lesion length development is likely to be involved in the induced defences. Expression analyses showed that PaLAC5 responds specifically and strongly in close proximity to the H. parviporum inoculation. Thus, PaLAC5 may be associated with the lignosuberized boundary zone formation in bark adjacent to the inoculation site.
Collapse
Affiliation(s)
- Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - John Baison
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Hernan Dario Capador
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matilda Stein Åslund
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhiqiang Chen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Rajiv Chaudhary
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åke Olson
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
22
|
Blokhina O, Laitinen T, Hatakeyama Y, Delhomme N, Paasela T, Zhao L, Street NR, Wada H, Kärkönen A, Fagerstedt K. Ray Parenchymal Cells Contribute to Lignification of Tracheids in Developing Xylem of Norway Spruce. PLANT PHYSIOLOGY 2019; 181:1552-1572. [PMID: 31558578 PMCID: PMC6878020 DOI: 10.1104/pp.19.00743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 05/08/2023]
Abstract
A comparative transcriptomic study and a single-cell metabolome analysis were combined to determine whether parenchymal ray cells contribute to the biosynthesis of monolignols in the lignifying xylem of Norway spruce (Picea abies). Ray parenchymal cells may function in the lignification of upright tracheids by supplying monolignols. To test this hypothesis, parenchymal ray cells and upright tracheids were dissected with laser-capture microdissection from tangential cryosections of developing xylem of spruce trees. The transcriptome analysis revealed that among the genes involved in processes typical for vascular tissues, genes encoding cell wall biogenesis-related enzymes were highly expressed in both developing tracheids and ray cells. Interestingly, most of the shikimate and monolignol biosynthesis pathway-related genes were equally expressed in both cell types. Nonetheless, 1,073 differentially expressed genes were detected between developing ray cells and tracheids, among which a set of genes expressed only in ray cells was identified. In situ single cell metabolomics of semi-intact plants by picoliter pressure probe-electrospray ionization-mass spectrometry detected monolignols and their glycoconjugates in both cell types, indicating that the biosynthetic route for monolignols is active in both upright tracheids and parenchymal ray cells. The data strongly support the hypothesis that in developing xylem, ray cells produce monolignols that contribute to lignification of tracheid cell walls.
Collapse
Affiliation(s)
- Olga Blokhina
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Helsinki University, Fi-00014 Helsinki, Finland
| | - Teresa Laitinen
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki University, Fi-00014 Helsinki, Finland
| | - Yuto Hatakeyama
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041 Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| | - Tanja Paasela
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki University, Fi-00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, 00790 Helsinki, Finland
| | - Lei Zhao
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Helsinki University, Fi-00014 Helsinki, Finland
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041 Fukuoka, Japan
| | - Anna Kärkönen
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki University, Fi-00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, 00790 Helsinki, Finland
| | - Kurt Fagerstedt
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Helsinki University, Fi-00014 Helsinki, Finland
| |
Collapse
|
23
|
Li X, Speicher TL, Dees D, Mansoori N, McManus JB, Tien M, Trindade LM, Wallace IS, Roberts AW. Convergent evolution of hetero-oligomeric cellulose synthesis complexes in mosses and seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:862-876. [PMID: 31021018 PMCID: PMC6711812 DOI: 10.1111/tpj.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 05/31/2023]
Abstract
In seed plants, cellulose is synthesized by rosette-shaped cellulose synthesis complexes (CSCs) that are obligate hetero-oligomeric, comprising three non-interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gene. Therefore, if P. patens CSCs are hetero-oligomeric, then CSCs of this type evolved convergently in mosses and seed plants. Previous gene knockout and promoter swap experiments showed that PpCESAs from class A (PpCESA3 and PpCESA8) and class B (PpCESA6 and PpCESA7) have non-redundant functions in secondary cell wall cellulose deposition in leaf midribs, whereas the two members of each class are redundant. Based on these observations, we proposed the hypothesis that the secondary class A and class B PpCESAs associate to form hetero-oligomeric CSCs. Here we show that transcription of secondary class A PpCESAs is reduced when secondary class B PpCESAs are knocked out and vice versa, as expected for genes encoding isoforms that occupy distinct positions within the same CSC. The class A and class B isoforms co-accumulate in developing gametophores and co-immunoprecipitate, suggesting that they interact to form a complex in planta. Finally, secondary PpCESAs interact with each other, whereas three of four fail to self-interact when expressed in two different heterologous systems. These results are consistent with the hypothesis that obligate hetero-oligomeric CSCs evolved independently in mosses and seed plants and we propose the constructive neutral evolution hypothesis as a plausible explanation for convergent evolution of hetero-oligomeric CSCs.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Tori L. Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dianka Dees
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Nasim Mansoori
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - John B. McManus
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luisa M. Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
24
|
Roodt D, Li Z, Van de Peer Y, Mizrachi E. Loss of Wood Formation Genes in Monocot Genomes. Genome Biol Evol 2019; 11:1986-1996. [PMID: 31173081 PMCID: PMC6644875 DOI: 10.1093/gbe/evz115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Woodiness (secondary xylem derived from vascular cambium) has been gained and lost multiple times in the angiosperms, but has been lost ancestrally in all monocots. Here, we investigate the conservation of genes involved in xylogenesis in fully sequenced angiosperm genomes, hypothesizing that monocots have lost some essential orthologs involved in this process. We analyzed the conservation of genes preferentially expressed in the developing secondary xylem of two eudicot trees in the sequenced genomes of 26 eudicot and seven monocot species, and the early diverging angiosperm Amborella trichopoda. We also reconstructed a regulatory model of early vascular cambial cell identity and differentiation and investigated the conservation of orthologs across the angiosperms. Additionally, we analyzed the genome of the aquatic seagrass Zostera marina for additional losses of genes otherwise essential to, especially, secondary cell wall formation. Despite almost complete conservation of orthology within the early cambial differentiation gene network, we show a clear pattern of loss of genes preferentially expressed in secondary xylem in the monocots that are highly conserved across eudicot species. Our study provides candidate genes that may have led to the loss of vascular cambium in the monocots, and, by comparing terrestrial angiosperms to an aquatic monocot, highlights genes essential to vasculature on land.
Collapse
Affiliation(s)
- Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, South Africa
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Genomics Research Institute, University of Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Belgium
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, South Africa
| |
Collapse
|
25
|
Wegrzyn JL, Staton MA, Street NR, Main D, Grau E, Herndon N, Buehler S, Falk T, Zaman S, Ramnath R, Richter P, Sun L, Condon B, Almsaeed A, Chen M, Mannapperuma C, Jung S, Ficklin S. Cyberinfrastructure to Improve Forest Health and Productivity: The Role of Tree Databases in Connecting Genomes, Phenomes, and the Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:813. [PMID: 31293610 PMCID: PMC6603172 DOI: 10.3389/fpls.2019.00813] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Despite tremendous advancements in high throughput sequencing, the vast majority of tree genomes, and in particular, forest trees, remain elusive. Although primary databases store genetic resources for just over 2,000 forest tree species, these are largely focused on sequence storage, basic genome assemblies, and functional assignment through existing pipelines. The tree databases reviewed here serve as secondary repositories for community data. They vary in their focal species, the data they curate, and the analytics provided, but they are united in moving toward a goal of centralizing both data access and analysis. They provide frameworks to view and update annotations for complex genomes, interrogate systems level expression profiles, curate data for comparative genomics, and perform real-time analysis with genotype and phenotype data. The organism databases of today are no longer simply catalogs or containers of genetic information. These repositories represent integrated cyberinfrastructure that support cross-site queries and analysis in web-based environments. These resources are striving to integrate across diverse experimental designs, sequence types, and related measures through ontologies, community standards, and web services. Efficient, simple, and robust platforms that enhance the data generated by the research community, contribute to improving forest health and productivity.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Margaret A. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Emily Grau
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Nic Herndon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sean Buehler
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Taylor Falk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Risharde Ramnath
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Peter Richter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Lang Sun
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Bradford Condon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Abdullah Almsaeed
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ming Chen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Stephen Ficklin
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Myburg AA, Hussey SG, Wang JP, Street NR, Mizrachi E. Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks. FRONTIERS IN PLANT SCIENCE 2019; 10:775. [PMID: 31281326 PMCID: PMC6597874 DOI: 10.3389/fpls.2019.00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors for lignocellulosic biopolymers and a wide range of plant specialized metabolites make them excellent biochemical production platforms and living biorefineries. Their large sizes have facilitated multi-omics analyses and systems modeling of key biological processes such as lignin biosynthesis in trees. High-throughput 'omics' approaches have also been applied in segregating tree populations where genetic variation creates abundant genetic perturbations of system components allowing construction of systems genetics models linking genes and pathways to complex trait variation. With this information in hand, it is now possible to start using synthetic biology and genome editing techniques in a bioengineering approach based on a deeper understanding and rational design of biological parts, devices, and integrated systems. However, the complexity of the biology and interacting components will require investment in big data informatics, machine learning, and intuitive visualization to fully explore multi-dimensional patterns and identify emergent properties of biological systems. Predictive systems models could be tested rapidly through high-throughput synthetic biology approaches and multigene editing. Such a bioengineering paradigm, together with accelerated genomic breeding, will be crucial for the development of a new generation of woody biorefinery crops.
Collapse
Affiliation(s)
- Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Nathaniel R. Street
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
27
|
Pinard D, Fierro AC, Marchal K, Myburg AA, Mizrachi E. Organellar carbon metabolism is coordinated with distinct developmental phases of secondary xylem. THE NEW PHYTOLOGIST 2019; 222:1832-1845. [PMID: 30742304 DOI: 10.1111/nph.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and plastids requires coordinated regulation of nuclear encoded genes, and the role of these genes has been largely ignored by wood researchers. In this study, we constructed a targeted systems genetics coexpression network of xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and compared the resulting clusters to the aspen xylem developmental series. The constructed network clusters reveal the organization of transcriptional modules regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes between the plastid and mitochondrial networks implicate the common transcriptional regulation of carbon metabolism during xylem secondary growth. We show that the central processes of organellar carbon metabolism are distinctly coordinated across the developmental stages of wood formation and are specifically associated with primary growth and secondary cell wall deposition. We also demonstrate that, during xylogenesis, plastid-targeted carbon metabolism is partially regulated by the central clock for carbon allocation towards primary and secondary xylem growth, and we discuss these networks in the context of previously established associations with wood-related complex traits. This study provides a new resolution into the integration and transcriptional regulation of plastid- and mitochondrial-localized carbon metabolism during xylogenesis.
Collapse
Affiliation(s)
- Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Ana Carolina Fierro
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Kathleen Marchal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
28
|
Sena JS, Lachance D, Duval I, Nguyen TTA, Stewart D, Mackay J, Séguin A. Functional Analysis of the PgCesA3 White Spruce Cellulose Synthase Gene Promoter in Secondary Xylem. FRONTIERS IN PLANT SCIENCE 2019; 10:626. [PMID: 31191566 PMCID: PMC6546725 DOI: 10.3389/fpls.2019.00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Cellulose is an essential structural component of the plant cell wall. Its biosynthesis involves genes encoding cellulose synthase enzymes and a complex transcriptional regulatory network. Three cellulose synthases have been identified in conifers as being potentially involved in secondary cell wall biosynthesis because of their preferential expression in xylem tissues; however, no direct functional association has been made to date. In the present work, we characterized the white spruce [Picea glauca (Moench) Voss] cellulose synthase PgCesA3 gene and 5' regulatory elements. Phylogenetic analysis showed that PgCesA1-3 genes grouped with secondary cell wall-associated Arabidopsis cellulose synthase genes, such as AtCesA8, AtCesA4, and AtCesA7. We produced transgenic spruce expressing the GUS reporter gene driven by the PgCesA3 promoter. We observed blue staining in differentiating xylem cells from stem and roots, and in foliar guard cells indicating that PgCesA3 is clearly involved in secondary cell wall biosynthesis. The promoter region sequence of PgCesA3 contained several putative MYB cis-regulatory elements including AC-I like motifs and secondary wall MYB-responsive element (SMRE); however, it lacked SMRE4, 7 and 8 that correspond to the sequences of AC-I, II, and III. Based on these findings and results of previous transient trans-activation assays that identified interactions between the PgCesA3 promoter and different MYB transcription factors, we performed electrophoretic mobility shift assays with MYB recombinant proteins and cis-regulatory elements present in the PgCesA3 promoter. We found that PgMYB12 bound to a canonical AC-I element identified in the Pinus taeda PAL promoter and two AC-I like elements. We hypothesized that the PgMYB12 could regulate PgCesA3 in roots based on previous expression results. This functional study of PgCesA3 sequences and promoter opens the door for future studies on the interaction between PgMYBs and the PgCesA3 regulatory elements.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Department of Wood and Forest Sciences, Université Laval, Quebec City, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Thi Thuy An Nguyen
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| |
Collapse
|
29
|
Johnsson C, Jin X, Xue W, Dubreuil C, Lezhneva L, Fischer U. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. PHYSIOLOGIA PLANTARUM 2019; 165:673-689. [PMID: 29808599 PMCID: PMC7379297 DOI: 10.1111/ppl.12766] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 05/18/2023]
Abstract
Wood formation in higher plants is a complex and costly developmental process regulated by a complex network of transcription factors, short peptide signals and hormones. Correct spatiotemporal initiation of differentiation and downstream developmental stages is vital for proper wood formation. Members of the NAC (NAM, ATAF1/2 and CUC) family of transcription factors are described as top level regulators of xylem cell fate and secondary cell wall (SCW) deposition, but the signals initiating their transcription have yet to be elucidated. We found that treatment of Populus stems with auxin repressed transcription of NAC transcription factors associated with fiber and SCW formation and induced vessel-specific NACs, whereas gibberellic acid (GA) induced the expression of both classes of NAC domain transcription factors involved in wood formation. These transcriptional changes were reflected in alterations of stem anatomy, i.e. auxin treatment reduced cell wall thickness, whereas GA had a promotive effect on SCW deposition and on the rate of wood formation. Similar changes were observed on treatment of Arabidopsis thaliana stems with GA or the synthetic auxin NAA. We also observed corresponding changes in PIN5 overexpressing lines, where interference with auxin transport leads to premature SCW deposition and formation of additional fiber bundles. Together, this suggests wood formation is regulated by an integrated readout of both auxin and GA, which, in turn, controls expression of fiber and vessel specific NACs.
Collapse
Affiliation(s)
- Christoffer Johnsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Stora Enso ABFalunSweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Weiya Xue
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Carole Dubreuil
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Lina Lezhneva
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
30
|
Jan J. Lyczakowski. THE NEW PHYTOLOGIST 2019; 221:1195-1196. [PMID: 30644582 DOI: 10.1111/nph.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
31
|
Peter GF. Breeding and Engineering Trees to Accumulate High Levels of Terpene Metabolites for Plant Defense and Renewable Chemicals. FRONTIERS IN PLANT SCIENCE 2018; 9:1672. [PMID: 30515179 PMCID: PMC6256060 DOI: 10.3389/fpls.2018.01672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/31/2023]
Abstract
Plants evolved the capacity to synthesize highly diverse sets of secondary metabolites which are important for plant adaptation and health. In forest trees, many classes of compounds, particularly ones related to defense against insects, fungi, and bacteria accumulate to levels that enable their recovery and commercial use. One of the oldest examples is conifer terpenes, but terpenes are important secondary products from other tree species including eucalypts. Because terpenes, latex, and natural gums are synthesized and stored in specialized secretory glands, ducts, and laticifers in mostly pure forms they can be collected from live trees in addition to being extracted during industrial processing of wood. This minireview describes the potential of breeding and genetic engineering approaches to increase the quantities of terpene secondary metabolites to increase the amount of secondary products and thereby increasing the value of planted and managed forest trees. I advance the view that breeding and genetic engineering of metabolic pathways and specialized cell secretory structures can dramatically increase tissue terpene content.
Collapse
Affiliation(s)
- Gary F. Peter
- School of Forest Resources and Conservation, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Laubscher M, Brown K, Tonfack LB, Myburg AA, Mizrachi E, Hussey SG. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Sci Rep 2018; 8:10983. [PMID: 30030488 PMCID: PMC6054625 DOI: 10.1038/s41598-018-29278-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Secondary cell wall (SCW) deposition in Arabidopsis is regulated among others by NAC transcription factors, where SND1 chiefly initiates xylem fibre differentiation while VND6 controls metaxylem vessel SCW development, especially programmed cell death and wall patterning. The translational relevance of Arabidopsis SCW regulation theory and the utility of characterized transcription factors as modular synthetic biology tools for improving commercial fibre crops is unclear. We investigated inter-lineage gene activation dynamics for potential fibre and vessel differentiation regulators from the widely grown hardwood Eucalyptus grandis (Myrtales). EgrNAC26, a VND6 homolog, and EgrNAC61, an SND1 homolog, were transiently expressed in Arabidopsis mesophyll protoplasts in parallel to determine early and late (i.e. 7 and 14 hours post-transfection) gene targets. Surprisingly, across the time series EgrNAC26 activated only a subset of SCW-related transcription factors and biosynthetic genes activated by EgrNAC61, specializing instead in targeting vessel-specific wall pit and programmed cell death markers. Promoters of EgrNAC26 and EgrNAC61 both induced reporter gene expression in vessels of young Arabidopsis plants, with EgrNAC61 also conferring xylem- and cork cambium-preferential expression in Populus. Our results demonstrate partial conservation, with notable exceptions, of SND1 and VND6 homologs in Eucalyptus and a first report of cork cambium expression for EgrNAC61.
Collapse
Affiliation(s)
- M Laubscher
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - K Brown
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - L B Tonfack
- Plant Physiology and Improvement Unit, Laboratory of Biotechnology and Environment, Department of Plant Biology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - A A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - E Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - S G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa.
| |
Collapse
|
33
|
Zhang X, Dominguez PG, Kumar M, Bygdell J, Miroshnichenko S, Sundberg B, Wingsle G, Niittylä T. Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce. PLANT PHYSIOLOGY 2018; 177:1096-1107. [PMID: 29760198 PMCID: PMC6053019 DOI: 10.1104/pp.18.00394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 05/02/2023]
Abstract
Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased PtCESA8b expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of PtCESA4, PtCESA7a/b, and PtCESA8a decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.
Collapse
Affiliation(s)
- Xueyang Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Pia Guadalupe Dominguez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Manoj Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Joakim Bygdell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Sergey Miroshnichenko
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| |
Collapse
|
34
|
Jokipii-Lukkari S, Delhomme N, Schiffthaler B, Mannapperuma C, Prestele J, Nilsson O, Street NR, Tuominen H. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. PLANT PHYSIOLOGY 2018; 176:2851-2870. [PMID: 29487121 PMCID: PMC5884607 DOI: 10.1104/pp.17.01590] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 05/18/2023]
Abstract
Seasonal cues influence several aspects of the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. We investigated seasonal changes in cambial activity, secondary cell wall formation, and tracheid cell death in woody tissues of Norway spruce (Picea abies) throughout one seasonal cycle. RNA sequencing was performed simultaneously in both the xylem and cambium/phloem tissues of the stem. Principal component analysis revealed gradual shifts in the transcriptomes that followed a chronological order throughout the season. A notable remodeling of the transcriptome was observed in the winter, with many genes having maximal expression during the coldest months of the year. A highly coexpressed set of monolignol biosynthesis genes showed high expression during the period of secondary cell wall formation as well as a second peak in midwinter. This midwinter peak in expression did not trigger lignin deposition, as determined by pyrolysis-gas chromatography/mass spectrometry. Coexpression consensus network analyses suggested the involvement of transcription factors belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES and MYELOBLASTOSIS-HOMEOBOX families in the seasonal control of secondary cell wall formation of tracheids. Interestingly, the lifetime of the latewood tracheids stretched beyond the winter dormancy period, correlating with a lack of cell death-related gene expression. Our transcriptomic analyses combined with phylogenetic and microscopic analyses also identified the cellulose and lignin biosynthetic genes and putative regulators for latewood formation and tracheid cell death in Norway spruce, providing a toolbox for further physiological and functional assays of these important phase transitions.
Collapse
Affiliation(s)
- Soile Jokipii-Lukkari
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jakob Prestele
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
35
|
Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances. G3-GENES GENOMES GENETICS 2018; 8:1225-1245. [PMID: 29440346 PMCID: PMC5873913 DOI: 10.1534/g3.117.300524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norway spruce (Picea abies) is by far the most important timber species in Europe, but its outstanding role in future forests is jeopardized by its high sensitivity to drought. We analyzed drought response of Norway spruce at the warmest fringe of its natural range. Based on a 35-year old provenance experiment we tested for genetic variation among and within seed provenances across consecutively occurring strong drought events using dendroclimatic time series. Moreover, we tested for associations between ≈1,700 variable SNPs and traits related to drought response, wood characteristics and climate-growth relationships. We found significant adaptive genetic variation among provenances originating from the species’ Alpine, Central and Southeastern European range. Genetic variation between individuals varied significantly among provenances explaining up to 44% of the phenotypic variation in drought response. Varying phenotypic correlations between drought response and wood traits confirmed differences in selection intensity among seed provenances. Significant associations were found between 29 SNPs and traits related to drought, climate-growth relationships and wood properties which explained between 11 and 43% of trait variation, though 12 of them were due to single individuals having extreme phenotypes of the respective trait. The majority of these SNPs are located within exons of genes and the most important ones are preferentially expressed in cambium and xylem expansion layers. Phenotype-genotype associations were stronger if only provenances with significant quantitative genetic variation in drought response were considered. The present study confirms the high adaptive variation of Norway spruce in Central and Southeastern Europe and demonstrates how quantitative genetic, dendroclimatic and genomic data can be linked to understand the genetic basis of adaptation to climate extremes in trees.
Collapse
|
36
|
Seyfferth C, Wessels B, Jokipii-Lukkari S, Sundberg B, Delhomme N, Felten J, Tuominen H. Ethylene-Related Gene Expression Networks in Wood Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:272. [PMID: 29593753 PMCID: PMC5861219 DOI: 10.3389/fpls.2018.00272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood) inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula) stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2) homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and potential targets for EIN3D and ERF transcription factors in Populus stem tissues, which can help to understand the range of ethylene targeted biological processes during secondary growth.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bernard Wessels
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Soile Jokipii-Lukkari
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Judith Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Kramer EM, Kong H, Rausher MD. Plant evolutionary developmental biology. Introduction to a special issue. THE NEW PHYTOLOGIST 2017; 216:335-336. [PMID: 28921559 DOI: 10.1111/nph.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708-0338, USA
| |
Collapse
|
38
|
Kuismin MO, Sillanpää MJ. Estimation of covariance and precision matrix, network structure, and a view toward systems biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/wics.1415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markku O. Kuismin
- Department of Mathematical Sciences; University of Oulu; Oulu Finland
| | - Mikko J. Sillanpää
- Department of Mathematical Sciences; University of Oulu; Oulu Finland
- Biocenter Oulu; University of Oulu; Oulu Finland
| |
Collapse
|
39
|
Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O, Tuominen H, Pesquet E, Fischer U, Niittylä T, Sundberg B, Hvidsten TR. AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. THE PLANT CELL 2017; 29:1585-1604. [PMID: 28655750 PMCID: PMC5559752 DOI: 10.1105/tpc.17.00153] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/24/2017] [Indexed: 05/17/2023]
Abstract
Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network.
Collapse
Affiliation(s)
- David Sundell
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Manoj Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Christoffer Johnsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Vikash Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
40
|
Laitinen T, Morreel K, Delhomme N, Gauthier A, Schiffthaler B, Nickolov K, Brader G, Lim KJ, Teeri TH, Street NR, Boerjan W, Kärkönen A. A Key Role for Apoplastic H 2O 2 in Norway Spruce Phenolic Metabolism. PLANT PHYSIOLOGY 2017; 174:1449-1475. [PMID: 28522458 PMCID: PMC5490890 DOI: 10.1104/pp.17.00085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism.
Collapse
Affiliation(s)
- Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Department of Biology, University of Oulu, 90014 Oulu, Finland
| | - Günter Brader
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Green Technology, 00790 Helsinki, Finland
| |
Collapse
|
41
|
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. THE NEW PHYTOLOGIST 2017; 215:642-657. [PMID: 28609015 DOI: 10.1111/nph.14631] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/23/2017] [Indexed: 05/12/2023]
Abstract
Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Jeanette Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|