1
|
Karakas E, Bulut M, Fernie A. Metabolome guided treasure hunt - learning from metabolic diversity. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154494. [PMID: 40288107 DOI: 10.1016/j.jplph.2025.154494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Metabolomics is a rapidly evolving field focused on the comprehensive identification and quantification of small molecules in biological systems. As the final layer of the biological hierarchy following of the genome, transcriptome and proteome, it presents a dynamic snapshot of phenotype, influenced by genetic, environmental and physiological factors. Whilst the metabolome sits downstream of genes and proteins, there are multiple higher levels-tissues, organs, the entire organism, and interactions with other organisms, which need to be considered in order to fully comprehend organismal biology. Advances in metabolomics continue to expand its applications in plant biology, biotechnology, and natural product discovery unlocking many of nature's most beneficial colors, tastes, nutrients and medicines. Flavonoids and other specialized metabolites are essential for plant defense against oxidative stress and function as key phytonutrients for human health. Recent advancements in gene-editing and metabolic engineering have significantly improved the nutritional value and flavor of crop plants. Here we highlight how advanced metabolic analysis is driving improvements in crops uncovering genes that influence nutrient and flavor profile and plant derived compounds with medicinal potential.
Collapse
Affiliation(s)
- Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany.
| |
Collapse
|
2
|
Gong X, Li Y, Liu L, Fu J, He Z, Li L, Tian W. Ferulic acid concentration in 233 maize inbreds and its processing stability in selected high-ferulic-acid lines. Food Chem 2025; 484:144333. [PMID: 40250218 DOI: 10.1016/j.foodchem.2025.144333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Unlike wheat and rice, which are typically consumed as refined grains, maize is typically consumed in whole-grain forms, making it an ideal source of whole-grain phytochemicals. This study explored the genetic diversity and processing stability of ferulic acid concentration (FAC) in 233 diverse maize inbred lines. Substantial variation in FAC was observed, ranging from 1174.7 to 4811.0 μg/g. Selected high-FAC lines demonstrated consistent FAC across five environments. FAC was not significantly correlated with kernel weight, suggesting the feasibility of producing high-FAC maize without compromising yield. More importantly, common food-processing methods such as boiling, porridge-making, and popcorn-making had minimal impact on FAC, even with slight increases observed in popcorn. These findings highlight the potential of whole grain maize as a source of natural antioxidants and lay the groundwork for developing nutritionally enhanced maize for functional food applications.
Collapse
Affiliation(s)
- Xue Gong
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuan Li
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Li Liu
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Cereal Quality Testing Center/ Laboratory of Quality Evaluation and Nutrition Health of Agro-products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jindong Fu
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Cereal Quality Testing Center/ Laboratory of Quality Evaluation and Nutrition Health of Agro-products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Wenfei Tian
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
von Steimker J, Tripodi P, Wendenburg R, Tringovska I, Nankar AN, Stoeva V, Pasev G, Klemmer A, Todorova V, Bulut M, Tikunov Y, Bovy A, Gechev T, Kostova D, Fernie AR, Alseekh S. The genetic architecture of the pepper metabolome and the biosynthesis of its signature capsianoside metabolites. Curr Biol 2024; 34:4209-4223.e3. [PMID: 39197460 DOI: 10.1016/j.cub.2024.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome. This genetic analysis provided over 1,000 metabolic quantitative trait loci (mQTL) for over 250 annotated metabolites. We identified 92 candidate genes involved in various mQTLs. Among the identified loci, we described and validated a gene cluster of eleven UDP-glycosyltransferases (UGTs) involved in monomeric capsianoside biosynthesis. We additionally constructed the gene-by-gene-based biosynthetic pathway of pepper capsianoside biosynthesis, including both core and decorative reactions. Given that one of these decorative pathways, namely the glycosylation of acyclic diterpenoid glycosides, contributes to plant resistance, these data provide new insights and breeding resources for pepper. They additionally provide a blueprint for the better understanding of the biosynthesis of species-specific natural compounds in general.
Collapse
Affiliation(s)
- Julia von Steimker
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | - Regina Wendenburg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Amol N Nankar
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Veneta Stoeva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Gancho Pasev
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Velichka Todorova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., Plovdiv 4000, Bulgaria
| | - Dimitrina Kostova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| |
Collapse
|
4
|
Dickerson H, Diab A, Al Musaimi O. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer: Current Use and Future Prospects. Int J Mol Sci 2024; 25:10008. [PMID: 39337496 PMCID: PMC11432255 DOI: 10.3390/ijms251810008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as a leading targeted cancer therapy, reducing the side effects often seen with non-targeted treatments, especially the damage to healthy cells. To tackle resistance, typically caused by epidermal growth factor receptor (EGFR) mutations, four generations of TKIs have been developed. Each generation has shown improved effectiveness and fewer side effects, resulting in better patient outcomes. For example, patients on gefitinib, a first-generation TKI, experienced a progression-free survival (PFS) of 10 months compared to 5 months with conventional chemotherapy. Second-generation TKI afatinib outperformed erlotinib and extended PFS to 11.1 months compared to 6.9 months with cisplatin. Third-generation TKIs further increased survival to 38.6 months, compared to 31.8 months with first-generation TKIs. This progress demonstrates the ability of newer TKIs to overcome resistance, particularly the T790M mutation, while reducing adverse effects. Ongoing research focuses on overcoming resistance from newer mutations like C797S to further improve patient survival. These developments highlight the significant progress in TKI therapy and the continued effort to refine cancer treatment. Recent research in South Korea shows that third-generation TKIs are ineffective against non-small cell lung cancer (NSCLC) with the C797S mutation. Several trials have started showing promising in vitro and in vivo results, but more trials are needed before clinical approval. This review underscores notable advancements in the field of EGFR TKIs, offering a comprehensive analysis of their mechanisms of action and the progression of various TKI generations in response to resistance.
Collapse
Affiliation(s)
- Henry Dickerson
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ahmad Diab
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Sharma V, Chib S, Kumari D, Singh K, Saran S, Singh D. Chromatographic fingerprinting of epiphytic fungal strains isolated from Withania somnifera and biological evaluation of isolated okaramine H. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5943-5953. [PMID: 39114899 DOI: 10.1039/d4ay00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Medicinal plants are "goldmines" of natural products, and continue to provide key scaffolds for drug development. They have immense therapeutic potential, encapsulating a plethora of metabolites within them, which have yet to be explored. Withania somnifera (L.) Dunal is one such medicinal plant known since time immemorial for its therapeutic activity in the Ayurveda system of medicine. Studies have revealed Nature's marvel of these medicinal plants harbouring endophytic and epiphytic microorganisms from phyllosphere to rhizosphere. Chromatographic fingerprinting was carried out using HPTLC and HPLC on five epiphytic strains isolated from the leaves, stem and fruits of Withania somnifera. Out of five filamentous fungi, one fungus identified as Aspergillus aculeatus S20 was well explored. An indole alkaloid, okaramine H, was isolated using systematic chromatographic investigation at a retention time of 26.278 min showing λmax at 206, 236, 284 and 370 nm. Confirmation was achieved using NMR and mass spectrometry (MS) as analytical techniques. Structure elucidation was done by studying the fragmentation pattern using MS/MS and an accurate mass was determined using HR-ESI-QTOF-MS showing m/z of 521.2546 [M + H]+. The percentage purity of isolated okaramine H was found to be >90. Well known for its insecticidal activity, okaramine H was explored for its antileishmanial activity against the Leishmania donovani parasite for the first time. Under in vitro conditions, the compound showed an inhibitory effect on Leishmania donovani promastigotes with an IC50 of 147 μg mL-1.
Collapse
Affiliation(s)
- Vandana Sharma
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shifali Chib
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Singh
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India.
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Campos MT, Maia LF, Popović-Djordjević J, Edwards HG, de Oliveira LF. Ripening process in exocarps of scarlet eggplant ( Solanum aethiopicum) and banana ( Musa spp.) investigated by Raman spectroscopy. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100204. [PMID: 38659653 PMCID: PMC11039347 DOI: 10.1016/j.fochms.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
In this work, we used Raman spectroscopy to identify compounds present at different maturation stages of the exocarp of scarlet eggplant and two banana cultivars, 'prata' and 'nanica'. Raman spectral analyses of both fruits showed bands attributed to phenolic acids, flavonoids, carotenoids, and fatty acids. During the scarlet eggplant's maturation process, Raman spectral profile changes are mainly observed in the carotenoid content rather than flavonoids. Furthermore, it is suggested that naringenin chalcone together with β-carotene determines the orange-red color of the ripe stage. Variations in chemical composition among the maturation stages of bananas were observed predominantly in 'prata' when compared to 'nanica'. In contrast to scarlet eggplant changes in the spectral profile were more evident in the content of the flavonoid/phenolic acids. The in situ analysis was demonstrated to be useful as a guide in selecting bioactive compounds on demand from low-cost horticultural waste.
Collapse
Affiliation(s)
- Mariana T.C. Campos
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| | - Lenize F. Maia
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| | - Jelena Popović-Djordjević
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Howell G.M. Edwards
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Luiz F.C. de Oliveira
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| |
Collapse
|
7
|
Chen J, Zhang Y, Wei J, Hu X, Yin H, Liu W, Li D, Tian W, Hao Y, He Z, Fernie AR, Chen W. Beyond pathways: Accelerated flavonoids candidate identification and novel exploration of enzymatic properties using combined mapping populations of wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2033-2050. [PMID: 38408119 PMCID: PMC11182594 DOI: 10.1111/pbi.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Although forward-genetics-metabolomics methods such as mGWAS and mQTL have proven effective in providing myriad loci affecting metabolite contents, they are somehow constrained by their respective constitutional flaws such as the hidden population structure for GWAS and insufficient recombinant rate for QTL. Here, the combination of mGWAS and mQTL was performed, conveying an improved statistical power to investigate the flavonoid pathways in common wheat. A total of 941 and 289 loci were, respectively, generated from mGWAS and mQTL, within which 13 of them were co-mapped using both approaches. Subsequently, the mGWAS or mQTL outputs alone and their combination were, respectively, utilized to delineate the metabolic routes. Using this approach, we identified two MYB transcription factor encoding genes and five structural genes, and the flavonoid pathway in wheat was accordingly updated. Moreover, we have discovered some rare-activity-exhibiting flavonoid glycosyl- and methyl-transferases, which may possess unique biological significance, and harnessing these novel catalytic capabilities provides potentially new breeding directions. Collectively, we propose our survey illustrates that the forward-genetics-metabolomics approaches including multiple populations with high density markers could be more frequently applied for delineating metabolic pathways in common wheat, which will ultimately contribute to metabolomics-assisted wheat crop improvement.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Yazhouwan National LaboratorySanyaChina
| | - Yueqi Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Jiaqi Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Wuhan Academy of Agricultural SciencesWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Wenfei Tian
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
8
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
9
|
Yin B, Jia J, Sun X, Hu X, Ao M, Liu W, Tian Z, Liu H, Li D, Tian W, Hao Y, Xia X, Sade N, Brotman Y, Fernie AR, Chen J, He Z, Chen W. Dynamic metabolite QTL analyses provide novel biochemical insights into kernel development and nutritional quality improvement in common wheat. PLANT COMMUNICATIONS 2024; 5:100792. [PMID: 38173227 PMCID: PMC11121174 DOI: 10.1016/j.xplc.2024.100792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
Despite recent advances in crop metabolomics, the genetic control and molecular basis of the wheat kernel metabolome at different developmental stages remain largely unknown. Here, we performed widely targeted metabolite profiling of kernels from three developmental stages (grain-filling kernels [FKs], mature kernels [MKs], and germinating kernels [GKs]) using a population of 159 recombinant inbred lines. We detected 625 annotated metabolites and mapped 3173, 3143, and 2644 metabolite quantitative trait loci (mQTLs) in FKs, MKs, and GKs, respectively. Only 52 mQTLs were mapped at all three stages, indicating the high stage specificity of the wheat kernel metabolome. Four candidate genes were functionally validated by in vitro enzymatic reactions and/or transgenic approaches in wheat, three of which mediated the tricin metabolic pathway. Metabolite flux efficiencies within the tricin pathway were evaluated, and superior candidate haplotypes were identified, comprehensively delineating the tricin metabolism pathway in wheat. Finally, additional wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidate genes identified in this study. Our work provides new information on variations in the wheat kernel metabolome and important molecular resources for improvement of wheat nutritional quality.
Collapse
Affiliation(s)
- Bo Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xu Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfei Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nir Sade
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yariv Brotman
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572025, China.
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
10
|
Shi L, Li Y, Lin M, Liang Y, Zhang Z. Profiling the Bioactive Compounds in Broccoli Heads with Varying Organ Sizes and Growing Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:1329. [PMID: 38794399 PMCID: PMC11125000 DOI: 10.3390/plants13101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Menghua Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Ying Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
11
|
Zhang C, Sha Y, Wang Q, Liu J, Zhang P, Cheng S, Qin P. Integrative metabolome and transcriptome profiling provide insights into elucidation of the synthetic mechanisms of phenolic compounds in Yunnan hulled wheat (Triticum aestivum ssp. yunnanense King). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4109-4127. [PMID: 38308467 DOI: 10.1002/jsfa.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanli Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- College of Tropical Crops, Yunnan Agricultural University, Kunming, China
| | - Yun Sha
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shunhe Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Jiangshu Lixiahe Institue of Agriculture Science, Yangzhou, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Du Y, Ma H, Liu Y, Gong R, Lan Y, Zhao J, Liu G, Lu Y, Wang S, Jia H, Li N, Zhang R, Wang J, Sun G. Major quality regulation network of flavonoid synthesis governing the bioactivity of black wolfberry. THE NEW PHYTOLOGIST 2024; 242:558-575. [PMID: 38396374 DOI: 10.1111/nph.19602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Black wolfberry (Lycium ruthenicum Murr.) contains various bioactive metabolites represented by flavonoids, which are quite different among production regions. However, the underlying regulation mechanism of flavonoid biosynthesis governing the bioactivity of black wolfberry remains unclear. Presently, we compared the bioactivity of black wolfberry from five production regions. Multi-omics were performed to construct the regulation network associated with the fruit bioactivity. The detailed regulation mechanisms were identified using genetic and molecular methods. Typically, Qinghai (QH) fruit exhibited higher antioxidant and anti-inflammatory activities. The higher medicinal activity of QH fruit was closely associated with the accumulation of eight flavonoids, especially Kaempferol-3-O-rutinoside (K3R) and Quercetin-3-O-rutinoside (rutin). Flavonoid biosynthesis was found to be more active in QH fruit, and the upregulation of LrFLS, LrCHS, LrF3H and LrCYP75B1 caused the accumulation of K3R and rutin, leading to high medicinal bioactivities of black wolfberry. Importantly, transcription factor LrMYB94 was found to regulate LrFLS, LrCHS and LrF3H, while LrWRKY32 directly triggered LrCYP75B1 expression. Moreover, LrMYB94 interacted with LrWRKY32 to promote LrWRKY32-regulated LrCYP75B1 expression and rutin synthesis in black wolfberry. Transgenic black wolfberry overexpressing LrMYB94/LrWRKY32 contained higher levels of K3R and rutin, and exhibited high medicinal bioactivities. Importantly, the LrMYB94/LrWRKY32-regulated flavonoid biosynthesis was light-responsive, showing the importance of light intensity for the medicinal quality of black wolfberry. Overall, our results elucidated the regulation mechanisms of K3R and rutin synthesis, providing the basis for the genetic breeding of high-quality black wolfberry.
Collapse
Affiliation(s)
- Youwei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiya Ma
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Basic Medicine, Qinghai University, Xining, Qinghai, 810016, China
| | - Yuanyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Gong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Lan
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianhua Zhao
- National Wolfberry Engineering Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Guangli Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiming Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuanghong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchen Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Li J, Martin C, Fernie A. Biofortification's contribution to mitigating micronutrient deficiencies. NATURE FOOD 2024; 5:19-27. [PMID: 38168782 DOI: 10.1038/s43016-023-00905-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Biofortification was first proposed in the early 1990s as a low-cost, sustainable strategy to enhance the mineral and vitamin contents of staple food crops to address micronutrient malnutrition. Since then, the concept and remit of biofortification has burgeoned beyond staples and solutions for low- and middle-income economies. Here we discuss what biofortification has achieved in its original manifestation and the main factors limiting the ability of biofortified crops to improve micronutrient status. We highlight the case for biofortified crops with key micronutrients, such as provitamin D3/vitamin D3, vitamin B12 and iron, for recognition of new demographics of need. Finally, we examine where and how biofortification can be integrated into the global food system to help overcome hidden hunger, improve nutrition and achieve sustainable agriculture.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Cathie Martin
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK.
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| |
Collapse
|
14
|
Liu J, Zhao Y, Zhang J, Kong Y, Liu P, Fang Y, Cui M, Pei T, Zhong X, Xu P, Qiu W, Yang D, Martin C, Zhao Q. Production of species-specific anthocyanins through an inducible system in plant hairy roots. Metab Eng 2024; 81:182-196. [PMID: 38103887 DOI: 10.1016/j.ymben.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Anthocyanins are widely distributed pigments in flowering plants with red, purple or blue colours. Their properties in promoting heath make anthocyanins perfect natural colourants for food additives. However, anthocyanins with strong colour and stability at neutral pH, suitable as food colourants are relatively rare in nature. Acylation increases anthocyanin stability and confers bluer colour. In this study, we isolated two anthocyanin regulators SbMyb75 and SbDel from S. baicalensis, and showed that constitutive expression of the two TFs led to accumulation of anthocyanins at high levels in black carrot hairy roots. However, these hairy roots had severe growth problems. We then developed a β-estradiol inducible system using XVE and a Lex-35S promoter, to initiate expression of the anthocyanin regulators and induced this system in hairy roots of black carrot, tobacco and morning glory. Anthocyanins with various decorations were produced in these hairy roots without any accompanying side-effects on growth. We further produced highly acylated anthocyanins with blue colour in a 5 L liquid culture in a bioreactor of hairy roots from morning glory. We provide here a strategy to produce highly decorated anthocyanins without the need for additional engineering of any of the genes encoding decorating enzymes. This strategy could be transferred to other species, with considerable potential for natural colourant production for the food industries.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuanxiu Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingmeng Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Pan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yumin Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Mengying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenqing Qiu
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai, 200031, China; Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200433, China
| | - Dongfeng Yang
- Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Espley RV, Jaakola L. The role of environmental stress in fruit pigmentation. PLANT, CELL & ENVIRONMENT 2023; 46:3663-3679. [PMID: 37555620 DOI: 10.1111/pce.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.
Collapse
Affiliation(s)
- Richard V Espley
- Department of New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
16
|
Habib Z, Ijaz S, Haq IU. Comparative metabolomic profiling and nutritional chemistry of Chenopodium quinoa of diverse panicle architecture and agroecological zones. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1959-1979. [PMID: 38222284 PMCID: PMC10784447 DOI: 10.1007/s12298-023-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01398-2.
Collapse
Affiliation(s)
- Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
17
|
Zargar SM, Manzoor M, Bhat B, Wani AB, Sofi PA, Sudan J, Ebinezer LB, Dall'Acqua S, Peron G, Masi A. Metabolic-GWAS provides insights into genetic architecture of seed metabolome in buckwheat. BMC PLANT BIOLOGY 2023; 23:373. [PMID: 37501129 PMCID: PMC10375682 DOI: 10.1186/s12870-023-04381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Buckwheat (Fagopyrum spp.), belonging to the Polygonaceae family, is an ancient pseudo-cereal with high nutritional and nutraceutical properties. Buckwheat proteins are gluten-free and show balanced amino acid and micronutrient profiles, with higher content of health-promoting bioactive flavonoids that make it a golden crop of the future. Plant metabolome is increasingly gaining importance as a crucial component to understand the connection between plant physiology and environment and as a potential link between the genome and phenome. However, the genetic architecture governing the metabolome and thus, the phenome is not well understood. Here, we aim to obtain a deeper insight into the genetic architecture of seed metabolome in buckwheat by integrating high throughput metabolomics and genotyping-by-sequencing applying an array of bioinformatics tools for data analysis. RESULTS High throughput metabolomic analysis identified 24 metabolites in seed endosperm of 130 diverse buckwheat genotypes. The genotyping-by-sequencing (GBS) of these genotypes revealed 3,728,028 SNPs. The Genome Association and Prediction Integrated Tool (GAPIT) assisted in the identification of 27 SNPs/QTLs linked to 18 metabolites. Candidate genes were identified near 100 Kb of QTLs, providing insights into several metabolic and biosynthetic pathways. CONCLUSIONS We established the metabolome inventory of 130 germplasm lines of buckwheat, identified QTLs through marker trait association and positions of potential candidate genes. This will pave the way for future dissection of complex economic traits in buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India.
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Amir Bashir Wani
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Parvaze Ahmad Sofi
- Division of Genetics and Plant Breeding, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Jebi Sudan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy.
| |
Collapse
|
18
|
Lovell ST, Krishnaswamy K, Lin CH, Meier N, Revord RS, Thomas AL. Nuts and berries from agroforestry systems in temperate regions can form the foundation for a healthier human diet and improved outcomes from diet-related diseases. AGROFORESTRY SYSTEMS 2023:1-14. [PMID: 37363637 PMCID: PMC10249563 DOI: 10.1007/s10457-023-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Agroforestry is a specific type of agroecosystem that includes trees and shrubs with the potential to yield nutrient-rich products that contribute to human health. This paper reviews the literature on the human health benefits of tree nut and berry species commonly associated with agroforestry systems of the United States, considering their potential for preventing certain diet-related diseases. Emphasis is placed on those diseases that are most closely associated with poor outcomes from COVID-19, as they are indicators of confounding health prognoses. Results indicate that tree nuts reduce the risk of coronary heart disease, and walnuts (Juglans species) are particularly effective because of their unique fatty acid profile. Berries that are grown on shrubs have the potential to contribute to mitigation of hypertension, prevention of Type II diabetes, and reduced risk of cardiovascular disease. To optimize human health benefits, plant breeding programs can focus on the traits that enhance the naturally-occurring phytochemicals, through biofortification. Value-added processing techniques should be selected and employed to preserve the phytonutrients, so they are maintained through the point of consumption. Agroforestry systems can offer valuable human health outcomes for common diet-related diseases, in addition to providing many environmental benefits, particularly if they are purposefully designed with that goal in mind. The food system policies in the U.S. might be reoriented to prioritize these food production systems based on the health benefits.
Collapse
Affiliation(s)
- Sarah Taylor Lovell
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Kiruba Krishnaswamy
- Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Nicholas Meier
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Ronald S. Revord
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Andrew L. Thomas
- Division of Plant Sciences and Technology, Southwest Research, Extension, and Education Center, University of Missouri, Mt. Vernon, MO USA
| |
Collapse
|
19
|
Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res 2023:106812. [PMID: 37271425 DOI: 10.1016/j.phrs.2023.106812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polyphenols, also known as phenolic compounds, are chemical substances containing aromatic rings as well as at least two hydroxyl groups. Natural phenolic compounds exist widely in plants, which protect plants from ultraviolet radiation and other insults. Phenolic compounds have superior pharmacological and nutritional properties (antimicrobial, antibacterial, antiviral, anti-sclerosis, antioxidant, and anti-inflammatory activities), which have been paid more and more attention by the scientific community. Phenols can protect key cellular components from reactive free radical damage, which is mainly due to their property to activate antioxidant enzymes and alleviate oxidative stress and inflammation. It can also inhibit or isolate reactive oxygen species and transfer electrons to free radicals, thereby avoiding cell damage. It has a regulatory role in glucose metabolism, which has a promising prospect in the prevention and intervention of diabetes. It also prevents cardiovascular disease by regulating blood pressure and blood lipids. Polyphenols can inhibit cell proliferation by affecting Erk1/2, CDK, and PI3K/Akt signaling pathways. Polyphenols can function as enhancers of intrinsic defense systems, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Simultaneously, they can modulate multiple proteins and transcription factors, making them promising candidates in the investigation of anti-cancer medications. This review focuses on multiple aspects of phenolic substances, including their natural origins, production process, disinfection activity, oxidative and anti-inflammatory functions, and the effects of different phenolic substances on tumors.
Collapse
Affiliation(s)
- Wenshi Liu
- Department of Translantation/Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Yonghui Xia
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Abstract
In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.
Collapse
Affiliation(s)
| | - Qing Liu
- CSIRO Agriculture & Food, Canberra, Australia;
| | | |
Collapse
|
21
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1145992. [PMID: 36938024 PMCID: PMC10020514 DOI: 10.3389/fpls.2023.1145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The consumption of plants plays an important role in human health. In addition to providing macro and micronutrients, plants are the sole sources of several phytonutrients that play a major role in disease prevention. However, in modern diets, increased consumption of cheaper, processed foods with poor nutritional value over fruits and vegetables leads to insufficient consumption of essential nutrients such as vitamin C. Taking supplements can address some of the insufficient nutrients in a diet. However, supplements are not as diverse or bioavailable as the nutrients in plants. Improving the abundance of nutrients in plants will reduce the amounts that need to be consumed, thereby reducing the price barrier and use of supplements. In this study, broccoli (Brassica oleracea var. italica) microgreens grown in a controlled environment were biofortified for increased vitamin C content. The microgreens grown on growing pads were treated with supplemental nutrient solutions. Treatments were applied four to five days after germination and included four different concentrations of ascorbic acid specifically, 0% (control), 0.05%, 0.1%, 0.25% and 0.5%, added to the nutrient solution. Microgreens with turgid cotyledons and appearance of tip of first true leaves were harvested about 14 days after germination and were analyzed for biomass, chlorophylls, carotenoids, vitamin C and other minerals content. The ascorbic acid improved the microgreens' fresh biomass, percent dry matter, chlorophylls, carotenoids, vitamin C, and potassium content. Moreover, this study also mapped out the correlation between ascorbic acid, phytochemicals, and broccoli microgreens' mineral composition. The total vitamin C was positively correlated to K and negatively correlated to chlorophylls, N, P, Mg, Ca, S, and B (p < 0.01). These relationships can be applied in future vitamin C biofortification research across different microgreens. In conclusion, vitamin C was increased up to 222% by supplemental ascorbic acid without being detrimental to plant health and mineral composition.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
22
|
Yang S, Sun Z, Zhang G, Wang L, Zhong Q. Identification of the key metabolites and related genes network modules highly associated with the nutrients and taste components among different Pepino (Solanum muricatum) cultivars. Food Res Int 2023; 163:112287. [PMID: 36596193 DOI: 10.1016/j.foodres.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
There is considerable knowledge about plant compounds that produce flavor, scent, and aroma. Aside from the similarities, however, groups of plant-produced nutrients and taste components have little in common with each other. Network analysis holds promise for metabolic gene discovery, which is especially important in plant systems where metabolic networks are not yet fully resolved. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions in two different pepino varieties. Differential metabolomics analysis is carried out for detection of eventual interaction of compound. We adopted a multi-omics approach to profile the transcriptome and metabolome analyze differences in phenolic acids, flavonoids, organic acids, lipids, alkaloids, and sugars between LOF and SRF. The two most predominant classes of metabolites are phenolic acids and lipids in pepino. Overall results show enrichment in most DEGs was carbohydrate and biosynthesis of secondary metabolites pathway. Results of DEMs predominantly comprised N-p-coumaroyl agmatine and tryptamine, and significant differences were observed in their expression between LOF and SRF. Integrated DEMs and DEGs specific networks were constructed by combining two types of networks: transcriptional regulatory networks composed of interactions between DEMs and the regulated genes, and pepino metabolite-metabolite interaction networks. Newly discovered features, such as DEGs (USPA, UBE2 and DELLA) involved in the production of secondary metabolites are found in coregulated gene clusters. Moreover, lipid metabolites were most involved in DEMs correlations by OPLS-DA while identifying a significant number of DEGs co-regulated by SENP1, HMGCS et al. These results further that the metabolite discrepancies result from characterized the nutrients and taste components between two pepino genotype. Among the possible causes of the differences between species in pepino metabolite concentrations is co-regulated by these DEGs, continue to suggest that novel features of metabolite biosynthetic pathway remain to be uncovered. Finally, the integrated metabolome and transcriptome analyses have revealed that many important metabolic pathways are regulated at the transcriptional level. The metabolites content differences observed among varieties of the same species mainly originates from different regulated genes and enzymes expression. Overall, this study provides new insights into the underlying causes of differences in the plant metabolites and suggests that genetic data can be used to improve its nutrients and taste components.
Collapse
Affiliation(s)
- Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China; College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhu Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Guangnan Zhang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China.
| |
Collapse
|
23
|
Wu Y, Yuan Y, Jiang W, Zhang X, Ren S, Wang H, Zhang X, Zhang Y. Enrichment of health-promoting lutein and zeaxanthin in tomato fruit through metabolic engineering. Synth Syst Biotechnol 2022; 7:1159-1166. [PMID: 36101899 PMCID: PMC9445293 DOI: 10.1016/j.synbio.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Carotenoids constitute a large group of natural pigments widely distributed in nature. These compounds not only provide fruits and flowers with distinctive colors, but also have significant health benefits for humans. Lutein and zeaxanthin, both oxygen-containing carotenoids, are considered to play vital roles in promoting ocular development and maintaining eye health. However, humans and mammals cannot synthesize these carotenoid derivatives, which can only be taken from certain fruits or vegetables. Here, by introducing four endogenous synthetic genes, SlLCYE, SlLCYB, SlHYDB, and SlHYDE under fruit-specific promoters, we report the metabolic engineering of lutein/zeaxanthin biosynthesis in tomato fruit. Transgenic lines overexpression of one (SlLCYE), two (SlLCYE and SlLCYB; SlLCYB and SlHYDB), and all these four synthetic genes re-established the lutein/zeaxanthin biosynthetic pathways in the ripe tomato fruit and thus resulted in various types of carotenoid riched lines. Metabolic analyses of these engineered tomato fruits showed the strategy involved expression of SlLCYE tends to produce α-carotene and lutein, as well as a higher content of β-carotene and zeaxanthin was detected in lines overexpressing SlLCYB. In addition, the different combinations of engineered tomatoes with riched carotenoids showed higher antioxidant capacity and were associated with a significantly extended shelf life during postharvest storage. This work provides a successful example of accurate metabolic engineering in tomato fruit, suggesting the potential utility for synthetic biology to improve agronomic traits in crops. These biofortified tomato fruits could be also exploited as new research subjects for studying the health benefits of carotenoid derivatives.
Collapse
|
24
|
Zhang S, Chen J, Jiang T, Cai X, Wang H, Liu C, Tang L, Li X, Zhang X, Zhang J. Genetic mapping, transcriptomic sequencing and metabolic profiling indicated a glutathione S-transferase is responsible for the red-spot-petals in Gossypium arboreum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3443-3454. [PMID: 35986130 DOI: 10.1007/s00122-022-04191-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
A GST for red-spot-petals in Gossypium arboreum was identified as the candidate under the scope of multi-omics approaches. Colored petal spots are correlated with insect pollination efficiency in Gossypium species. However, molecular mechanisms concerning the formation of red spots on Gossypium arboreum flowers remain elusive. In the current study, the Shixiya1-R (SxyR, with red spots) × Shixiya1-W (SxyW, without red spots) segregating population was utilized to determine that the red-spot-petal phenotype was levered by a single dominant locus. This phenotype was expectedly related to the anthocyanin metabolites, wherein the cyanidin and delphinidin derivatives constituted the major partition. Subsequently, this dominant locus was narrowed to a 3.27 Mb range on chromosome 7 by genomic resequencing from the two parents and the two segregated progeny bulks that have spotted petals or not. Furthermore, differential expressed genes generated from the two bulks at either of three sequential flower developmental stages that spanning the spot formation were intersected with the annotated ones that allocated to the 3.27 Mb interval, which returned eight genes. A glutathione S-transferase-coding gene (Gar07G08900) out of the eight was the only one that exhibited simultaneously differential expression among all three developmental stages, and it was therefore considered to be the probable candidate. Finally, functional validation upon this candidate was achieved by the appearance of scattered petal spots with inhibited expression of Gar07G08900. In conclusion, the current report identified a key gene for the red spotted petal in G. arboreum under the scope of multi-omics approaches, such efforts and embedded molecular resources would benefit future applications underlying the flower color trait in cotton.
Collapse
Affiliation(s)
- Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Jie Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Jiang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Xiao Cai
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
25
|
Clark IM, Cassidy A, Heppleston A, Bal M, Morgan Y, Nicklin A, Yue Y, Zardkoohi A, Martin C. EDESIA: Plants, Food and Health: A cross-disciplinary PhD programme from crop to clinic. NUTR BULL 2022; 47:366-373. [PMID: 36045110 PMCID: PMC9545183 DOI: 10.1111/nbu.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
In an era where preventive medicine is increasingly important due to an ageing population and rising obesity, optimised diets are key to improving health and reducing risk of ill health. The Wellcome Trust-funded, EDESIA: Plants, Food and Health: a cross-disciplinary PhD programme from Crop to Clinic (218 467/Z/19/Z) focuses on investigating plant-based nutrition and health, from crop to clinic, drawing on the world-class interdisciplinary research expertise of partner institutions based on the Norwich Research Park (University of East Anglia, John Innes Centre, Quadram Institute and Earlham Institute). Through a rotation-based programme, EDESIA PhD students will train in a wide range of disciplines across the translational pathway of nutrition research, including analyses of epidemiological datasets, assessment of nutritional bioactives, biochemical, genetic, cell biological and functional analyses of plant metabolites, in vitro analyses in tissue and cell cultures, investigation of efficacy in animal models of disease, investigation of effects on composition and functioning of the microbiota and human intervention studies. Research rotations add a breadth of knowledge, outside of the main PhD project, which benefits the students and can be brought into project design. This comprehensive PhD training programme will allow the translation of science into guidelines for healthy eating and the production of nutritionally improved food crops, leading to innovative food products, particularly for prevention and treatment of chronic diseases where age is a major risk factor. In this article, we summarise the programme and showcase the experiences of the first cohort of students as they start their substantive PhD projects after a year of research rotations.
Collapse
Affiliation(s)
- Ian M. Clark
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Aedin Cassidy
- School of Biological Sciences, Institute of Global Food SecurityQueen's University BelfastBelfastUK
| | | | - Mark Bal
- Genes in the EnvironmentJohn Innes CentreNorwichUK
| | - Yvie Morgan
- Molecules from NatureJohn Innes CentreNorwichUK
| | - Alicia Nicklin
- Gut Microbes and HealthQuadram Institute BioscienceNorwichUK
| | - Yang Yue
- Molecules from NatureJohn Innes CentreNorwichUK
| | | | | |
Collapse
|
26
|
Shewry PR, Lovegrove A, Wingen LU, Griffiths S. Opinion Exploiting genomics to improve the benefits of wheat: Prospects and limitations. J Cereal Sci 2022; 105:103444. [PMID: 35712025 PMCID: PMC9106566 DOI: 10.1016/j.jcs.2022.103444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Image 1.
Collapse
Affiliation(s)
| | | | - Luzie U. Wingen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
27
|
Scarano A, Gerardi C, Sommella E, Campiglia P, Chieppa M, Butelli E, Santino A. Engineering the polyphenolic biosynthetic pathway stimulates metabolic and molecular changes during fruit ripening in "Bronze" tomato. HORTICULTURE RESEARCH 2022; 9:uhac097. [PMID: 35795395 PMCID: PMC9249581 DOI: 10.1093/hr/uhac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The metabolic engineered Bronze tomato line is characterized by the constitutive over-expression of the VvStSy gene encoding a structural protein responsible for the stilbenoids biosynthesis and the fruit-specific over-expression of AmDel/Rosea1 and AtMYB12 genes encoding transcription factors that activate the polyphenol biosynthetic pathway. This tomato line is known for the increased levels of polyphenols in ripe fruits and for beneficial health promoting antioxidant and anti-inflammatory effects. In this study we analyzed the transcriptional and metabolic profiling in mature green, breaker, orange and ripe fruits compared to the normal tomato counterparts during ripening, to unravel the effect of regulatory and structural transgenes on metabolic fluxes of primary and secondary metabolisms. Our results showed that the shikimate synthase (SK) gene was up-regulated in the Bronze fruit, and the transcriptional activation is consistent with the metabolic changes observed throughout fruit ripening. These results paralleled with a reduced level of simple sugars and malate, highlighting the consumption of primary metabolites to favor secondary metabolites production and accumulation. Finally, carotenoids quantification revealed a change in the lycopene/β-carotene ratio in the Bronze fruit as a consequence of significant lower level of the first and higher levels of the latter. The high polyphenols and β-carotene content displayed by the Bronze fruit at the later stages of fruit ripening renders this line an interesting model to study the additive or synergic effects of these phyto-chemicals in the prevention of human pathologies.
Collapse
Affiliation(s)
- Aurelia Scarano
- ISPA-CNR, Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Carmela Gerardi
- ISPA-CNR, Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Marcello Chieppa
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
28
|
Beasley JT, Bonneau JP, Moreno-Moyano LT, Callahan DL, Howell KS, Tako E, Taylor J, Glahn RP, Appels R, Johnson AAT. Multi-year field evaluation of nicotianamine biofortified bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1168-1182. [PMID: 34902177 DOI: 10.1111/tpj.15623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Laura T Moreno-Moyano
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, 3125, Australia
| | - Kate S Howell
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Rudi Appels
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
29
|
Ma D, Xu B, Feng J, Hu H, Tang J, Yin G, Xie Y, Wang C. Dynamic Metabolomics and Transcriptomics Analyses for Characterization of Phenolic Compounds and Their Biosynthetic Characteristics in Wheat Grain. Front Nutr 2022; 9:844337. [PMID: 35252312 PMCID: PMC8888538 DOI: 10.3389/fnut.2022.844337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/21/2022] [Indexed: 01/17/2023] Open
Abstract
Phenolic compounds are important bioactive phytochemicals with potential health benefits. In this study, integrated metabolomics and transcriptomics analysis was used to analyze the metabolites and differentially expressed genes in grains of two wheat cultivars (HPm512 with high antioxidant activity, and ZM22 with low antioxidant activity) during grain development. A total of 188 differentially expressed phenolic components, including 82 phenolic acids, 81 flavonoids, 10 lignans, and 15 other phenolics, were identified in the developing wheat grains, of which apigenin glycosides were identified as the primary flavonoid component. The relative abundance of identified phenolics showed a decreasing trend with grain development. Additionally, 51 differentially expressed phenolic components were identified between HPm512 and ZM22, of which 41 components, including 23 flavonoids, were up-regulated in HPm512. In developing grain, most of the identified differentially expressed genes involved in phenolic accumulation followed a similar trend. Integrated metabolomics and transcriptomics analysis revealed that certain genes encoding structural proteins, glycosyltransferase, and transcription factors were closely related to metabolite accumulation. The relatively higher accumulation of phenolics in HPm512 could be due to up-regulated structural and regulatory genes. A sketch map was drawn to depict the synthetic pathway of identified phenolics and their corresponding genes. This study enhanced the current understanding of the accumulation of phenolics in wheat grains. Besides, active components and their related genes were also identified, providing crucial information for the improvement of wheat's nutritional quality.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Dongyun Ma
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Haizhou Hu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jianwei Tang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Guihong Yin
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
- Chenyang Wang
| |
Collapse
|
30
|
D’Amelia V, Sarais G, Fais G, Dessì D, Giannini V, Garramone R, Carputo D, Melito S. Biochemical Characterization and Effects of Cooking Methods on Main Phytochemicals of Red and Purple Potato Tubers, a Natural Functional Food. Foods 2022; 11:foods11030384. [PMID: 35159533 PMCID: PMC8834363 DOI: 10.3390/foods11030384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potato is a staple food crop and an important source of dietary energy. Its tubers contain several essential amino acids, vitamins, minerals and phytochemicals that contribute to the nutritional value of this important product. Recently, scientific interest has focused on purple and red potatoes that, due to the presence of anthocyanins, may be considered as natural powerful functional food. The aim of this study was to evaluate the characteristics of pigmented varieties, the types of anthocyanins accumulated and the level of both beneficial phytochemicals (vitamin C and chlorogenic acids, CGAs) and anti-nutritional compounds (glycoalkaloids) following various cooking methods. The analyses described the presence of a mix of several acylated anthocyanins in pigmented tubers along with high level of CGA. The amount of antioxidants was differently affected by heat treatments according to the type of molecule and the cooking methods used. In some cases, the beneficial compounds were made more available by heat treatments for the analytical detection as compared to raw materials. Data reported here describe both the agronomic properties of these pigmented varieties and the effects of food processing methods on bioactive molecules contained in this natural functional food. They may provide useful information for breeders aiming to develop new varieties that could include desirable agronomical and industrial processing traits.
Collapse
Affiliation(s)
- Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Giorgia Sarais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
- Correspondence:
| | - Giacomo Fais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Debora Dessì
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Vittoria Giannini
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Sara Melito
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| |
Collapse
|
31
|
Ding M, Shi S, Luo B. Hearty recipes for health: the Hakka medicinal soup in Guangdong, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:5. [PMID: 35078485 PMCID: PMC8787035 DOI: 10.1186/s13002-022-00502-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Hakka are a subgroup of the Han Chinese, originally from northern China and mainly living in southern China now. Over hundreds of years, the Hakka have developed their own medical practices to prevent and cure diseases, such as medicinal soup, an important characteristic of Hakka cuisine. This study aims at documenting plant taxa used to make Hakka medicinal soup, along with their associated ethnomedical knowledge. METHODS Data on Hakka soup-making plants were collected through key-informant interviews, semi-structured interviews, participatory field collection, and direct observation. The choosing of participants has followed the snowball sampling method. Herbs used for preparing medicinal soup were purchased on the local market or collected from the wild, and voucher specimens were collected and identified. The study result was also compared with published studies on soup-making plants in other parts of Guangdong province and the Hakka areas in Fujian Province of China. RESULTS Eighty-three taxa belonging to 70 genera within 38 families were listed by our informants as being used to treat 55 kinds of health problems. Most documented plants are herbaceous species, followed by shrubs and woody liana. Roots were the most frequently used plant parts for medicinal purposes, followed, in descending order, by the whole plant, rhizomes, and flowers. Most plants used to prepare medicinal soup are wild-harvested (56 species), 4 cultivated, and 23 wild harvested or cultivated. According to the comparison, 18 Hakka medicinal soup species are shown both in Fujian Province and Guangdong Province. The Hakka soup-making plants in both provinces share very similar therapeutic functions. This study helps to extend the Hakka menu in both provinces. The study comparison also showed a big difference in the herb ingredients between Guangdong Hakka medicinal soup and Cantonese slow-cooked soup. CONCLUSION Hakka medicinal soup is an important feature of the Hakka dietary culture. More studies are needed to be undertaken, especially on the efficacy and safety of this medicinal soup. Moreover, cultivation and conservation efforts are required to ensure the sustainability of the species that are used as ingredients in the soup. Consequently, further commercial development of medicinal soup should be promoted.
Collapse
Affiliation(s)
| | - Shi Shi
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Binsheng Luo
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900 China
| |
Collapse
|
32
|
Diversity: current and prospective secondary metabolites for nutrition and medicine. Curr Opin Biotechnol 2021; 74:164-170. [PMID: 34942505 DOI: 10.1016/j.copbio.2021.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Plants have been used as sources of food, feed and medicine for millennia. The ever-increasing population has, however, dramatically increased the burden on our arable land to meet nutritional demand. Concomitantly, and in part due to poor nutrition, we are faced with massive increases in chronic diseases, meaning the need for medicine has also increased. Here, we look back on research in these areas, surveying the polyphenols as a case study for health-conferring metabolites. We conclude that the tools that will allow us to breed more nutritious crops are all at hand. We stress that collaboration between plant and medical research needs to be intensified in order to improve our understanding of the bioactivities. In doing so, we attempt to draw a roadmap for the use of plants for mid-21st Century human health.
Collapse
|
33
|
Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021; 12:9549-9562. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.
Collapse
Affiliation(s)
- MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - WeiDong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - QinLu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - YuShui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - ShouYao Xiong
- College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
34
|
Chen J, Xue M, Liu H, Fernie AR, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. PLANT COMMUNICATIONS 2021; 2:100216. [PMID: 34327326 PMCID: PMC8299079 DOI: 10.1016/j.xplc.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum L.) is a leading cereal crop, but has lagged behind with respect to the interpretation of the molecular mechanisms of phenotypes compared with other major cereal crops such as rice and maize. The recently available genome sequence of wheat affords the pre-requisite information for efficiently exploiting the potential molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets. Meanwhile, the successful application of metabolomics as an emergent large-scale profiling methodology in several species has demonstrated this approach to be accessible for reaching the above goals. One such productive avenue is combining metabolomics approaches with genetic designs. However, this trial is not as widespread as that for sequencing technologies, especially when the acquisition, understanding, and application of metabolic approaches in wheat populations remain more difficult and even arguably underutilized. In this review, we briefly introduce the techniques used in the acquisition of metabolomics data and their utility in large-scale identification of functional candidate genes. Considerable progress has been made in delivering improved varieties, suggesting that the inclusion of information concerning these metabolites and genes and metabolic pathways enables a more explicit understanding of phenotypic traits and, as such, this procedure could serve as an -omics-informed roadmap for executing similar improvement strategies in wheat and other species.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyun Xue
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
35
|
Kong Y, Nemali K. Blue and Far-Red Light Affect Area and Number of Individual Leaves to Influence Vegetative Growth and Pigment Synthesis in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:667407. [PMID: 34305967 PMCID: PMC8297648 DOI: 10.3389/fpls.2021.667407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Published work indicates that high percentage of blue light can enhance pigment levels but decreases growth, while addition of far-red light to growth light can increase quantum efficiency and photosynthesis in leafy greens. Combining high-energy blue light with low-energy far-red light may increase both vegetative growth and pigment levels. However, the effect of high-energy blue and low-energy far-red light on the vegetative growth and pigments synthesis is unclear. This information can be potentially useful for enhancing the levels of pigments with nutritional value (e.g., beta-carotene and anthocyanins) in the produce grown in vertical farms. We grew romaine lettuce (cv. Amadeus) under similar light intensity (approximately 130 μmol⋅m-2⋅s-1) but different proportions of red: blue: far-red including 90:10: 0 ("High-R"), 50: 50: 0 ("High-B"), and 42: 42: 16 ("High-B+FR") for 31 days. Results indicated that canopy area and leaf photosynthetic rate of lettuce plants was reduced in the High-B, thereby reducing plant growth. We did not observe photosynthesis enhancement in the High-B+FR. Instead, plants clearly showed photomorphogenic effects. The phytochrome photostationary state (PSS) decreased with far-red addition, resulting in reduced leaf number per plant. This was likely to shift the allocation of resources toward elongation growth for shade avoidance. Further, we observed an increase in the area of individual leaves, canopy area, and shoot dry weight in the High-B+FR. However, these appear to be an indirect consequence of decreased leaf number per plant. Our results also indicate that changes in expansion growth at individual leaf scale largely regulated pigment concentration in plants. As individual leaf area became smaller (e.g., High-B) or larger (e.g., High-B+FR), the levels of pigments including chlorophylls and beta-carotene increased or decreased, respectively. Area of individual leaves also positively influenced canopy area (and likely light interception) and shoots dry weight (or vegetative growth). Our study provides additional insights into the effects of high-energy blue and low-energy far-red light on individual leaf number and leaf growth, which appear to control plant growth and pigment levels in lettuce.
Collapse
Affiliation(s)
| | - Krishna Nemali
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
36
|
Wang P, Moore BM, Uygun S, Lehti-Shiu MD, Barry CS, Shiu SH. Optimising the use of gene expression data to predict plant metabolic pathway memberships. THE NEW PHYTOLOGIST 2021; 231:475-489. [PMID: 33749860 DOI: 10.1111/nph.17355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Plant metabolites from diverse pathways are important for plant survival, human nutrition and medicine. The pathway memberships of most plant enzyme genes are unknown. While co-expression is useful for assigning genes to pathways, expression correlation may exist only under specific spatiotemporal and conditional contexts. Utilising > 600 tomato (Solanum lycopersicum) expression data combinations, three strategies for predicting memberships in 85 pathways were explored. Optimal predictions for different pathways require distinct data combinations indicative of pathway functions. Naive prediction (i.e. identifying pathways with the most similarly expressed genes) is error prone. In 52 pathways, unsupervised learning performed better than supervised approaches, possibly due to limited training data availability. Using gene-to-pathway expression similarities led to prediction models that outperformed those based simply on expression levels. Using 36 experimental validated genes, the pathway-best model prediction accuracy is 58.3%, significantly better compared with that for predicting annotated genes without experimental evidence (37.0%) or random guess (1.2%), demonstrating the importance of data quality. Our study highlights the need to extensively explore expression-based features and prediction strategies to maximise the accuracy of metabolic pathway membership assignment. The prediction framework outlined here can be applied to other species and serves as a baseline model for future comparisons.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bethany M Moore
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
Tian Z, Wang JW, Li J, Han B. Designing future crops: challenges and strategies for sustainable agriculture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1165-1178. [PMID: 33258137 DOI: 10.1111/tpj.15107] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.
Collapse
Affiliation(s)
- Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
- National Center for Gene Research, Shanghai, 200233, China
| |
Collapse
|
38
|
Comparative Metabolomic Profiling of Citrullus spp. Fruits Provides Evidence for Metabolomic Divergence during Domestication. Metabolites 2021; 11:metabo11020078. [PMID: 33525435 PMCID: PMC7911689 DOI: 10.3390/metabo11020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Watermelon (Citrullus lanatus) is one of the most nutritional fruits that is widely distributed in the whole world. The nutritional compositions are mainly influenced by the genotype and environment. However, the metabolomics of different domestication status and different flesh colors watermelon types is not fully understood. In this study, we reported an extensive assessment of metabolomic divergence in the fruit flesh among Citrullus sp. and within Citrullus sp. We demonstrate that metabolic profiling was significantly different between the wild and cultivated watermelons, the apigenin 6-C-glucoside, luteolin 6-C-glucoside, chrysoeriol C-hexoside, naringenin C-hexoside, C-pentosyl-chrysoeriol O-hexoside, and sucrose are the main divergent metabolites. Correlation analysis results revealed that flavonoids were present in one tight metabolite cluster. The main divergent metabolites in different flesh-colored cultivated watermelon fruits are p-coumaric acid, 2,3-dihydroflavone, catechin, N-(3-indolylacetyl)-l-alanine, 3,4-dihydroxycinnamic acid, and pelargonidin o-hexoside. A total of 431 differentially accumulated metabolites were identified from pairwise comparative analyses. C. lanatus edible-seed watermelon (cultivars) and C. mucosospermus (wild) have similar fruit metabolic profiles and phenotypic traits, indicating that edible-seed watermelon may be a relative of wild species and a relatively primitive differentiation type of cultivated watermelon. Our data provide extensive knowledge for metabolomics-based watermelon improvement of Citrullus fruits meet their enhanced nutritive properties or upgraded germplasm utility values.
Collapse
|
39
|
Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants (Basel) 2020; 9:antiox9121225. [PMID: 33287404 PMCID: PMC7761854 DOI: 10.3390/antiox9121225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Plant food biofortification is recently receiving remarkable attention, as it aims to increase the intake of minerals, vitamins, or antioxidants, crucial for their contribution to the general human health status and disease prevention. In this context, the study of the plant’s secondary metabolites, such as polyphenols, plays a pivotal role for the development of a new generation of plant crops, compensating, at least in part, the low nutritional quality of Western diets with a higher quality of dietary sources. Due to the prevalent immunomodulatory activity at the intestinal level, polyphenols represent a nutritionally relevant class of plant secondary metabolites. In this review, we focus on the antioxidant and anti-inflammatory properties of different classes of polyphenols with a specific attention to their potential in the prevention of intestinal pathological processes. We also discuss the latest biotechnology strategies and new advances of genomic techniques as a helpful tool for polyphenols biofortification and the development of novel, healthy dietary alternatives that can contribute to the prevention of inflammatory bowel diseases.
Collapse
|
40
|
Dumont D, Danielato G, Chastellier A, Hibrand Saint Oyant L, Fanciullino AL, Lugan R. Multi-Targeted Metabolic Profiling of Carotenoids, Phenolic Compounds and Primary Metabolites in Goji ( Lycium spp.) Berry and Tomato ( Solanum lycopersicum) Reveals Inter and Intra Genus Biomarkers. Metabolites 2020; 10:metabo10100422. [PMID: 33096702 PMCID: PMC7589643 DOI: 10.3390/metabo10100422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
Metabolic profile is a key component of fruit quality, which is a challenge to study due to great compound diversity, especially in species with high nutritional value. This study presents optimized analytical methods for metabolic profiling in the fruits of three Solanaceae species: Lycium barbarum, Lycium chinense and Solanumlycopersicum. It includes the most important chemical classes involved in nutrition and taste, i.e., carotenoids, phenolic compounds and primary compounds. Emphasis has been placed on the systematic achievement of good extraction yields, sample stability, and high response linearity using common LC-ESI-TQ-MS and GC-EI-MS apparatuses. A set of 13 carotenoids, 46 phenolic compounds and 67 primary compounds were profiled in fruit samples. Chemometrics revealed metabolic markers discriminating Lycium and Solanum fruits but also Lycium barbarum and Lycium chinense fruits and the effect of the crop environment. Typical tomato markers were found to be lycopene, carotene, glutamate and GABA, while lycibarbarphenylpropanoids and zeaxanthin esters characterized goji (Lycium spp.) fruits. Among the compounds discriminating the Lycium species, reported here for the first time to our knowledge, chlorogenic acids, asparagine and quinic acid were more abundant in Lycium chinense, whereas Lycium barbarum accumulated more lycibarbarphenylpropanoids A-B, coumaric acid, fructose and glucose.
Collapse
Affiliation(s)
- Doriane Dumont
- Institut National de la Recherche Agronomique, Plantes et Systèmes de Culture Horticole, 228 Route de l’aérodrome, Domaine Saint Paul, Site Agroparc, CS 40509, 84914 Avignon, France;
| | - Giorgia Danielato
- Unité Mixte de Recherche QualiSud, Campus Jean Henri Fabre, Avignon Université, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France;
| | - Annie Chastellier
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49070 Beaucouzé, France; (A.C.); (L.H.S.O.)
| | - Laurence Hibrand Saint Oyant
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49070 Beaucouzé, France; (A.C.); (L.H.S.O.)
| | - Anne-Laure Fanciullino
- Institut National de la Recherche Agronomique, Plantes et Systèmes de Culture Horticole, 228 Route de l’aérodrome, Domaine Saint Paul, Site Agroparc, CS 40509, 84914 Avignon, France;
- Correspondence: (A.-L.F.); (R.L.)
| | - Raphaël Lugan
- Unité Mixte de Recherche QualiSud, Campus Jean Henri Fabre, Avignon Université, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France;
- Correspondence: (A.-L.F.); (R.L.)
| |
Collapse
|
41
|
Yang C, Zhang W, Dong X, Fu C, Yuan J, Xu M, Liang Z, Qiu C, Xu C. A natural product solution to aging and aging-associated diseases. Pharmacol Ther 2020; 216:107673. [PMID: 32926934 DOI: 10.1016/j.pharmthera.2020.107673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Aging is a natural biological progress accompanied by the gradual decline in physiological functions, manifested by its close association with an increased incidence of human diseases and higher vulnerability to death. Those diseases include neurological disorders, cardiovascular diseases, diabetes, and cancer, many of which are currently without effective cures. Even though aging is inevitable, there are still interventions that can be developed to prevent/delay the onset and progression of those aging-associated diseases and extend healthspan and/or lifespan. Here, we review decades of research that reveals the molecular pathways underlying aging and forms the biochemical basis for anti-aging drug development. Importantly, due to the vast chemical space of natural products and the rich history of herb medicines in treating human diseases documented in different cultures, natural products have played essential roles in aging research. Using several of the most promising natural products and their derivatives as examples, we discuss how natural products serve as an inspiration resource that helped the identification of key components/pathways underlying aging, their mechanisms of action inside the cell, and the functional scaffolds or targeting mechanisms that can be learned from natural products for drug engineering and optimization. We argue that natural products might eventually provide a solution to aging and aging-associated diseases.
Collapse
Affiliation(s)
- Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xiaoduo Dong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
42
|
COSTA RSD, SANTOS OVD, RODRIGUES AMDC, RIBEIRO-COSTA RM, CONVERTI A, SILVA JÚNIOR JOC. Functional product enriched with the microencapsulated extract of cupuassu (Theobroma grandiflorum Schum.) seed by-product. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.11319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL, Zamir D, Tohge T, Fernie AR. Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2007-2024. [PMID: 32538521 DOI: 10.1111/tpj.14879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338 putative metabolite quantitative trait loci (mQTL) for flavonoids, steroidal glycoalkaloids and further specialized metabolites. Two putative mQTL for flavonols and one for steroidal glycoalkaloids were cross-validated by evaluation of the metabolite content of recombinants harboring smaller introgression in the corresponding QTL interval or by analysis of lines from an independently derived backcross inbred line population. The steroidal glycoalkaloid mQTL was localized to a chromosomal region spanning 14 genes, including a previously defined steroidal glycoalkaloid gene cluster. The flavonoid mQTL was further validated via the use of transient and stable overexpression of the Solyc12g098600 and Solyc12g096870 genes, which encode seed-specific uridine 5'-diphosphate-glycosyltransferases. The results are discussed in the context of our understanding of the accumulation of polyphenols and steroidal glycoalkaloids, and how this knowledge may be incorporated into breeding strategies aimed at improving nutritional aspects of plants as well as in fortifying them against abiotic stress.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Itai Ofner
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruiticultura Subtropical y Mediterranea "La Major" - University of Malaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Campus de Teatinos, Malaga, 29071, Spain
| | - Jose Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Dani Zamir
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
44
|
Martí M, Diretto G, Aragonés V, Frusciante S, Ahrazem O, Gómez-Gómez L, Daròs JA. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metab Eng 2020; 61:238-250. [PMID: 32629020 DOI: 10.1016/j.ymben.2020.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Crocins and picrocrocin are glycosylated apocarotenoids responsible, respectively, for the color and the unique taste of the saffron spice, known as red gold due to its high price. Several studies have also shown the health-promoting properties of these compounds. However, their high costs hamper the wide use of these metabolites in the pharmaceutical sector. We have developed a virus-driven system to produce remarkable amounts of crocins and picrocrocin in adult Nicotiana benthamiana plants in only two weeks. The system consists of viral clones derived from tobacco etch potyvirus that express specific carotenoid cleavage dioxygenase (CCD) enzymes from Crocus sativus and Buddleja davidii. Metabolic analyses of infected tissues demonstrated that the sole virus-driven expression of C. sativus CsCCD2L or B. davidii BdCCD4.1 resulted in the production of crocins, picrocrocin and safranal. Using the recombinant virus that expressed CsCCD2L, accumulations of 0.2% of crocins and 0.8% of picrocrocin in leaf dry weight were reached in only two weeks. In an attempt to improve apocarotenoid content in N. benthamiana, co-expression of CsCCD2L with other carotenogenic enzymes, such as Pantoea ananatis phytoene synthase (PaCrtB) and saffron β-carotene hydroxylase 2 (BCH2), was performed using the same viral system. This combinatorial approach led to an additional crocin increase up to 0.35% in leaves in which CsCCD2L and PaCrtB were co-expressed. Considering that saffron apocarotenoids are costly harvested from flower stigma once a year, and that Buddleja spp. flowers accumulate lower amounts, this system may be an attractive alternative for the sustainable production of these appreciated metabolites.
Collapse
Affiliation(s)
- Maricarmen Martí
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123, Rome, Italy
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123, Rome, Italy
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario S/n, 02071, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario S/n, 02071, Albacete, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain.
| |
Collapse
|
45
|
Chen J, Hu X, Shi T, Yin H, Sun D, Hao Y, Xia X, Luo J, Fernie AR, He Z, Chen W. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1722-1735. [PMID: 31930656 PMCID: PMC7336285 DOI: 10.1111/pbi.13335] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/29/2019] [Indexed: 05/02/2023]
Abstract
The marriage of metabolomic approaches with genetic design has proven a powerful tool in dissecting diversity in the metabolome and has additionally enhanced our understanding of complex traits. That said, such studies have rarely been carried out in wheat. In this study, we detected 805 metabolites from wheat kernels and profiled their relative contents among 182 wheat accessions, conducting a metabolite-based genome-wide association study (mGWAS) utilizing 14 646 previously described polymorphic SNP markers. A total of 1098 mGWAS associations were detected with large effects, within which 26 candidate genes were tentatively designated for 42 loci. Enzymatic assay of two candidates indicated they could catalyse glucosylation and subsequent malonylation of various flavonoids and thereby the major flavonoid decoration pathway of wheat kernel was dissected. Moreover, numerous high-confidence genes associated with metabolite contents have been provided, as well as more subdivided metabolite networks which are yet to be explored within our data. These combined efforts presented the first step towards realizing metabolomics-associated breeding of wheat.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanfeng Hao
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xianchun Xia
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | | | - Zhonghu He
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
46
|
Huda MN, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev MI, Park SU, Zhou M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem 2020; 335:127653. [PMID: 32739818 PMCID: PMC7378508 DOI: 10.1016/j.foodchem.2020.127653] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 07/19/2020] [Indexed: 01/07/2023]
Abstract
An extensive review on diverse bioactive components of buckwheat. Versatile beneficial phytochemicals are abundant in buckwheat. Buckwheat has a wide range of pharmacological and beneficial health effects. Huge research scope on Fagopyrum cymosum to identify the beneficial phytochemicals.
Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.
Collapse
Affiliation(s)
- Md Nurul Huda
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanzim Jahan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 80208, Saudi Arabia
| | - Mengqi Ding
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Republic of Korea
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| | - Sang Un Park
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Republic of Korea.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
47
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
48
|
Saigo T, Wang T, Watanabe M, Tohge T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:93-99. [PMID: 32387820 DOI: 10.1016/j.pbi.2020.04.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 05/22/2023]
Abstract
Anthocyanins and proanthocyanidins are among the most numerous and widely distributed pigments in land plants. Given that these pigments are the valuable compounds, as stress protectants and health-promoting components because of their potent antioxidant activity, several metabolic engineering approaches focusing on these compounds have been attempted. Currently, the difference in biological functions between flavonoid decorations is focused, because some aglycone decorations were found to be key factors rendering physiological functions against environmental stresses. Therefore, metabolic diversity and functional genomics approaches focusing on anthocyanin decoration should be reconsidered. Additionally, since the production of anthocyanins and proanthocyanidins in plants is often represented in a tissue-specific manner and by stress induction, elucidation of the specific regulatory mechanisms of how these pathways have been evolved, is highly important. Here, we review current knowledge of the diversity of chemical structure and regulators of anthocyanin/proanthocyanin biosynthesis with cross-species comparison to assess metabolic evolution.
Collapse
Affiliation(s)
- Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192 Japan
| | - Tong Wang
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192 Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192 Japan
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192 Japan.
| |
Collapse
|
49
|
DellaGreca M, Longobardo L. Protection and Activation of Hydroxycinnamic Acids in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202000176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina DellaGreca
- Department of Chemical ScienceUniversity of Napoli Federico II Via Cinthia 4 80126 Napoli Italy
| | - Luigi Longobardo
- Department of Chemical ScienceUniversity of Napoli Federico II Via Cinthia 4 80126 Napoli Italy
| |
Collapse
|
50
|
Hua S, Dal-Bianco M, Chen ZH. Editorial: Regulation and Manipulation of Nutrient-Controlling Genes in Crops. Front Genet 2020; 11:164. [PMID: 32174979 PMCID: PMC7056896 DOI: 10.3389/fgene.2020.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas, 212, BIOAGRO and Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Vicosa, Brazil
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|