1
|
Pereira-Moura L, Viana CG, Juen L, Couceiro SRM. Dark diversity of Odonata in Amazonian streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176556. [PMID: 39341233 DOI: 10.1016/j.scitotenv.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The biological diversity of a region may not be fully sampled due to the low abundance or rarity of species, or the absence of species determined by their niche specificity. Investigating these species is essential for understanding the unrealized ecological potential in different habitats, identifying gaps in local and regional communities, and gaining a better understanding of the impacts of environmental changes. Therefore, to expand knowledge about the diversity of Odonata in Eastern Amazonia considering the absent species, we tested the hypotheses that: 1) Environmental variables will influence dark diversity, with greater explanation by canopy cover where sites with lower canopy cover will have higher dark diversity values, and; 2) Functional traits associated with better species dispersal will be correlated with low dark diversity of Odonata, such as larger and wider wings for example. For this, adult Odonata specimens were sampled, while structural habitat characteristics and physical and chemical water variables were measured in 128 first- to third-order streams in the Eastern Amazon. Morphological and behavioral data were recorded for each specimen. Generalized linear models were applied to predict the effects of habitat structural characteristics and physical and chemical water variables on the dark diversity of Odonata. Additionally, we assessed which functional traits contribute most to the variation of dark diversity within these communities. Habitat structural features and physical and chemical water variables had no effect on dark diversity. Morphological traits, such as body conformation, with species having narrower wings, longer hind wings, narrower thoraxes, and shorter abdomens, comprised most of the dark diversity. The dispersal limitations of some Odonata species strongly suggest the role of space and time in nature planning and management.
Collapse
Affiliation(s)
- Lucas Pereira-Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BioNorte, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil; Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil.
| | - Carolina Gomes Viana
- Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| | - Leandro Juen
- Laboratório de Ecologia e Conservação-LABECO, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Rua Antônio Côrrea, 1, Belém, Pará, Brasil
| | - Sheyla Regina Marques Couceiro
- Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| |
Collapse
|
2
|
Krasnov BR, Vinarski MV, Korallo-Vinarskaya NP, Khokhlova IS, Grabovsky VI. Parasite traits, host traits, and environment as determinants of dark diversity affinity in flea and gamasid mite assemblages from the Palearctic. Parasitol Res 2024; 123:396. [PMID: 39589555 PMCID: PMC11599333 DOI: 10.1007/s00436-024-08408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
A species set in a site comprises species that are present (realized diversity) and species that could inhabit this site but are absent (dark diversity; DD). DD can be both species-driven (a species' traits preclude its presence, independently of site features) and site-driven (site features preclude the species' presence, independently of its traits). DD affinity (DDA) is a measure of species' tendencies to be absent from sites that they could inhabit or of sites' tendencies to lack species that could be present. Decomposition of DDA into DDA for species (ddasp) and for sites (ddasite) allows (a) disentangling these two mechanisms and (b) detecting species traits and site features contributing to their DDA. The species-site unified model is a Bayesian statistical model aimed at simultaneously estimating ddasp and ddasite. We applied it to flea and mite assemblages (a) within a host species across regions (component metacommunities; CtM; ddasite = ddaregion) and (b) within a region across host species (compound metacommunities; CdM, ddasite = ddahost). In CtMs, ddasp and ddaregion equally contributed to DD, whereas the relative contributions of ddasp and ddahost to DD in CdMs varied from the former being higher than the latter and vice versa. In CtM and CdM, ddasp increased in low-abundance ectoparasites exploiting a restricted number of hosts. In CtMs, ddaregion was associated with the regional environment, but we failed to find host traits affecting ddahost in CdMs. We conclude that ectoparasite species and either regions in CtMs or host species in CdMs independently contribute to DD.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel.
| | - Maxim V Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - Natalia P Korallo-Vinarskaya
- Laboratory of Parasitology, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Vasily I Grabovsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
3
|
Olanipon D, Boeraeve M, Jacquemyn H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. MYCORRHIZA 2024; 34:271-282. [PMID: 38850289 DOI: 10.1007/s00572-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Collapse
Affiliation(s)
- Damilola Olanipon
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
| | - Margaux Boeraeve
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, UAntwerpen, Antwerpen, Belgium
| | - Hans Jacquemyn
- Biology Department, KU Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium
| |
Collapse
|
4
|
Metzler P, Ksiazek-Mikenas K, Chaudhary VB. Tracking arbuscular mycorrhizal fungi to their source: active inoculation and passive dispersal differentially affect community assembly in urban soils. THE NEW PHYTOLOGIST 2024; 242:1814-1824. [PMID: 38294152 DOI: 10.1111/nph.19526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Communities of arbuscular mycorrhizal (AM) fungi assemble passively over time via biotic and abiotic mechanisms. In degraded soils, AM fungal communities can assemble actively when humans manage mycorrhizas for ecosystem restoration. We investigated mechanisms of urban AM fungal community assembly in a 2-yr green roof experiment. We compared AM fungal communities in inoculated and uninoculated trays to samples from two potential sources: the inoculum and air. Active inoculation stimulated more distinct and diverse AM fungal communities, an effect that intensified over time. In the treatment trays, 45% of AM fungal taxa were detected in the inoculum, 2% were detected in aerial samples, 23% were detected in both inoculum and air, and 30% were not detected in either source. Passive dispersal of AM fungi likely resulted in the successful establishment of a small number of species, but active inoculation with native AM fungal species resulted in an immediate shift to a diverse and unique fungal community. When urban soils are constructed or modified by human activity, this is an opportunity for intervention with AM fungi that will persist and add diversity to that system.
Collapse
Affiliation(s)
- Paul Metzler
- Environmental Studies Department, Dartmouth College, Hanover, NH, 03755, USA
| | | | - V Bala Chaudhary
- Environmental Studies Department, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Šibanc N, Clark DR, Helgason T, Dumbrell AJ, Maček I. Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi. mSystems 2024; 9:e0133123. [PMID: 38376262 PMCID: PMC10949450 DOI: 10.1128/msystems.01331-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.
Collapse
Affiliation(s)
- Nataša Šibanc
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of forest physiology and genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Dave R. Clark
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Institute for Analytics and Data Science, University of Essex, Colchester, United Kingdom
| | - Thorunn Helgason
- Department of Biology, University of York, York, United Kingdom
- Institute for Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Alex J. Dumbrell
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Irena Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Sepp SK, Vasar M, Davison J, Oja J, Anslan S, Al-Quraishy S, Bahram M, Bueno CG, Cantero JJ, Fabiano EC, Decocq G, Drenkhan R, Fraser L, Garibay Oriel R, Hiiesalu I, Koorem K, Kõljalg U, Moora M, Mucina L, Öpik M, Põlme S, Pärtel M, Phosri C, Semchenko M, Vahter T, Vasco Palacios AM, Tedersoo L, Zobel M. Global diversity and distribution of nitrogen-fixing bacteria in the soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1100235. [PMID: 36743494 PMCID: PMC9895822 DOI: 10.3389/fpls.2023.1100235] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.
Collapse
Affiliation(s)
- Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Juan José Cantero
- Universidad Nacional de Córdoba, Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Universidad Nacional de Río Cuarto, Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Córdoba, Argentina
| | | | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR CNRS 7058), Jules Verne University of Picardie, Amiens, France
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Roberto Garibay Oriel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Perth, Australia
- Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Aida M. Vasco Palacios
- Grupo de Microbiología Ambiental y Grupo BioMicro, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Leho Tedersoo
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Rasmussen PU, Abrego N, Roslin T, Öpik M, Sepp S, Blanchet FG, Huotari T, Hugerth LW, Tack AJM. Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the High Arctic. THE NEW PHYTOLOGIST 2022; 236:671-683. [PMID: 35751540 PMCID: PMC9796444 DOI: 10.1111/nph.18342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.
Collapse
Affiliation(s)
- Pil U. Rasmussen
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
- The National Research Centre for the Working Environment105 Lersø ParkalléDK‐2100CopenhagenDenmark
| | - Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
- Department of EcologySwedish University of Agricultural SciencesBox 7044UppsalaSE‐750 07Sweden
| | - Maarja Öpik
- Department of BotanyUniversity of Tartu40 Lai StreetTartu51005Estonia
| | - Siim‐Kaarel Sepp
- Department of BotanyUniversity of Tartu40 Lai StreetTartu51005Estonia
| | - F. Guillaume Blanchet
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
- Département de Mathématiques, Faculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke3001 12 Avenue NordSherbrookeQCJ1H 5N4Canada
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
| | - Luisa W. Hugerth
- Department of Molecular, Tumor and Cell Biology, Science for Life Laboratory, Center for Translational Microbiome ResearchKarolinska InstitutetSE‐171 65SolnaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
8
|
Koziol L, Bauer JT, Duell EB, Hickman K, House G, Schultz PA, Tipton AG, Wilson GWT, Bever J. Manipulating plant microbiomes in the field: Native mycorrhizae advance plant succession and improve native plant restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liz Koziol
- Kansas Biological Station University of Kansas Lawrence KS USA
| | | | | | | | | | | | - Alice G. Tipton
- Kansas Biological Station University of Kansas Lawrence KS USA
- St. Louis University St. Louis MO USA
| | | | - James D. Bever
- Kansas Biological Station University of Kansas Lawrence KS USA
| |
Collapse
|
9
|
Goss-Souza D, Tsai SM, Rodrigues JLM, Klauberg-Filho O, Sousa JP, Baretta D, Mendes LW. Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek 2022; 115:1129-1150. [DOI: 10.1007/s10482-022-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
10
|
Fei S, Kivlin SN, Domke GM, Jo I, LaRue EA, Phillips RP. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. THE NEW PHYTOLOGIST 2022; 234:1960-1966. [PMID: 35014033 DOI: 10.1111/nph.17954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
First principles predict that diversity at one trophic level often begets diversity at other levels, suggesting plant and mycorrhizal fungal diversity should be coupled. Local-scale studies have shown positive coupling between the two, but the association is less consistent when extended to larger spatial and temporal scales. These inconsistencies are likely due to divergent relationships of different mycorrhizal fungal guilds to plant diversity, scale dependency, and a lack of coordinated sampling efforts. Given that mycorrhizal fungi play a central role in plant productivity and nutrient cycling, as well as ecosystem responses to global change, an improved understanding of the coupling between plant and mycorrhizal fungal diversity across scales will reduce uncertainties in predicting the ecosystem consequences of species gains and losses.
Collapse
Affiliation(s)
- Songlin Fei
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Stephanie N Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Grant M Domke
- United States Department of Agriculture Forest Service, Northern Research Station, 1992 Folwell Ave., St. Paul, MN, 55108, USA
| | - Insu Jo
- Manaaki Whenua - Landcare Research, 54 Gerald St., Lincoln, 7608, New Zealand
| | - Elizabeth A LaRue
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 East Third St., Bloomington, IN, 47405, USA
| |
Collapse
|
11
|
Perez‐Lamarque B, Öpik M, Maliet O, Afonso Silva AC, Selosse M, Martos F, Morlon H. Analysing diversification dynamics using barcoding data: The case of an obligate mycorrhizal symbiont. Mol Ecol 2022; 31:3496-3512. [PMID: 35451535 PMCID: PMC9321572 DOI: 10.1111/mec.16478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
Analysing diversification dynamics is key to understanding the past evolutionary history of clades that led to present-day biodiversity patterns. While such analyses are widespread in well-characterized groups of species, they are much more challenging in groups for which diversity is mostly known through molecular techniques. Here, we use the largest global database on the small subunit (SSU) rRNA gene of Glomeromycotina, a subphylum of microscopic arbuscular mycorrhizal fungi that provide mineral nutrients to most land plants by forming one of the oldest terrestrial symbioses, to analyse the diversification dynamics of this clade in the past 500 million years. We perform a range of sensitivity analyses and simulations to control for potential biases linked to the nature of the data. We find that Glomeromycotina tend to have low speciation rates compared to other eukaryotes. After a peak of speciations between 200 and 100 million years ago, they experienced an important decline in speciation rates toward the present. Such a decline could be at least partially related to a shrinking of their mycorrhizal niches and to their limited ability to colonize new niches. Our analyses identify patterns of diversification in a group of obligate symbionts of major ecological and evolutionary importance and illustrate that short molecular markers combined with intensive sensitivity analyses can be useful for studying diversification dynamics in microbial groups.
Collapse
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | | | - Odile Maliet
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| | - Ana C. Afonso Silva
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- University of LilleCNRS, UMR 8198 ‐ Evo‐Eco‐PaleoLilleFrance
| | - Marc‐André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | - Hélène Morlon
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| |
Collapse
|
12
|
Vasar M, Davison J, Sepp SK, Oja J, Al-Quraishy S, Bueno CG, Cantero JJ, Fabiano EC, Decocq G, Fraser L, Hiiesalu I, Hozzein WN, Koorem K, Moora M, Mucina L, Onipchenko V, Öpik M, Pärtel M, Phosri C, Vahter T, Tedersoo L, Zobel M. Global taxonomic and phylogenetic assembly of AM fungi. MYCORRHIZA 2022; 32:135-144. [PMID: 35138435 DOI: 10.1007/s00572-022-01072-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are a ubiquitous group of plant symbionts, yet processes underlying their global assembly - in particular the roles of dispersal limitation and historical drivers - remain poorly understood. Because earlier studies have reported niche conservatism in AM fungi, we hypothesized that variation in taxonomic community composition (i.e., unweighted by taxon relatedness) should resemble variation in phylogenetic community composition (i.e., weighted by taxon relatedness) which reflects ancestral adaptations to historical habitat gradients. Because of the presumed strong dispersal ability of AM fungi, we also anticipated that the large-scale structure of AM fungal communities would track environmental conditions without regional discontinuity. We used recently published AM fungal sequence data (small-subunit ribosomal RNA gene) from soil samples collected worldwide to reconstruct global patterns in taxonomic and phylogenetic community variation. The taxonomic structure of AM fungal communities was primarily driven by habitat conditions, with limited regional differentiation, and there were two well-supported clusters of communities - occurring in cold and warm conditions. Phylogenetic structure was driven by the same factors, though all relationships were markedly weaker. This suggests that niche conservatism with respect to habitat associations is weakly expressed in AM fungal communities. We conclude that the composition of AM fungal communities tracks major climatic and edaphic gradients, with the effects of dispersal limitation and historic factors considerably less apparent than those of climate and soil.
Collapse
Affiliation(s)
- Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia.
| | - John Davison
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Siim-Kaarel Sepp
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Jane Oja
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Juan José Cantero
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Agrícola, Facultad de Agronomía Y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés, Jules Verne University of Picardie, Amiens, France
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Inga Hiiesalu
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Kadri Koorem
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia
- Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonosov State University, Moscow, Russia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Meelis Pärtel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Tanel Vahter
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 2 Liivi St, 50409, Tartu, Estonia
| | - Leho Tedersoo
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Dark host specificity in two ectoparasite taxa: repeatability, parasite traits, and environmental effects. Parasitol Res 2022; 121:851-866. [PMID: 35137286 DOI: 10.1007/s00436-022-07461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
We applied the concept of dark diversity (species that may potentially inhabit a locality but are absent) to the host spectrum of a parasite and defined it as dark host specificity (DHS). We studied the trait-associated and geographic patterns of dark host specificity in fleas and gamasid mites parasitic on small mammals, asking the following questions: (a) Is dark host specificity repeatable across populations of the same species? (b) Is it associated with morphological and/or ecological species traits? (c) What are the factors associated with geographical variation in the DHS among populations of the same species? The DHS was repeatable within species with a large proportion of variance among samples, accounted for by differences between species. The average DHS of fleas, but not mites, was affected by parasite traits, with the DHS being higher in fleas with larger geographic ranges, higher characteristic abundance levels, and summer reproduction peaks. In the majority of ectoparasites, the regional DHS decreased with an increase in either structural or phylogenetic host specificity. The associations between the DHS and the environmental or host-associated characteristics of a region were revealed in a few species (eight of 22 fleas and three of 12 mites). The DHS decreased with (a) an increase in air temperature in two fleas, (b) a decrease in precipitation in two fleas, and (c) an increase in regional host species richness (in three fleas and three mites). Overall, our results suggest that dark host specificity in arthropod ectoparasites is a species-specific character associated, to a large extent, with the breadth of their host-related niches, while the influences of parasite traits and local environmental conditions are minor.
Collapse
|
14
|
Albornoz FE, Ryan MH, Bending GD, Hilton S, Dickie IA, Gleeson DB, Standish RJ. Agricultural land-use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. THE NEW PHYTOLOGIST 2022; 233:1369-1382. [PMID: 34618929 DOI: 10.1111/nph.17780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 05/26/2023]
Abstract
Globally, agricultural land-use negatively affects soil biota that contribute to ecosystem functions such as nutrient cycling, yet arbuscular mycorrhizal fungi (AMF) are promoted as essential components of agroecosystems. Arbuscular mycorrhizal fungi include Glomeromycotinian AMF (G-AMF) and the arbuscule-producing fine root endophytes, recently re-classified into the Endogonales order within Mucoromycotina. The correct classification of Mucoromycotinian AMF (M-AMF) and the availability of new molecular tools can guide research to better the understanding of their diversity and ecology. To investigate the impact on G-AMF and M-AMF of agricultural land-use at a continental scale, we sampled DNA from paired farm and native sites across 10 Australian biomes. Glomeromycotinian AMF were present in both native and farm sites in all biomes. Putative M-AMF were favoured by farm sites, rare or absent in native sites, and almost entirely absent in tropical biomes. Temperature, rainfall, and soil pH were strong drivers of richness and community composition of both groups, and plant richness was an important mediator. Both fungal groups occupy different, but overlapping, ecological niches, with M-AMF thriving in temperate agricultural landscapes. Our findings invite exploration of the origin and spread of M-AMF and continued efforts to resolve the phylogeny of this newly reclassified group of AMF.
Collapse
Affiliation(s)
- Felipe E Albornoz
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Wembley, WA, 6913, Australia
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Megan H Ryan
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Science, University of Canterbury, Christchurch, 8041, New Zealand
| | - Deirdre B Gleeson
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Rachel J Standish
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
15
|
Ceola G, Goss-Souza D, Alves J, Alves da Silva A, Stürmer SL, Baretta D, Sousa JP, Klauberg-Filho O. Biogeographic Patterns of Arbuscular Mycorrhizal Fungal Communities Along a Land-Use Intensification Gradient in the Subtropical Atlantic Forest Biome. MICROBIAL ECOLOGY 2021; 82:942-960. [PMID: 33656687 DOI: 10.1007/s00248-021-01721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.
Collapse
Affiliation(s)
- Gessiane Ceola
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Dennis Goss-Souza
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Joana Alves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Sidney Luiz Stürmer
- Departament of Natural Sciences, Regional University of Blumenau, Blumenau, SC, 89030-903, Brazil
| | - Dilmar Baretta
- Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil.
- Agroveterinary Centre, Santa Catarina State University, Av. Luis de Camões, 2090, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
16
|
Krasnov BR, Shenbrot GI, Khokhlova IS. Dark diversity of flea assemblages of small mammalian hosts: effects of environment, host traits and host phylogeny. Int J Parasitol 2021; 52:157-167. [PMID: 34560075 DOI: 10.1016/j.ijpara.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
An assemblage of species in a locality comprises two components, namely (i) species that are present (realised diversity) and (ii) species from the regional pool that may potentially inhabit this locality due to suitable ecological conditions, but that are absent (dark diversity). We investigated factors affecting the dark diversity of component communities of fleas parasitic on small mammals in the northern Palearctic at two scales. First, we considered the dark diversity of flea assemblages of the same host (for 13 host species) across regions and tested for the effects of environmental factors and the number of available host species on the dark diversity of within-region flea assemblages. Second, we considered the dark diversity of fleas across host species within a region (for 20 regions) and asked whether within-host dark diversity is associated with host phylogeny and/or traits. We found that the dark diversity of flea assemblages harboured by small mammals varied substantially (i) within the same host species across space (in 12 of 13 host species) and (ii) between host species within a region (in eight of 20 regions). The size of the dark diversity of flea assemblages of the same host across regions was generally affected by environmental factors (mainly by the amount of green vegetation), whereas the size of the dark diversity of flea assemblages of a host species within a region was affected by host traits (mainly by the degree of host sociality and the structure of its shelter and, to a lesser degree, by its geographic range size) but was not associated with host phylogenetic affinities. We conclude that application of the dark diversity concept to parasite communities across space or hosts allows a better understanding of the factors affecting the species richness and composition of these communities.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
17
|
Yamauchi DH, Garcia Garces H, Teixeira MDM, Rodrigues GFB, Ullmann LS, Garcia Garces A, Hebeler-Barbosa F, Bagagli E. Soil Mycobiome Is Shaped by Vegetation and Microhabitats: A Regional-Scale Study in Southeastern Brazil. J Fungi (Basel) 2021; 7:587. [PMID: 34436126 PMCID: PMC8396882 DOI: 10.3390/jof7080587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls' and armadillos' burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls' burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities' structures.
Collapse
Affiliation(s)
- Danielle Hamae Yamauchi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Hans Garcia Garces
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Marcus de Melo Teixeira
- Center for Tropical Medicine, Faculty of Medicine, University of Brasília (UnB), Brasília 70910-900, DF, Brazil;
| | - Gabriel Fellipe Barros Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil;
| | - Leila Sabrina Ullmann
- Institute for Biotechnology, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18607-440, SP, Brazil;
| | - Adalberto Garcia Garces
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| | - Flavia Hebeler-Barbosa
- Laboratory of Molecular Biology, Medical School, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-687, SP, Brazil;
| | - Eduardo Bagagli
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University ‘Júlio de Mesquita Filho’, Botucatu 18618-689, SP, Brazil; (H.G.G.); (A.G.G.)
| |
Collapse
|
18
|
Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova AA, Alatalo JM, Al-Quraishy S, Andriyanova E, Anslan S, Bahram M, Batbaatar A, Brown C, Bueno CG, Cahill J, Cantero JJ, Casper BB, Cherosov M, Chideh S, Coelho AP, Coghill M, Decocq G, Dudov S, Fabiano EC, Fedosov VE, Fraser L, Glassman SI, Helm A, Henry HAL, Hérault B, Hiiesalu I, Hiiesalu I, Hozzein WN, Kohout P, Kõljalg U, Koorem K, Laanisto L, Mander Ü, Mucina L, Munyampundu JP, Neuenkamp L, Niinemets Ü, Nyamukondiwa C, Oja J, Onipchenko V, Pärtel M, Phosri C, Põlme S, Püssa K, Ronk A, Saitta A, Semboli O, Sepp SK, Seregin A, Sudheer S, Peña-Venegas CP, Paz C, Vahter T, Vasar M, Veraart AJ, Tedersoo L, Zobel M, Öpik M. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2021; 231:763-776. [PMID: 33507570 DOI: 10.1111/nph.17240] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
- School of Earth and Environmental Sciences, University of Manchester, Manchester,, M13 9PL, UK
| | | | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha, 2713, Qatar
| | - Asem A Akhmetzhanova
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonsov State University, Moscow, 119991, Russia
| | - Juha M Alatalo
- Environmental Science Centre, Qatar University, Doha, 2713, Qatar
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Elena Andriyanova
- Institute of Biological Problems of the North Far East Branch of Russian Academy of Sciences, Magadan, 685000, Russia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 756 51, Sweden
| | - Amgaa Batbaatar
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Charlotte Brown
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - James Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Juan José Cantero
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, Córdoba, X5000HUA, Argentina
- Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Brenda B Casper
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Mikhail Cherosov
- Institute of Biological Problems of the Cryolithozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, 677000, Russia
| | - Saida Chideh
- Département de Recherche en Sciences de l'Environnement, Université de Djibouti, Private bag 1904, Djibouti, Djibouti
| | - Ana P Coelho
- Department of Biology and CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Matthew Coghill
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés, Jules Verne University of Picardie, Amiens, F-80037, France
| | - Sergey Dudov
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonsov State University, Moscow, 119991, Russia
| | - Ezequiel Chimbioputo Fabiano
- Department of Wildlife Management and Ecotourism, University of Namibia, Private bag 1096, Katima Mulilo, Namibia
| | - Vladimir E Fedosov
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonsov State University, Moscow, 119991, Russia
- Botanical Garden-Institute FEB RAS, Vladivostok, 690024, Russia
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Sydney I Glassman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, 34000, France
- Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| | - Indrek Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suwayf, 62511, Egypt
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Science, Prague, 14220, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 12843, Czechia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Lauri Laanisto
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, WA, 6150, Australia
- Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Jean-Pierre Munyampundu
- School of Science, College of Science and Technology, University of Rwanda, Kigali, 3900, Rwanda
| | - Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
- Institute of Plant Sciences, University of Bern, Bern, 3013, Switzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private bag 16, Palapye, Botswana
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonsov State University, Moscow, 119991, Russia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
- Natural History Museum, University of Tartu, Tartu, 51014, Estonia
| | - Kersti Püssa
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Argo Ronk
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, 90128, Italy
| | - Olivia Semboli
- Center of Studies and Research on Pharmacopoeia and Traditional African Medicine, University of Bangui, Bangui, Central African Republic
| | - Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Alexey Seregin
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonsov State University, Moscow, 119991, Russia
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Clara P Peña-Venegas
- Instituto Amazónico de Investigaciones Científicas Sinchi, Leticia, Amazonas, 910001, Colombia
| | - Claudia Paz
- Departamento de Biodiversidade, Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, 6525AJ, the Netherlands
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, University of Tartu, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| |
Collapse
|
19
|
Valdez JW, Brunbjerg AK, Fløjgaard C, Dalby L, Clausen KK, Pärtel M, Pfeifer N, Hollaus M, Wimmer MH, Ejrnæs R, Moeslund JE. Relationships between macro-fungal dark diversity and habitat parameters using LiDAR. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Sepp S, Davison J, Moora M, Neuenkamp L, Oja J, Roslin T, Vasar M, Öpik M, Zobel M. Woody encroachment in grassland elicits complex changes in the functional structure of above‐ and belowground biota. Ecosphere 2021. [DOI: 10.1002/ecs2.3512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Siim‐Kaarel Sepp
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - John Davison
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Mari Moora
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Lena Neuenkamp
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Jane Oja
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences P.O. Box 7044 UppsalaSE 756 51Sweden
| | - Martti Vasar
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Maarja Öpik
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| | - Martin Zobel
- Department of Botany University of Tartu Lai Street 40 TartuEE 51005Estonia
| |
Collapse
|
21
|
Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, Beals KK, Sheldon KS, Kivlin SN. The Utility of Macroecological Rules for Microbial Biogeography. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.633155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology.
Collapse
|
22
|
Johnson NC, Gibson KS. Understanding Multilevel Selection May Facilitate Management of Arbuscular Mycorrhizae in Sustainable Agroecosystems. FRONTIERS IN PLANT SCIENCE 2021; 11:627345. [PMID: 33574827 PMCID: PMC7870699 DOI: 10.3389/fpls.2020.627345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/08/2023]
Abstract
Studies in natural ecosystems show that adaptation of arbuscular mycorrhizal (AM) fungi and other microbial plant symbionts to local environmental conditions can help ameliorate stress and optimize plant fitness. This local adaptation arises from the process of multilevel selection, which is the simultaneous selection of a hierarchy of groups. Studies of multilevel selection in natural ecosystems may inform the creation of sustainable agroecosystems through developing strategies to effectively manage crop microbiomes including AM symbioses. Field experiments show that the species composition of AM fungal communities varies across environmental gradients, and that the biomass of AM fungi and their benefits for plants generally diminish when fertilization and irrigation eliminate nutrient and water limitations. Furthermore, pathogen protection by mycorrhizas is only important in environments prone to plant damage due to pathogens. Consequently, certain agricultural practices may inadvertently select for less beneficial root symbioses because the conventional agricultural practices of fertilization, irrigation, and use of pesticides can make these symbioses superfluous for optimizing crop performance. The purpose of this paper is to examine how multilevel selection influences the flow of matter, energy, and genetic information through mycorrhizal microbiomes in natural and agricultural ecosystems, and propose testable hypotheses about how mycorrhizae may be actively managed to increase agricultural sustainability.
Collapse
Affiliation(s)
- Nancy Collins Johnson
- School of Earth & Sustainability, Northern Arizona University, Flagstaff, AZ, United States
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Kara Skye Gibson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
23
|
Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms 2021; 9:microorganisms9020229. [PMID: 33499315 PMCID: PMC7912695 DOI: 10.3390/microorganisms9020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts cover a significant proportion of the Earth’s surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.
Collapse
|
24
|
Zhang Z, Zhang J, Jiao S. Fungi show broader environmental thresholds in wet than dry agricultural soils with distinct biogeographic patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141761. [PMID: 32877788 DOI: 10.1016/j.scitotenv.2020.141761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
It is critical to establish response thresholds for fungal communities to global environmental change and assess the relationship between fungal diversity and nutrient cycling in soils. However, these have not yet been evaluated in agro-ecosystems. Here we report the findings of a survey across eastern China on the soil fungi and physicochemical properties in adjacent maize and rice fields. The results revealed a wider range of environmental thresholds for soil fungi in rice than maize fields. We found that the dominant fungal taxa only accounted for 0.6% of all taxa, but constituted >50% of total fungi. Based on their habitat preferences, distinct distribution maps between maize and rice fields were constructed, which indicated niche differentiation of soil fungi between dry and waterlogged soils. Rice fields showed higher fungal richness in low latitude regions, consistent with latitudinal richness patterns found in natural terrestrial ecosystems; however, no such trend was observed in maize fields. Fungal richness was positively correlated with nutrient cycling in rice soils and fungal beta diversity with nutrient cycling in maize soils. These findings provide response thresholds for fungal community change across environmental gradients, advancing our understanding of soil fungal diversity patterns in agricultural ecosystems. Differences between wetland and dryland should be taken into consideration when formulating sustainable management plans and baselines for assessments of future global change and resilience of agricultural fields.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
孙 兴. Dynamics of Forest Soil Globulin under the Background of Deforestation Disturbance: A Review. INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.12677/ije.2021.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
27
|
Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M, Buscot F, Overmann J, Patoine G, Phillips HRP, Winter M, Wubet T, Küsel K, Bardgett RD, Cameron EK, Cowan D, Grebenc T, Marín C, Orgiazzi A, Singh BK, Wall DH, Eisenhauer N. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 2020; 11:3870. [PMID: 32747621 PMCID: PMC7400591 DOI: 10.1038/s41467-020-17688-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Soils harbor a substantial fraction of the world's biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Collapse
Affiliation(s)
- Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108, Halle(Saale), Germany.
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Nathaly Guerrero-Ramírez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Léa Beaumelle
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Fernando T Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain.,Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Helen R P Phillips
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Braunschweig, Germany
| | - Kirsten Küsel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Straße 159, 07743, Jena, Germany
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Erin K Cameron
- Department of Environmental Science, Saint Mary's University, Halifax, NS, Canada
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - César Marín
- Instituto de Ciencias Agronómicas y Veterinarias, Universidad de O'Higgins, Rancagua, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | | - Brajesh K Singh
- Hawkesbury Institute for the environment, Western Sydney University, Penrith, NSW, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana H Wall
- School of Global Environmental Sustainability and Department of Biology, Colorado State University, Fort Collins, CO, 80523-1036, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Ontivero RE, Voyron S, Allione LVR, Bianco P, Bianciotto V, Iriarte HJ, Lugo MA, Lumini E. Impact of land use history on the arbuscular mycorrhizal fungal diversity in arid soils of Argentinean farming fields. FEMS Microbiol Lett 2020; 367:5869666. [PMID: 32648900 DOI: 10.1093/femsle/fnaa114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are a key soil functional group, with an important potential to increase crop productivity and sustainable agriculture including food security. However, there is clear evidence that land uses, crop rotations and soil features affect the AMF diversity and their community functioning in many agroecosystems. So far, the information related to AMF biodiversity in ecosystems like the Argentinean Puna, an arid high plateau where plants experience high abiotic stresses, is still scarce. In this work, we investigated morphological and molecular AMF diversity in soils of native corn, bean and native potato Andean crops, under a familiar land use, in Chaupi Rodeo (Jujuy, Argentina), without agrochemical supplements but with different histories of crop rotation. Our results showed that AMF morphological diversity was not only high and variable among the three different crop soils but also complemented by Illumina MiSeq data. The multivariate analyses highlighted that total fungal diversity is significantly affected by the preceding crop plants and the rotation histories, more than from the present crop species, while AMF communities are significantly affected by preceding crop only in combination with the effect of nitrogen and calcium soil concentration. This knowledge will give useful information on appropriate familiar farming.
Collapse
Affiliation(s)
- R Emanuel Ontivero
- Grupo de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, D5700ANW San Luis, Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), UNSL, Almirante Brown 907, D5700ANW San Luis, Argentina
| | - Samuele Voyron
- Institute for Sustainable Plant Protection (IPSP-CNR) and Department of Life Sciences and Systems Biology, University of Turin (DiBIOS), Viale P.A. Mattioli, 25, I-10125 Turin, Italy
| | - Lucía V Risio Allione
- Grupo de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, D5700ANW San Luis, Argentina.,Laboratorio de Dasonomía, Facultad de Ingeniería en Cs. Agropecuarias (FICA), Universidad Nacional de San Luis (UNSL), Ruta Provincial 55. D5730 Villa Mercedes, San Luis, Argentina
| | - Paolo Bianco
- Institute for Sustainable Plant Protection (IPSP-CNR) and Department of Life Sciences and Systems Biology, University of Turin (DiBIOS), Viale P.A. Mattioli, 25, I-10125 Turin, Italy
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP-CNR) and Department of Life Sciences and Systems Biology, University of Turin (DiBIOS), Viale P.A. Mattioli, 25, I-10125 Turin, Italy
| | - Hebe J Iriarte
- Grupo de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, D5700ANW San Luis, Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), UNSL, Almirante Brown 907, D5700ANW San Luis, Argentina
| | - Mónica A Lugo
- Grupo de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, D5700ANW San Luis, Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), UNSL, Almirante Brown 907, D5700ANW San Luis, Argentina
| | - Erica Lumini
- Institute for Sustainable Plant Protection (IPSP-CNR) and Department of Life Sciences and Systems Biology, University of Turin (DiBIOS), Viale P.A. Mattioli, 25, I-10125 Turin, Italy
| |
Collapse
|
29
|
Trindade DPF, Carmona CP, Pärtel M. Temporal lags in observed and dark diversity in the Anthropocene. GLOBAL CHANGE BIOLOGY 2020; 26:3193-3201. [PMID: 32282128 DOI: 10.1111/gcb.15093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding biodiversity changes in the Anthropocene (e.g. due to climate and land-use change) is an urgent ecological issue. This important task is challenging because global change effects and species responses are dependent on the spatial scales considered. Furthermore, responses are often not immediate. However, both scale and time delay issues can be tackled when, at each study site, we consider dynamics in both observed and dark diversity. Dark diversity includes those species in the region that can potentially establish and thrive in the local sites' conditions but are currently locally absent. Effectively, dark diversity connects biodiversity at the study site to the regional scales and defines the site-specific species pool (observed and dark diversity together). With dark diversity, it is possible to decompose species gains and losses into two space-related components: one associated with local dynamics (species moving from observed to dark diversity and vice versa) and another related to gains and losses of site-specific species pool (species moving to and from the pool after regional immigration, regional extinction or change in local ecological conditions). Extinction debt and immigration credit are useful to understand dynamics in observed diversity, but delays might happen in species pool changes as well. In this opinion piece we suggest that considering both observed and dark diversity and their temporal dynamics provides a deeper understanding of biodiversity changes. Considering both observed and dark diversity creates opportunities to improve conservation by allowing to identify species that are likely to go regionally extinct as well as foreseeing which of the species that newly arrive to the region are more likely to colonize local sites. Finally, by considering temporal lags and species gains and losses in observed and dark diversity, we combine phenomena at both spatial and temporal scales, providing a novel tool to examine biodiversity change in the Anthropocene.
Collapse
Affiliation(s)
- Diego P F Trindade
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Fløjgaard C, Valdez JW, Dalby L, Moeslund JE, Clausen KK, Ejrnæs R, Pärtel M, Brunbjerg AK. Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecol Evol 2020; 10:6078-6088. [PMID: 32607214 PMCID: PMC7319157 DOI: 10.1002/ece3.6351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Species richness is the most commonly used metric to quantify biodiversity. However, examining dark diversity, the group of missing species which can potentially inhabit a site, can provide a more thorough understanding of the processes influencing observed biodiversity and help evaluate the restoration potential of local habitats. So far, dark diversity has mainly been studied for specific habitats or large-scale landscapes, while less attention has been given to variation across broad environmental gradients or as a result of local conditions and biotic interactions. In this study, we investigate the importance of local environmental conditions in determining dark diversity and observed richness in plant communities across broad environmental gradients. Using the ecospace concept, we investigate how these biodiversity measures relate to abiotic gradients (defined as position), availability of biotic resources (defined as expansion), spatiotemporal extent of habitats (defined as continuity), and species interactions through competition. Position variables were important for both observed diversity and dark diversity, some with quadratic relationships, for example, plant richness showing a unimodal response to soil fertility corresponding to the intermediate productivity hypothesis. Interspecific competition represented by community mean Grime C had a negative effect on plant species richness. Besides position-related variables, organic carbon was the most important variable for dark diversity, indicating that in late-succession habitats such as forests and shrubs, dark diversity is generally low. The importance of highly competitive species indicates that intermediate disturbance, such as grazing, may facilitate higher species richness and lower dark diversity.
Collapse
Affiliation(s)
| | - Jose W. Valdez
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | - Lars Dalby
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | | | | | - Rasmus Ejrnæs
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | - Meelis Pärtel
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | |
Collapse
|
31
|
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng Y, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, Vahter T, Winck B, Öpik M. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. THE NEW PHYTOLOGIST 2020; 226:1117-1128. [PMID: 31943225 DOI: 10.1111/nph.16423] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
The benefits of the arbuscular mycorrhizal (AM) symbiosis between plants and fungi are modulated by the functional characteristics of both partners. However, it is unknown to what extent functionally distinct groups of plants naturally associate with different AM fungi. We reanalysed 14 high-throughput sequencing data sets describing AM fungal communities associating with plant individuals (2427) belonging to 297 species. We examined how root-associating AM fungal communities varied between plants with different growth forms, photosynthetic pathways, CSR (competitor, stress-tolerator, ruderal) strategies, mycorrhizal statuses and N-fixing statuses. AM fungal community composition differed in relation to all studied plant functional groups. Grasses, C4 and nonruderal plants were characterised by high AM fungal alpha diversity, while C4 , ruderal and obligately mycorrhizal plants were characterised by high beta diversity. The phylogenetic diversity of AM fungi, a potential surrogate for functional diversity, was higher among forbs than other plant growth forms. Putatively ruderal (previously cultured) AM fungi were disproportionately associated with forbs and ruderal plants. There was phylogenetic correlation among AM fungi in the degree of association with different plant growth forms and photosynthetic pathways. Associated AM fungal communities constitute an important component of plant ecological strategies. Functionally different plants associate with distinct AM fungal communities, linking mycorrhizal associations with functional diversity in ecosystems.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - David García de León
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Spain
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
- College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Milagros Barceló
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Maret Gerz
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Daniela León
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Valerio D Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, 9500, Porto Alegre, 91501-970, Brazil
| | - Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Nadejda A Soudzilovaskaia
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Stijn Vaessen
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Bruna Winck
- Department of Ecology, Universidade Federal do Rio Grande do Sul, 9500, Porto Alegre, 91501-970, Brazil
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
32
|
Pellegrino E, Gamper HA, Ciccolini V, Ercoli L. Forage Rotations Conserve Diversity of Arbuscular Mycorrhizal Fungi and Soil Fertility. Front Microbiol 2020; 10:2969. [PMID: 31998261 PMCID: PMC6962183 DOI: 10.3389/fmicb.2019.02969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
In the Mediterranean, long-term impact of typical land uses on soil fertility have not been quantified yet on replicated mixed crop-livestock farms and considering the variability of soil texture. Here, we report the effects, after 15 years of practice, of two legume-winter cereal rotations, olive orchards and vineyards on microbiological and chemical indicators of soil fertility and the communities of arbuscular mycorrhizal fungi (AMF). We compare the changes among these four agricultural land-use types to woodland reference sites. Root colonization by AMF of English ryegrass (Lolium perenne L.), a grass that occurred under all land use types, was only half as heavy in biannual berseem clover (Trifolium alexandrinum L.)-winter cereal rotations than in 4-year alfalfa (Medicago sativa L.)-winter cereal rotations. In olive (Olea europaea L.) orchards and vineyards (Vitis vinifera L.), where weeds are controlled by frequent surface tillage, the AMF root colonization of ryegrass was again much lower than in the legume-cereal rotations and at the woodland reference sites. All the microbial parameters and soil organic carbon correlated most strongly with differences in occurrence and relative abundance (β-diversity) of AMF genera in soil. The soil pH and mineral nutrients in soil strongly correlated with differences in AMF root colonization and AMF genus richness (α-diversity) in soil. Diversity of AMF was much less affected by soil texture than land use, while the opposite was true for microbial and chemical soil fertility indicators. Land uses that guaranteed a continuous ground cover of herbaceous plants and that involved only infrequent tillage, such as multiyear alfalfa-winter cereal rotation, allowed members of the AMF genus Scutellospora to persist and remain abundant. On the contrary, under land uses accompanied by frequent tillage and hence discontinuous presence of herbaceous plants, such as tilled olive orchard and vineyard, members of the genus Funneliformis dominated. These results suggest that multiyear alfalfa-winter cereal rotation with active plant growth throughout the year is the least detrimental agricultural land use in soil carbon and AMF abundance and diversity, relative to the woodland reference.
Collapse
Affiliation(s)
- Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hannes A. Gamper
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Laura Ercoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
33
|
Stevens BM, Propster JR, Öpik M, Wilson GWT, Alloway SL, Mayemba E, Johnson NC. Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. MYCORRHIZA 2020; 30:79-95. [PMID: 31970495 DOI: 10.1007/s00572-020-00931-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/10/2020] [Indexed: 05/14/2023]
Abstract
This study explores the relationships of AM fungal abundance and diversity with biotic (host plant, ungulate grazing) and abiotic (soil properties, precipitation) factors in the Serengeti National Park, Tanzania. Soil and root samples were collected from grazed and ungrazed plots at seven sites across steep soil fertility and precipitation gradients. AM fungal abundance in the soil was estimated from the density of spores and the concentration of a fatty acid biomarker. Diversity of AM fungi in roots and soils was measured using DNA sequencing and spore identification. AM fungal abundance in soil decreased with grazing and precipitation and increased with soil phosphorus. The community composition of AM fungal DNA in roots and soils differed. Root samples had more AM fungal indicator species associated with biotic factors (host plant species and grazing), and soil samples had more indicator species associated with particular sample sites. These findings suggest that regional edaphic conditions shape the site-level species pool from which plant species actively select root-colonizing fungal assemblages modified by grazing. Combining multiple measurements of AM fungal abundance and community composition provides the most informed assessment of the structure of mycorrhizal fungal communities in natural ecosystems.
Collapse
Affiliation(s)
- Bo Maxwell Stevens
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jeffrey Ryan Propster
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sara Lynne Alloway
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | | - Nancy Collins Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
34
|
Pyšek P, Guo W, Štajerová K, Moora M, Bueno CG, Dawson W, Essl F, Gerz M, Kreft H, Pergl J, van Kleunen M, Weigelt P, Winter M, Zobel M. Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere 2019. [DOI: 10.1002/ecs2.2937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 Prague 2 CZ‐128 44 Czech Republic
| | - Wen‐Yong Guo
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Bioscience Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Aarhus University Aarhus C 8000 Denmark
- Section for Ecoinformatics & Biodiversity Department of Biosciences Aarhus University Aarhus C 8000 Denmark
| | - Kateřina Štajerová
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 Prague 2 CZ‐128 44 Czech Republic
| | - Mari Moora
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - Wayne Dawson
- Department of Biosciences Durham University South Road Durham DH1 3LE UK
| | - Franz Essl
- Division of Conservation Biology, Vegetation and Landscape Ecology Department of Botany and Biodiversity Research University Vienna Wien 1030 Austria
| | - Maret Gerz
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Jan Pergl
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology University of Konstanz Universitätsstrasse 10 Konstanz D‐78464 Germany
- Zhejiang Provincial KeyLaboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou 318000 China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e Leipzig 04103 Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Lai 40 Tartu 51005 Estonia
| |
Collapse
|
35
|
Noreika N, Helm A, Öpik M, Jairus T, Vasar M, Reier Ü, Kook E, Riibak K, Kasari L, Tullus H, Tullus T, Lutter R, Oja E, Saag A, Randlane T, Pärtel M. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. OIKOS 2019. [DOI: 10.1111/oik.06693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Norbertas Noreika
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Aveliina Helm
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Maarja Öpik
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Teele Jairus
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Martti Vasar
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Ülle Reier
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Ene Kook
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Kersti Riibak
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Liis Kasari
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Hardi Tullus
- Inst. of Forestry and Rural Engineering, Estonian Univ. of Life Sciences Tartu Estonia
| | - Tea Tullus
- Inst. of Forestry and Rural Engineering, Estonian Univ. of Life Sciences Tartu Estonia
| | - Reimo Lutter
- Inst. of Forestry and Rural Engineering, Estonian Univ. of Life Sciences Tartu Estonia
| | - Ede Oja
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Andres Saag
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Tiina Randlane
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| | - Meelis Pärtel
- Inst. of Ecology and Earth Sciences, Univ. of Tartu Lai 40 EE‐51005 Tartu Estonia
| |
Collapse
|
36
|
Wang P, Chen Y, Sun Y, Tan S, Zhang S, Wang Z, Zhou J, Zhang G, Shu W, Luo C, Kuang J. Distinct Biogeography of Different Fungal Guilds and Their Associations With Plant Species Richness in Forest Ecosystems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Ye JS, Delgado-Baquerizo M, Soliveres S, Maestre FT. Multifunctionality debt in global drylands linked to past biome and climate. GLOBAL CHANGE BIOLOGY 2019; 25:2152-2161. [PMID: 30924573 DOI: 10.1111/gcb.14631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Past vegetation and climatic conditions are known to influence current biodiversity patterns. However, whether their legacy effects affect the provision of multiple ecosystem functions, that is, multifunctionality, remains largely unknown. Here we analyzed soil nutrient stocks and their transformation rates in 236 drylands from six continents to evaluate the associations between current levels of multifunctionality and legacy effects of the Last Glacial Maximum (LGM) desert biome distribution and climate. We found that past desert distribution and temperature legacy, defined as increasing temperature from LGM, were negatively correlated with contemporary multifunctionality even after accounting for predictors such as current climate, soil texture, plant species richness, and site topography. Ecosystems that have been deserts since the LGM had up to 30% lower contemporary multifunctionality compared with those that were nondeserts during the LGM. In addition, ecosystems that experienced higher warming rates since the LGM had lower contemporary multifunctionality than those suffering lower warming rates, with a ~9% reduction per extra degree Celsius. Past desert distribution and temperature legacies had direct negative effects, while temperature legacy also had indirect (via soil sand content) negative effects on multifunctionality. Our results indicate that past biome and climatic conditions have left a strong "functionality debt" in global drylands. They also suggest that ongoing warming and expansion of desert areas may leave a strong fingerprint in the future functioning of dryland ecosystems worldwide that needs to be considered when establishing management actions aiming to combat land degradation and desertification.
Collapse
Affiliation(s)
- Jian-Sheng Ye
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, Spain
| | - Santiago Soliveres
- Departamento de Ecología, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
| | - Fernando T Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, Spain
| |
Collapse
|
38
|
Lovera M, Cuenca G, Lau P, Mavárez J. Ecology and Biogeography of Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae in La Gran Sabana Region (Guayana Shield), Venezuela. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Overview of the Mycorrhizal Fungi in South America. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
41
|
Toju H, Sato H, Yamamoto S, Tanabe AS. Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant-fungus networks. BMC PLANT BIOLOGY 2018; 18:292. [PMID: 30463525 PMCID: PMC6249749 DOI: 10.1186/s12870-018-1500-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Below-ground linkage between plant and fungal communities is one of the major drivers of terrestrial ecosystem dynamics. However, we still have limited knowledge of how such plant-fungus associations vary in their community-scale properties depending on fungal functional groups and geographic locations. METHODS By compiling a high-throughput sequencing dataset of root-associated fungi in eight forests along the Japanese Archipelago, we performed a comparative analysis of arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic associations across a latitudinal gradient from cool-temperate to subtropical regions. RESULTS In most of the plant-fungus networks analyzed, host-symbiont associations were significantly specialized but lacked "nested" architecture, which has been commonly reported in plant-pollinator and plant-seed disperser networks. In particular, the entire networks involving all functional groups of plants and fungi and partial networks consisting of ectomycorrhizal plant and fungal species/taxa displayed "anti-nested" architecture (i.e., negative nestedness scores) in many of the forests examined. Our data also suggested that geographic factors affected the organization of plant-fungus network structure. For example, the southernmost subtropical site analyzed in this study displayed lower network-level specificity of host-symbiont associations and higher (but still low) nestedness than northern localities. CONCLUSIONS Our comparative analyses suggest that arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic plant-fungus associations often lack nested network architecture, while those associations can vary, to some extent, in their community-scale properties along a latitudinal gradient. Overall, this study provides a basis for future studies that will examine how different types of plant-fungus associations collectively structure terrestrial ecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501 Japan
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Kyoto, 606-8502 Japan
| | - Akifumi S. Tanabe
- Faculty of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| |
Collapse
|
42
|
Stürmer SL, Bever JD, Morton JB. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. MYCORRHIZA 2018; 28:587-603. [PMID: 30187122 DOI: 10.1007/s00572-018-0864-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Information on the biogeography of arbuscular mycorrhizal fungi (AMF) is important because this group of obligately symbiotic soil microbes is a ubiquitous and functionally critical component of terrestrial ecosystems. In this paper, we utilize a biogeography database summarizing data on AMF species distribution linked to geographic and environmental conditions to describe global distribution patterns and interpret these patterns within a phylogenetic perspective. The data were obtained from accessions in living culture collections (INVAM, CICG), species descriptions, and other published literature from 1960 to 2012. The database contains 7105 records, 6396 of them from 768 published papers and the remaining 709 from culture accessions. Glomeromycotan species were recorded in all seven continents, 87 countries, 11 biogeographical realms, and 14 biomes. The distribution of families differed among climatic zones and continents, but they, together with all genera, appear to be cosmopolitan. Distribution of AMF species shows a slight decrease from low to high latitudes, but this decrease is steeper in the southern than in the northern hemisphere. A total of 189 species is shared between ancient supercontinents Gondwana and Laurasia and 78 species are common to all climatic zones. Ninety-five species (43% of the total) have known cosmopolitan distribution, including members of all genera except Redeckera. Some species have disjunct distribution and 26% of species have been registered from only one continent. Data on AMF distribution challenge the "Everything is everywhere" hypothesis in favor of the "moderate endemicity model" for species distribution. Data from this study provide a foundation to formulate and test hypotheses of biogeographic patterns and processes in Glomeromycota.
Collapse
Affiliation(s)
- Sidney L Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, SC, 89030-903, Brazil.
| | - James D Bever
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, The University of Kansas, Lawrence, KS, 66047, USA
| | - Joseph B Morton
- West Virginia University, 1090 Agricultural Sciences Building, Morgantown, WV, 26506, USA
| |
Collapse
|
43
|
Delgado-Baquerizo M, Eldridge DJ, Travers SK, Val J, Oliver I, Bissett A. Effects of climate legacies on above- and belowground community assembly. GLOBAL CHANGE BIOLOGY 2018; 24:4330-4339. [PMID: 29750385 DOI: 10.1111/gcb.14306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The role of climatic legacies in regulating community assembly of above- and belowground species in terrestrial ecosystems remains largely unexplored and poorly understood. Here, we report on two separate regional and continental empirical studies, including >500 locations, aiming to identify the relative importance of climatic legacies (climatic anomaly over the last 20,000 years) compared to current climates in predicting the relative abundance of ecological clusters formed by species strongly co-occurring within two independent above- and belowground networks. Climatic legacies explained a significant portion of the variation in the current community assembly of terrestrial ecosystems (up to 15.4%) that could not be accounted for by current climate, soil properties, and management. Changes in the relative abundance of ecological clusters linked to climatic legacies (e.g., past temperature) showed the potential to indirectly alter other clusters, suggesting cascading effects. Our work illustrates the role of climatic legacies in regulating ecosystem community assembly and provides further insights into possible winner and loser community assemblies under global change scenarios.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | - David J Eldridge
- Office of Environment and Heritage, Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Samantha K Travers
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James Val
- Office of Environment and Heritage, Buronga, NSW, Australia
| | - Ian Oliver
- Office of Environment and Heritage, Gosford, NSW, Australia
| | | |
Collapse
|
44
|
Arbuscular mycorrhizal fungal communities in tropical rain forest are resilient to slash-and-burn agriculture. JOURNAL OF TROPICAL ECOLOGY 2018. [DOI: 10.1017/s0266467418000184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Certain forestry and agricultural practices are known to affect arbuscular mycorrhizal (AM) fungal communities, but the effects of deforestation – including slash-and-burn management and other more severe disturbances – in tropical rain forests are poorly understood. We addressed the effects of anthropogenic disturbance on rain-forest AM fungal communities in French Guiana, by comparing mature tropical rain forest, slash-and-burn (5 y old) and clearcut areas (8 y old). A total of 36 soil samples were collected in six plots and sequenced using a high throughput 454-pyrosequencing platform. A total of 32649 sequences from 103 AM fungal virtual taxa (VT) were recorded. Whereas alpha diversity of AM fungi did not decrease due to land-use intensification, with average richness ranging from 17 to 21 taxa per plot, beta diversity (average distance to multivariate centroid) dropped by 28% from 0.46 in rain forest to 0.33 under clearcutting. AM fungal community composition was correlated with land use and soil chemical properties. Clearcut areas were characterized by the more frequent occurrence of specialist AM fungi, compared with mature forest or slash-and-burn areas. Specifically, clearcuts contained the highest proportions of VT that were geographic (21%), habitat (31%), abundance (97%) or host (97%) specialists based on VT metadata contained in the MaarjAM database. This suggests that certain AM fungi with narrow ecological niches have traits that allow them to exploit conditions of severe disturbance. In conclusion, slash-and-burn management appears to allow diverse AM fungal communities to persist, and may favour regeneration of tropical rain forest after abandonment. More severe disturbance in the form of clearcutting resulted in marked changes in AM fungal communities.
Collapse
|