1
|
Liu DH, Liu QR, Tojibaev KS, Sukhorukov AP, Wariss HM, Zhao Y, Yang L, Li WJ. Phylogenomics provides new insight into the phylogeny and diversification of Asian Lappula (Boraginaceae). Mol Phylogenet Evol 2025; 208:108361. [PMID: 40287026 DOI: 10.1016/j.ympev.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The application of omics data serves as a powerful tool for investigating the roles of incomplete lineage sorting (ILS) and hybridization in shaping genomic diversity, offering deeper insights into complex evolutionary processes. In this study, we utilized deep genome sequencing data from 76 individuals of Lappula and its closely allied genera, collected from China and Central Asia. By employing the HybPiper and Easy353 pipelines, we recovered 262-279 single-copy nuclear genes (SCNs) and 352-353 Angiosperms353 genes, respectively. We analyzed multiple datasets, including complete chloroplast genomes and a filtered set of 475 SCNs, to conduct phylogenetic analyses using both concatenated and coalescent-based methods. Furthermore, we employed Quartet Sampling (QS), coalescent simulations, MSCquartets, HyDe, and reticulate network analyses to investigate the sources of phylogenetic discordance. Our results confirm that Lappula is polyphyletic, with L. mogoltavica clustering with Pseudolappula sinaica and forming a sister relationship with other taxa included in this study. Additionally, three Lepechiniella taxa nested within distinct clades of Lappula. Significant gene tree discordance was observed at several nodes within Lappula. Coalescent simulations and hybrid detection analyses suggest that both ILS and hybridization contribute to these discrepancies. Flow cytometry (FCM) analyses confirmed the presence of both diploid and tetraploid taxa within Lappula. Phylogenetic network analyses further revealed that Clades IV and VII likely originated through hybridization, with the tetraploids in Clade IV arising from two independent hybridization events. Additionally, the "ghost lineage" identified as sister to Lappula redowskii serves as one of the donors in allopolyploidization. In conclusion, our study provides new insights into the deep phylogenetic relationships of Asian Lappula and its closely allied genera, contributing to a more comprehensive understanding of the evolution and diversification of Lappula.
Collapse
Affiliation(s)
- Dan-Hui Liu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Komiljon Sh Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Hafiz Muhammad Wariss
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Yue Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lei Yang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Li
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu S, Yang Y, Tian Q, Yang Z, Li S, Valdes PJ, Farnsworth A, Kates HR, Siniscalchi CM, Guralnick RP, Soltis DE, Soltis PS, Stull GW, Folk RA, Yi T. An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1119-1141. [PMID: 39297574 PMCID: PMC12016745 DOI: 10.1111/jipb.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 04/24/2025]
Abstract
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization-perhaps in the form of ancient syngameons like those seen today-has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
Collapse
Affiliation(s)
- Shui‐Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Ying Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhi‐Yun Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Shu‐Feng Li
- Chinese Academy of Sciences Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Paul J. Valdes
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Alex Farnsworth
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Heather R. Kates
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Carolina M. Siniscalchi
- Mississippi State University LibrariesMississippi State UniversityMississippi State39762MississippiUSA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi State39762MississippiUSA
| | - Ting‐Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Xu KW, Yang Y, Chen H, Lin CX, Jiang L, Guo ZL, Li M, Hao MZ, Meng KK. Extensive cytonuclear discordance revealed by phylogenomic analyses suggests complex evolutionary history in the holly genus Ilex (Aquifoliaceae). Mol Phylogenet Evol 2025; 204:108255. [PMID: 39622396 DOI: 10.1016/j.ympev.2024.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Ilex L., the exclusive genus of Aquifoliaceae, encompasses over 600 dioecious wood species with a highly irregular distribution, predominantly found in South America and Asia. The phylogeny and classification of this genus remain enigmatic due to significant early extinctions, constrained morphological diversity, recent hybridization/introgression, and conflicting signals from previously utilized markers. This study presents phylogenetic reconstructions based on complete chloroplast genome sequences and single nucleotide polymorphisms (SNPs) derived from genome resequencing data. A total of 116 accessions of Ilex, representing approximately 108 taxa, were included as the ingroup, with five accessions of two species serving as outgroups. Analysis of the chloroplast genome and nuclear SNP data individually resulted in two robust phylogenetic trees, revealing substantial discrepancies between the chloroplast genome and nuclear SNP phylogenies at both the species and clade levels. The chloroplast genome sequences successfully resolved relationships within this genus into eight strongly supported major clades, while the nuclear SNPs resolved relationships into seven highly supported major clades. Our nuclear SNP phylogenetic tree, in comparison to the chloroplast genome tree, aligns more closely with the recently updated classification of Ilex in multiple instances. The extensive cytonuclear discordance identified may be attributed to recent hybridization events and incomplete lineage sorting (ILS).
Collapse
Affiliation(s)
- Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Yi Yang
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Chen-Xue Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhong-Long Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ming-Zhuo Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kai-Kai Meng
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| |
Collapse
|
4
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Zhou N, Miao K, Hou L, Liu H, Chen J, Ji Y. Phylotranscriptomic analyses reveal the evolutionary complexity of Paris L. (Melanthiaceae), a morphologically distinctive genus with significant pharmaceutical importance. ANNALS OF BOTANY 2024; 134:1277-1290. [PMID: 39221840 PMCID: PMC11688527 DOI: 10.1093/aob/mcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Previous phylogenetic studies on the pharmaceutically significant genus Paris (Melanthiaceae) have consistently revealed substantial cytonuclear discordance, yet the underlying mechanism responsible for this phenomenon remains elusive. This study aims to reconstruct a robust nuclear backbone phylogeny and elucidate the potential evolutionarily complex events contributing to previously observed cytonuclear discordance within Paris. METHODS Based on a comprehensive set of nuclear low-copy orthologous genes obtained from transcriptomic data, the intrageneric phylogeny of Paris, along with its phylogenetic relationships to allied genera, were inferred using coalescent and concatenated approaches. The analysis of gene tree discordance and reticulate evolution, in conjunction with an incomplete lineage sorting (ILS) simulation, was conducted to explore potential hybridization and ILS events in the evolutionary history of Paris and assess their contribution to the discordance of gene trees. KEY RESULTS The nuclear phylogeny unequivocally confirmed the monophyly of Paris and its sister relationship with Trillium, while widespread incongruences in gene trees were observed at the majority of internal nodes within Paris. The reticulate evolution analysis identified five instances of hybridization events in Paris, indicating that hybridization events might have occurred recurrently throughout the evolutionary history of Paris. In contrast, the ILS simulations revealed that only two internal nodes within section Euthyra experienced ILS events. CONCLUSIONS Our data suggest that the previously observed cytonuclear discordance in the phylogeny of Paris can primarily be attributed to recurrent hybridization events, with secondary contributions from infrequent ILS events. The recurrent hybridization events in the evolutionary history of Paris not only drove lineage diversification and speciation but also facilitated morphological innovation, and enhanced ecological adaptability. Therefore, artificial hybridization has great potential for breeding medicinal Paris species. These findings significantly contribute to our comprehensive understanding of the evolutionary complexity of this pharmaceutically significant plant lineage, thereby facilitating effective exploitation and conservation efforts.
Collapse
Affiliation(s)
- Nian Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Miao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Luxiao Hou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
6
|
Dai W, Zheng H, Xu M, Zhu X, Long H, Xu X, Fang Y. Comparative Analysis of the Chloroplast Genomes of the Melliodendron (Styracaceae) Species: Providing Insights into Molecular Evolution and Phylogenetic Relationships. Int J Mol Sci 2024; 26:177. [PMID: 39796037 PMCID: PMC11720149 DOI: 10.3390/ijms26010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Melliodendron xylocarpum is a member of the Styracaceae family, which is well-known for its remarkable ornamental and medicinal properties. In this research, we conducted comparative analysis of the chloroplast genomes from four samples of M. xylocarpum, representing Melliodendron. The results demonstrated that the chloroplast genome of four M. xylocarpum samples ranging from 157,103 bp to 158,357 bp exhibited a typical quadripartite structure, including one large single-copy (LSC) region (90,131 bp to 90,342 bp), one small single-copy (SSC) region (18,467 bp to 18,785 bp), and two inverted repeat regions (IRs) (24,115 bp to 24,261 bp). Different levels of expansion and contraction were observed in the IR region of four M. xylocarpum samples. Besides, accD and ycf1 have been identified under positive selection, potentially linked to the adaptive response of Melliodendron to various environmental changes. Conflicting phylogenetic relationships were identified among various genera within the Styracaceae family in the phylogenetic tree constructed using CDS sequences and complete chloroplast genomes. Furthermore, the significance of a large sample size was also highlighted in this study for enhancing the accuracy of findings from phylogenetic analyses. The findings of this research will provide significant insights for future investigations into the evolutionary trends and conservation of the Melliodendron species.
Collapse
Affiliation(s)
- Wei Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Haozhi Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Menghan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xingli Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Hui Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xiaogang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (W.D.); (H.Z.); (M.X.); (X.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| |
Collapse
|
7
|
Uckele KA, Vargas OM, Kay KM. Prezygotic barriers effectively limit hybridization in a rapid evolutionary radiation. THE NEW PHYTOLOGIST 2024; 244:2548-2560. [PMID: 39400313 PMCID: PMC11579434 DOI: 10.1111/nph.20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Hybridization is increasingly recognized as an important evolutionary process across the tree of life. In many clades, phylogenomic approaches have permitted unparalleled insight into the extent and frequency of hybridization. However, we continue to lack a deep understanding of the factors that limit and shape patterns of hybridization, especially in evolutionary radiations. In this study, we characterized patterns of introgression across Costus (Costaceae), a young evolutionary radiation of tropical understory plants that maintain widespread interfertility despite exhibiting strong prezygotic reproductive isolation. We analyzed a phylogenomic dataset of 756 genes from 54 Costus species using multiple complementary approaches - D-statistics, gene-tree-based tests, and phylogenetic network analyses - to detect and characterize introgression events throughout the evolutionary history of the radiation. Our results identified a moderate number of introgression events, including a particularly ancient, well-supported event spanning one of the deepest divergences in the clade. Most introgression events occurred between taxa or ancestral lineages that shared the same pollination syndrome (bee-pollinated or hummingbird-pollinated). These findings suggest that prezygotic barriers, including pollinator specialization, have been key to the balance between introgression and reproductive isolation in Costus.
Collapse
Affiliation(s)
- Kathryn A. Uckele
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| | - Oscar M. Vargas
- Department of Biological SciencesCalifornia State Polytechnic UniversityHumboldt, ArcataCA95521USA
| | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| |
Collapse
|
8
|
Rincón Barrado M, Perez M, Villaverde T, García-Verdugo C, Caujapé-Castells J, Riina R, Sanmartín I. Phylogenomics and phylogeographic model testing using convolutional neural networks reveal a history of recent admixture in the Canarian Kleinia neriifolia. Mol Ecol 2024; 33:e17537. [PMID: 39425595 DOI: 10.1111/mec.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Multiple-island endemics (MIE) are considered ideal natural subjects to study patterns of island colonization that involve recent population-level genetic processes. Kleinia neriifolia is a Canarian MIE widespread across the archipelago, which exhibits a close phylogenetic relationship with species in northwest Africa and at the other side of the Sahara Desert. Here, we used target sequencing with plastid skimming (Hyb-Seq), a dense population-level sampling of K. neriifolia, and representatives of its African-southern Arabian relatives to infer phylogenetic relationships and divergence times at the species and population levels. Using population genetic techniques and machine learning (convolutional neural networks [CNNs]), we reconstructed phylogeographic relationships and patterns of genetic admixture based on a multilocus SNP nuclear dataset. Phylogenomic analysis based on the nuclear dataset identifies the northwestern African Kleinia anteuphorbium as the sister species of K. neriifolia, with divergence starting in the early Pliocene. Divergence from its sister clade, comprising species from the Horn of Africa and southern Arabia, is dated to the arid Messinian period, lending support to the climatic vicariance origin of the Rand Flora. Phylogeographic model testing with CNNs supports an initial colonization of the central island of Tenerife followed by eastward and westward migration across the archipelago, which resulted in the observed east/west phylogeographic split. Subsequent population extinctions linked to aridification events, and recolonization from Tenerife, are proposed to explain the patterns of genetic admixture in the eastern Canary Islands. We demonstrate that CNNs based on SNPs can be used to discriminate among complex scenarios of island migration and colonization.
Collapse
Affiliation(s)
- Mario Rincón Barrado
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Manolo Perez
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Tamara Villaverde
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | - Juli Caujapé-Castells
- Dept. of Molecular Biodiversity & DNA Bank, Jardín Botánico Canario Viera y Clavijo-UA de I+D+i al CSIC, Las Palmas de Gran Canaria, Spain
| | - Ricarda Riina
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Isabel Sanmartín
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| |
Collapse
|
9
|
Beckers V, Endress M, Baas P, Smets E, Lens F. Apocynaceae wood evolution matches key morphological innovations. AMERICAN JOURNAL OF BOTANY 2024; 111:e16436. [PMID: 39576634 PMCID: PMC11584039 DOI: 10.1002/ajb2.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 11/24/2024]
Abstract
PREMISE This paper provides an overview of the wood anatomy of the dogbane family (Apocynaceae), reconstructs wood anatomical trait evolution, and links this evolution with woody growth-form transitions and floral and seed trait innovations across the family. METHODS Over 200 published wood anatomical descriptions were revised, and original light microscopic sections were made and described for another 50 species. Changes in wood anatomical characters through time were visualized with ancestral state reconstructions. Tests for correlated evolution were performed using a combined data set of anatomical and key floral and seed traits to identify potential synnovations and traits associated with growth-form adaptations. RESULTS There was a shift toward a suite of wood anatomical traits that separate the rauvolfioids and early-branching apocynoids from the core apocynoids, including an increased presence of vessel multiples, vessel dimorphism, laticifers, vascular (cambial) variants, and paratracheal axial parenchyma. The presence of this trait suite, which continues in Periplocoideae, Secamonoideae, and Asclepiadoideae, coincides with a progression of floral morphological innovations that evolved on consecutive nodes in the family, and also relates to more frequent transitions toward the climbing and herbaceous habits. In addition, a considerable shortening of vessel elements and fibers along the phylogenetic backbone of the family is correlated with a general reduction in plant size. CONCLUSIONS There are clear evolutionary transitions in the wood anatomy of Apocynaceae representing structural adaptations across the family that are associated with a quick succession of evolutionary changes of the floral bauplan.
Collapse
Affiliation(s)
- Vicky Beckers
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333CRThe Netherlands
- Plant Sciences, Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333BEThe Netherlands
| | - Mary Endress
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Pieter Baas
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333CRThe Netherlands
| | - Erik Smets
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333CRThe Netherlands
- Plant Sciences, Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333BEThe Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU LeuvenKasteelpark Arenberg 31, Box 2435Leuven3001Belgium
| | - Frederic Lens
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333CRThe Netherlands
- Plant Sciences, Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333BEThe Netherlands
| |
Collapse
|
10
|
Aldaba Núñez FA, Guzmán-Díaz S, Veltjen E, Asselman P, Esteban Jiménez J, Valdés Sánchez J, Testé E, Pino Infante G, Silva Sierra D, Callejas Posada R, Hernández Najarro F, Vázquez-García JA, Larridon I, Park S, Kim S, Martínez Salas EM, Samain MS. Phylogenomic insights into Neotropical Magnolia relationships. Heliyon 2024; 10:e39430. [PMID: 39469672 PMCID: PMC11513560 DOI: 10.1016/j.heliyon.2024.e39430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Despite extensive research into the phylogenetic relationships of the genus Magnolia, Neotropical taxa have been neglected. This is partly because their numbers have recently doubled and now account for almost half of the global richness. Therefore, by sampling one-third of all Neotropical taxa their relationships were studied using morphological, nuclear, and plastome data. Two major clades were identified: Clade I, comprising Magnolia sect. Talauma, Magnolia sect. Splendentes from the Neotropics, and the Asian Magnolia sect. Gwillimia; while Clade II included the Neotropical clades Magnolia sect. Macrophylla and Magnolia sect. Magnolia, along with the remaining non-Neotropical sections. Within Clade I, Magnolia sect. Talauma was geographically divided into a northern subclade grouping Mexican and Central American taxa, and a southern subclade comprising South American and Caribbean taxa. Magnolia sect. Splendentes was also dichotomously divided, corresponding to the former Magnolia sect. Talauma subsect. Cubenses and Magnolia sect. Talauma subsect. Dugandiodendron. In Clade II, the relationships within Magnolia sect. Macrophylla and Magnolia sect. Magnolia were unclear, suggesting a species complex in all Magnolia sect. Macrophylla taxa. In total, 25 morphological traits were assessed, and ancestral state reconstructions were carried out. Only the joined clustering of mature follicles was a synapomorphy for the southern subclade of Magnolia sect. Talauma. In conclusion, this highlights the need to re-assess the taxonomic delimitation of certain groups, to update the infrageneric classification of Neotropical clades and to explore morphological traits to support them.
Collapse
Affiliation(s)
- Fabián A. Aldaba Núñez
- Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C, Avenida Lázaro Cárdenas 253, 61600, Pátzcuaro, Michoacán, Mexico
| | - Salvador Guzmán-Díaz
- Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C, Avenida Lázaro Cárdenas 253, 61600, Pátzcuaro, Michoacán, Mexico
| | - Emily Veltjen
- Ghent University Botanical Garden, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - José Esteban Jiménez
- Herbario Luis A. Fournier Origgi, Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, 11501−2060, San José, Costa Rica
- Florida Museum of Natural History and University of Florida Herbarium, Department of Biology, University of Florida, Dickinson Hall 379, 32611-7800, Gainesville, FL, USA
| | - Jorge Valdés Sánchez
- Herbario PMA, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Manuel E. Batista y José De Fábrega, 3366, Panama City, Panama
| | - Ernesto Testé
- Jardín Botánico Nacional, Universidad de La Habana, Carretera El Rocío km 3.5, La Habana, 19230, Cuba
- Ecologie Systématique et Evolution, IDEEV, Université Paris-Saclay, 3 rue Joliot Curie, 91190, Gif-sur-Yvette, France
| | - Guillermo Pino Infante
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Avenida General Antonio Álvarez de Arenales 1256, 15072, Lima, Peru
| | - Daniel Silva Sierra
- Grupo de Biotecnología, Laboratorio de Taxonomía de Plantas Vasculares, Instituto de Biología, Universidad de Antioquia, Calle 67, 53 – 108, 1226, Medellín, Antioquia, Colombia
| | - Ricardo Callejas Posada
- Grupo de Biotecnología, Laboratorio de Taxonomía de Plantas Vasculares, Instituto de Biología, Universidad de Antioquia, Calle 67, 53 – 108, 1226, Medellín, Antioquia, Colombia
| | - Francisco Hernández Najarro
- Herbario CHIP, Dirección de Botánica Dr. Faustino Miranda, Secretaría de Medio Ambiente e Historia Natural, Calzada Cerro Hueco, 29094, Tuxtla Gutiérrez, Chiapas, Mexico
| | - J. Antonio Vázquez-García
- Herbario IBUG, Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, 45200, Zapopan, Jalisco, Mexico
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Kew Road, TW9 3AE, Richmond, Surrey, United Kingdom
| | - Suhyeon Park
- Department of Biology, Sungshin Women's University, Dongsun-dong 3-ga Sungbuk-gu 249-1, 136-742, Seoul, South Korea
| | - Sangtae Kim
- Department of Biology, Sungshin Women's University, Dongsun-dong 3-ga Sungbuk-gu 249-1, 136-742, Seoul, South Korea
| | - Esteban M. Martínez Salas
- Departamento de Botánica, Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Zona Deportiva, 4510, Mexico City, Mexico
| | - Marie-Stéphanie Samain
- Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C, Avenida Lázaro Cárdenas 253, 61600, Pátzcuaro, Michoacán, Mexico
- Ghent University Botanical Garden, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| |
Collapse
|
11
|
Tiley GP, Crowl AA, Manos PS, Sessa EB, Solís-Lemus C, Yoder AD, Burleigh JG. Benefits and Limits of Phasing Alleles for Network Inference of Allopolyploid Complexes. Syst Biol 2024; 73:666-682. [PMID: 38733563 DOI: 10.1093/sysbio/syae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Accurately reconstructing the reticulate histories of polyploids remains a central challenge for understanding plant evolution. Although phylogenetic networks can provide insights into relationships among polyploid lineages, inferring networks may be hindered by the complexities of homology determination in polyploid taxa. We use simulations to show that phasing alleles from allopolyploid individuals can improve phylogenetic network inference under the multispecies coalescent by obtaining the true network with fewer loci compared with haplotype consensus sequences or sequences with heterozygous bases represented as ambiguity codes. Phased allelic data can also improve divergence time estimates for networks, which is helpful for evaluating allopolyploid speciation hypotheses and proposing mechanisms of speciation. To achieve these outcomes in empirical data, we present a novel pipeline that leverages a recently developed phasing algorithm to reliably phase alleles from polyploids. This pipeline is especially appropriate for target enrichment data, where the depth of coverage is typically high enough to phase entire loci. We provide an empirical example in the North American Dryopteris fern complex that demonstrates insights from phased data as well as the challenges of network inference. We establish that our pipeline (PATÉ: Phased Alleles from Target Enrichment data) is capable of recovering a high proportion of phased loci from both diploids and polyploids. These data may improve network estimates compared with using haplotype consensus assemblies by accurately inferring the direction of gene flow, but statistical nonidentifiability of phylogenetic networks poses a barrier to inferring the evolutionary history of reticulate complexes.
Collapse
Affiliation(s)
| | - Andrew A Crowl
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27708, USA
| | - Paul S Manos
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27708, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, 220 Bartram Hall, PO Box 118525, Gainesville, FL 32611, USA
| | - Claudia Solís-Lemus
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin - Madison, 330 N Orchard St, Madison, WI 53706, USA
| | - Anne D Yoder
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27708, USA
| | - J Gordon Burleigh
- Department of Biology, University of Florida, 220 Bartram Hall, PO Box 118525, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Gentallan Jr. RP, Sengun S, Bartolome MCB, Quiñones KJO, Coronado NB, Borromeo TH, Timog EBS. The Vitextrifolia complex (Lamiaceae) in the Philippines. PHYTOKEYS 2024; 248:1-40. [PMID: 39484087 PMCID: PMC11522745 DOI: 10.3897/phytokeys.248.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/14/2024] [Indexed: 11/03/2024]
Abstract
The Vitextrifolia complex in the Philippines comprises economically important medicinal species, but its taxonomic status has become ambiguous due to numerous historical nomenclatural revisions. We assembled the complete chloroplast genomes of five species belonging to this species complex to provide additional evidence for their species delimitation. Based on a detailed analysis of specimens which combined molecular and morphological data, we propose reinstating V.elmeri Moldenke and delineating V.arvensis Gentallan, Sengun & M.B.Bartolome as a new endemic species belonging to this complex. The new species is a putative hybrid between V.bicolor Willd. and V.elmeri Moldenke. The specific epithet arvensis reflects its predominantly cultivated nature, both on a commercial scale and in home gardens, as a valued medicinal plant. We also provided a key to identify the five species belonging to the V.trifolia complex in the Philippines.
Collapse
Affiliation(s)
- Renerio P. Gentallan Jr.
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Seda Sengun
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Michael Cedric B. Bartolome
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Kristine Joyce O. Quiñones
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Nadine B. Coronado
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Teresita H. Borromeo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| | - Emmanuel Bonifacio S. Timog
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, PhilippinesUniversity of the Philippines Los BañosLos BañosPhilippines
| |
Collapse
|
13
|
Zhou Q, Karunarathne P, Andersson-Li L, Chen C, Opgenoorth L, Heer K, Piotti A, Vendramin GG, Nakvasina E, Lascoux M, Milesi P. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. Mol Ecol 2024; 33:e17495. [PMID: 39148357 DOI: 10.1111/mec.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, Picea abies and P. obovata, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.
Collapse
Affiliation(s)
- Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Institute of Population Genetics, Heinrich-Heine University, Düsseldorf, Universitäts Straße 1, Düsseldorf, Germany
| | - Lili Andersson-Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska L2:02, Solna, Sweden
| | - Chen Chen
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Lars Opgenoorth
- Department of Biology, Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Katrin Heer
- Faculty of Environment and Natural Resources, Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Piotti
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | | | - Elena Nakvasina
- Department of Forestry and Forest Management, Northern (Arctic) Federal University Named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Gui L, Peng C, Yu L, Liu L, Wei S, Yan Z, Zhang X, Zhou S, He X. Morphology and ITS sequences provide insights into the phylogeny of Tongoloa (Apiaceae) from China. BMC Ecol Evol 2024; 24:103. [PMID: 39080515 PMCID: PMC11290071 DOI: 10.1186/s12862-024-02292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Tongoloa is a genus comprising approximately 20 species, primarily distributed in the mountainous regions of southwest China. The insufficiency of specimen materials and morphological similarities among species render it a taxonomically challenging genus within the Apiaceae family. To elucidate the phylogenetic relationships and taxonomy of Chinese Tongoloa, this study utilized a total of 115 nrITS sequences, including 47 recently obtained sequences, for phylogenetic reconstruction. RESULTS Phylogenetic relationships reconstructed from ITS sequences indicate that the East Asia Clade and the Komarovia Clade are sister groups, and Tongoloa belongs to the East Asia Clade. Species of Tongoloa are subdivided into 3 distinct groups, all sharing similar fruit morphologies and are clearly differentiated from related taxa. Several Tongoloa-like members classified under other genera are interpreted to be closely related to Tongoloa. Morphological and molecular data indicate that Tongoloa, Sinolimprichtia subclade and Chinese Trachydium subclade are separate yet genetically contiguous taxa. It is confirmed that Tongoloa zhongdianensis belongs to the Hymenidium Clade, while Sinocarum is classified within the Acronema Clade. Two new taxa are found in the Hengduan Mountains. CONCLUSION Tongoloa is a genus within the East Asia Clade of Apiaceae, and the phylogeny reconstructed based on ITS sequences divides it into 3 main groups. By integrating fruit morphology and molecular phylogenetic analyses, we preliminary clarified the intricate taxonomic relationships among Tongoloa and related taxa. These results provide valuable opportunities for a deeper understanding of the phylogeny of Tongoloa.
Collapse
Affiliation(s)
- Lingjian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liying Yu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Lijia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhigang Yan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xiaomei Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Songdong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xingjin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
15
|
Frost LA, Bedoya AM, Lagomarsino LP. Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora. Syst Biol 2024; 73:308-322. [PMID: 38170162 DOI: 10.1093/sysbio/syad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap in our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via hybrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multicopy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but nonspecific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into 9 well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.
Collapse
Affiliation(s)
- Laura A Frost
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
- Biology Department, University of South Alabama, 5871 USA N Dr, Mobile, AL 36688, USA
| | - Ana M Bedoya
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| | - Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Draper D, Riofrío L, Naranjo C, Marques I. The Complex Genetic Legacy of Hybridization and Introgression between the Rare Ocotea loxensis van der Werff and the Widespread O. infrafoveolata van der Werff (Lauraceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:1956. [PMID: 39065483 PMCID: PMC11280420 DOI: 10.3390/plants13141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Hybridization and introgression are complex evolutionary mechanisms that can increase species diversity and lead to speciation, but may also lead to species extinction. In this study, we tested the presence and genetic consequences of hybridization between the rare and Ecuadorian endemic O. loxensis van der Werff and the widespread O. infrafoveolata van der Werff (Lauraceae). Phenotypically, some trees are difficult to identify, and we expect that some might in fact be cryptic hybrids. Thus, we developed nuclear microsatellites to assess the existence of hybrids, as well as the patterns of genetic diversity and population structure in allopatric and sympatric populations. The results revealed high levels of genetic diversity, even in the rare O. loxensis, being usually significantly higher in sympatric than in allopatric populations. The Bayesian assignment of individuals into different genetic classes revealed a complex scenario with different hybrid generations occurring in all sympatric populations, but also in allopatric ones. The absence of some backcrossed hybrids suggests the existence of asymmetric gene flow, and that some hybrids might be more fitted than others might. The existence of current and past interspecific gene flow also explains the blurring of species boundaries in these species and could be linked to the high rates of species found in Ocotea.
Collapse
Affiliation(s)
- David Draper
- Center for Ecology, Evolution, and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Lorena Riofrío
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Carlos Naranjo
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Isabel Marques
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
17
|
Pokorny L, Pellicer J, Woudstra Y, Christenhusz MJM, Garnatje T, Palazzesi L, Johnson MG, Maurin O, Françoso E, Roy S, Leitch IJ, Forest F, Baker WJ, Hidalgo O. Genomic incongruence accompanies the evolution of flower symmetry in Eudicots: a case study in the poppy family (Papaveraceae, Ranunculales). FRONTIERS IN PLANT SCIENCE 2024; 15:1340056. [PMID: 38947944 PMCID: PMC11212465 DOI: 10.3389/fpls.2024.1340056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
Collapse
Affiliation(s)
- Lisa Pokorny
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Yannick Woudstra
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maarten J. M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
- Jardí Botànic Marimurtra, Fundació Carl Faust, Blanes, Spain
| | - Luis Palazzesi
- División Paleobotánica, Museo Argentino de Ciencias Naturales, CONICET, Buenos Aires, Argentina
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | | | | | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| |
Collapse
|
18
|
Fu N, Xu Y, Jin L, Xiao TW, Song F, Yan HF, Chen YS, Ge XJ. Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC PLANT BIOLOGY 2024; 24:445. [PMID: 38778277 PMCID: PMC11112886 DOI: 10.1186/s12870-024-05073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510920, China
| | - Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
19
|
Zhou N, Miao K, Liu C, Jia L, Hu J, Huang Y, Ji Y. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics. PLANT DIVERSITY 2024; 46:219-228. [PMID: 38807906 PMCID: PMC11128834 DOI: 10.1016/j.pld.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 05/30/2024]
Abstract
Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changkun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jinjin Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
20
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
22
|
Moore‐Pollard ER, Jones DS, Mandel JR. Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11568. [PMID: 38369976 PMCID: PMC10873820 DOI: 10.1002/aps3.11568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 02/20/2024]
Abstract
Premise A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. Methods We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. Results We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061. Discussion Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.
Collapse
Affiliation(s)
- Erika R. Moore‐Pollard
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| | - Daniel S. Jones
- Department of Biological SciencesAuburn University101 Rouse Life SciencesAuburnAlabama36849USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| |
Collapse
|
23
|
Krawczyk K, Paukszto Ł, Maździarz M, Sawicki J. The low level of plastome differentiation observed in some lineages of Poales hinders molecular species identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1275377. [PMID: 38143577 PMCID: PMC10739336 DOI: 10.3389/fpls.2023.1275377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Chloroplast genomes are a source of information successfully used in various fields of plant genetics, including molecular species identification. However, recent studies indicate an extremely low level of interspecific variability in the plastomes of some taxonomic groups of plants, including the genus Stipa L., which is a representative of the grass family. In this study we aimed to analyze the level of chloroplast genome diversity within particular genera as well as the effectiveness of identifying plant species in the Poaceae family and the other representatives of Poales order. Analysis of complete plastid genome alignments created for 96 genera comprising 793 species and 1707 specimens obtained from the GenBank database allowed defining and categorizing molecular diagnostic characters distinguishing the analyzed species from the other representatives of the genus. The results also demonstrate which species do not have any species-specific mutations, thereby they cannot be identified on the basis of differences between the complete chloroplast genomes. Our research showed a huge diversity of the analyzed species in terms of the number of molecular diagnostic characters and indicated which genera pose a particular challenge in terms of molecular species identification. The results show that a very low level of genetic diversity between plastomes is not uncommon in Poales. This is the first extensive research on super-barcoding that tests this method on a large data set and illustrates its effectiveness against the background of phylogenetic relationships.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | | |
Collapse
|
24
|
Cai ZY, Niu ZY, Zhang YY, Tong YH, Vu TC, Goh WL, Sungkaew S, Teerawatananon A, Xia NH. Phylogenomic analyses reveal reticulate evolution between Neomicrocalamus and Temochloa (Poaceae: Bambusoideae). FRONTIERS IN PLANT SCIENCE 2023; 14:1274337. [PMID: 38111884 PMCID: PMC10726129 DOI: 10.3389/fpls.2023.1274337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
Neomicrocalamus and Temochloa are closely related to bamboo genera. However, when considered with newly discovered and morphologically similar material from China and Vietnam, the phylogenetic relationship among these three groups was ambiguous in the analyses based on DNA regions. Here, as a means of investigating the relationships among the three bamboo groups and exploring potential sources of genomic conflicts, we present a phylogenomic examination based on the whole plastome, single-nucleotide polymorphism (SNP), and single-copy nuclear (SCN) gene datasets. Three different phylogenetic hypotheses were found. The inconsistency is attributed to the combination of incomplete lineage sorting and introgression. The origin of newly discovered bamboos is from introgressive hybridization between Temochloa liliana (which contributed 80.7% of the genome) and Neomicrocalamus prainii (19.3%), indicating that the newly discovered bamboos are closer to T. liliana in genetics. The more similar morphology and closer distribution elevation also imply a closer relationship between Temochloa and newly discovered bamboos.
Collapse
Affiliation(s)
- Zhuo-Yu Cai
- Key Laboratory of Plant Resources, Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- South China National Botanical Garden, Guangzhou, China
| | - Zheng-Yang Niu
- Key Laboratory of Plant Resources, Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- South China National Botanical Garden, Guangzhou, China
| | - You-Yuan Zhang
- Key Laboratory of Plant Resources, Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Quality Management Office, Guiyang Vocational and Technical College, Guiyang, China
| | - Yi-Hua Tong
- Key Laboratory of Plant Resources, Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tien Chinh Vu
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Wei Lim Goh
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Kampar, Perak, Malaysia
| | - Sarawood Sungkaew
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Nian-He Xia
- Key Laboratory of Plant Resources, Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
25
|
Yang L, Harris AJ, Wen F, Li Z, Feng C, Kong H, Kang M. Phylogenomic Analyses Reveal an Allopolyploid Origin of Core Didymocarpinae (Gesneriaceae) Followed by Rapid Radiation. Syst Biol 2023; 72:1064-1083. [PMID: 37158589 PMCID: PMC10627561 DOI: 10.1093/sysbio/syad029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Allopolyploid plants have long been regarded as possessing genetic advantages under certain circumstances due to the combined effects of their hybrid origins and duplicated genomes. However, the evolutionary consequences of allopolyploidy in lineage diversification remain to be fully understood. Here, we investigate the evolutionary consequences of allopolyploidy using 138 transcriptomic sequences of Gesneriaceae, including 124 newly sequenced, focusing particularly on the largest subtribe Didymocarpinae. We estimated the phylogeny of Gesneriaceae using concatenated and coalescent-based methods based on five different nuclear matrices and 27 plastid genes, focusing on relationships among major clades. To better understand the evolutionary affinities in this family, we applied a range of approaches to characterize the extent and cause of phylogenetic incongruence. We found that extensive conflicts between nuclear and chloroplast genomes and among nuclear genes were caused by both incomplete lineage sorting (ILS) and reticulation, and we found evidence of widespread ancient hybridization and introgression. Using the most highly supported phylogenomic framework, we revealed multiple bursts of gene duplication throughout the evolutionary history of Gesneriaceae. By incorporating molecular dating and analyses of diversification dynamics, our study shows that an ancient allopolyploidization event occurred around the Oligocene-Miocene boundary, which may have driven the rapid radiation of core Didymocarpinae.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fang Wen
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, 541006 Guilin, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
26
|
Zhang C, Meng R, Meng Y, Guo BL, Liu QR, Nie ZL. Parallel evolution, atavism, and extensive introgression explain the radiation of Epimedium sect. Diphyllon (Berberidaceae) in southern East Asia. FRONTIERS IN PLANT SCIENCE 2023; 14:1234148. [PMID: 37915504 PMCID: PMC10616310 DOI: 10.3389/fpls.2023.1234148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
East Asia is the richest region of plant biodiversity in the northern temperate zone, and its radiation provides key insights for understanding rapid speciation, including evolutionary patterns and processes. However, it is challenging to investigate the recent evolutionary radiation among plants because of the lack of genetic divergence, phenotypic convergence, and interspecific gene flow. Epimedium sect. Diphyllon is a rarely studied plant lineage endemic to East Asia, especially highly diversified in its southern part. In this study, we report a robust phylogenomic analysis based on genotyping-by-sequencing data of this lineage. The results revealed a clear biogeographic pattern for Epimedium sect. Diphyllon with recognition into two major clades corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms of East Asian Flora and rapid diversification of the extant species dated to the Pleistocene. Evolutionary radiation of Epimedium sect. Diphyllon is characterized by recent and predominant parallel evolution and atavism between the two subkingdom regions, with extensive reticulating hybridization within each region during the course of diversification in southern East Asia. A parallel-atavism-introgression hypothesis is referred to in explaining the radiation of plant diversity in southern East Asia, which represents a potential model for the rapid diversification of plants under global climate cooling in the late Tertiary. Our study advances our understanding of the evolutionary processes of plant radiation in East Asia as well as in other biodiversity hotspot regions.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ran Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ying Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Bao-Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan-Ru Liu
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ze-Long Nie
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| |
Collapse
|
27
|
Escobari B, Borsch T, Kilian N. Generic concepts and species diversity within the Gynoxyoid clade (Senecioneae, Compositae). PHYTOKEYS 2023; 234:61-106. [PMID: 37860599 PMCID: PMC10582726 DOI: 10.3897/phytokeys.234.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023]
Abstract
The Gynoxyoid clade of the Senecioneae (Asteraceae) until now included the five genera Aequatorium, Gynoxys, Nordenstamia, Paracalia and Paragynoxys as diagnosed using selected morphological characters. In their pre-phylogenetic circumscription, the genera Aequatorium and Paragynoxys were considered to inhabit the northern Andes in contrast to Nordenstamia and Paracalia that occur in the central Andes. The most species-rich genus, Gynoxys, was believed to be distributed throughout the Andes. We use a recently established plastid phylogenomic framework that rendered Gynoxys paraphyletic to further evaluate the delimitation of genera in the Gynoxyoid clade. We examine the morphological variation of all members of the Gynoxyoid to identify characters potentially informative at genus level. This results in a matrix of eleven, mostly multistate characters, including those originally used to diagnose these genera. The ancestral character state inference displays a high level of homoplasy, but nevertheless supports the recognition of four genera. Aequatorium is characterised by white radiate capitula. Paracalia and Paragynoxys share white flowers and floral characteristics, such as flower opening and length of disc flowers lobes, as plesiomorphic states, but differ in habit (scandent shrubs vs. trees). Paracalia also retained white flowers, but its two species are characterised by the absence of outer phyllaries. The genera Gynoxys and Nordenstamia comprise species with yellow capitula which appear to be a derived feature in the Gynoxyoids. The genus Nordenstamia, with eight species, is synonymised under Gynoxys since molecular evidence shows its species nested within various parts of the Gynoxys subclade and the morphological variation of Nordenstamia falls well within that of Gynoxys. With the goal to assign all species to four genera (Aequatorium, Gynoxys, Paracalia and Paragynoxys), we assess the states for the eleven characters for all members of the Gynoxyoids and generate new ETS and ITS sequences for 171 specimens belonging to 49 species to further support their generic placement. We provide a taxonomic treatment for the four genera recognised here including amended diagnoses and morphological descriptions. Furthermore, a species-level taxonomic backbone is elaborated for all genera using electronic tools that list 158 currently accepted names and synonyms (209 names in total) with the respective protologue and type information, as well as notes on the current understanding of species limits. Eleven names are newly synonymised, two are lectotypified and eight are newly transferred to other genera.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
28
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
29
|
Dagallier LPMJ, Mbago FM, Couderc M, Gaudeul M, Grall A, Loup C, Wieringa JJ, Sonké B, Couvreur TLP. Phylogenomic inference of the African tribe Monodoreae (Annonaceae) and taxonomic revision of Dennettia, Uvariodendron and Uvariopsis. PHYTOKEYS 2023; 233:1-200. [PMID: 37811332 PMCID: PMC10552675 DOI: 10.3897/phytokeys.233.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023]
Abstract
Monodoreae (Annonaceae) is a tribe composed of 11 genera and 90 species restricted to the tropical African rain forests. All the genera are taxonomically well circumscribed except the species rich genera Uvariodendron and Uvariopsis which lack a recent taxonomic revision. Here, we used a robust phylogenomic approach, including all the 90 currently accepted species, with several specimens per species, and based on more than 300 Annonaceae-specific nuclear genes, to infer the phylogenetic tree of the Monodoreae and test the limits between the genera and species. We recover all the genera as monophyletic, except the genus Uvariopsis for which the species Uvariopsistripetala falls outside this clade. We thus reinstate the monotypic genus Dennettia for its single species Dennettiatripetala. We also erect a new tribe, Ophrypetaleae trib. nov., to accommodate the genera Ophrypetalum and Sanrafaelia, as we recover them excluded from the Monodoreae tribe with good support. Below the genus level, the genera Isolona, Monodora, Uvariastrum, Uvariodendron and Uvariopsis show weakly supported nodes and phylogenetic conflicts, suggesting that population level processes of evolution might occur in these clades. Our results also support, at the molecular level, the description of several new species of Uvariodendron and Uvariopsis, as well as several new synonymies. Finally, we present a taxonomic revision of the genera Dennettia, Uvariodendron and Uvariopsis, which contain one, 18 and 17 species respectively. We provide a key to the 11 genera of the Monodoraeae and describe four new species to science: Uvariodendronkimbozaense Dagallier & Couvreur, sp. nov., Uvariodendronmossambicense Robson ex Dagallier & Couvreur, sp. nov., Uvariodendronpilosicarpum Dagallier & Couvreur, sp. nov. and Uvariopsisoligocarpa Dagallier & Couvreur, sp. nov., and provide provisional descriptions of three putatively new species. We also present lectotypifications and nomenclatural changes implying synonymies and new combinations (Uvariodendroncitriodorum (Le Thomas) Dagallier & Couvreur, comb. et stat. nov., Uvariodendronfuscumvar.magnificum (Verdc.) Dagallier & Couvreur, comb. et stat. nov., Uvariopsiscongensisvar.angustifolia Dagallier & Couvreur, var. nov., Uvariopsisguineensisvar.globiflora (Keay) Dagallier & Couvreur, comb. et stat. nov., and Uvariopsissolheidiivar.letestui (Pellegr.) Dagallier & Couvreur, comb. et stat. nov.).
Collapse
Affiliation(s)
- Léo-Paul M. J. Dagallier
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458, USA
| | - Frank M. Mbago
- The Herbarium, Botany Department, Box 35060, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Marie Couderc
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, France
| | - Aurélie Grall
- Herbaria Basel, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Caroline Loup
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jan J. Wieringa
- Herbier MPU, DCSPH – CC 99010, Université de Montpellier, 163 rue A. Broussonnet, F-34090 Montpellier, France
| | - Bonaventure Sonké
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, Netherlands
| | | |
Collapse
|
30
|
Yang Z, Ma X, Wang Q, Tian X, Sun J, Zhang Z, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nat Commun 2023; 14:5542. [PMID: 37696791 PMCID: PMC10495350 DOI: 10.1038/s41467-023-41137-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae.
Collapse
Affiliation(s)
- Zhiping Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolin Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
31
|
Lesica P, Lavin M. Will molecular phylogenetics help decrease nomenclatural instability? AMERICAN JOURNAL OF BOTANY 2023; 110:e16219. [PMID: 37561649 DOI: 10.1002/ajb2.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, 59812, Montana, USA
| | - Matt Lavin
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, 59717, Montana, USA
| |
Collapse
|
32
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
33
|
Slovák M, Melichárková A, Štubňová EG, Kučera J, Mandáková T, Smyčka J, Lavergne S, Passalacqua NG, Vďačný P, Paun O. Pervasive Introgression During Rapid Diversification of the European Mountain Genus Soldanella (L.) (Primulaceae). Syst Biol 2023; 72:491-504. [PMID: 36331548 PMCID: PMC10276626 DOI: 10.1093/sysbio/syac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 03/19/2024] Open
Abstract
Hybridization is a key mechanism involved in lineage diversification and speciation, especially in ecosystems that experienced repeated environmental oscillations. Recently radiated plant groups, which have evolved in mountain ecosystems impacted by historical climate change provide an excellent model system for studying the impact of gene flow on speciation. We combined organellar (whole-plastome) and nuclear genomic data (RAD-seq) with a cytogenetic approach (rDNA FISH) to investigate the effects of hybridization and introgression on evolution and speciation in the genus Soldanella (snowbells, Primulaceae). Pervasive introgression has already occurred among ancestral lineages of snowbells and has persisted throughout the entire evolutionary history of the genus, regardless of the ecology, cytotype, or distribution range size of the affected species. The highest extent of introgression has been detected in the Carpathian species, which is also reflected in their extensive karyotype variation. Introgression occurred even between species with dysploid and euploid cytotypes, which were considered to be reproductively isolated. The magnitude of introgression detected in snowbells is unprecedented in other mountain genera of the European Alpine System investigated hitherto. Our study stresses the prominent evolutionary role of hybridization in facilitating speciation and diversification on the one hand, but also enriching previously isolated genetic pools. [chloroplast capture; diversification; dysploidy; European Alpine system; introgression; nuclear-cytoplasmic discordance; ribosomal DNA.].
Collapse
Affiliation(s)
- Marek Slovák
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
- Department of Botany, Charles University, Prague, Czech Republic
| | - Andrea Melichárková
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
| | - Eliška Gbúrová Štubňová
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
- Slovak National Museum, Natural History Museum, Bratislava, Slovakia
| | - Jaromír Kučera
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
| | - Terezie Mandáková
- Central European Institute of Technology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Jan Smyčka
- Department of Botany, Charles University, Prague, Czech Republic
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, Jilská 1, 110 00 Praha, Czech Republic
- Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | - Sébastien Lavergne
- Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | | | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Vargas OM, Madriñán S, Simpson B. Allopatric speciation is more prevalent than parapatric ecological divergence in a recent high-Andean diversification ( Linochilus: Asteraceae). PeerJ 2023; 11:e15479. [PMID: 37312875 PMCID: PMC10259450 DOI: 10.7717/peerj.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Elucidating how species accumulate in diversity hotspots is an ongoing debate in evolutionary biology. The páramo, in the Northern Andes, has remarkably high indices of plant diversity, endemicity, and diversification rates. A hypothesis for explaining such indices is that allopatric speciation is high in the páramo given its island-like distribution. An alternative hypothesis is that the altitudinal gradient of the Andean topography provides a variety of niches that drive vertical parapatric ecological speciation. A formal test for evaluating the relative roles of allopatric and parapatric ecological speciation is lacking. The main aim of our study is to test which kind of speciation is more common in an endemic páramo genus. We developed a framework incorporating phylogenetics, species' distributions, and a morpho-ecological trait (leaf area) to compare sister species and infer whether allopatric or parapatric ecological divergence caused their speciation. We applied our framework to the species-rich genus Linochilus (63 spp.) and found that the majority of recent speciation events in it (12 events, 80%) have been driven by allopatric speciation, while a smaller fraction (one event, 6.7%) is attributed to parapatric ecological speciation; two pairs of sister species produced inconclusive results (13.3%). We conclude that páramo autochthonous (in-situ) diversification has been primarily driven by allopatric speciation.
Collapse
Affiliation(s)
- Oscar M. Vargas
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, United States
- Department of Integrative Biology and Billie Turner Plant Resources Center, The University of Texas at Austin, Austin, TX, USA
| | - Santiago Madriñán
- Department of Biological Sciences, University of the Andes, Bogotá, DC, Colombia
- Jardín Botánico de Cartagena, Turbaco, Bolívar, Colombia
| | - Beryl Simpson
- Department of Integrative Biology and Billie Turner Plant Resources Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
35
|
Paukszto Ł, Górski P, Krawczyk K, Maździarz M, Szczecińska M, Ślipiko M, Sawicki J. The organellar genomes of Pellidae (Marchantiophyta): the evidence of cryptic speciation, conflicting phylogenies and extraordinary reduction of mitogenomes in simple thalloid liverwort lineage. Sci Rep 2023; 13:8303. [PMID: 37221210 DOI: 10.1038/s41598-023-35269-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Organellar genomes of liverworts are considered as one of the most stable among plants, with rare events of gene loss and structural rearrangements. However, not all lineages of liverworts are equally explored in the field of organellar genomics, and subclass Pellidae is one of the less known. Hybrid assembly, using both short- and long-read technologies enabled the assembly of repeat-rich mitogenomes of Pellia and Apopellia revealing extraordinary reduction of length in the latter which impacts only intergenic spacers. The mitogenomes of Apopellia were revealed to be the smallest among all known liverworts-109 k bp, despite retaining all introns. The study also showed the loss of one tRNA gene in Apopellia mitogenome, although it had no impact on the codon usage pattern of mitochondrial protein coding genes. Moreover, it was revealed that Apopellia and Pellia differ in codon usage by plastome CDSs, despite identical tRNA gene content. Molecular identification of species is especially important where traditional taxonomic methods fail, especially within Pellidae where cryptic speciation is well recognized. The simple morphology of these species and a tendency towards environmental plasticity make them complicated in identification. Application of super-barcodes, based on complete mitochondrial or plastid genomes sequences enable identification of all cryptic lineages within Apopellia and Pellia genera, however in some particular cases, mitogenomes were more efficient in species delimitation than plastomes.
Collapse
Affiliation(s)
- Łukasz Paukszto
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Piotr Górski
- Department of Botany, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
36
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Mol Phylogenet Evol 2023; 184:107808. [PMID: 37156329 DOI: 10.1016/j.ympev.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The genus Lonicera L. is widely distributed in the north temperate zone and is well-known for its high species richness and morphological diversity. Previous studies have suggested that many sections of Lonicera are not monophyletic and phylogenetic relationships within the genus are still poorly resolved. In this study, we sampled 37 accessions of Lonicera, covering four sections of subgenus Chamaecerasus plus six outgroup taxa, to recover the main clades of Lonicera based on sequences of nuclear loci generated by target enrichment and cpDNA from genome skimming. We found extensive cytonuclear discordance across the subgenus. Both nuclear and plastid phylogenetic analyses supported subgenus Chamaecerasus sister to subgenus Lonicera. Within subgenus Chamaecerasus, sections Isika and Nintooa were each polyphyletic. Based on the nuclear and chloroplast phylogenies, we propose to merge Lonicera korolkowii into section Coeloxylosteum and Lonicera caerulea into section Nintooa. In addition, Lonicera is estimated to have originated in the mid Oligocene (26.45 Ma). The stem age of section Nintooa was estimated to be 17.09 Ma (95% HPD: 13.30-24.45). The stem age of subgenus Lonicera was estimated to be 16.35 Ma (95% HPD: 14.12-23.66). Ancestral area reconstruction analyses indicate that subgenus Chamaecerasus originated in East Asia and Central Asia. In addition, sections Coeloxylosteum and Nintooa originated in East Asia, with subsequent dispersals into other areas. The aridification of the Asian interior likely promoted the rapid radiation of sections Coeloxylosteum and Nintooa within this region. Moreover, our biogeographic analysis fully supports the Bering and the North Atlantic Land Bridge hypotheses for the intercontinental migrations in the Northern Hemisphere. Overall, this study provides new insights into the taxonomically complex lineages of subgenus Chamaecerasus and the process of speciation.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA; Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Zhai Mingguo Academician Work Station, Sanya University, Sanya 572022, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA; BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Hua-Feng Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
37
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
38
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
39
|
Kantor A, Kučera J, Šlenker M, Breidy J, Dönmez AA, Marhold K, Slovák M, Svitok M, Zozomová-Lihová J. Evolution of hygrophytic plant species in the Anatolia-Caucasus region: insights from phylogenomic analyses of Cardamine perennials. ANNALS OF BOTANY 2023; 131:585-600. [PMID: 36656962 PMCID: PMC10147327 DOI: 10.1093/aob/mcad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.
Collapse
Affiliation(s)
- Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Joêlle Breidy
- National Genebank, Lebanese Agricultural Research Institute, Zahle 1801, Lebanon
| | - Ali A Dönmez
- Botany Section, Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe-Ankara, Turkey
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 01Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| |
Collapse
|
40
|
Yi H, Dong S, Yang L, Wang J, Kidner C, Kang M. Genome-wide data reveal cryptic diversity and hybridization in a group of tree ferns. Mol Phylogenet Evol 2023; 184:107801. [PMID: 37088242 DOI: 10.1016/j.ympev.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Discovery of cryptic diversity is essential to understanding both the process of speciation and the conservation of species. Determining species boundaries in fern lineages represents a major challenge due to lack of morphologically diagnostic characters and frequent hybridization. Genomic data has substantially enhanced our understanding of the speciation process, increased the resolution of species delimitation studies, and led to the discovery of cryptic diversity. Here, we employed restriction-site-associated DNA sequencing (RAD-seq) and integrated phylogenomic and population genomic analyses to investigate phylogenetic relationships and evolutionary history of 16 tree ferns with marginate scales (Cyatheaceae) from China and Vietnam. We conducted multiple species delimitation analyses using the multispecies coalescent (MSC) model and novel approaches based on genealogical divergence index (gdi) and isolation by distance (IBD). In addition, we inferred species trees using concatenation and several coalescent-based methods, and assessed hybridization patterns and rate of gene flow across the phylogeny. We obtained highly supported and generally congruent phylogenies inferred from concatenated and summary-coalescent methods, and the monophyly of all currently recognized species were strongly supported. Our results revealed substantial evidence of cryptic diversity in three widely distributed Gymnosphaera species, each of which was composite of two highly structure lineages that may correspond to cryptic species. We found that hybridization was fairly common between not only closely related species, but also distantly related species. Collectively, it appears that scaly tree ferns may contain cryptic diversity and hybridization has played an important role throughout the evolutionary history of this group.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Shiying Dong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK; Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
41
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 238:888-903. [PMID: 36305244 DOI: 10.1111/nph.18580] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
43
|
Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography. Mol Phylogenet Evol 2023; 181:107727. [PMID: 36754338 DOI: 10.1016/j.ympev.2023.107727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.
Collapse
|
44
|
Ji Y, Landis JB, Yang J, Wang S, Zhou N, Luo Y, Liu H. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae: new insights from plastid phylogenomics. ANNALS OF BOTANY 2023; 131:301-312. [PMID: 36434782 PMCID: PMC9992941 DOI: 10.1093/aob/mcac144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Asparagaceae subfamily Nolinoideae is an economically important plant group, but the deep relationships and evolutionary history of the lineage remain poorly understood. Based on a large data set including 37 newly sequenced samples and publicly available plastomes, this study aims to better resolve the inter-tribal relationships of Nolinoideae, and to rigorously examine the tribe-level monophyly of Convallarieae, Ophiopogoneae and Polygonateae. METHODS Maximum likelihood (ML) and Bayesian inference (BI) methods were used to infer phylogenetic relationships of Nolinoideae at the genus level and above. The diversification history of Nolinoideae was explored using molecular dating. KEY RESULTS Both ML and BI analyses identically recovered five clades within Nolinoideae, respectively corresponding to Dracaeneae + Rusceae, Polygonateae + Theropogon, Ophiopogoneae, Nolineae, and Convallarieae excluding Theropogon, and most deep nodes were well supported. As Theropogon was embedded in Polygonateae, the plastome phylogeny failed to resolve Convallarieae and Polygonateae as reciprocally monophyletic. Divergence time estimation showed that the origins of most Nolinoideae genera were dated to the Miocene and Pliocene. The youthfulness of Nolinoideae genera is well represented in the three herbaceous tribes (Convallarieae, Ophiopogoneae and Polygonateae) chiefly distributed in temperate areas of the Northern Hemisphere, as the median stem ages of all 14 genera currently belonging to them were estimated at <12.37 Ma. CONCLUSIONS This study recovered a robust backbone phylogeny, providing new insights for better understanding the evolution and classification of Nolinoideae. Compared with the deep relationships recovered by a previous study based on transcriptomic data, our data suggest that ancient hybridization or incomplete lineage sorting may have occurred in the early diversification of Nolinoideae. Our findings will provide important reference for further study of the evolutionary complexity of Nolinoideae using nuclear genomic data. The recent origin of these herbaceous genera currently belonging to Convallarieae, Ophiopogoneae and Polygonateae provides new evidence to support the hypothesis that the global expansion of temperate habitats caused by the climate cooling over the past 15 million years may have dramatically driven lineage diversification and speciation in the Northern Hemisphere temperate flora.
Collapse
Affiliation(s)
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
45
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
46
|
Dong S, Yu J, Zhang L, Goffinet B, Liu Y. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications. ANNALS OF BOTANY 2022; 130:951-964. [PMID: 36075207 PMCID: PMC9851303 DOI: 10.1093/aob/mcac113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS With some 7300 extant species, liverworts (Marchantiophyta) represent one of the major land plant lineages. The backbone relationships, such as the phylogenetic position of Ptilidiales, and the occurrence and timing of whole-genome duplications, are still contentious. METHODS Based on analyses of the newly generated transcriptome data for 38 liverworts and complemented with those publicly available, we reconstructed the evolutionary history of liverworts and inferred gene duplication events along the 55 taxon liverwort species tree. KEY RESULTS Our phylogenomic study provided an ordinal-level liverwort nuclear phylogeny and identified extensive gene tree conflicts and cyto-nuclear incongruences. Gene duplication analyses based on integrated phylogenomics and Ks distributions indicated no evidence of whole-genome duplication events along the backbone phylogeny of liverworts. CONCLUSIONS With a broadened sampling of liverwort transcriptomes, we re-evaluated the backbone phylogeny of liverworts, and provided evidence for ancient hybridizations followed by incomplete lineage sorting that shaped the deep evolutionary history of liverworts. The lack of whole-genome duplication during the deep evolution of liverworts indicates that liverworts might represent one of the few major embryophyte lineages whose evolution was not driven by whole-genome duplications.
Collapse
Affiliation(s)
- Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Jin Yu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| |
Collapse
|
47
|
Lu WX, Hu XY, Wang ZZ, Rao GY. Hyb-Seq provides new insights into the phylogeny and evolution of the Chrysanthemum zawadskii species complex in China. Cladistics 2022; 38:663-683. [PMID: 35766338 DOI: 10.1111/cla.12514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
A species complex is an assemblage of closely related species with blurred boundaries, and from which species could arise from different speciation processes and/or a speciation continuum. Such a complex can provide an opportunity to investigate evolutionary mechanisms acting on speciation. The Chrysanthemum zawadskii species complex in China, a monophyletic group of Chrysanthemum, consists of seven species with considerable morphological variation, diverse habitats and different distribution patterns. Here, we used Hyb-Seq data to construct a well-resolved phylogeny of the C. zawadskii complex. Then, we performed comparative analyses of variation patterns in morphology, ecology and distribution to investigate the roles of geography and ecology in this complex's diversification. Lastly, we implemented divergence time estimation, species distribution modelling and ancestral area reconstruction to trace the evolutionary history of this complex. We concluded that the C. zawadskii complex originated in the Qinling-Daba mountains during the early Pliocene and then spread west and northward along the mountain ranges to northern China. During this process, geographical and ecological factors imposing different influences resulted in the current diversification and distribution patterns of this species complex, which is composed of both well-diverged species and diverging lineages on the path of speciation.
Collapse
Affiliation(s)
- Wen-Xun Lu
- School of Life Sciences, Peking University, Beijing, China
| | - Xue-Ying Hu
- School of Life Sciences, Peking University, Beijing, China
| | - Zi-Zhao Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
48
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
49
|
Thureborn O, Razafimandimbison SG, Wikström N, Rydin C. Target capture data resolve recalcitrant relationships in the coffee family (Rubioideae, Rubiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:967456. [PMID: 36160958 PMCID: PMC9493367 DOI: 10.3389/fpls.2022.967456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Subfamily Rubioideae is the largest of the main lineages in the coffee family (Rubiaceae), with over 8,000 species and 29 tribes. Phylogenetic relationships among tribes and other major clades within this group of plants are still only partly resolved despite considerable efforts. While previous studies have mainly utilized data from the organellar genomes and nuclear ribosomal DNA, we here use a large number of low-copy nuclear genes obtained via a target capture approach to infer phylogenetic relationships within Rubioideae. We included 101 Rubioideae species representing all but two (the monogeneric tribes Foonchewieae and Aitchinsonieae) of the currently recognized tribes, and all but one non-monogeneric tribe were represented by more than one genus. Using data from the 353 genes targeted with the universal Angiosperms353 probe set we investigated the impact of data type, analytical approach, and potential paralogs on phylogenetic reconstruction. We inferred a robust phylogenetic hypothesis of Rubioideae with the vast majority (or all) nodes being highly supported across all analyses and datasets and few incongruences between the inferred topologies. The results were similar to those of previous studies but novel relationships were also identified. We found that supercontigs [coding sequence (CDS) + non-coding sequence] clearly outperformed CDS data in levels of support and gene tree congruence. The full datasets (353 genes) outperformed the datasets with potentially paralogous genes removed (186 genes) in levels of support but increased gene tree incongruence slightly. The pattern of gene tree conflict at short internal branches were often consistent with high levels of incomplete lineage sorting (ILS) due to rapid speciation in the group. While concatenation- and coalescence-based trees mainly agreed, the observed phylogenetic discordance between the two approaches may be best explained by their differences in accounting for ILS. The use of target capture data greatly improved our confidence and understanding of the Rubioideae phylogeny, highlighted by the increased support for previously uncertain relationships and the increased possibility to explore sources of underlying phylogenetic discordance.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
50
|
Herrera ND, Bell KC, Callahan CM, Nordquist E, Sarver BAJ, Sullivan J, Demboski JR, Good JM. Genomic resolution of cryptic species diversity in chipmunks. Evolution 2022; 76:2004-2019. [PMID: 35778920 DOI: 10.1111/evo.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Discovery of cryptic species is essential to understand the process of speciation and assessing the impacts of anthropogenic stressors. Here, we used genomic data to test for cryptic species diversity within an ecologically well-known radiation of North American rodents, western chipmunks (Tamias). We assembled a de novo reference genome for a single species (Tamias minimus) combined with new and published targeted sequence-capture data for 21,551 autosomal and 493 X-linked loci sampled from 121 individuals spanning 22 species. We identified at least two cryptic lineages corresponding with an isolated subspecies of least chipmunk (T. minimus grisescens) and with a restricted subspecies of the yellow-pine chipmunk (Tamias amoenus cratericus) known only from around the extensive Craters of the Moon lava flow. Additional population-level sequence data revealed that the so-called Crater chipmunk is a distinct species that is abundant throughout the coniferous forests of southern Idaho. This cryptic lineage does not appear to be most closely related to the ecologically and phenotypically similar yellow-pine chipmunk but does show evidence for recurrent hybridization with this and other species.
Collapse
Affiliation(s)
- Nathanael D Herrera
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Kayce C Bell
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Erin Nordquist
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - John R Demboski
- Department of Zoology, Denver Museum of Nature & Sciences, Denver, Colorado, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| |
Collapse
|