1
|
Erarslan ZB, Kültür Ş. A study to elucidate the taxonomy of the genus Doronicum based on morphological and anatomical studies. Micron 2025; 194:103812. [PMID: 40199020 DOI: 10.1016/j.micron.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
The main purpose of this study is the morphological and anatomical characterization of Doronicum L. taxa naturally grown in Türkiye. In this context, morphology and anatomy of 11 species, and 1 subspecies of Doronicum was researched in detail by stereo and light microscopy. Moreover, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were performed to identify closely related species and the potential anatomical characters which could be used to delimitation the studied taxa. Although the anatomical features of the examined taxa are generally similar to each other, some differences have been identified. Since indumentum is significant in distinguishing taxa, trichome types and dimensions were also evaluated. The first four PCs explained about 66.28 % of total variability. Some anatomical characters such as cortical cell (stem), collenchyma thickness (stem), adaxial epidermis cell length (leaf), spongy parenchyma thickness (leaf), trachea cell diameter (leaf), adaxial stomatal index (leaf), trachea cell diameter (stem), and abaxial stomata length (leaf) resulted the most effective variables for the PCA. HCA dendrogram also revealed two main clusters. Determining the morphological and anatomical features of Doronicum taxa, clarifying the systematic value of anatomical features through numerical analysis and contributing to the systematic position of the examined taxa will be guiding for future studies.
Collapse
Affiliation(s)
- Zeynep Büşra Erarslan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye.
| | - Şükran Kültür
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye
| |
Collapse
|
2
|
Lessware OC, Mantell JM, Bauer U. Carnivorous Nepenthes pitcher plants combine common developmental processes to make a complex epidermal trapping surface. ANNALS OF BOTANY 2025; 135:643-654. [PMID: 39240138 PMCID: PMC11904891 DOI: 10.1093/aob/mcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS A hierarchical micro-topography of ridges and steps renders the trap rim of carnivorous Nepenthes pitcher plants unusually wettable, and slippery for insects when wet. This complex three-dimensional epidermis structure forms, hidden from plain sight, inside the still-closed developing pitcher bud. Here, we reveal the sequence of epidermal patterning events that shape the trap rim. By linking this sequence to externally visible markers of bud development, we provide a framework for targeting individual stages of surface development in future studies. METHODS We used cryo-scanning electron microscopy to investigate the detailed morphogenesis and epidermal patterning of the Nepenthes × hookeriana pitcher rim. In addition, we collected morphometric and qualitative data from developing pitcher traps including those sampled for microscopy. KEY RESULTS We identified three consecutive patterning events. First, strictly oriented cell divisions resulted in radially aligned rows of cells and established a macroscopic ridge-and-groove pattern. Next, conical papillate cells formed, and papillae elongated towards the trap interior, increasingly overlapping adjacent cells and eventually forming continuous microscopic ridges. In between these ridges, the flattened papillae formed acutely angled arched steps. Finally, the cells elongated radially, thereby establishing the convex collar shape of the rim. This general sequence of surface development also showed a spatial progression from the outer to the inner trap rim edge, with several consecutive developmental stages co-occurring at any given time. CONCLUSIONS We demonstrate that the complex surface micro-topography of the Nepenthes pitcher rim develops by sequentially combining widespread, evolutionarily conserved epidermal patterning processes in a new way. This makes the Nepenthes trap rim an excellent model for studying epidermal patterning mechanisms in leaves.
Collapse
Affiliation(s)
- Oona C Lessware
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Judith M Mantell
- Wolfson Bioimaging Centre, School of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ulrike Bauer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
3
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Tan GD, Chaudhuri U, Varela S, Ahuja N, Leakey ADB. Machine learning-enabled computer vision for plant phenotyping: a primer on AI/ML and a case study on stomatal patterning. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6683-6703. [PMID: 39363775 PMCID: PMC11565210 DOI: 10.1093/jxb/erae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Artificial intelligence and machine learning (AI/ML) can be used to automatically analyze large image datasets. One valuable application of this approach is estimation of plant trait data contained within images. Here we review 39 papers that describe the development and/or application of such models for estimation of stomatal traits from epidermal micrographs. In doing so, we hope to provide plant biologists with a foundational understanding of AI/ML and summarize the current capabilities and limitations of published tools. While most models show human-level performance for stomatal density (SD) quantification at superhuman speed, they are often likely to be limited in how broadly they can be applied across phenotypic diversity associated with genetic, environmental, or developmental variation. Other models can make predictions across greater phenotypic diversity and/or additional stomatal/epidermal traits, but require significantly greater time investment to generate ground-truth data. We discuss the challenges and opportunities presented by AI/ML-enabled computer vision analysis, and make recommendations for future work to advance accelerated stomatal phenotyping.
Collapse
Affiliation(s)
- Grace D Tan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ushasi Chaudhuri
- Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sebastian Varela
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Independent Researcher, Canelones, 15800, Uruguay
| | - Narendra Ahuja
- Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew D B Leakey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Zubairova US, Fomin IN, Koloshina KA, Barchuk AI, Erst TV, Chalaya NA, Gerasimova SV, Doroshkov AV. Image-Based Quantitative Analysis of Epidermal Morphology in Wild Potato Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:3084. [PMID: 39520002 PMCID: PMC11548698 DOI: 10.3390/plants13213084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The epidermal leaf patterns of plants exhibit remarkable diversity in cell shapes, sizes, and arrangements, driven by environmental interactions that lead to significant adaptive changes even among closely related species. The Solanaceae family, known for its high diversity of adaptive epidermal structures, has traditionally been studied using qualitative phenotypic descriptions. To advance this, we developed a workflow combining multi-scale computer vision, image processing, and data analysis to extract digital descriptors for leaf epidermal cell morphology. Applied to nine wild potato species, this workflow quantified key morphological parameters, identifying descriptors for trichomes, stomata, and pavement cells, and revealing interdependencies among these traits. Principal component analysis (PCA) highlighted two main axes, accounting for 45% and 21% of variance, corresponding to features such as guard cell shape, trichome length, stomatal density, and trichome density. These axes aligned well with the historical and geographical origins of the species, separating southern from Central American species, and forming distinct clusters for monophyletic groups. This workflow thus establishes a quantitative foundation for investigating leaf epidermal cell morphology within phylogenetic and geographic contexts.
Collapse
Affiliation(s)
- Ulyana S. Zubairova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan N. Fomin
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Kristina A. Koloshina
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alisa I. Barchuk
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatyana V. Erst
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia;
| | - Sophia V. Gerasimova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
6
|
Li X, Lowey D, Lessard J, Caicedo AL. Comparative histology of abscission zones reveals the extent of convergence and divergence in seed shattering in weedy and cultivated rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4837-4850. [PMID: 38972665 DOI: 10.1093/jxb/erae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
The modification of seed shattering has been a recurring theme in rice evolution. The wild ancestor of cultivated rice disperses its seeds, but reduced shattering was selected during multiple domestication events to facilitate harvesting. Conversely, selection for increased shattering occurred during the evolution of weedy rice, a weed invading cultivated rice fields that has originated multiple times from domesticated ancestors. Shattering requires formation of a tissue known as the abscission zone (AZ), but how the AZ has been modified throughout rice evolution is unclear. We quantitatively characterized the AZ characteristics of relative length, discontinuity, and intensity in 86 cultivated and weedy rice accessions. We reconstructed AZ evolutionary trajectories and determined the degree of convergence among different cultivated varieties and among independent weedy rice populations. AZ relative length emerged as the best feature to distinguish high and low shattering rice. Cultivated varieties differed in average AZ morphology, revealing lack of convergence in how shattering reduction was achieved during domestication. In contrast, weedy rice populations typically converged on complete AZs, irrespective of origin. By examining AZ population-level morphology, our study reveals its evolutionary plasticity, and suggests that the genetic potential to modify the ecologically and agronomically important trait of shattering is plentiful in rice lineages.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Daniel Lowey
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jessica Lessard
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Cai F, Blanquer A, Costa MB, Schweiger L, Sarac B, Greer AL, Schroers J, Teichert C, Nogués C, Spieckermann F, Eckert J. Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310364. [PMID: 38109153 PMCID: PMC11475312 DOI: 10.1002/smll.202310364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.
Collapse
Affiliation(s)
- Fei‐Fan Cai
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - Andreu Blanquer
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Miguel B. Costa
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Lukas Schweiger
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Baran Sarac
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - A. Lindsay Greer
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Jan Schroers
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenCT 06511USA
| | - Christian Teichert
- Department PhysicsMechanics and Electrical EngineeringChair of PhysicsMontanuniversität LeobenFranz‐Josef‐Strasse 18LeobenA‐8700Austria
| | - Carme Nogués
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Florian Spieckermann
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Jürgen Eckert
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| |
Collapse
|
8
|
Runel G, Lopez-Ramirez N, Barbollat-Boutrand L, Cario M, Durand S, Grimont M, Schartl M, Dalle S, Caramel J, Chlasta J, Masse I. Cancer Cell Biomechanical Properties Accompany Tspan8-Dependent Cutaneous Melanoma Invasion. Cancers (Basel) 2024; 16:694. [PMID: 38398085 PMCID: PMC10887418 DOI: 10.3390/cancers16040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells' invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties with cell morphology adaptation and the molecular mechanisms underlying epithelial-to-mesenchymal (EMT)-like phenotype switching. We found that melanoma cell stiffness reduction was systematically associated with the acquisition of invasive properties in cutaneous melanoma cell lines, human skin reconstructs, and Medaka fish developing spontaneous MAP-kinase-induced melanomas. We observed a systematic correlation of stiffness modulation with cell morphological changes towards mesenchymal characteristic gains. We accordingly found that inducing melanoma EMT switching by overexpressing the ZEB1 transcription factor, a major regulator of melanoma cell plasticity, was sufficient to decrease cell stiffness and transcriptionally induce tetraspanin-8-mediated dermal invasion. Moreover, ZEB1 expression correlated with Tspan8 expression in patient melanoma lesions. Our data suggest that intrinsic cell stiffness could be a highly relevant marker for human cutaneous melanoma development.
Collapse
Affiliation(s)
- Gaël Runel
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
- BioMeca, 60F, Bioserra 2, Av. Rockefeller, 69008 Lyon, France
| | - Noémie Lopez-Ramirez
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Laetitia Barbollat-Boutrand
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Muriel Cario
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, 33000 Bordeaux, France
- AquiDerm, University Bordeaux, 33076 Bordeaux, France
| | - Simon Durand
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Maxime Grimont
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, 97074 Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Stéphane Dalle
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
- Dermatology Department, Hôpital Universitaire Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julie Caramel
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| | - Julien Chlasta
- BioMeca, 60F, Bioserra 2, Av. Rockefeller, 69008 Lyon, France
| | - Ingrid Masse
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, University Lyon 1, 69000 Lyon, France; (G.R.); (N.L.-R.)
| |
Collapse
|
9
|
Lloyd BA, Barclay RS, Dunn RE, Currano ED, Mohamaad AI, Skersies K, Punyasena SW. CuticleTrace: A toolkit for capturing cell outlines from leaf cuticle with implications for paleoecology and paleoclimatology. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11566. [PMID: 38369978 PMCID: PMC10873815 DOI: 10.1002/aps3.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024]
Abstract
Premise Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities. Methods and Results We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods. Conclusions CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.
Collapse
Affiliation(s)
- Benjamin A. Lloyd
- Department of Earth and Space SciencesUniversity of WashingtonJohnson Hall Rm‐070, Box 351310, 4000 15th Ave. NESeattleWashington98195‐1310USA
- Smithsonian Environmental Research CenterSmithsonian Institution647 Contees Wharf Rd.EdgewaterMaryland21037‐0028USA
| | - Richard S. Barclay
- Department of Paleobiology, National Museum of Natural HistorySmithsonian Institution1000 Madison Dr. NWWashingtonD.C.20560USA
| | - Regan E. Dunn
- La Brea Tar Pits and MuseumNatural History Museums of Los Angeles County5801 S. Wilshire Blvd.Los AngelesCalifornia90036USA
- Department of Earth SciencesUniversity of Southern California3551 Trousdale ParkwayLos AngelesCalifornia90089USA
| | - Ellen D. Currano
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWyoming82071USA
| | - Ayuni I. Mohamaad
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWyoming82071USA
- Department of Geological SciencesUniversity of Florida241 Williamson Hall, P.O. Box 112120GainesvilleFlorida32611‐2120USA
| | - Kymbre Skersies
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWyoming82071USA
| | - Surangi W. Punyasena
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign139 Morrill Hall, 505 South Goodwin Ave.UrbanaIllinois61801USA
| |
Collapse
|
10
|
Bidhendi AJ, Lampron O, Gosselin FP, Geitmann A. Cell geometry regulates tissue fracture. Nat Commun 2023; 14:8275. [PMID: 38092784 PMCID: PMC10719271 DOI: 10.1038/s41467-023-44075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
In vascular plants, the epidermal surfaces of leaves and flower petals often display cells with wavy geometries forming intricate jigsaw puzzle patterns. The prevalence and diversity of these complex epidermal patterns, originating from simple polyhedral progenitor cells, suggest adaptive significance. However, despite multiple efforts to explain the evolutionary drivers behind these geometrical features, compelling validation remains elusive. Employing a multidisciplinary approach that integrates microscopic and macroscopic fracture experiments with computational fracture mechanics, we demonstrate that wavy epidermal cells toughen the plants' protective skin. Through a multi-scale framework, we demonstrate that this energy-efficient patterning mechanism is universally applicable for toughening biological and synthetic materials. Our findings reveal a tunable structural-mechanical strategy employed in the microscale design of plants to protect them from deleterious surface fissures while facilitating and strategically directing beneficial ones. These findings hold implications for targeted plant breeding aimed at enhancing resilience in fluctuating environmental conditions. From an engineering perspective, our work highlights the sophisticated design principles the plant kingdom offers to inspire metamaterials.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
- EERS Global Technologies, Montreal, Canada.
| | - Olivier Lampron
- Laboratoire de Mécanique Multi-échelles, Département de génie mécanique, École Polytechnique de Montréal, Montreal, Québec, H3C 3A7, Canada
| | - Frédérick P Gosselin
- Laboratoire de Mécanique Multi-échelles, Département de génie mécanique, École Polytechnique de Montréal, Montreal, Québec, H3C 3A7, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
11
|
Kikukawa K, Takigawa-Imamura H, Soga K, Kotake T, Higaki T. Smooth Elongation of Pavement Cells Induced by RIC1 Overexpression Leads to Marginal Protrusions of the Cotyledon in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1356-1371. [PMID: 37718531 DOI: 10.1093/pcp/pcad094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023]
Abstract
The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.
Collapse
Affiliation(s)
| | - Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Green Biology Research Center, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Takumi Higaki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami 2-39-1 Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami 2-39-1 Chuo-ku, Kumamoto, 860-8555 Japan
| |
Collapse
|
12
|
Panteris E, Pappas D. F-Actin Organization and Epidermal Cell Morphogenesis in the Brown Alga Sargassum vulgare. Int J Mol Sci 2023; 24:13234. [PMID: 37686039 PMCID: PMC10488008 DOI: 10.3390/ijms241713234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The ordinary epidermal cells of various vascular plants are characterized by wavy anticlinal wall contours. This feature has not yet been reported in multicellular algal species. Here, we found that, in the leaf-like blades of the brown alga Sargassum vulgare, epidermal cells exhibit prominent waviness. Initially, the small meristodermal cells exhibit straight anticlinal contour, which during their growth becomes wavy, in a pattern highly reminiscent of that found in land plants. Waviness is restricted close to the external periclinal wall, while at inner levels the anticlinal walls become thick and even. The mechanism behind this shape relies on cortical F-actin organization. Bundles of actin filaments are organized, extending under the external periclinal wall and connecting its junctions with the anticlinal walls, constituting an interconnected network. These bundles define the sites of local thickening deposition at the anticlinal/periclinal wall junctions. These thickenings are interconnected by cellulose microfibril extensions under the external periclinal wall. Apart from the wavy anticlinal contour, outward protrusions also arise on the external periclinal wall, thus the whole epidermis exhibits a quilted appearance. Apart from highlighting a new role for F-actin in cell shaping, the comparison of this morphogenetic mechanism to that of vascular plants reveals a case of evolutionary convergence among photosynthetic organisms.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|
13
|
Peters RD, Noble SD. Characterization of leaf surface phenotypes based on light interaction. PLANT METHODS 2023; 19:26. [PMID: 36932424 PMCID: PMC10024457 DOI: 10.1186/s13007-023-01004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Leaf surface phenotypes can indicate plant health and relate to a plant's adaptations to environmental stresses. Identifying these phenotypes using non-invasive techniques can assist in high-throughput phenotyping and can improve decision making in plant breeding. Identification of these surface phenotypes can also assist in stress identification. Incorporating surface phenotypes into leaf optical modelling can lead to improved biochemical parameter retrieval and species identification. RESULTS In this paper, leaf surface phenotypes are characterized for 349 leaf samples based on polarized light reflectance measured at Brewster's Angle, and microscopic observation. Four main leaf surface phenotypes (glossy wax, glaucous wax, high trichome density, and glabrous) were identified for the leaf samples. The microscopic and visual observations of the phenotypes were used as ground truth for comparison with the spectral classification. In addition to surface classification, the microscope images were used to assess cell size, shape, and cell cap aspect ratios; these surface attributes were not found to correlate significantly with spectral measurements obtained in this study. Using a quadratic discriminant analysis function, a series of 10,000 classifications were run with the data randomly split between training and testing datasets, with 150 and 199 samples, respectively. The average correct classification rate was 72.9% with a worst-case classification of 60.3%. CONCLUSIONS Leaf surface phenotypes were successfully correlated with spectral measurements that can be obtained remotely. Remote identification of these surface phenotypes will improve leaf optical modelling and biochemical parameter estimations. Phenotyping of leaf surfaces can inform plant breeding decisions and assist with plant health monitoring.
Collapse
Affiliation(s)
- Reisha D Peters
- Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - Scott D Noble
- Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
14
|
Jiang GF, Li SY, Dinnage R, Cao KF, Simonin KA, Roddy AB. Diverse mangroves deviate from other angiosperms in their genome size, leaf cell size and cell packing density relationships. ANNALS OF BOTANY 2023; 131:347-360. [PMID: 36516425 PMCID: PMC9992938 DOI: 10.1093/aob/mcac151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes. METHODS Here, we examined the coordination between genome size, leaf cell sizes, cell packing densities and leaf size in 13 mangrove species across four sites in China. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy. RESULTS We found that genome sizes of mangroves were very small compared to other angiosperms, but, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (Dv) and stomata (Ds) and smaller epidermal cells but had no effect on stomatal size. In contrast to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata; and (3) coordination between Dv and Ds that was not mediated by epidermal cell size. Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size. CONCLUSIONS While mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to that of other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments were markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.
Collapse
Affiliation(s)
| | - Su-Yuan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, PR China
| | - Russell Dinnage
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199USA
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, PR China
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, CA 94132USA
| | | |
Collapse
|
15
|
Jiang J, Khan A, Shailja S, Belteton SA, Goebel M, Szymanski DB, Manjunath BS. Segmentation, tracking, and sub-cellular feature extraction in 3D time-lapse images. Sci Rep 2023; 13:3483. [PMID: 36859457 PMCID: PMC9977871 DOI: 10.1038/s41598-023-29149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on GitHub and the method is available as a service through the BisQue portal.
Collapse
Affiliation(s)
- Jiaxiang Jiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA.
| | - Amil Khan
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
| | - S. Shailja
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
| | - Samuel A. Belteton
- grid.169077.e0000 0004 1937 2197Department of Botany and Plant Pathology, Purdue University, West Lafayette, USA ,grid.24805.3b0000 0001 0687 2182Molecular Biology Program, New Mexico State University, Las Cruces, USA
| | - Michael Goebel
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
| | - Daniel B. Szymanski
- grid.169077.e0000 0004 1937 2197Department of Botany and Plant Pathology, Purdue University, West Lafayette, USA
| | - B. S. Manjunath
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
| |
Collapse
|
16
|
Klemm S, Buhl J, Möller B, Bürstenbinder K. Quantitative Analysis of Microtubule Organization in Leaf Epidermis Pavement Cells. Methods Mol Biol 2023; 2604:43-61. [PMID: 36773224 DOI: 10.1007/978-1-0716-2867-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Birgit Möller
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle (Saale), Germany.
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
| |
Collapse
|
17
|
Brown MJM, Jordan GJ. No cell is an island: characterising the leaf epidermis using epidermalmorph, a new R package. THE NEW PHYTOLOGIST 2023; 237:354-366. [PMID: 36205061 PMCID: PMC10098627 DOI: 10.1111/nph.18519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The leaf epidermis is the interface between a plant and its environment. The epidermis is highly variable in morphology, with links to both phylogeny and environment, and this diversity is relevant to several fields, including physiology, functional traits, palaeobotany, taxonomy and developmental biology. Describing and measuring leaf epidermal traits remains challenging. Current approaches are either extremely labour-intensive and not feasible for large studies or limited to measurements of individual cells. Here, we present a method to characterise individual cell size, shape (including the effect of neighbouring cells) and arrangement from light microscope images. We provide the first automated characterisation of cell arrangement (from traced images) as well as multiple new shape characteristics. We have implemented this method in an R package, epidermalmorph, and provide an example workflow using this package, which includes functions to evaluate trait reliability and optimal sampling effort for any given group of plants. We demonstrate that our new metrics of cell shape are independent of gross cell shape, unlike existing metrics. epidermalmorph provides a broadly applicable method for quantifying epidermal traits that we hope can be used to disentangle the fundamental relationships between form and function in the leaf epidermis.
Collapse
Affiliation(s)
- Matilda J. M. Brown
- Biological SciencesUniversity of TasmaniaHobart7000Tas.Australia
- Royal Botanic Gardens KewRichmondTW9 3AEUK
| | | |
Collapse
|
18
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
19
|
Panteris E, Adamakis IDS. Double Puzzle: Morphogenesis of the Bi-Layered Leaf Adaxial Epidermis of Magnolia grandiflora. PLANTS (BASEL, SWITZERLAND) 2022; 11:3437. [PMID: 36559549 PMCID: PMC9785140 DOI: 10.3390/plants11243437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Anticlinal ordinary epidermal cell wall waviness is a widespread feature found in the leaves of a variety of land plant species. However, it has not yet been encountered in leaves with multiple epidermides. Surprisingly, in Magnolia grandiflora leaves, ordinary epidermal cells in both layers of the bi-layered adaxial epidermis exhibit wavy anticlinal contour. During the development of the above cells, cortical microtubules are organized in anticlinally oriented bundles under the anticlinal walls, and radial arrays extending from the bundles at the edges of anticlinal and external periclinal walls, under the external periclinal walls. This microtubule pattern is followed by cell wall reinforcement with local thickenings, the cellulose microfibrils of which are parallel to the underlying microtubules. This specialized microtubule organization and concomitant cell wall reinforcement is initiated in the external epidermal layer, while hypodermis follows. The waviness pattern of each epidermal layer is unrelated to that of the other. The above findings are discussed in terms of morphogenetic mechanism induction and any implications in the functional significance of ordinary epidermal cell waviness.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|
20
|
Treado JD, Roddy AB, Théroux-Rancourt G, Zhang L, Ambrose C, Brodersen CR, Shattuck MD, O’Hern CS. Localized growth and remodelling drives spongy mesophyll morphogenesis. J R Soc Interface 2022; 19:20220602. [PMID: 36475391 PMCID: PMC9727661 DOI: 10.1098/rsif.2022.0602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The spongy mesophyll is a complex, porous tissue found in plant leaves that enables carbon capture and provides mechanical stability. Unlike many other biological tissues, which remain confluent throughout development, the spongy mesophyll must develop from an initially confluent tissue into a tortuous network of cells with a large proportion of intercellular airspace. How the airspace in the spongy mesophyll develops while the tissue remains mechanically stable is unknown. Here, we use computer simulations of deformable polygons to develop a purely mechanical model for the development of the spongy mesophyll tissue. By stipulating that cell wall growth and remodelling occurs only near void space, our computational model is able to recapitulate spongy mesophyll development observed in Arabidopsis thaliana leaves. We find that robust generation of pore space in the spongy mesophyll requires a balance of cell growth, adhesion, stiffness and tissue pressure to ensure cell networks become porous yet maintain mechanical stability. The success of this mechanical model of morphogenesis suggests that simple physical principles can coordinate and drive the development of complex plant tissues like the spongy mesophyll.
Collapse
Affiliation(s)
- John D. Treado
- Department of Mechanical Engineering and Materials Science and Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Guillaume Théroux-Rancourt
- University of Natural Resources and Life Sciences, Vienna, Department of Integrative Biology and Biodiversity Research, Institute of Botany, 1180 Vienna, Austria
| | - Liyong Zhang
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Chris Ambrose
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | | | - Mark D. Shattuck
- Department of Physics and Benjamin Levich Institute, City College of New York, NY 10031, USA
| | - Corey S. O’Hern
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Li S, Li L, Fan W, Ma S, Zhang C, Kim JC, Wang K, Russinova E, Zhu Y, Zhou Y. LeafNet: a tool for segmenting and quantifying stomata and pavement cells. THE PLANT CELL 2022; 34:1171-1188. [PMID: 35080620 PMCID: PMC8972303 DOI: 10.1093/plcell/koac021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/20/2022] [Indexed: 05/02/2023]
Abstract
Stomata play important roles in gas and water exchange in leaves. The morphological features of stomata and pavement cells are highly plastic and are regulated during development. However, it is very laborious and time-consuming to collect accurate quantitative data from the leaf surface by manual phenotyping. Here, we introduce LeafNet, a tool that automatically localizes stomata, segments pavement cells (to prepare them for quantification), and reports multiple morphological parameters for a variety of leaf epidermal images, especially bright-field microscopy images. LeafNet employs a hierarchical strategy to identify stomata using a deep convolutional network and then segments pavement cells on stomata-masked images using a region merging method. LeafNet achieved promising performance on test images for quantifying different phenotypes of individual stomata and pavement cells compared with six currently available tools, including StomataCounter, Cellpose, PlantSeg, and PaCeQuant. LeafNet shows great flexibility, and we improved its ability to analyze bright-field images from a broad range of species as well as confocal images using transfer learning. Large-scale images of leaves can be efficiently processed in batch mode and interactively inspected with a graphic user interface or a web server (https://leafnet.whu.edu.cn/). The functionalities of LeafNet could easily be extended and will enhance the efficiency and productivity of leaf phenotyping for many plant biologists.
Collapse
Affiliation(s)
| | | | - Weiliang Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Suping Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Jang Chol Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Yuxian Zhu
- Authors for correspondence: (Y.X.Z.) and (Y.Z.)
| | - Yu Zhou
- Authors for correspondence: (Y.X.Z.) and (Y.Z.)
| |
Collapse
|
22
|
Li W, Keynia S, Belteton SA, Afshar-Hatam F, Szymanski DB, Turner JA. Protocol for mapping the variability in cell wall mechanical bending behavior in living leaf pavement cells. PLANT PHYSIOLOGY 2022; 188:1435-1449. [PMID: 34908122 PMCID: PMC8896622 DOI: 10.1093/plphys/kiab588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/10/2021] [Indexed: 05/16/2023]
Abstract
Mechanical properties, size and geometry of cells, and internal turgor pressure greatly influence cell morphogenesis. Computational models of cell growth require values for wall elastic modulus and turgor pressure, but very few experiments have been designed to validate the results using measurements that deform the entire thickness of the cell wall. New wall material is synthesized at the inner surface of the cell such that full-thickness deformations are needed to quantify relevant changes associated with cell development. Here, we present an integrated, experimental-computational approach to analyze quantitatively the variation of elastic bending behavior in the primary cell wall of living Arabidopsis (Arabidopsis thaliana) pavement cells and to measure turgor pressure within cells under different osmotic conditions. This approach used laser scanning confocal microscopy to measure the 3D geometry of single pavement cells and indentation experiments to probe the local mechanical responses across the periclinal wall. The experimental results were matched iteratively using a finite element model of the experiment to determine the local mechanical properties and turgor pressure. The resulting modulus distribution along the periclinal wall was nonuniform across the leaf cells studied. These results were consistent with the characteristics of plant cell walls which have a heterogeneous organization. The results and model allowed the magnitude and orientation of cell wall stress to be predicted quantitatively. The methods also serve as a reference for future work to analyze the morphogenetic behaviors of plant cells in terms of the heterogeneity and anisotropy of cell walls.
Collapse
Affiliation(s)
- Wenlong Li
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sedighe Keynia
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Faezeh Afshar-Hatam
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Joseph A Turner
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Author for communication:
| |
Collapse
|
23
|
Morón-García O, Garzón-Martínez GA, Martínez-Martín MJP, Brook J, Corke FMK, Doonan JH, Camargo Rodríguez AV. Genetic architecture of variation in Arabidopsis thaliana rosettes. PLoS One 2022; 17:e0263985. [PMID: 35171969 PMCID: PMC8849614 DOI: 10.1371/journal.pone.0263985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.
Collapse
Affiliation(s)
- Odín Morón-García
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gina A. Garzón-Martínez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - M. J. Pilar Martínez-Martín
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Jason Brook
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| | - Anyela V. Camargo Rodríguez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| |
Collapse
|
24
|
Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 2022; 32:532-544.e7. [PMID: 35085497 DOI: 10.1016/j.cub.2021.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In many plant species, pavement cell development relies on the coordinated formation of interdigitating lobes and indentations. Polarity signaling via the activity of antagonistic Rho-related GTPases from plants (ROPs) was implicated in pavement cell development, but the spatiotemporal regulation remained unclear. Here, we report on the role of the PLECKSTRIN HOMOLOGY GTPase ACTIVATING PROTEINS (PHGAPS) during multipolar growth in pavement cell shape establishment. Loss of function in phgap1phgap2 double mutants severely affected the shape of Arabidopsis leaf epidermal pavement cells. Predominantly, PHGAPs interacted with ROP2 and displayed a distinct and microtubule-dependent enrichment along the anticlinal cell face and transfacial boundary of pavement cell indentation regions. This localization was established upon undulation initiation and was maintained throughout the expansion of the cell. Our data suggest that PHGAP1/REN2 and PHGAP2/REN3 are key players in the establishment of ROP2 activity gradients and underscore the importance of locally controlled ROP activity for the orchestrated establishment of multipolarity in epidermal cells.
Collapse
|
25
|
Zuch DT, Doyle SM, Majda M, Smith RS, Robert S, Torii KU. Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. THE PLANT CELL 2022; 34:209-227. [PMID: 34623438 PMCID: PMC8774078 DOI: 10.1093/plcell/koab250] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/18/2021] [Indexed: 05/02/2023]
Abstract
As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.
Collapse
Affiliation(s)
- Daniel T Zuch
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Keiko U Torii
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Strelin MM, Zattara EE, Ullrich K, Schallenberg-Rüdinger M, Rensing S. Delayed differentiation of epidermal cells walls can underlie pedomorphosis in plants: the case of pedomorphic petals in the hummingbird-pollinated Caiophora hibiscifolia (Loasaceae, subfam. Loasoideae) species. EvoDevo 2022; 13:1. [PMID: 34980236 PMCID: PMC8725396 DOI: 10.1186/s13227-021-00186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. Results By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. Conclusions Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00186-x.
Collapse
Affiliation(s)
- Marina M Strelin
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET - Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina.
| | - Eduardo E Zattara
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET - Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
| | - Kristian Ullrich
- Department of Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Stefan Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
27
|
Milligan JN, Flynn AG, Wagner JD, Kouwenberg LL, Barclay RS, Byars BW, Dunn RE, White JD, Zechmann B, Peppe DJ. Quantifying the effect of shade on cuticle morphology and carbon isotopes of sycamores: present and past. AMERICAN JOURNAL OF BOTANY 2021; 108:2435-2451. [PMID: 34636420 PMCID: PMC9306692 DOI: 10.1002/ajb2.1772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Reconstructing the light environment and architecture of the plant canopy from the fossil record requires the use of proxies, such as those derived from cell wall undulation, cell size, and carbon isotopes. All approaches assume that plant taxa will respond predictably to changes in light environments. However, most species-level studies looking at cell wall undulation only consider "sun" or "shade" leaves; therefore, we need a fully quantitative taxon-specific method. METHODS We quantified the response of cell wall undulation, cell size, and carbon isotopes of Platanus occidentalis using two experimental setups: (1) two growth chambers at low and high light and (2) a series of outdoor growth experiments using green and black shade cloth at different densities. We then developed and applied a proxy for daily light integral (DLI) to fossil Platanites leaves from two early Paleocene floras from the San Juan Basin in New Mexico. RESULTS All traits responded to light environment. Cell wall undulation was the most useful trait for reconstructing DLI in the geological record. Median reconstructed DLI from early Paleocene leaves was ~44 mol m-2 d-1 , with values from 28 to 54 mol m-2 d-1 . CONCLUSIONS Cell wall undulation of P. occidentalis is a robust, quantifiable measurement of light environment that can be used to reconstruct the paleo-light environment from fossil leaves. The distribution of high DLI values from fossil leaves may provide information on canopy architecture; indicating that either (1) most of the canopy mass is within the upper portion of the crown or (2) leaves exposed to more sunlight are preferentially preserved.
Collapse
Affiliation(s)
- Joseph N. Milligan
- Terrestrial Paleoclimatology Research Group, Department of GeosciencesBaylor UniversityWacoTXUSA
| | - Andrew G. Flynn
- Terrestrial Paleoclimatology Research Group, Department of GeosciencesBaylor UniversityWacoTXUSA
| | - Jennifer D. Wagner
- Department of Integrative BiologyUniversity of California Berkeley, and UC Museum of PaleontologyBerkeleyCAUSA
| | | | - Richard S. Barclay
- Department of PaleobiologyNational Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NWWashingtonD.C.USA
| | | | - Regan E. Dunn
- Natural History Museums of Los Angeles County, La Brea Tar PitsLos AngelesCAUSA
| | | | - Bernd Zechmann
- Center for Microscopy and ImagingBaylor UniversityWacoTXUSA
| | - Daniel J. Peppe
- Terrestrial Paleoclimatology Research Group, Department of GeosciencesBaylor UniversityWacoTXUSA
| |
Collapse
|
28
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Malivert A, Erguvan Ö, Chevallier A, Dehem A, Friaud R, Liu M, Martin M, Peyraud T, Hamant O, Verger S. FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol 2021; 19:e3001454. [PMID: 34767544 PMCID: PMC8612563 DOI: 10.1371/journal.pbio.3001454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
To survive, cells must constantly resist mechanical stress. In plants, this involves the reinforcement of cell walls, notably through microtubule-dependent cellulose deposition. How wall sensing might contribute to this response is unknown. Here, we tested whether the microtubule response to stress acts downstream of known wall sensors. Using a multistep screen with 11 mutant lines, we identify FERONIA (FER) as the primary candidate for the cell’s response to stress in the shoot. However, this does not imply that FER acts upstream of the microtubule response to stress. In fact, when performing mechanical perturbations, we instead show that the expected microtubule response to stress does not require FER. We reveal that the feronia phenotype can be partially rescued by reducing tensile stress levels. Conversely, in the absence of both microtubules and FER, cells appear to swell and burst. Altogether, this shows that the microtubule response to stress acts as an independent pathway to resist stress, in parallel to FER. We propose that both pathways are required to maintain the mechanical integrity of plant cells. In all living organisms, cells must resist mechanical stress to survive. This study of the model plant Arabidopsis reveals that the candidate cell wall mechanoreceptor FERONIA and microtubules independently contribute to this mechanical feedback.
Collapse
Affiliation(s)
- Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Özer Erguvan
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Chevallier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Dehem
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Rodrigue Friaud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Théophile Peyraud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| | - Stéphane Verger
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| |
Collapse
|
30
|
Xie J, Fernandes SB, Mayfield-Jones D, Erice G, Choi M, E Lipka A, Leakey ADB. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. PLANT PHYSIOLOGY 2021; 187:1462-1480. [PMID: 34618057 PMCID: PMC8566313 DOI: 10.1093/plphys/kiab299] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/26/2021] [Indexed: 05/03/2023]
Abstract
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.
Collapse
Affiliation(s)
- Jiayang Xie
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dustin Mayfield-Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gorka Erice
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Min Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication: , cor2">Present address: Agrotecnologías Naturales S.L., 43762 Tarragona, Spain
| |
Collapse
|
31
|
Hoke KL, Zimmer SL, Roddy AB, Ondrechen MJ, Williamson CE, Buan NR. Reintegrating Biology Through the Nexus of Energy, Information, and Matter. Integr Comp Biol 2021; 61:2082-2094. [PMID: 34374780 DOI: 10.1093/icb/icab174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide a common currency that helps link phenomena across levels of biological organization. The propagation of energy and information through levels of biological organization can result in emergent properties and system-wide changes that impact other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of biological organization and develop predictive models of biological systems.
Collapse
Affiliation(s)
- Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN 55812
| | - Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | | | - Nicole R Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0662
| |
Collapse
|
32
|
Poeschl Y, Möller B, Müller L, Bürstenbinder K. User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools. Methods Cell Biol 2021; 160:349-363. [PMID: 32896327 DOI: 10.1016/bs.mcb.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Leaf epidermis pavement cells develop complex jigsaw puzzle-like shapes in many plant species, including the model plant Arabidopsis thaliana. Due to their complex morphology, pavement cells have become a popular model system to study shape formation and coordination of growth in the context of mechanically coupled cells at the tissue level. To facilitate robust assessment and analysis of pavement cell shape characteristics in a high-throughput fashion, we have developed PaCeQuant and a collection of supplemental tools. The ImageJ-based MiToBo plugin PaCeQuant supports fully automatic segmentation of cell contours from microscopy images and the extraction of 28 shape features for each detected cell. These features now also include the Largest Empty Circle criterion as a proxy for mechanical stress. In addition, PaCeQuant provides a set of eight features for individual lobes, including the categorization as type I and type II lobes at two- and three-cell junctions, respectively. The segmentation and feature extraction results of PaCeQuant depend on the quality of input images. To allow for corrections in case of local segmentation errors, the LabelImageEditor is provided for user-friendly manual postprocessing of segmentation results. For statistical analysis and visualization, PaCeQuant is supplemented with the R package PaCeQuantAna, which provides statistical analysis functions and supports the generation of publication-ready plots in ready-to-use R workflows. In addition, we recently released the FeatureColorMapper tool which overlays feature values over cell regions for user-friendly visual exploration of selected features in a set of analyzed cells.
Collapse
Affiliation(s)
- Yvonne Poeschl
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Birgit Möller
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle, Germany
| | - Lukas Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany.
| |
Collapse
|
33
|
Antreich SJ, Xiao N, Huss JC, Gierlinger N. A belt for the cell: cellulosic wall thickenings and their role in morphogenesis of the 3D puzzle cells in walnut shells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4744-4756. [PMID: 33963747 PMCID: PMC8219037 DOI: 10.1093/jxb/erab197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 05/25/2023]
Abstract
Walnut (Juglans regia) kernels are protected by a tough shell consisting of polylobate sclereids that interlock into a 3D puzzle. The shape transformations from isodiametric to lobed cells is well documented for 2D pavement cells, but not for 3D puzzle sclereids. Here, we study the morphogenesis of these cells by using a combination of different imaging techniques. Serial face-microtomy enabled us to reconstruct tissue growth of whole walnut fruits in 3D, and serial block face-scanning electron microscopy exposed cell shapes and their transformation in 3D during shell tissue development. In combination with Raman and fluorescence microscopy, we revealed multiple loops of cellulosic thickenings in cell walls, acting as stiff restrictions during cell growth and leading to the lobed cell shape. Our findings contribute to a better understanding of the 3D shape transformation of polylobate sclereids and the role of pectin and cellulose within this process.
Collapse
Affiliation(s)
- Sebastian J Antreich
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nannan Xiao
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jessica C Huss
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
34
|
Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:525-550. [PMID: 34143651 DOI: 10.1146/annurev-arplant-080720-081920] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
Collapse
Affiliation(s)
- Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Zahra Rahneshan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| |
Collapse
|
35
|
Belteton SA, Li W, Yanagisawa M, Hatam FA, Quinn MI, Szymanski MK, Marley MW, Turner JA, Szymanski DB. Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. NATURE PLANTS 2021; 7:826-841. [PMID: 34112988 DOI: 10.1038/s41477-021-00931-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The leaf epidermis is a dynamic biomechanical shell that integrates growth across spatial scales to influence organ morphology. Pavement cells, the fundamental unit of this tissue, morph irreversibly into highly lobed cells that drive planar leaf expansion. Here, we define how tissue-scale cell wall tensile forces and the microtubule-cellulose synthase systems dictate the patterns of interdigitated growth in real time. A morphologically potent subset of cortical microtubules span the periclinal and anticlinal cell faces to pattern cellulose fibres that generate a patch of anisotropic wall. The subsequent local polarized growth is mechanically coupled to the adjacent cell via a pectin-rich middle lamella, and this drives lobe formation. Finite element pavement cell models revealed cell wall tensile stress as an upstream patterning element that links cell- and tissue-scale biomechanical parameters to interdigitated growth. Cell lobing in leaves is evolutionarily conserved, occurs in multiple cell types and is associated with important agronomic traits. Our general mechanistic models of lobe formation provide a foundation to analyse the cellular basis of leaf morphology and function.
Collapse
Affiliation(s)
- Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Wenlong Li
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Faezeh A Hatam
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madeline I Quinn
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Margaret K Szymanski
- Department of Biochemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Matthew W Marley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Joseph A Turner
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.
- Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
36
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
37
|
Ciorîță A, Tripon SC, Mircea IG, Podar D, Barbu-Tudoran L, Mircea C, Pârvu M. The Morphological and Anatomical Traits of the Leaf in Representative Vinca Species Observed on Indoor- and Outdoor-Grown Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:622. [PMID: 33805226 PMCID: PMC8064346 DOI: 10.3390/plants10040622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species' leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf's mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.
Collapse
Affiliation(s)
- Alexandra Ciorîță
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Septimiu Cassian Tripon
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ioan Gabriel Mircea
- Faculty of Mathematics and Informatics, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Dorina Podar
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Cristina Mircea
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| |
Collapse
|
38
|
Nowak J, Eng RC, Matz T, Waack M, Persson S, Sampathkumar A, Nikoloski Z. A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nat Commun 2021; 12:458. [PMID: 33469016 PMCID: PMC7815848 DOI: 10.1038/s41467-020-20730-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Cell shape is crucial for the function and development of organisms. Yet, versatile frameworks for cell shape quantification, comparison, and classification remain underdeveloped. Here, we introduce a visibility graph representation of shapes that facilitates network-driven characterization and analyses across shapes encountered in different domains. Using the example of complex shape of leaf pavement cells, we show that our framework accurately quantifies cell protrusions and invaginations and provides additional functionality in comparison to the contending approaches. We further show that structural properties of the visibility graphs can be used to quantify pavement cell shape complexity and allow for classification of plants into their respective phylogenetic clades. Therefore, the visibility graphs provide a robust and unique framework to accurately quantify and classify the shape of different objects.
Collapse
Affiliation(s)
- Jacqueline Nowak
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ryan Christopher Eng
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Timon Matz
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Matti Waack
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Arun Sampathkumar
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| |
Collapse
|
39
|
Guan L, Yang S, Li S, Liu Y, Liu Y, Yang Y, Qin G, Wang H, Wu T, Wang Z, Feng X, Wu Y, Zhu JK, Li X, Li L. AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. FRONTIERS IN PLANT SCIENCE 2021; 12:635732. [PMID: 34149743 PMCID: PMC8211912 DOI: 10.3389/fpls.2021.635732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
The plant cytoskeleton forms a stereoscopic network that regulates cell morphogenesis. The cytoskeleton also provides tracks for trafficking of vesicles to the target membrane. Fusion of vesicles with the target membrane is promoted by SNARE proteins, etc. The vesicle-SNARE, Sec22, regulates membrane trafficking between the ER and Golgi in yeast and mammals. Arabidopsis AtSEC22 might also regulate early secretion and is essential for gametophyte development. However, the role of AtSEC22 in plant development is unclear. To clarify the role of AtSEC22 in the regulation of plant development, we isolated an AtSEC22 knock-down mutant, atsec22-4, and found that cell morphogenesis and development were seriously disturbed. atsec22-4 exhibited shorter primary roots (PRs), dwarf plants, and partial abortion. More interestingly, the atsec22-4 mutant had less trichomes with altered morphology, irregular stomata, and pavement cells, suggesting that cell morphogenesis was perturbed. Further analyses revealed that in atsec22-4, vesicle trafficking was blocked, resulting in the trapping of proteins in the ER and collapse of structures of the ER and Golgi apparatus. Furthermore, AtSEC22 defects resulted in impaired organization and stability of the cytoskeleton in atsec22-4. Our findings revealed essential roles of AtSEC22 in membrane trafficking and cytoskeleton dynamics during plant development.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Wang
- School of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Lixin Li,
| |
Collapse
|
40
|
Abstract
A transition from qualitative to quantitative descriptors of morphology has been facilitated through the growing field of morphometrics, representing the conversion of shapes and patterns into numbers. The analysis of plant form at the macromorphological scale using morphometric approaches quantifies what is commonly referred to as a phenotype. Quantitative phenotypic analysis of individuals with contrasting genotypes in turn provides a means to establish links between genes and shapes. The path from a gene to a morphological phenotype is, however, not direct, with instructive information progressing both across multiple scales of biological complexity and through nonintuitive feedback, such as mechanical signals. In this review, we explore morphometric approaches used to perform whole-plant phenotyping and quantitative approaches in capture processes in the mesoscales, which bridge the gaps between genes and shapes in plants. Quantitative frameworks involving both the computational simulation and the discretization of data into networks provide a putative path to predicting emergent shape from underlying genetic programs.
Collapse
Affiliation(s)
- Hao Xu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|
41
|
Unraveling spatial cellular pattern by computational tissue shuffling. Commun Biol 2020; 3:605. [PMID: 33097821 PMCID: PMC7584651 DOI: 10.1038/s42003-020-01323-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Cell biology relies largely on reproducible visual observations. Unlike cell culture, tissues are heterogeneous, making difficult the collection of biological replicates that would spotlight a precise location. In consequence, there is no standard approach for estimating the statistical significance of an observed pattern in a tissue sample. Here, we introduce SET (for Synthesis of Epithelial Tissue), a method that can accurately reconstruct the cell tessellation formed by an epithelium in a microscopy image as well as thousands of alternative synthetic tessellations made of the exact same cells. SET can build an accurate null distribution to statistically test if any local pattern is necessarily the result of a process, or if it could be explained by chance in the given context. We provide examples in various tissues where visible, and invisible, cell and subcellular patterns are unraveled in a statistically significant manner using a single image and without any parameter settings.
Collapse
|
42
|
Lin W, Yang Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:142-154. [PMID: 33128897 DOI: 10.1016/j.pbi.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The leaf epidermal pavement cells with the puzzle-piece shape offer an attractive system for studying the mechanisms underpinning cell morphogenesis in a plant tissue. The formation of the interdigitated lobes and indentations in these interlocking cells relies on the integration of chemical and mechanical signals and cell-to-cell signals to establish interdigitated polar sites defining lobes and indentations. Recent computational and experimental studies have suggested new roles of cell walls, their interplay with mechanical signals, cell polarity signaling regulated by auxin and brassinosteriods, and the cytoskeleton in the regulation of pavement cell morphogenesis. This review summarizes the current state of knowledge on these regulatory mechanisms behind pavement cell morphogenesis in plants and discusses how they could be integrated spatiotemporally to generate the interdigitated polarity patterns and the interlocking shape in pavement cells.
Collapse
Affiliation(s)
- Wenwei Lin
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
43
|
Radja A. Pollen wall patterns as a model for biological self-assembly. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:629-641. [PMID: 32991047 PMCID: PMC9292386 DOI: 10.1002/jez.b.23005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
We are still far from being able to predict organisms' shapes purely from their genetic codes. While it is imperative to identify which encoded macromolecules contribute to a phenotype, determining how macromolecules self-assemble independently of the genetic code may be equally crucial for understanding shape development. Pollen grains are typically single-celled microgametophytes that have decorated walls of various shapes and patterns. The accumulation of morphological data and a comprehensive understanding of the wall development makes this system ripe for mathematical and physical modeling. Therefore, pollen walls are an excellent system for identifying both the genetic products and the physical processes that result in a huge diversity of extracellular morphologies. In this piece, I highlight the current understanding of pollen wall biology relevant for quantification studies and enumerate the modellable aspects of pollen wall patterning and specific approaches that one may take to elucidate how pollen grains build their beautifully patterned walls.
Collapse
Affiliation(s)
- Asja Radja
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
44
|
Bidhendi AJ, Altartouri B, Gosselin FP, Geitmann A. Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell Rep 2020; 28:1237-1250.e6. [PMID: 31365867 DOI: 10.1016/j.celrep.2019.07.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Pavement cells form wavy interlocking patterns in the leaf epidermis of many plants. We use computational mechanics to simulate the morphogenetic process based on microtubule organization and cell wall chemistry. Based on the in silico simulations and experimental evidence, we suggest that a multistep process underlies the morphogenesis of pavement cells. The in silico model predicts alternatingly located, feedback-augmented mechanical heterogeneity of the periclinal and anticlinal walls. It suggests that the emergence of waves is created by a stiffening of the emerging indented sides, an effect that matches cellulose and de-esterified pectin patterns in the cell wall. Further, conceptual evidence for mechanical buckling of the cell walls is provided, a mechanism that has the potential to initiate wavy patterns de novo and may precede chemical and geometrical symmetry breaking.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada; Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada
| | - Bara Altartouri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada
| | - Frédérick P Gosselin
- Laboratoire de Mécanique Multi-échelles, Département de Génie Mécanique, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada; Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada.
| |
Collapse
|
45
|
BIDHENDI A, CHEBLI Y, GEITMANN A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 2020; 278:164-181. [DOI: 10.1111/jmi.12895] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A.J. BIDHENDI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - Y. CHEBLI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - A. GEITMANN
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| |
Collapse
|
46
|
Galdon-Armero J, Arce-Rodriguez L, Downie M, Li J, Martin C. A Scanning Electron Micrograph-based Resource for Identification of Loci Involved in Epidermal Development in Tomato: Elucidation of a New Function for the Mixta-like Transcription Factor in Leaves. THE PLANT CELL 2020; 32:1414-1433. [PMID: 32169962 PMCID: PMC7203947 DOI: 10.1105/tpc.20.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
The aerial epidermis of plants plays a major role in environmental interactions, yet the development of the cellular components of the aerial epidermis-trichomes, stomata, and pavement cells-is still not fully understood. We have performed a detailed screen of the leaf epidermis in two generations of the well-established Solanum lycopersicum cv M82 × Solanum pennellii ac. LA716 introgression line (IL) population using a combination of scanning electron microscopy (SEM) techniques. Quantification of trichome and stomatal densities in the ILs revealed four genomic regions with a consistently low trichome density. This study also found ILs with abnormal proportions of different trichome types and aberrant trichome morphologies. This work has led to the identification of new, unexplored genomic regions with roles in trichome formation in tomato. This study investigated one interval in IL2-6 in more detail and identified a new function for the transcription factor SlMixta-like in determining trichome patterning in leaves. This illustrates how these SEM images, publicly available to the research community, provide an important dataset for further studies on epidermal development in tomato and other species of the Solanaceae family.
Collapse
Affiliation(s)
- Javier Galdon-Armero
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Lisette Arce-Rodriguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, 36824 Irapuato, Guanajuato, Mexico
| | - Matthew Downie
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
47
|
Wong JH, Kato T, Belteton SA, Shimizu R, Kinoshita N, Higaki T, Sakumura Y, Szymanski DB, Hashimoto T. Basic Proline-Rich Protein-Mediated Microtubules Are Essential for Lobe Growth and Flattened Cell Geometry. PLANT PHYSIOLOGY 2019; 181:1535-1551. [PMID: 31601644 PMCID: PMC6878025 DOI: 10.1104/pp.19.00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 05/09/2023]
Abstract
Complex cell shapes are generated first by breaking symmetry, and subsequent polar growth. Localized bending of anticlinal walls initiates lobe formation in the epidermal pavement cells of cotyledons and leaves, but how the microtubule cytoskeleton mediates local cell growth, and how plant pavement cells benefit from adopting jigsaw puzzle-like shapes, are poorly understood. In Arabidopsis (Arabidopsis thaliana), the basic Pro-rich protein (BPP) microtubule-associated protein family comprises seven members. We analyzed lobe morphogenesis in cotyledon pavement cells of a BPP1;BPP2;BPP5 triple knockout mutant. New image analysis methods (MtCurv and BQuant) showed that anticlinal microtubule bundles were significantly reduced and cortical microtubules that fan out radially across the periclinal wall did not enrich at the convex side of developing lobes. Despite these microtubule defects, new lobes were initiated at the same frequency as in wild-type cells, but they did not expand into well-defined protrusions. Eventually, mutant cells formed nearly polygonal shapes and adopted concentric microtubule patterns. The mutant periclinal cell wall bulged outward. The radius of the calculated inscribed circle of the pavement cells, a proposed proxy for maximal stress in the cell wall, was consistently larger in the mutant cells during cotyledon development, and correlated with an increase in cell height. These bpp mutant phenotypes provide genetic and cell biological evidence that initiation and growth of lobes are distinct morphogenetic processes, and that interdigitated cell geometry effectively suppresses large outward bulging of pavement cells.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehide Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Rie Shimizu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Nene Kinoshita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Takashi Hashimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
48
|
Shaw SL. Seeing the Cell Wall in a New Light. PLANT PHYSIOLOGY 2019; 181:9-11. [PMID: 31467140 PMCID: PMC6716248 DOI: 10.1104/pp.19.00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Sidney L Shaw
- Departments of Biology and Physics, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
49
|
Altartouri B, Bidhendi AJ, Tani T, Suzuki J, Conrad C, Chebli Y, Liu N, Karunakaran C, Scarcelli G, Geitmann A. Pectin Chemistry and Cellulose Crystallinity Govern Pavement Cell Morphogenesis in a Multi-Step Mechanism. PLANT PHYSIOLOGY 2019; 181:127-141. [PMID: 31363005 PMCID: PMC6716242 DOI: 10.1104/pp.19.00303] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 05/02/2023]
Abstract
Simple plant cell morphologies, such as cylindrical shoot cells, are determined by the extensibility pattern of the primary cell wall, which is thought to be largely dominated by cellulose microfibrils, but the mechanism leading to more complex shapes, such as the interdigitated patterns in the epidermis of many eudicotyledon leaves, is much less well understood. Details about the manner in which cell wall polymers at the periclinal wall regulate the morphogenetic process in epidermal pavement cells and mechanistic information about the initial steps leading to the characteristic undulations in the cell borders are elusive. Here, we used genetics and recently developed cell mechanical and imaging methods to study the impact of the spatio-temporal dynamics of cellulose and homogalacturonan pectin distribution during lobe formation in the epidermal pavement cells of Arabidopsis (Arabidopsis thaliana) cotyledons. We show that nonuniform distribution of cellulose microfibrils and demethylated pectin coincides with spatial differences in cell wall stiffness but may intervene at different developmental stages. We also show that lobe period can be reduced when demethyl-esterification of pectins increases under conditions of reduced cellulose crystallinity. Our data suggest that lobe initiation involves a modulation of cell wall stiffness through local enrichment in demethylated pectin, whereas subsequent increase in lobe amplitude is mediated by the stress-induced deposition of aligned cellulose microfibrils. Our results reveal a key role of noncellulosic polymers in the biomechanical regulation of cell morphogenesis.
Collapse
Affiliation(s)
- Bara Altartouri
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X2B2, Canada
| | - Amir J Bidhendi
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X2B2, Canada
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02542
| | - Johnny Suzuki
- Fischell Department of Engineering, University of Maryland, College Park, Maryland 20742
| | - Christina Conrad
- Fischell Department of Engineering, University of Maryland, College Park, Maryland 20742
| | - Youssef Chebli
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Na Liu
- Canadian Light Source, Saskatoon, SK S7N2V3, Canada
| | | | - Giuliano Scarcelli
- Fischell Department of Engineering, University of Maryland, College Park, Maryland 20742
| | - Anja Geitmann
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X2B2, Canada
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| |
Collapse
|
50
|
Smithers ET, Luo J, Dyson RJ. Mathematical principles and models of plant growth mechanics: from cell wall dynamics to tissue morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3587-3600. [PMID: 31128070 DOI: 10.1093/jxb/erz253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Plant growth research produces a catalogue of complex open questions. We argue that plant growth is a highly mechanical process, and that mathematics gives an underlying framework with which to probe its fundamental unrevealed mechanisms. This review serves to illustrate the biological insights afforded by mathematical modelling and demonstrate the breadth of mathematically rich problems available within plant sciences, thereby promoting a mutual appreciation across the disciplines. On the one hand, we explain the general mathematical principles behind mechanical growth models; on the other, we describe how modelling addresses specific problems in microscale cell wall mechanics, tip growth, morphogenesis, and stress feedback. We conclude by identifying possible future directions for both biologists and mathematicians, including as yet unanswered questions within various topics, stressing that interdisciplinary collaboration is vital for tackling the challenge of understanding plant growth mechanics.
Collapse
Affiliation(s)
- Euan T Smithers
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jingxi Luo
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rosemary J Dyson
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|