1
|
Tan SL, Vera-Vives AM, Alboresi A, Morosinotto T. Light intensity activation of alternative electron transport mechanisms in the moss Physcomitrium patens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109904. [PMID: 40288259 DOI: 10.1016/j.plaphy.2025.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Photosynthetic organisms exploit sunlight to drive an electron transport chain and obtain the chemical energy supporting their metabolism. In highly dynamic environmental conditions, excitation energy and electron transport need to be continuously modulated to prevent over-reduction and the consequent damage. An essential role in the regulation of electron transport is played by alternative electron transport mechanisms such as cyclic electron transport (CET) facilitated by PGRL1/PGR5 and NDH complex and pseudo-cyclic electron transport (PCET) mediated by the flavodiiron proteins (FLV) and the Mehler reaction. In this work mutant lines of the moss Physcomitrium patens depleted in PCET (flva KO) or CET (pgrl1/ndhm KO) were compared to wild-type plants for their ability to regulate photosynthetic electron transport in response to light fluctuations of different intensities. FLV activity enables a very fast increase in electron transport capacity but its impact is transient and becomes undetectable after 3 min from a light change. The FLV electron transport capacity is saturated at 100 μmol photons m-2 s-1 and does not increase even if exposed to stronger illumination. On the other hand, CET activation after an increase in illumination has a smaller contribution on electron transport capacity, but it provides a steady contribution for several minutes after a change in illumination intensity. Overall, these results demonstrate that light adapted plants CO2 fixation capacity needs approx. 3 min to adjust to different illumination intensities. In this interval CET and PCET enable adjusting temporary unbalances in electron transport, fully responding to 2-4 time increases in illumination. In case of larger increases, these mechanisms still contribute to protection from light damage by reducing the accumulation of electrons at PSI acceptor side. While the two mechanisms play an overlapping function, their activity shows distinctive kinetics and electron transport capacity thus they are complementary in ensuring optimal photoprotection.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
2
|
Bag P, Ivanov AG, Huner NP, Jansson S. Photosynthetic advantages of conifers in the boreal forest. TRENDS IN PLANT SCIENCE 2025; 30:409-423. [PMID: 39580266 DOI: 10.1016/j.tplants.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Boreal conifers - the 'Christmas trees' - maintain their green needles over the winter by retaining their chlorophyll. These conifers face the toughest challenge in February and March, when subzero temperatures coincide with high solar radiation. To balance the light energy they harvest with the light energy they utilise, conifers deploy various mechanisms in parallel. These include, thylakoid destacking, which facilitates direct energy transfer from Photosystem II (PSII) to Photosystem I (PSI), and excess energy dissipation through sustained nonphotochemical quenching (NPQ). Additionally, they upregulate alternative electron transport pathways to safely reroute excess electrons while maintaining ATP production. From an evolutionary and ecological perspective, we consider these mechanisms as part of a comprehensive photosynthetic alteration, which enhances our understanding of winter acclimation in conifers and their dominance in the boreal forests.
Collapse
Affiliation(s)
- Pushan Bag
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Norman P Huner
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
| |
Collapse
|
3
|
Pfleger A, Arc E, Grings M, Gnaiger E, Roach T. Flavodiiron proteins prevent the Mehler reaction in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149497. [PMID: 39048034 DOI: 10.1016/j.bbabio.2024.149497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Ana Pfleger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria
| | - Mateus Grings
- Oroboros Instruments GmbH, Schöpfstraße 18, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments GmbH, Schöpfstraße 18, 6020 Innsbruck, Austria
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria.
| |
Collapse
|
4
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Peltier G, Stoffel C, Findinier J, Madireddi SK, Dao O, Epting V, Morin A, Grossman A, Li-Beisson Y, Burlacot A. Alternative electron pathways of photosynthesis power green algal CO2 capture. THE PLANT CELL 2024; 36:4132-4142. [PMID: 38739547 PMCID: PMC11449004 DOI: 10.1093/plcell/koae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast-mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation.
Collapse
Affiliation(s)
- Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France
| | - Carolyne Stoffel
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Sai Kiran Madireddi
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France
| | - Virginie Epting
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France
| | - Amélie Morin
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France
| | - Arthur Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Biosphere Science and Engineering Division, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France
| | - Adrien Burlacot
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Biosphere Science and Engineering Division, The Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Ermakova M, Fitzpatrick D, Larkum AWD. Cyclic electron flow and Photosystem II-less photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24185. [PMID: 39471160 DOI: 10.1071/fp24185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.
Collapse
Affiliation(s)
- Maria Ermakova
- School of Biological Sciences, Monash University, Melbourne, Vic 3800, Australia; and Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Duncan Fitzpatrick
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Tiwari A, Mamedov F, Fitzpatrick D, Gunell S, Tikkanen M, Aro EM. Differential FeS cluster photodamage plays a critical role in regulating excess electron flow through photosystem I. NATURE PLANTS 2024; 10:1592-1603. [PMID: 39271942 DOI: 10.1038/s41477-024-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
The photosynthetic electron flux from photosystem I (PSI) is mainly directed to NADP+ and CO2 fixation, but a fraction is always shared between alternative and cyclic electron transport. Although the electron transfer from P700 to ferredoxin, via phylloquinone and the FeSX, FeSB and FeSA clusters, is well characterized, the regulatory role of these redox intermediates in the delivery of electrons from PSI to NADP+, alternative and cyclic electron transport under environmental stress remains elusive. Here we provide evidence for sequential damage to PSI FeS clusters under high light and subsequent slow recovery under low light in Arabidopsis thaliana. Wild-type plants showed 10-35% photodamage to their FeSA/B clusters with increasing high-light duration, without much effect on P700 oxidation capacity, FeSX function or CO2 fixation rate, and without additional oxygen consumption (O2 photoreduction). Parallel FeSA/B cluster damage in the pgr5 mutant was more pronounced at 50-85%, probably due to weak photosynthetic control and low non-photochemical quenching. Such severe electron pressure on PSI was also shown to damage the FeSX clusters, with a concomitant decrease in P700 oxidation capacity and a decrease in thylakoid-bound ferredoxin in the pgr5 mutant. The results from wild-type and pgr5 plants reveal controlled damage of PSI FeS clusters under high light. In wild-type plants, this favours electron transport to linear over alternative pathways by intact PSI centres, thereby preventing reactive oxygen species production and probably promoting harmless charge recombination between P700+ and FeSX- as long as the majority of FeSA/B clusters remain functional.
Collapse
Affiliation(s)
- Arjun Tiwari
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland.
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Duncan Fitzpatrick
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sanna Gunell
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Hubáček M, Wey LT, Kourist R, Malihan-Yap L, Nikkanen L, Allahverdiyeva Y. Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2500-2513. [PMID: 39008444 DOI: 10.1111/tpj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
Collapse
Affiliation(s)
- Michal Hubáček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
9
|
Grebe S, Porcar-Castell A, Riikonen A, Paakkarinen V, Aro EM. Accounting for photosystem I photoinhibition sheds new light on seasonal acclimation strategies of boreal conifers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3973-3992. [PMID: 38572950 PMCID: PMC11233416 DOI: 10.1093/jxb/erae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/30/2024] [Indexed: 04/05/2024]
Abstract
The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Riikonen
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
10
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Comparative modeling of fluorescence and P700 induction kinetics for alga Scenedesmus sp. obliques and cyanobacterium Synechocystis sp. PCC 6803. Role of state 2-state 1 transitions and redox state of plastoquinone pool. Cell Biochem Biophys 2024; 82:729-745. [PMID: 38340281 DOI: 10.1007/s12013-024-01224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The model of thylakoid membrane system (T-M model) (Belyaeva et al. Photosynth Res 2019, 140:1-19) has been improved in order to analyze the induction data for dark-adapted samples of algal (Scenedesmus obliques) and cyanobacterial (Synechocystis sp. PCC 6803) cells. The fluorescence induction (FI) curves of Scenedesmus were measured at light exposures of 5 min, while FI and P700 redox transformations of Synechocystis were recorded in parallel for 100 s intervals. Kinetic data comprising the OJIP-SMT fluorescence induction and OABCDEF P700+ absorbance changes were used to study the processes underlying state transitions qT2→1 and qT1→2 associated with the increase/decrease in Chl fluorescence emission. A formula with the Hill kinetics (Ebenhöh et al. Philos Trans R Soc B 2014, 369:20130223) was introduced into the T-M model, with a new variable to imitate the flexible size of antenna AntM(t) associated with PSII. Simulations revealed that the light-harvesting capacity of PSII increases with a corresponding decrease for that of PSI upon the qT2→1 transition induced by plastoquinone (PQ) pool oxidation. The complete T-M model fittings were attained on Scenedesmus or Synechocystis fast waves OJIPS of FI, while SMT wave of FI was reproduced at intervals shorter than 5 min. Also the fast P700 redox transitions (OABC) for Synechocystis were fitted exactly. Reasonable sets of algal and cyanobacterial electron/proton transfer (ET/PT) parameters were found. In the case of Scenedesmus, ET/PT traits remained the same irrespective of modeling with or without qT2→1 transitions. Simulations indicated a high extent (20%) of the PQ pool reduction under dark conditions in Synechocystis compared to 2% in Scenedesmus.
Collapse
Affiliation(s)
- N E Belyaeva
- Biological Faculty, Moscow State University, Moscow, 119234, Russia.
| | - A A Bulychev
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - K E Klementiev
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
- Biological Faculty, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - V Z Paschenko
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - G Yu Riznichenko
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - A B Rubin
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
11
|
Elanskaya IV, Bulychev AA, Lukashev EP, Muronets EM, Maksimov EG. Roles of ApcD and orange carotenoid protein in photoinduction of electron transport upon dark-light transition in the Synechocystis PCC 6803 mutant deficient in flavodiiron protein Flv1. PHOTOSYNTHESIS RESEARCH 2024; 159:97-114. [PMID: 37093504 DOI: 10.1007/s11120-023-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Flavodiiron proteins Flv1/Flv3 accept electrons from photosystem (PS) I. In this work we investigated light adaptation mechanisms of Flv1-deficient mutant of Synechocystis PCC 6803, incapable to form the Flv1/Flv3 heterodimer. First seconds of dark-light transition were studied by parallel measurements of light-induced changes in chlorophyll fluorescence, P700 redox transformations, fluorescence emission at 77 K, and OCP-dependent fluorescence quenching. During the period of Calvin cycle activation upon dark-light transition, the linear electron transport (LET) in wild type is supported by the Flv1/Flv3 heterodimer, whereas in Δflv1 mutant activation of LET upon illumination is preceded by cyclic electron flow that maintains State 2. The State 2-State 1 transition and Orange Carotenoid Protein (OCP)-dependent non-photochemical quenching occur independently of each other, begin in about 10 s after the illumination of the cells and are accompanied by a short-term re-reduction of the PSI reaction center (P700+). ApcD is important for the State 2-State 1 transition in the Δflv1 mutant, but S-M rise in chlorophyll fluorescence was not completely inhibited in Δflv1/ΔapcD mutant. LET in Δflv1 mutant starts earlier than the S-M rise in chlorophyll fluorescence, and the oxidation of plastoquinol (PQH2) pool promotes the activation of PSII, transient re-reduction of P700+ and transition to State 1. An attempt to induce state transition in the wild type under high intensity light using methyl viologen, highly oxidizing P700 and PQH2, was unsuccessful, showing that oxidation of intersystem electron-transport carriers might be insufficient for the induction of State 2-State 1 transition in wild type of Synechocystis under high light.
Collapse
Affiliation(s)
- Irina V Elanskaya
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena M Muronets
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Yang QY, Wang XQ, Yang YJ, Huang W. Fluctuating light induces a significant photoinhibition of photosystem I in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108426. [PMID: 38340689 DOI: 10.1016/j.plaphy.2024.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.
Collapse
Affiliation(s)
- Qiu-Yan Yang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Qian Wang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
13
|
Burlacot A. Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness. THE NEW PHYTOLOGIST 2023; 240:2197-2203. [PMID: 37872749 DOI: 10.1111/nph.19328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
During photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin-Benson-Bassham cycle and the formation of biomass building block in the so-called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast-to-mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Zhang L, Yang C, Liu C. Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase. PHOTOSYNTHESIS RESEARCH 2023; 158:171-180. [PMID: 37653264 DOI: 10.1007/s11120-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
The chlorophyllide a oxygenase (CAO) plays a crucial role in the biosynthesis of chlorophyll b (Chl b). In the moss Physcomitrium patens (P. patens), two distinct gene copies, PpCAO1 and PpCAO2, are present. In this study, we investigate the differential expression of these CAOs following light exposure after a period of darkness (24 h) and demonstrate that the accumulation of Chl b is only abolished when both genes are knocked out. In the ppcao1cao2 mutant, most of the antenna proteins associated with both photosystems (PS) I and II are absent. Despite of the existence of LHCSR proteins and zeaxanthin, the mutant exhibits minimal non-photochemical quenching (NPQ) capacity. Nevertheless, the ppcao1cao2 mutant retains a certain level of pseudo-cyclic electron transport to provide photoprotection for PSI. These findings shed light on the dual dependency of Chl b synthesis on two CAOs and highlight the distinct effects of Chl b deprival on PSI and PSII core complexes in P. patens, a model species for bryophytes.
Collapse
Affiliation(s)
- Lin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunhong Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Cantrell M, Ware MA, Peers G. Characterizing compensatory mechanisms in the absence of photoprotective qE in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 158:23-39. [PMID: 37488319 DOI: 10.1007/s11120-023-01037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
16
|
Longoni F, Grieco M, Santabarbara S, Harbinson J. Editorial: Photosynthesis under fluctuating light. FRONTIERS IN PLANT SCIENCE 2023; 14:1220360. [PMID: 37360720 PMCID: PMC10289220 DOI: 10.3389/fpls.2023.1220360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Fiamma Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Stefano Santabarbara
- Photosynthesis Research Unit, Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | | |
Collapse
|
17
|
Bag P, Shutova T, Shevela D, Lihavainen J, Nanda S, Ivanov AG, Messinger J, Jansson S. Flavodiiron-mediated O 2 photoreduction at photosystem I acceptor-side provides photoprotection to conifer thylakoids in early spring. Nat Commun 2023; 14:3210. [PMID: 37270605 DOI: 10.1038/s41467-023-38938-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.
Collapse
Affiliation(s)
- Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sanchali Nanda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, ON, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
- Department of Chemistry-Ångström laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
18
|
Sharma N, Nagar S, Thakur M, Suriyakumar P, Kataria S, Shanker A, Landi M, Anand A. Photosystems under high light stress: throwing light on mechanism and adaptation. PHOTOSYNTHETICA 2023; 61:250-263. [PMID: 39650670 PMCID: PMC11515824 DOI: 10.32615/ps.2023.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/15/2023] [Indexed: 12/11/2024]
Abstract
High light stress decreases the photosynthetic rate in plants due to photooxidative damage to photosynthetic apparatus, photoinhibition of PSII, and/or damage to PSI. The dissipation of excess energy by nonphotochemical quenching and degradation of the D1 protein of PSII and its repair cycle help against photooxidative damage. Light stress also activates stress-responsive nuclear genes through the accumulation of phosphonucleotide-3'-phosphoadenosine-5'-phosphate, methylerythritol cyclodiphosphate, and reactive oxygen species which comprise the chloroplast retrograde signaling pathway. Additionally, hormones, such as abscisic acid, cytokinin, brassinosteroids, and gibberellins, play a role in acclimation to light fluctuations. Several alternate electron flow mechanisms, which offset the excess of electrons, include activation of plastid or plastoquinol terminal oxidase, cytochrome b 6/f complex, cyclic electron flow through PSI, Mehler ascorbate peroxidase pathway or water-water cycle, mitochondrial alternative oxidase pathway, and photorespiration. In this review, we provided insights into high light stress-mediated damage to photosynthetic apparatus and strategies to mitigate the damage by decreasing antennae size, enhancing NPQ through the introduction of mutants, expression of algal proteins to improve photosynthetic rates and engineering ATP synthase.
Collapse
Affiliation(s)
- N. Sharma
- Department of Basic Sciences, College of Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230 Solan, India
| | - S. Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - M. Thakur
- Department of Basic Sciences, College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, 177001 Hamirpur, India
| | - P. Suriyakumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - S. Kataria
- School of Biochemistry, Devi Ahilya University, 452001 Indore, Madhya Pradesh, India
| | - A.K. Shanker
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - A. Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| |
Collapse
|
19
|
Zhou Q, Yamamoto H, Shikanai T. Distinct contribution of two cyclic electron transport pathways to P700 oxidation. PLANT PHYSIOLOGY 2023; 192:326-341. [PMID: 36477622 PMCID: PMC10152692 DOI: 10.1093/plphys/kiac557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Cyclic electron transport (CET) around Photosystem I (PSI) acidifies the thylakoid lumen and downregulates electron transport at the cytochrome b6f complex. This photosynthetic control is essential for oxidizing special pair chlorophylls (P700) of PSI for PSI photoprotection. In addition, CET depending on the PROTON GRADIENT REGULATION 5 (PGR5) protein oxidizes P700 by moving a pool of electrons from the acceptor side of PSI to the plastoquinone pool. This model of the acceptor-side regulation was proposed on the basis of the phenotype of the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant expressing Chlamydomonas (Chlamydomonas reinhardtii) plastid terminal oxidase (CrPTOX2). In this study, we extended the research including the Arabidopsis chlororespiratory reduction 2-2 (crr2-2) mutant defective in another CET pathway depending on the chloroplast NADH dehydrogenase-like (NDH) complex. Although the introduction of CrPTOX2 did not complement the defect in the acceptor-side regulation by PGR5, the function of the NDH complex was complemented except for its reverse reaction during the induction of photosynthesis. We evaluated the impact of CrPTOX2 under fluctuating light intensity in the wild-type, pgr5-1 and crr2-2 backgrounds. In the high-light period, both PGR5- and NDH-dependent CET were involved in the induction of photosynthetic control, whereas PGR5-dependent CET preferentially contributed to the acceptor-side regulation. On the contrary, the NDH complex probably contributed to the acceptor-side regulation in the low-light period but not in the high-light period. We evaluated the sensitivity of PSI to fluctuating light and clarified that acceptor-side regulation was necessary for PSI photoprotection by oxidizing P700 under high light.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Sun H, Shi Q, Liu NY, Zhang SB, Huang W. Drought stress delays photosynthetic induction and accelerates photoinhibition under short-term fluctuating light in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:152-161. [PMID: 36706694 DOI: 10.1016/j.plaphy.2023.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly delayed the induction kinetics of stomatal and mesophyll conductances after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly suppressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only caused a larger loss of carbon gain under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. To our knowledge, we here show new insight into how drought stress affects photosynthetic performance under FL.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning-Yu Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
21
|
Beckett RP, Roach T, Minibayeva F, Werth S. Alternative electron transport pathways contribute to tolerance to high light stress in lichenized algae. PHYSIOLOGIA PLANTARUM 2023; 175:e13904. [PMID: 37002828 DOI: 10.1111/ppl.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The photosynthetic apparatus of lichen photobionts has been well-characterized by chlorophyll fluorescence analysis (e.g., by pulse amplitude modulation [PAM]), which provides a proxy of the activity of photosystem II (PSII) and its antenna. However, such kinetics are unable to directly characterize photosystem I (PSI) activity and the associated alternative electron pathways that may be involved in photoprotection. Instead, PSI can be probed in vivo by near-infrared absorption, measured at the same time as standard chlorophyll fluorescence (e.g., using the WALZ Dual PAM). Here, we used the Dual PAM to investigate cyclic electron flow and photoprotection in a range of mostly temperate lichens sampled from shaded to more open microhabitats. Sun species displayed lower acceptor side limitation of PSI (Y[NA]) early in illumination when compared to shade species, indicative of higher flavodiiron-mediated pseudocyclic electron flow. In response to high irradiance, some lichens accumulate melanin, and Y[NA] was lower and NAD(P)H dehydrogenase (NDH-2)-type cyclic flow was higher in melanised than pale forms. Furthermore, non-photochemical quenching (NPQ) was higher and faster relaxing in shade than sun species, while all lichens displayed high rates of photosynthetic cyclic electron flow. In conclusion, our data suggest that (1) low acceptor side limitation of PSI is important for sun-exposed lichens; (2) NPQ helps shade species tolerate brief exposure to high irradiance; and (3) cyclic electron flow is a prominent feature of lichens regardless of habitat, although NDH-2-type flow is associated with high light acclimation.
Collapse
Affiliation(s)
- Richard Peter Beckett
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- Open Lab 'Biomarker', Kazan (Volga Region) Federal University, Kazan, Russia
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| | - Silke Werth
- Faculty of Biology Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
22
|
Santana‐Sánchez A, Nikkanen L, Werner E, Tóth G, Ermakova M, Kosourov S, Walter J, He M, Aro E, Allahverdiyeva Y. Flv3A facilitates O 2 photoreduction and affects H 2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments. THE NEW PHYTOLOGIST 2023; 237:126-139. [PMID: 36128660 PMCID: PMC10092803 DOI: 10.1111/nph.18506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/10/2022] [Indexed: 05/23/2023]
Abstract
The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.
Collapse
Affiliation(s)
- Anita Santana‐Sánchez
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Elisa Werner
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Gábor Tóth
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Julia Walter
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Meilin He
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| |
Collapse
|
23
|
Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, Phang SM. Transcriptomic analysis reveals distinct mechanisms of adaptation of a polar picophytoplankter under ocean acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105782. [PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Beardall John
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan; Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia; The Chancellery, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Photoinhibition of Photosystem I Induced by Different Intensities of Fluctuating Light Is Determined by the Kinetics of ∆pH Formation Rather Than Linear Electron Flow. Antioxidants (Basel) 2022; 11:antiox11122325. [PMID: 36552532 PMCID: PMC9774317 DOI: 10.3390/antiox11122325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Fluctuating light (FL) can cause the selective photoinhibition of photosystem I (PSI) in angiosperms. In nature, leaves usually experience FL conditions with the same low light and different high light intensities, but the effects of different FL conditions on PSI redox state and PSI photoinhibition are not well known. In this study, we found that PSI was highly reduced within the first 10 s after transition from 59 to 1809 μmol photons m-2 s-1 in tomato (Solanum lycopersicum). However, such transient PSI over-reduction was not observed by transitioning from 59 to 501 or 923 μmol photons m-2 s-1. Consequently, FL (59-1809) induced a significantly stronger PSI photoinhibition than FL (59-501) and FL (59-923). Compared with the proton gradient (∆pH) level after transition to high light for 60 s, tomato leaves almost formed a sufficient ∆pH after light transition for 10 s in FL (59-501) but did not in FL (59-923) or FL (59-1809). The difference in ∆pH between 10 s and 60 s was tightly correlated to the extent of PSI over-reduction and PSI photoinhibition induced by FL. Furthermore, the difference in PSI photoinhibition between (59-923) and FL (59-1809) was accompanied by the same level of linear electron flow. Therefore, PSI photoinhibition induced by different intensities of FL is more related to the kinetics of ∆pH formation rather than linear electron flow.
Collapse
|
25
|
Mattila H, Havurinne V, Antal T, Tyystjärvi E. Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F 0 rise method. PHOTOSYNTHETICA 2022; 60:529-538. [PMID: 39649393 PMCID: PMC11558589 DOI: 10.32615/ps.2022.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/10/2024]
Abstract
We recently developed a chlorophyll a fluorescence method (activated F0 rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: Scenedesmus quadricauda, Scenedesmus ecornis, Scenedesmus fuscus, Chlamydomonas reinhardtii, Chlorella sorokiniana, and Ettlia oleoabundans. The Scenedesmus species displayed a plant-like action spectra of F0 rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae. F0 rise was weak in a strain of C. reinhardtii, C. sorokiniana, and E. oleoabundans. Interestingly, another C. reinhardtii strain exhibited a strong F0 rise. The result indicates that the same illumination can lead to different redox states of the plastoquinone pool in different algae. Flavodiiron activity enhanced the F0 rise, presumably by oxidizing the plastoquinone pool during pre-illumination. The activity of plastid terminal oxidase, in turn, diminished the F0 rise, but to a small degree.
Collapse
Affiliation(s)
- H. Mattila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - V. Havurinne
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Present address: ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - T. Antal
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Permanent address: Laboratory of Integrated Ecological Research, Pskov State University, 180000 Pskov, Russia
| | - E. Tyystjärvi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
26
|
Xia H, Chen K, Liu L, Plenkovic-Moraj A, Sun G, Lei Y. Photosynthetic regulation in fluctuating light under combined stresses of high temperature and dehydration in three contrasting mosses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111379. [PMID: 35850284 DOI: 10.1016/j.plantsci.2022.111379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis regulation is fundamental for the response to environmental dynamics, especially for bryophytes during their adaptation to terrestrial life. Alternative electron flow mediated by flavodiiron proteins (FLV) and cyclic electron flow (CEF) around photosystem I (PSI) play seminal roles in the response to abiotic stresses in mosses; nevertheless, their correlation and relative contribution to photoprotection of mosses exposed to combined stresses remain unclear. In the present study, the photosynthetic performance and recovery capacity of three moss species from different growth habitats were examined during heat and dehydration with fluctuating light. Our results showed that dehydration at 22 °C for 24 h caused little photodamage, and most of the parameters recovered to their original values after rehydration. In contrast, dehydration at 38 °C caused drastic injuries, especially to PSII, which was mainly caused by the inactivation of non-photochemical quenching (NPQ). Dehydration also induced a high accumulation of O2- and H2O2. A consistently higher CEF as well as a positive correlation between CEF and FLV was observed in resistant R. japonicum, implying CEF played a more important protective role for R. japonicum. In H. plumaeforme and P. cuspidatum, the positive relationship under mild stress switched to negative when stress became severe. Therefore, FLV pathway was sensitive to environmental fluctuations and maybe less efficient than CEF thus, readily to be lost during land colonization and evolution in angiosperms. Our work provides insights into the coordination of various pathways to fine-tune photosynthetic protection and can be used as a basis for species screening and development of breeding strategies for degraded ecosystem restoration with pioneering mosses.
Collapse
Affiliation(s)
- Hongxia Xia
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lilan Liu
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Anđelka Plenkovic-Moraj
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia
| | - Geng Sun
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
27
|
Štroch M, Karlický V, Ilík P, Ilíková I, Opatíková M, Nosek L, Pospíšil P, Svrčková M, Rác M, Roudnický P, Zdráhal Z, Špunda V, Kouřil R. Spruce versus Arabidopsis: different strategies of photosynthetic acclimation to light intensity change. PHOTOSYNTHESIS RESEARCH 2022; 154:21-40. [PMID: 35980499 DOI: 10.1007/s11120-022-00949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The acclimation of higher plants to different light intensities is associated with a reorganization of the photosynthetic apparatus. These modifications, namely, changes in the amount of peripheral antenna (LHCII) of photosystem (PS) II and changes in PSII/PSI stoichiometry, typically lead to an altered chlorophyll (Chl) a/b ratio. However, our previous studies show that in spruce, this ratio is not affected by changes in growth light intensity. The evolutionary loss of PSII antenna proteins LHCB3 and LHCB6 in the Pinaceae family is another indication that the light acclimation strategy in spruce could be different. Here we show that, unlike Arabidopsis, spruce does not modify its PSII/PSI ratio and PSII antenna size to maximize its photosynthetic performance during light acclimation. Its large PSII antenna consists of many weakly bound LHCIIs, which form effective quenching centers, even at relatively low light. This, together with sensitive photosynthetic control on the level of cytochrome b6f complex (protecting PSI), is the crucial photoprotective mechanism in spruce. High-light acclimation of spruce involves the disruption of PSII macro-organization, reduction of the amount of both PSII and PSI core complexes, synthesis of stress proteins that bind released Chls, and formation of "locked-in" quenching centers from uncoupled LHCIIs. Such response has been previously observed in the evergreen angiosperm Monstera deliciosa exposed to high light. We suggest that, in contrast to annuals, shade-tolerant evergreen land plants have their own strategy to cope with light intensity changes and the hallmark of this strategy is a stable Chl a/b ratio.
Collapse
Affiliation(s)
- Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic.
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Iva Ilíková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Monika Opatíková
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Marika Svrčková
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Pavel Roudnický
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Roman Kouřil
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| |
Collapse
|
28
|
Gu L, Grodzinski B, Han J, Marie T, Zhang Y, Song YC, Sun Y. Granal thylakoid structure and function: explaining an enduring mystery of higher plants. THE NEW PHYTOLOGIST 2022; 236:319-329. [PMID: 35832001 PMCID: PMC9805053 DOI: 10.1111/nph.18371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 05/11/2023]
Abstract
In higher plants, photosystems II and I are found in grana stacks and unstacked stroma lamellae, respectively. To connect them, electron carriers negotiate tortuous multi-media paths and are subject to macromolecular blocking. Why does evolution select an apparently unnecessary, inefficient bipartition? Here we systematically explain this perplexing phenomenon. We propose that grana stacks, acting like bellows in accordions, increase the degree of ultrastructural control on photosynthesis through thylakoid swelling/shrinking induced by osmotic water fluxes. This control coordinates with variations in stomatal conductance and the turgor of guard cells, which act like an accordion's air button. Thylakoid ultrastructural dynamics regulate macromolecular blocking/collision probability, direct diffusional pathlengths, division of function of Cytochrome b6 f complex between linear and cyclic electron transport, luminal pH via osmotic water fluxes, and the separation of pH dynamics between granal and lamellar lumens in response to environmental variations. With the two functionally asymmetrical photosystems located distantly from each other, the ultrastructural control, nonphotochemical quenching, and carbon-reaction feedbacks maximally cooperate to balance electron transport with gas exchange, provide homeostasis in fluctuating light environments, and protect photosystems in drought. Grana stacks represent a dry/high irradiance adaptation of photosynthetic machinery to improve fitness in challenging land environments. Our theory unifies many well-known but seemingly unconnected phenomena of thylakoid structure and function in higher plants.
Collapse
Affiliation(s)
- Lianhong Gu
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Bernard Grodzinski
- Department of Plant AgricultureUniversity of GuelphGuelphONN1G 2W1Canada
| | - Jimei Han
- School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Telesphore Marie
- Department of Plant AgricultureUniversity of GuelphGuelphONN1G 2W1Canada
| | | | - Yang C. Song
- Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonAZ85721USA
| | - Ying Sun
- School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
29
|
Cheng JB, Zhang SB, Wu JS, Huang W. The Dynamic Changes of Alternative Electron Flows upon Transition from Low to High Light in the Fern Cyrtomium fortune and the Gymnosperm Nageia nagi. Cells 2022; 11:cells11172768. [PMID: 36078176 PMCID: PMC9455243 DOI: 10.3390/cells11172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
In photosynthetic organisms except angiosperms, an alternative electron sink that is mediated by flavodiiron proteins (FLVs) plays the major role in preventing PSI photoinhibition while cyclic electron flow (CEF) is also essential for normal growth under fluctuating light. However, the dynamic changes of FLVs and CEF has not yet been well clarified. In this study, we measured the P700 signal, chlorophyll fluorescence, and electrochromic shift spectra in the fern Cyrtomium fortune and the gymnosperm Nageia nagi. We found that both species could not build up a sufficient proton gradient (∆pH) within the first 30 s after light abruptly increased. During this period, FLVs-dependent alternative electron flow was functional to avoid PSI over-reduction. This functional time of FLVs was much longer than previously thought. By comparison, CEF was highly activated within the first 10 s after transition from low to high light, which favored energy balancing rather than the regulation of a PSI redox state. When FLVs were inactivated during steady-state photosynthesis, CEF was re-activated to favor photoprotection and to sustain photosynthesis. These results provide new insight into how FLVs and CEF interact to regulate photosynthesis in non-angiosperms.
Collapse
Affiliation(s)
- Jun-Bin Cheng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jin-Song Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence:
| |
Collapse
|
30
|
Gerotto C, Trotta A, Bajwa AA, Morosinotto T, Aro EM. Role of serine/threonine protein kinase STN7 in the formation of two distinct photosystem I supercomplexes in Physcomitrium patens. PLANT PHYSIOLOGY 2022; 190:698-713. [PMID: 35736511 PMCID: PMC9434285 DOI: 10.1093/plphys/kiac294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.
Collapse
Affiliation(s)
| | | | - Azfar Ali Bajwa
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | | | | |
Collapse
|
31
|
Basso L, Sakoda K, Kobayashi R, Yamori W, Shikanai T. Flavodiiron proteins enhance the rate of CO2 assimilation in Arabidopsis under fluctuating light intensity. PLANT PHYSIOLOGY 2022; 189:375-387. [PMID: 35171289 PMCID: PMC9070813 DOI: 10.1093/plphys/kiac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 05/19/2023]
Abstract
The proton concentration gradient (ΔpH) and membrane potential (Δψ) formed across the thylakoid membrane contribute to ATP synthesis in chloroplasts. Additionally, ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen. K+ exchange antiporter 3 (KEA3) relaxes this downregulation by substituting ΔpH with Δψ in response to fluctuation of light intensity. In the Arabidopsis (Arabidopsis thaliana) line overexpressing KEA3 (KEA3ox), the rate of electron transport is elevated by accelerating the relaxation of ΔpH after a shift from high light (HL) to low light. However, the plant cannot control electron transport toward photosystem I (PSI), resulting in PSI photodamage. In this study, we crossed the KEA3ox line with the line (Flavodiiron [Flv]) expressing the Flv proteins of Physcomitrium patens. In the double transgenic line (Flv-KEA3ox), electrons overloading toward PSI were pumped out by Flv proteins. Consequently, photodamage of PSI was alleviated to the wild-type level. The rate of CO2 fixation was enhanced in Flv and Flv-KEA3ox lines during HL periods of fluctuating light, although CO2 fixation was unaffected in any transgenic lines in constant HL. Upregulation of CO2 fixation was accompanied by elevated stomatal conductance in fluctuating light. Consistent with the results of gas exchange experiments, the growth of Flv and Flv-KEA3ox plants was better than that of WT and KEA3ox plants under fluctuating light.
Collapse
Affiliation(s)
- Leonardo Basso
- Department of Botany, Graduate School of Science, Kyoto
University, Kyoto, 606-8502, Japan
| | - Kazuma Sakoda
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of
Agriculture and Life Science, University of Tokyo, Tokyo, 188-0002,
Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryouhei Kobayashi
- Department of Botany, Graduate School of Science, Kyoto
University, Kyoto, 606-8502, Japan
| | - Wataru Yamori
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of
Agriculture and Life Science, University of Tokyo, Tokyo, 188-0002,
Japan
| | | |
Collapse
|
32
|
Fitzpatrick D, Aro EM, Tiwari A. True oxygen reduction capacity during photosynthetic electron transfer in thylakoids and intact leaves. PLANT PHYSIOLOGY 2022; 189:112-128. [PMID: 35166847 PMCID: PMC9070831 DOI: 10.1093/plphys/kiac058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) are generated in electron transport processes of living organisms in oxygenic environments. Chloroplasts are plant bioenergetics hubs where imbalances between photosynthetic inputs and outputs drive ROS generation upon changing environmental conditions. Plants have harnessed various site-specific thylakoid membrane ROS products into environmental sensory signals. Our current understanding of ROS production in thylakoids suggests that oxygen (O2) reduction takes place at numerous components of the photosynthetic electron transfer chain (PETC). To refine models of site-specific O2 reduction capacity of various PETC components in isolated thylakoids of Arabidopsis thaliana, we quantified the stoichiometry of oxygen production and consumption reactions associated with hydrogen peroxide (H2O2) accumulation using membrane inlet mass spectrometry and specific inhibitors. Combined with P700 spectroscopy and electron paramagnetic resonance spin trapping, we demonstrate that electron flow to photosystem I (PSI) is essential for H2O2 accumulation during the photosynthetic linear electron transport process. Further leaf disc measurements provided clues that H2O2 from PETC has a potential of increasing mitochondrial respiration and CO2 release. Based on gas exchange analyses in control, site-specific inhibitor-, methyl viologen-, and catalase-treated thylakoids, we provide compelling evidence of no contribution of plastoquinone pool or cytochrome b6f to chloroplastic H2O2 accumulation. The putative production of H2O2 in any PETC location other than PSI is rapidly quenched and therefore cannot function in H2O2 translocation to another cellular location or in signaling.
Collapse
Affiliation(s)
- Duncan Fitzpatrick
- Department of Life Technologies, Molecular Plant Biology Unit, University of Turku, FI-20014 Turku, Finland
| | | | | |
Collapse
|
33
|
Wang H, Wang XQ, Zeng ZL, Yu H, Huang W. Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111207. [PMID: 35193751 DOI: 10.1016/j.plantsci.2022.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic induction after a sudden increase in illumination affects carbon gain. Photosynthetic dynamics under fluctuating light (FL) have been widely investigated in C3 and C4 plants but are little known in CAM plants. In our present study, the chlorophyll fluorescence, P700 redox state and electrochromic shift signals were measured to examine photosynthetic characteristics under FL in the CAM orchid Vanilla planifolia. The light use efficiency was maximized in the morning but was restricted in the afternoon, indicating that the pool of malic acid dried down in the afternoon. During photosynthetic induction in the morning, electron flow through photosystem I rapidly reached the 95% of the maximum value in 4-6 min, indicating that V. planifolia showed a fast photosynthetic induction when compared with C3 and C4 plants reported previously. Upon a sudden transition from dark to actinic light, a rapid re-oxidation of P700 was observed in V. planifolia, indicating the fast outflow of electrons from PSI to alternative electron acceptors, which was attributed to the O2 photo-reduction mediated by water-water cycle. The functioning of water-water cycle prevented photosystem I over-reduction after transitioning from low to high light and thus protected PSI under FL. In the afternoon, cyclic electron flow was stimulated under FL to fine-tune photosynthetic apparatus when photosynthetic CO2 was restricted. Therefore, water-water cycle cooperates with cyclic electron flow to regulate the photosynthesis under FL in the CAM orchid V. planifolia.
Collapse
Affiliation(s)
- Hui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
34
|
Ozaki H, Takagi D, Mizokami Y, Tokida T, Nakamura H, Sakai H, Hasegawa T, Noguchi K. Low N level increases the susceptibility of PSI to photoinhibition induced by short repetitive flashes in leaves of different rice varieties. PHYSIOLOGIA PLANTARUM 2022; 174:e13644. [PMID: 35112363 DOI: 10.1111/ppl.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Takagi
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takeshi Tokida
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | | | - Hidemitsu Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Toshihiro Hasegawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
35
|
Yang YJ, Shi Q, Sun H, Mei RQ, Huang W. Differential Response of the Photosynthetic Machinery to Fluctuating Light in Mature and Young Leaves of Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 12:829783. [PMID: 35185969 PMCID: PMC8850366 DOI: 10.3389/fpls.2021.829783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A key component of photosynthetic electron transport chain, photosystem I (PSI), is susceptible to the fluctuating light (FL) in angiosperms. Cyclic electron flow (CEF) around PSI and water-water cycle (WWC) are both used by the epiphytic orchid Dendrobium officinale to protect PSI under FL. This study examined whether the ontogenetic stage of leaf has an impact on the photoprotective mechanisms dealing with FL. Thus, chlorophyll fluorescence and P700 signals under FL were measured in D. officinale young and mature leaves. Upon transition from dark to actinic light, a rapid re-oxidation of P700 was observed in mature leaves but disappeared in young leaves, indicating that WWC existed in mature leaves but was lacking in young leaves. After shifting from low to high light, PSI over-reduction was clearly missing in mature leaves. By comparison, young leaves showed a transient PSI over-reduction within the first 30 s, which was accompanied with highly activation of CEF. Therefore, the effect of FL on PSI redox state depends on the leaf ontogenetic stage. In mature leaves, WWC is employed to avoid PSI over-reduction. In young leaves, CEF around PSI is enhanced to compensate for the lack of WWC and thus to prevent an uncontrolled PSI over-reduction induced by FL.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Qiang Mei
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
36
|
Zeng ZL, Sun H, Wang XQ, Zhang SB, Huang W. Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves. Cells 2022; 11:252. [PMID: 35053368 PMCID: PMC8773500 DOI: 10.3390/cells11020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| |
Collapse
|
37
|
Shi Q, Sun H, Timm S, Zhang S, Huang W. Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato. PLANTS 2022; 11:plants11020195. [PMID: 35050082 PMCID: PMC8780929 DOI: 10.3390/plants11020195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany;
| | - Shibao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- Correspondence:
| |
Collapse
|
38
|
Shimakawa G, Shoguchi E, Burlacot A, Ifuku K, Che Y, Kumazawa M, Tanaka K, Nakanishi S. Coral symbionts evolved a functional polycistronic flavodiiron gene. PHOTOSYNTHESIS RESEARCH 2022; 151:113-124. [PMID: 34309771 DOI: 10.1007/s11120-021-00867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/17/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Adrien Burlacot
- Aix Marseille University, CEA, CNRS, Institut de Biosciences Et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yufen Che
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Minoru Kumazawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| |
Collapse
|
39
|
Ilíková I, Ilík P, Opatíková M, Arshad R, Nosek L, Karlický V, Kučerová Z, Roudnický P, Pospíšil P, Lazár D, Bartoš J, Kouřil R. Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. PLANT PHYSIOLOGY 2021; 187:2691-2715. [PMID: 34618099 PMCID: PMC8644234 DOI: 10.1093/plphys/kiab396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 05/28/2023]
Abstract
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.
Collapse
Affiliation(s)
- Iva Ilíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of
the Region Haná for Biotechnological and Agricultural Research, 783 71
Olomouc, Czech Republic
| | - Petr Ilík
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Monika Opatíková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Lukáš Nosek
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava,
710 00 Ostrava, Czech Republic
- Global Change Research Institute of the Czech Academy of
Sciences, 603 00 Brno, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, 625
00 Brno, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of
the Region Haná for Biotechnological and Agricultural Research, 783 71
Olomouc, Czech Republic
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| |
Collapse
|
40
|
Lima-Melo Y, Kılıç M, Aro EM, Gollan PJ. Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:791124. [PMID: 34925429 PMCID: PMC8671627 DOI: 10.3389/fpls.2021.791124] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis is the process that harnesses, converts and stores light energy in the form of chemical energy in bonds of organic compounds. Oxygenic photosynthetic organisms (i.e., plants, algae and cyanobacteria) employ an efficient apparatus to split water and transport electrons to high-energy electron acceptors. The photosynthetic system must be finely balanced between energy harvesting and energy utilisation, in order to limit generation of dangerous compounds that can damage the integrity of cells. Insight into how the photosynthetic components are protected, regulated, damaged, and repaired during changing environmental conditions is crucial for improving photosynthetic efficiency in crop species. Photosystem I (PSI) is an integral component of the photosynthetic system located at the juncture between energy-harnessing and energy consumption through metabolism. Although the main site of photoinhibition is the photosystem II (PSII), PSI is also known to be inactivated by photosynthetic energy imbalance, with slower reactivation compared to PSII; however, several outstanding questions remain about the mechanisms of damage and repair, and about the impact of PSI photoinhibition on signalling and metabolism. In this review, we address the knowns and unknowns about PSI activity, inhibition, protection, and repair in plants. We also discuss the role of PSI in retrograde signalling pathways and highlight putative signals triggered by the functional status of the PSI pool.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Post-graduation Programme in Cellular and Molecular Biology (PPGBCM), Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mehmet Kılıç
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance. Cells 2021; 10:cells10113128. [PMID: 34831351 PMCID: PMC8621556 DOI: 10.3390/cells10113128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Upon a sudden transition from low to high light, electrons transported from photosystem II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating light in tomato (Solanum lycopersicum) and common mulberry (Morus alba). Under conditions of high stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low to high light. Lower stomatal conductance limited the activity of the Calvin–Benson–Bassham cycle and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-reduction after transition from low to high light for 30 s at the low stomatal conductance typical of the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion, stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.
Collapse
|
42
|
Yang YJ, Sun H, Zhang SB, Huang W. Roles of alternative electron flows in response to excess light in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111030. [PMID: 34620434 DOI: 10.1016/j.plantsci.2021.111030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Ginkgo biloba L., the only surviving species of Ginkgoopsida, is a famous relict gymnosperm, it may provide new insight into the evolution of photosynthetic mechanisms. Flavodiiron proteins (FDPs) are conserved in nonflowering plants, but the role of FDPs in gymnosperms has not yet been clarified. In particular, how gymnosperms integrate FDPs and cyclic electron transport (CET) to better adapt to excess light is poorly understood. To elucidate these questions, we measured the P700 signal, chlorophyll fluorescence and electrochromic shift signal under fluctuating and constant light in G. biloba. Within the first seconds after light increased, G. biloba could not build up a sufficient proton gradient (ΔpH). Concomitantly, photo-reduction of O2 mediated by FDPs contributed to the rapid oxidation of P700 and protected PSI under fluctuating light. Therefore, in G. biloba, FDPs mainly protect PSI under fluctuating light at acceptor side. Under constant high light, the oxidation of PSI and the induction of non-photochemical quenching were attributed to the increase in ΔpH formation, which was mainly caused by the increase in CET rather than linear electron transport. Therefore, under constant light, CET finely regulates the PSI redox state and non-photochemical quenching through ΔpH formation, protecting PSI and PSII against excess light. We conclude that, in G. biloba, FDPs are particularly important under fluctuating light while CET is essential under constant high light. The coordination of FDPs and CET fine-tune photosynthetic apparatus under excess light.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
43
|
Yamamoto H, Sato N, Shikanai T. Critical Role of NdhA in the Incorporation of the Peripheral Arm into the Membrane-Embedded Part of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2021; 62:1131-1145. [PMID: 33169158 DOI: 10.1093/pcp/pcaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with photosystem I (PSI). Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied, but it is unclear how SubA is incorporated into the membrane-embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and the membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
44
|
Lei YB, Xia HX, Chen K, Plenković-Moraj A, Huang W, Sun G. Photosynthetic regulation in response to fluctuating light conditions under temperature stress in three mosses with different light requirements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111020. [PMID: 34482921 DOI: 10.1016/j.plantsci.2021.111020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Under natural field conditions, mosses experience fluctuating light intensities combined with temperature stress. Alternative electron flow mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) around photosystem I (PSI) allow mosses to growth under fluctuating light conditions. However, little is known about the roles of FLVs and CEF in the regulation of photosynthesis under temperature stress combined with fluctuating light. Here, we measured chlorophyll fluorescence and P700 redox state under fluctuating light conditions at 4 °C, 20 °C, and 35 °C in three mosses with different light requirements. Upon a sudden increase in light intensity, electron flow from photosystem II initially increased and then gradually decreased at 20 °C and 35 °C, indicating that the operation of FLV-dependent flow lasted much longer than previously thought. Furthermore, the absolute rates of FLV-dependent flow and CEF were enhanced under fluctuating light at 35 °C, pointing to their important roles in photoprotection when exposed to fluctuating light at moderate high temperature. Furthermore, the downregulation of FLV activity at 4 °C was partially compensated for by enhanced CEF activity. These results suggested the subtle coordination between FLV activity and CEF under fluctuating light and temperature stress. Racomitrium japonicum and Hypnum plumaeforme, which usually grow under relatively high light levels, exhibited higher FLV activity and CEF than the shade-grown moss Plagiomnium ellipticum. Based on our results, we conclude that photosynthetic acclimation to fluctuating light and temperature stress in different mosses is largely linked to the adjustment of FLV activity and CEF.
Collapse
Affiliation(s)
- Yan-Bao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong-Xia Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Anđelka Plenković-Moraj
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Geng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
45
|
Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2021523118. [PMID: 33836593 PMCID: PMC7980454 DOI: 10.1073/pnas.2021523118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria have been increasingly explored as a biotechnological platform, although their economic feasibility relies in part on the capacity to maximize their photosynthetic, solar-to-biomass energy conversion efficiency. Here we show that cyanobacterial photosynthetic capacity can be increased by diverting cellular resources toward heterologous, energy-storing metabolic pathways and by reducing electron flow to photoprotective, but energy-dissipating, oxygen reduction reactions. We further show that these heterologous sinks can partially contribute to photosystem I (PSI) oxidation, suggesting an engineering strategy to improve both energy storage capacity and robustness by selective diversion of excess photosynthetic capacity to productive processes. Cyanobacteria must prevent imbalances between absorbed light energy (source) and the metabolic capacity (sink) to utilize it to protect their photosynthetic apparatus against damage. A number of photoprotective mechanisms assist in dissipating excess absorbed energy, including respiratory terminal oxidases and flavodiiron proteins, but inherently reduce photosynthetic efficiency. Recently, it has been hypothesized that some engineered metabolic pathways may improve photosynthetic performance by correcting source/sink imbalances. In the context of this subject, we explored the interconnectivity between endogenous electron valves, and the activation of one or more heterologous metabolic sinks. We coexpressed two heterologous metabolic pathways that have been previously shown to positively impact photosynthetic activity in cyanobacteria, a sucrose production pathway (consuming ATP and reductant) and a reductant-only consuming cytochrome P450. Sucrose export was associated with improved quantum yield of phtotosystem II (PSII) and enhanced electron transport chain flux, especially at lower illumination levels, while cytochrome P450 activity led to photosynthetic enhancements primarily observed under high light. Moreover, coexpression of these two heterologous sinks showed additive impacts on photosynthesis, indicating that neither sink alone was capable of utilizing the full “overcapacity” of the electron transport chain. We find that heterologous sinks may partially compensate for the loss of photosystem I (PSI) oxidizing mechanisms even under rapid illumination changes, although this compensation is incomplete. Our results provide support for the theory that heterologous metabolism can act as a photosynthetic sink and exhibit some overlapping functionality with photoprotective mechanisms, while potentially conserving energy within useful metabolic products that might otherwise be “lost.”
Collapse
|
46
|
Tan SL, Huang X, Li WQ, Zhang SB, Huang W. Elevated CO 2 Concentration Alters Photosynthetic Performances under Fluctuating Light in Arabidopsis thaliana. Cells 2021; 10:cells10092329. [PMID: 34571978 PMCID: PMC8471415 DOI: 10.3390/cells10092329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
In view of the current and expected future rise in atmospheric CO2 concentrations, we examined the effect of elevated CO2 on photoinhibition of photosystem I (PSI) under fluctuating light in Arabidopsis thaliana. At 400 ppm CO2, PSI showed a transient over-reduction within the first 30 s after transition from dark to actinic light. Under the same CO2 conditions, PSI was highly reduced after a transition from low to high light for 20 s. However, such PSI over-reduction greatly decreased when measured in 800 ppm CO2, indicating that elevated atmospheric CO2 facilitates the rapid oxidation of PSI under fluctuating light. Furthermore, after fluctuating light treatment, residual PSI activity was significantly higher in 800 ppm CO2 than in 400 ppm CO2, suggesting that elevated atmospheric CO2 mitigates PSI photoinhibition under fluctuating light. We further demonstrate that elevated CO2 does not affect PSI activity under fluctuating light via changes in non-photochemical quenching or cyclic electron transport, but rather from a rapid electron sink driven by CO2 fixation. Therefore, elevated CO2 mitigates PSI photoinhibition under fluctuating light at the acceptor rather than the donor side. Taken together, these observations indicate that elevated atmospheric CO2 can have large effects on thylakoid reactions under fluctuating light.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Wei-Qi Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| |
Collapse
|
47
|
Lodeyro AF, Krapp AR, Carrillo N. Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5919-5937. [PMID: 34111246 DOI: 10.1093/jxb/erab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Contemporary climate change is characterized by the increased intensity and frequency of environmental stress events such as floods, droughts, and heatwaves, which have a debilitating impact on photosynthesis and growth, compromising the production of food, feed, and biofuels for an expanding population. The need to increase crop productivity in the context of global warming has fueled attempts to improve several key plant features such as photosynthetic performance, assimilate partitioning, and tolerance to environmental stresses. Chloroplast redox metabolism, including photosynthetic electron transport and CO2 reductive assimilation, are primary targets of most stress conditions, leading to excessive excitation pressure, photodamage, and propagation of reactive oxygen species. Alterations in chloroplast redox poise, in turn, provide signals that exit the plastid and modulate plant responses to the environmental conditions. Understanding the molecular mechanisms involved in these processes could provide novel tools to increase crop yield in suboptimal environments. We describe herein various interventions into chloroplast redox networks that resulted in increased tolerance to multiple sources of environmental stress. They included manipulation of endogenous components and introduction of electron carriers from other organisms, which affected not only stress endurance but also leaf size and longevity. The resulting scenario indicates that chloroplast redox pathways have an important impact on plant growth, development, and defense that goes beyond their roles in primary metabolism. Manipulation of these processes provides additional strategies for the design of crops with improved performance under destabilized climate conditions as foreseen for the future.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
48
|
Havurinne V, Handrich M, Antinluoma M, Khorobrykh S, Gould SB, Tyystjärvi E. Genetic autonomy and low singlet oxygen yield support kleptoplast functionality in photosynthetic sea slugs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5553-5568. [PMID: 33989402 PMCID: PMC8318255 DOI: 10.1093/jxb/erab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
The kleptoplastic sea slug Elysia chlorotica consumes Vaucheria litorea, stealing its plastids, which then photosynthesize inside the animal cells for months. We investigated the properties of V. litorea plastids to understand how they withstand the rigors of photosynthesis in isolation. Transcription of specific genes in laboratory-isolated V. litorea plastids was monitored for 7 days. The involvement of plastid-encoded FtsH, a key plastid maintenance protease, in recovery from photoinhibition in V. litorea was estimated in cycloheximide-treated cells. In vitro comparison of V. litorea and spinach thylakoids was applied to investigate reactive oxygen species formation in V. litorea. In comparison to other tested genes, the transcripts of ftsH and translation elongation factor EF-Tu (tufA) decreased slowly in isolated V. litorea plastids. Higher levels of FtsH were also evident in cycloheximide-treated cells during recovery from photoinhibition. Charge recombination in PSII of V. litorea was found to be fine-tuned to produce only small quantities of singlet oxygen, and the plastids also contained reactive oxygen species-protective compounds. Our results support the view that the genetic characteristics of the plastids are crucial in creating a photosynthetic sea slug. The plastid's autonomous repair machinery is likely enhanced by low singlet oxygen production and elevated expression of FtsH.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maria Handrich
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mikko Antinluoma
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sven B Gould
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Esa Tyystjärvi
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
- Correspondence:
| |
Collapse
|
49
|
Engineering Climate-Change-Resilient Crops: New Tools and Approaches. Int J Mol Sci 2021; 22:ijms22157877. [PMID: 34360645 PMCID: PMC8346029 DOI: 10.3390/ijms22157877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world's population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.
Collapse
|
50
|
Cruz JA, Avenson TJ. Photosynthesis: a multiscopic view. JOURNAL OF PLANT RESEARCH 2021; 134:665-682. [PMID: 34170422 DOI: 10.1007/s10265-021-01321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A recurring analogy for photosynthesis research is the fable of the blind men and the elephant. Photosynthesis has many complex working parts, which has driven the need to study each of them individually, with an inherent understanding that a more complete picture will require systematic integration of these views. However, unlike the blind men, who are limited to using their hands, researchers have developed over the past decades a repertoire of methods for studying these components, many of which capitalize on unique features intrinsic to each. More recent concerns about food security and clean, renewable energy have increased support for applied photosynthesis research, with the idea of either improving photosynthetic performance as a desired trait in select species or using photosynthetic measurements as a phenotyping tool in breeding efforts or for high precision crop management. In this review, we spotlight the migration of approaches for studying photosynthesis from the laboratory into field environments, highlight some recent advances and speculate on areas where further development would be fruitful, with an eye towards how applied photosynthesis research can have impacts at local and global scales.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Plant Research Laboratories, Michigan State University, 612 Wilson Road, MI, S-206, Lansing, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, USA.
| | - Thomas J Avenson
- Department of Plant Sciences, University of Cambridge, CB2 9EW, Cambridge, UK
| |
Collapse
|