1
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
2
|
Geng P, Li C, Quan X, Peng J, Yao Z, Wang Y, Yang M, Wang Y, Jin Y, Xiong Y, Liu H, Qi Y, Yang P, Huang K, Fang X. A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in Arabidopsis. Cell Res 2025:10.1038/s41422-025-01125-4. [PMID: 40360668 DOI: 10.1038/s41422-025-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The ability to sense cellular temperature and induce physiological changes is pivotal for plants to cope with warming climate. Biomolecular condensation is emerging as a thermo-sensing mechanism, but the underlying molecular basis remains elusive. Here we show that an intrinsically disordered protein FUST1 senses heat via its condensation in Arabidopsis thaliana. Heat-dependent condensation of FUST1 is primarily determined by its prion-like domain (PrLD). All-atom molecular dynamics simulation and experimental validation reveal that PrLD encodes a thermo-switch, experiencing lock-to-open conformational changes that control the intermolecular contacts. FUST1 interacts with integral stress granule (SG) components and localizes in the SGs. Importantly, FUST1 condensation is autonomous and precedes condensation of several known SG markers and is indispensable for SG assembly. Loss of FUST1 significantly delays SG assembly and impairs both basal and acquired heat tolerance. These findings illuminate the molecular basis for thermo-sensing by biomolecular condensation and shed light on the molecular mechanism of heat stress granule assembly.
Collapse
Affiliation(s)
- Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changxuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiying Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yunhe Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanning Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunfan Jin
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Xiong
- Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Lindström Battle AL, Barrett AW, Fricker MD, Sweetlove LJ. Localising enzymes to biomolecular condensates increase their accumulation and benefits engineered metabolic pathway performance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40203202 DOI: 10.1111/pbi.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The establishment of Nicotiana benthamiana as a robust biofactory is complicated by issues such as product toxicity and proteolytic degradation of target proteins/introduced enzymes. Here we investigate whether biomolecular condensates can be used to address these problems. We engineered biomolecular condensates in N. benthamiana leaves using transient expression of synthetic modular scaffolds. The in vivo properties of the condensates that resulted were consistent with them being liquid-like bodies with thermodynamic features typical of multicomponent phase-separating systems. We show that recruitment of enzymes to condensates in vivo led to several-fold yield increases in one- and three-step metabolic pathways (citramalate biosynthesis and poly-3-hydroxybutyrate (PHB) biosynthesis, respectively). This enhanced yield could be for several reasons including improved enzyme kinetics, metabolite channelling or avoidance of cytotoxicity by retention of the pathway product within the condensate, which was demonstrated for PHB. However, we also observed a several-fold increase in the amount of the enzymes that accumulated when they were targeted to the condensates. This suggests that the enzymes were more stable when localised to the condensate than when freely diffusing in the cytosol. We hypothesise that this stability is likely the main driver for increased pathway product production. Our findings provide a foundation for leveraging biomolecular condensates in plant metabolic engineering and advance N. benthamiana as a versatile biofactory for industrial applications.
Collapse
|
4
|
Pang L, Huang Y, He Y, Jiang D, Li R. The adaptor protein AP-3β disassembles heat-induced stress granules via 19S regulatory particle in Arabidopsis. Nat Commun 2025; 16:2039. [PMID: 40016204 PMCID: PMC11868639 DOI: 10.1038/s41467-025-57306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
To survive under adverse conditions, plants form stress granules (SGs) to temporally store mRNA and halt translation as a primary response. Dysregulation in SG disassembly can have detrimental effects on plant survival after stress release, yet the underlying mechanism remains poorly understood. Using Arabidopsis as a model system, we demonstrate that the β subunit of adaptor protein (AP) -3 complex (AP-3β) interacts with the SG core RNA-binding proteins Tudor staphylococcal nuclease 1/2 (TSN1/2) both in vitro and in vivo. We also show that AP-3β is rapidly recruited to SGs upon heat induction and plays a key role in disassembling SGs during stress recovery. Genetic evidences support that AP-3β serves as an adaptor to recruit the 19S regulatory particle (RP) of the proteasome to SGs. Notably, the 19S RP promotes SG disassembly through RP-associated deubiquitylation, independent of its proteolytic activity. This deubiquitylation process of SG components is crucial for translation reinitiation and growth recovery after heat release. Our findings uncover a previously unexplored role of the 19S RP in regulating SG disassembly and highlights the importance of endomembrane proteins in supporting RNA granule dynamics in plants.
Collapse
Affiliation(s)
- Lei Pang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhi Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yilin He
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Jiang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruixi Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Yuan XP, Zhao Y. SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition. SCIENCE ADVANCES 2025; 11:eadr8250. [PMID: 39879308 PMCID: PMC11777248 DOI: 10.1126/sciadv.adr8250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025]
Abstract
Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear. Here, we outline how subgroup I SnRK2s sense molecular crowding to interrupt PP2C-mediated inhibition in plants. Severe hyperosmotic stress triggers condensate formation to activate the subgroup I SnRK2s, which requires their intrinsically disordered region. PP2Cs interact with and inhibit subgroup I SnRK2s, and this interaction is disrupted by phase separation of SnRK2s. The subgroup I SnRK2s are critical for severe osmotic stress responses. Our findings elucidate a mechanism for how macromolecular crowding is sensed in plants and demonstrate that physical separation of signaling molecules can segregate negative regulators to initiate signaling.
Collapse
Affiliation(s)
- Xian-Ping Yuan
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Larran AS, Ge J, Martín G, De la Concepción JC, Dagdas Y, Qüesta JI. Nucleo-cytoplasmic distribution of SAP18 reveals its dual function in splicing regulation and heat-stress response in Arabidopsis. PLANT COMMUNICATIONS 2025; 6:101180. [PMID: 39482883 PMCID: PMC11784288 DOI: 10.1016/j.xplc.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Dynamic shuttling of proteins between the nucleus and cytoplasm orchestrates vital functions in eukaryotes. Here, we reveal the multifaceted functions of Arabidopsis Sin3-associated protein 18 kDa (SAP18) in the regulation of development and heat-stress tolerance. Proteomic analysis demonstrated that SAP18 is a core component of the nuclear apoptosis- and splicing-associated protein (ASAP) complex in Arabidopsis, contributing to the precise splicing of genes associated with leaf development. Genetic analysis further confirmed the critical role of SAP18 in different developmental processes as part of the ASAP complex, including leaf morphogenesis and flowering time. Interestingly, upon heat shock, SAP18 translocates from the nucleus to cytoplasmic stress granules and processing bodies. The heat-sensitive phenotype of a SAP18 loss-of-function mutant revealed a novel role for SAP18 in plant thermoprotection. These findings significantly expand our understanding of the relevance of SAP18 for plant growth, linking nuclear splicing with cytoplasmic stress responses and providing new perspectives for future exploration of plant thermotolerance mechanisms.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Jingyu Ge
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | | | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Julia Irene Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
8
|
Li X, Liao J, Chung KK, Feng L, Liao Y, Yang Z, Liu C, Zhou J, Shen W, Li H, Yang C, Zhuang X, Gao C. Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress. Nat Commun 2024; 15:10910. [PMID: 39738069 PMCID: PMC11685989 DOI: 10.1038/s41467-024-55292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhixin Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Klein J. Progesterone Metabolism in Digitalis and Other Plants-60 Years of Research and Recent Results. PLANT & CELL PHYSIOLOGY 2024; 65:1500-1514. [PMID: 38226483 DOI: 10.1093/pcp/pcae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
5β-Cardenolides are pharmaceutically important metabolites from the specialized metabolism of Digitalis lanata. They were used over decades to treat cardiac insufficiency and supraventricular tachycardia. Since the 1960s, plant scientists have known that progesterone is an essential precursor of cardenolide formation. Therefore, biosynthesis of plant progesterone was mainly analyzed in species of the cardenolide-containing genus Digitalis during the following decades. Today, Digitalis enzymes catalyzing the main steps of progesterone biosynthesis are known. Most of them are found in a broad range of organisms. This review will summarize the findings of 60 years of research on plant progesterone metabolism with particular focus on the recent results in Digitalis lanata and other plants.
Collapse
Affiliation(s)
- Jan Klein
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburger Straße 159, Jena 07743, Germany
| |
Collapse
|
10
|
Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding-sensitive DCP5. Science 2024; 386:eadk9067. [PMID: 39480925 DOI: 10.1126/science.adk9067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
Plants are frequently challenged by osmotic stresses. How plant cells sense environmental osmolarity changes is not fully understood. We report that Arabidopsis Decapping 5 (DCP5) functions as a multifunctional cytoplasmic osmosensor that senses and responds to extracellular hyperosmolarity. DCP5 harbors a plant-specific intramolecular crowding sensor (ICS) that undergoes conformational change and drives phase separation in response to osmotically intensified molecular crowding. Upon hyperosmolarity exposure, DCP5 rapidly and reversibly assembles to DCP5-enriched osmotic stress granules (DOSGs), which sequestrate plenty of mRNA and regulatory proteins, and thus adaptively reprograms both the translatome and transcriptome to facilitate plant osmotic stress adaptation. Our findings uncover a cytoplasmic osmosensing mechanism mediated by DCP5 with plant-specific molecular crowding sensitivity and suggest a stress sensory function for hyperosmotically induced stress granules.
Collapse
Affiliation(s)
- Zhenyu Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiuhua Yang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanyi Lu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yajie Pan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhina Xiao
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruixue Sun
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongda Huang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Aye HM, Li FJ, He CY. Dynamic composition of stress granules in Trypanosoma brucei. PLoS Pathog 2024; 20:e1012666. [PMID: 39480887 PMCID: PMC11556693 DOI: 10.1371/journal.ppat.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Stress granules (SGs) are stress-induced RNA condensates consisting of stalled initiation complexes resulting from translational inhibition. The biochemical composition and function of SGs are highly diverse, and this diversity has been attributed to different stress conditions, signalling pathways involved and specific cell types. Interestingly, mRNA decay components, which are found in ubiquitous cytoplasmic foci known as processing bodies (PB), have also been identified in SG proteomes. A major challenge in current SG studies is to understand the cause of SG diversity, as well as the function of SG under different stress conditions. Trypanosoma brucei is a single-cellular parasite that causes Human African Trypanosomiasis (sleeping sickness). In this study, we showed that by varying the supply of extracellular carbon sources during starvation, cellular ATP levels changed rapidly, resulting in SGs of different compositions and dynamics. We identified a subset of SG components, which dissociated from the SGs in response to cellular ATP depletion. Using expansion microscopy, we observed sub-granular compartmentalization of PB- and SG-components within the stress granules. Our results highlight the importance of cellular ATP in SG composition and dynamics, providing functional insight to SGs formed under different stress conditions.
Collapse
Affiliation(s)
- Htay Mon Aye
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Chen Z, Xu Q, Wang J, Zhao H, Yue Y, Liu B, Xiong L, Zhao Y, Zhou DX. A histone deacetylase confers plant tolerance to heat stress by controlling protein lysine deacetylation and stress granule formation in rice. Cell Rep 2024; 43:114642. [PMID: 39240713 DOI: 10.1016/j.celrep.2024.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024] Open
Abstract
Understanding molecular mechanisms of plant cellular response to heat stress will help to improve crop tolerance and yield in the global warming era. Here, we show that deacetylation of non-histone proteins mediated by cytoplasmic histone deacetylase HDA714 is required for plant tolerance to heat stress in rice. Heat stress reduces overall protein lysine acetylation, which depends on HDA714. Being induced by heat stress, HDA714 loss of function reduces, but its overexpression enhances rice tolerance to heat stress. Under heat stress, HDA714-mediated deacetylation of metabolic enzymes stimulates glycolysis. In addition, HDA714 protein is found within heat-induced stress granules (SGs), and many SG proteins are acetylated under normal temperature. HDA714 interacts with and deacetylates several SG proteins. HDA714 loss of function increases SG protein acetylation levels and impairs SG formation. Collectively, these results indicate that HDA714 responds to heat stress to deacetylate cellular proteins, control metabolic activities, stimulate SG formation, and confer heat tolerance in rice.
Collapse
Affiliation(s)
- Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hebo Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
14
|
Cuadrado AF, Van Damme D. Unlocking protein-protein interactions in plants: a comprehensive review of established and emerging techniques. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5220-5236. [PMID: 38437582 DOI: 10.1093/jxb/erae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Protein-protein interactions orchestrate plant development and serve as crucial elements for cellular and environmental communication. Understanding these interactions offers a gateway to unravel complex protein networks that will allow a better understanding of nature. Methods for the characterization of protein-protein interactions have been around over 30 years, yet the complexity of some of these interactions has fueled the development of new techniques that provide a better understanding of the underlying dynamics. In many cases, the application of these techniques is limited by the nature of the available sample. While some methods require an in vivo set-up, others solely depend on protein sequences to study protein-protein interactions via an in silico set-up. The vast number of techniques available to date calls for a way to select the appropriate tools for the study of specific interactions. Here, we classify widely spread tools and new emerging techniques for the characterization of protein-protein interactions based on sample requirements while providing insights into the information that they can potentially deliver. We provide a comprehensive overview of commonly used techniques and elaborate on the most recent developments, showcasing their implementation in plant research.
Collapse
Affiliation(s)
- Alvaro Furones Cuadrado
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
15
|
Xie Z, Zhao S, Tu Y, Liu E, Li Y, Wang X, Chen C, Zhai S, Qi J, Wu C, Wu H, Zhou M, Wang W. Proteasome resides in and dismantles plant heat stress granules constitutively. Mol Cell 2024; 84:3320-3335.e7. [PMID: 39173636 DOI: 10.1016/j.molcel.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Shuwei Zhai
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Qi
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Honghong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
16
|
Wu C, Wang X, Li Y, Zhen W, Wang C, Wang X, Xie Z, Xu X, Guo S, Botella JR, Zheng B, Wang W, Song CP, Hu Z. Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance. Nat Commun 2024; 15:7696. [PMID: 39227617 PMCID: PMC11371829 DOI: 10.1038/s41467-024-52034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs). The sequestration of DBR1 by SIC enhances the accumulation of lariRNAs, branched circular RNAs derived from excised introns during pre-mRNA splicing, which in turn promote the transcription of their parental genes. Our findings further demonstrate that SIC-mediated DBR1 sequestration in SGs is crucial for plant HS tolerance, as deletion of the N-terminus of SIC (SIC1-244) impairs DBR1 sequestration and compromises plant response to HS. Overall, our study unveils a mechanism of transcriptional regulation in the HS response, where lariRNAs are enriched through DBR1 sequestration, ultimately promoting the transcription of heat stress tolerance genes.
Collapse
Affiliation(s)
- Chengyun Wu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingsong Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Weibo Zhen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhouli Xie
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiumei Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Siyi Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, 100871, China
| | - Chun-Peng Song
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
17
|
Miao Y, Chodasiewicz M, Fang X. Navigating biomolecular condensates in plants from patterns to functions. MOLECULAR PLANT 2024; 17:1329-1332. [PMID: 39143737 DOI: 10.1016/j.molp.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore.
| | - Monika Chodasiewicz
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Lohmann J, Herzog O, Rosenzweig K, Weingartner M. Thermal adaptation in plants: understanding the dynamics of translation factors and condensates. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4258-4273. [PMID: 38630631 DOI: 10.1093/jxb/erae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Plants, as sessile organisms, face the crucial challenge of adjusting growth and development with ever-changing environmental conditions. Protein synthesis is the fundamental process that enables growth of all organisms. Since elevated temperature presents a substantial threat to protein stability and function, immediate adjustments of protein synthesis rates are necessary to circumvent accumulation of proteotoxic stress and to ensure survival. This review provides an overview of the mechanisms that control translation under high-temperature stress by the modification of components of the translation machinery in plants, and compares them to yeast and metazoa. Recent research also suggests an important role for cytoplasmic biomolecular condensates, named stress granules, in these processes. Current understanding of the role of stress granules in translational regulation and of the molecular processes associated with translation that might occur within stress granules is also discussed.
Collapse
Affiliation(s)
- Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Oliver Herzog
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Kristina Rosenzweig
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
19
|
Sze H, Klodová B, Ward JM, Harper JF, Palanivelu R, Johnson MA, Honys D. A wave of specific transcript and protein accumulation accompanies pollen dehydration. PLANT PHYSIOLOGY 2024; 195:1775-1795. [PMID: 38530638 DOI: 10.1093/plphys/kiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.
Collapse
Affiliation(s)
- Heven Sze
- Department Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Praha 2, 128 00, Czech Republic
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Mark A Johnson
- Department of Molecular, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| |
Collapse
|
20
|
Cui S, Song P, Wang C, Chen S, Hao B, Xu Z, Cai L, Chen X, Zhu S, Gan X, Dong H, Hu Y, Zhou L, Hou H, Tian Y, Liu X, Chen L, Liu S, Jiang L, Wang H, Jia G, Zhou S, Wan J. The RNA binding protein EHD6 recruits the m 6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. MOLECULAR PLANT 2024; 17:935-954. [PMID: 38720462 DOI: 10.1016/j.molp.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/31/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
N6-Methyladenosine (m6A) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m6A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain-containing m6A reader. We showed that their interaction enhances the binding of an m6A-modified RNA and triggers relocation of a portion of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus accelerated flowering through the Early heading date 1 pathway. Taken together, these results not only shed new light on the molecular mechanism of efficient m6A recognition by the collaboration between an RNA binding protein and YTH family m6A reader, but also uncover the potential for m6A-mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.
Collapse
Affiliation(s)
- Song Cui
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China
| | - Chaolong Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Benyuan Hao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Cai
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China
| | - Shanshan Zhu
- State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangchao Gan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Hui Dong
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Hu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Haigang Hou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China.
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
22
|
Buchan JR. Stress granules and P-bodies - New ideas and experimental models worth exploring. Semin Cell Dev Biol 2024; 158:1-2. [PMID: 38232687 DOI: 10.1016/j.semcdb.2024.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
23
|
Wegener M, Persicke M, Dietz KJ. Reprogramming the translatome during daily light transitions as affected by cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1/C2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2494-2509. [PMID: 38156667 DOI: 10.1093/jxb/erad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.
Collapse
Affiliation(s)
- Melanie Wegener
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
| | - Marcus Persicke
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| |
Collapse
|
24
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
25
|
Wang H, Ye T, Guo Z, Yao Y, Tu H, Wang P, Zhang Y, Wang Y, Li X, Li B, Xiong H, Lai X, Xiong L. A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice. Nat Commun 2024; 15:2514. [PMID: 38514621 PMCID: PMC10957929 DOI: 10.1038/s41467-024-46754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice. Here, through a genome-wide association study, we reveal that natural variations in DROUGHT RESISTANCE GENE 9 (DRG9), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance. Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix. DRG9 recruits the mRNAs of OsNCED4, a key gene for the biosynthesis of abscisic acid, into SGs and protects them from degradation. In drought-resistant DRG9 allele, natural variations in the coding region, causing an amino acid substitution (G267F) within the zinc finger domain, increase DRG9's binding ability to OsNCED4 mRNA and enhance drought resistance. Introgression of the drought-resistant DRG9 allele into the elite rice Huanghuazhan significantly improves its drought resistance. Thus, our study underscores the role of a dsRNA-binding protein in drought resistance and its promising value in breeding drought-resistant rice.
Collapse
Affiliation(s)
- Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zilong Guo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
26
|
Kearly A, Nelson ADL, Skirycz A, Chodasiewicz M. Composition and function of stress granules and P-bodies in plants. Semin Cell Dev Biol 2024; 156:167-175. [PMID: 36464613 DOI: 10.1016/j.semcdb.2022.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.
Collapse
Affiliation(s)
- Alyssa Kearly
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | | | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
27
|
Blagojevic A, Baldrich P, Schiaffini M, Lechner E, Baumberger N, Hammann P, Elmayan T, Garcia D, Vaucheret H, Meyers BC, Genschik P. Heat stress promotes Arabidopsis AGO1 phase separation and association with stress granule components. iScience 2024; 27:109151. [PMID: 38384836 PMCID: PMC10879784 DOI: 10.1016/j.isci.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.
Collapse
Affiliation(s)
- Aleksandar Blagojevic
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | | | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Taline Elmayan
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
28
|
Wu X, Su T, Zhang S, Zhang Y, Wong CE, Ma J, Shao Y, Hua C, Shen L, Yu H. N 6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. NATURE PLANTS 2024; 10:469-482. [PMID: 38448725 DOI: 10.1038/s41477-024-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNAs, yet how plants recognize this chemical modification to swiftly adjust developmental plasticity under environmental stresses remains unclear. Here we show that m6A mRNA modification and its reader protein EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) act together as a key checkpoint for negative feedback regulation of abscisic acid (ABA) signalling by sequestering the m6A-modified ABA receptor gene PYRABACTIN RESISTANCE 1-LIKE 7 (PYL7) via phase-separated ECT8 condensates in stress granules in response to ABA. This partially depletes PYL7 mRNA from its translation in the cytoplasm, thus reducing PYL7 protein levels and compromising ABA perception. The loss of ECT8 results in defective sequestration of m6A-modified PYL7 in stress granules and permits more PYL7 transcripts for translation. This causes overactivation of ABA-responsive genes and the consequent ABA-hypersensitive phenotypes, including drought tolerance. Overall, our findings reveal that m6A-mediated sequestration of PYL7 by ECT8 in stress granules negatively regulates ABA perception, thereby enabling prompt feedback regulation of ABA signalling to prevent plant cell overreaction to environmental stresses.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tingting Su
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chui Eng Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jinqi Ma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yanlin Shao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Changmei Hua
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Waite JM, Hollender CA, Eilers JR, Burchard E, Dardick C. Peach LAZY1 and DRO1 protein-protein interactions and co-expression with PRAF/RLD family support conserved gravity-related protein interactions across plants. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000995. [PMID: 38287925 PMCID: PMC10823791 DOI: 10.17912/micropub.biology.000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
IGT/LAZY proteins play a central role in determining gravitropic set point angle and orientation of lateral organs across plant species. Recent work in model systems has demonstrated that interactions between IGT/LAZY proteins and BREVIS RADIX (BRX)-domain containing proteins, such as PH, RCC1, AND FYVE/RCC1-LIKE DOMAIN (PRAF/RLD), and BREVIS RADIX LIKE (BRXL) family members, are mechanistically important for setting gravitropic set point angle. Here, we identified peach PRAF/RLD proteins as interactors of the peach IGT/LAZY proteins PpeLAZY1 and DEEPER ROOTING 1 (PpeDRO1) from a yeast-two-hybrid screen. We also show that the BRX domains of these interacting proteins have high sequence similarity with PRAF/RLD and BRX family proteins from rice and Arabidopsis. Further, PpeLAZY1 and the peach PRAF/RLD interactors are all expressed at relatively high levels in leaf, meristem, and shoot tip tissues. Together, this evidence supports the importance and conservation of IGT/LAZY-BRX-domain interactions, which underlie setting gravitropic set point angle across angiosperms.
Collapse
Affiliation(s)
| | | | - Jon R. Eilers
- USDA ARS Tree Fruit Research Laboratory, Wenatchee, WA
| | - Erik Burchard
- USDA ARS Appalachian Fruit Research Station, Kearneysville, WV
| | - Chris Dardick
- USDA ARS Appalachian Fruit Research Station, Kearneysville, WV
| |
Collapse
|
30
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Roscoe S, Guo Y, Vacratsis PO, Ananvoranich S. Proteomic profile of Toxoplasma gondii stress granules by high-resolution mass spectrometry. Can J Microbiol 2024; 70:32-39. [PMID: 37826860 DOI: 10.1139/cjm-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In Toxoplasma gondii, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.
Collapse
Affiliation(s)
- Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Yue Guo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| |
Collapse
|
32
|
Due Tankmar M, Reichel M, Arribas‐Hernández L, Brodersen P. A YTHDF-PABP interaction is required for m 6 A-mediated organogenesis in plants. EMBO Rep 2023; 24:e57741. [PMID: 38009565 PMCID: PMC10702811 DOI: 10.15252/embr.202357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.
Collapse
Affiliation(s)
| | - Marlene Reichel
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
33
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
34
|
Fan W, Wang L, Lei Z, Li H, Chu J, Yan M, Wang Y, Wang H, Yang J, Cho J. m 6A RNA demethylase AtALKBH9B promotes mobilization of a heat-activated long terminal repeat retrotransposon in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3292. [PMID: 38019921 PMCID: PMC10686560 DOI: 10.1126/sciadv.adf3292] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Transposons are mobile and ubiquitous DNA molecules that can cause vast genomic alterations. In plants, it is well documented that transposon mobilization is strongly repressed by DNA methylation; however, its regulation at the posttranscriptional level remains relatively uninvestigated. Here, we suggest that transposon RNA is marked by m6A RNA methylation and can be localized in stress granules (SGs). Intriguingly, SG-localized AtALKBH9B selectively demethylates a heat-activated retroelement, Onsen, and thereby releases it from spatial confinement, allowing for its mobilization. In addition, we show evidence that m6A RNA methylation contributes to transpositional suppression by inhibiting virus-like particle assembly and extrachromosomal DNA production. In summary, this study unveils a previously unknown role for m6A in the suppression of transposon mobility and provides insight into how transposons counteract the m6A-mediated repression mechanism by hitchhiking the RNA demethylase of the host.
Collapse
Affiliation(s)
- Wenwen Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqin Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-JIC Centre for Excellence in Plant and Microbial Science, Shanghai 200032, China
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
35
|
Cui X, Dard A, Reichheld JP, Zhou DX. Multifaceted functions of histone deacetylases in stress response. TRENDS IN PLANT SCIENCE 2023; 28:1245-1256. [PMID: 37394308 DOI: 10.1016/j.tplants.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Histone deacetylases (HDACs) are important chromatin regulators essential for plant tolerance to adverse environments. In addition to histone deacetylation and epigenetic regulation, HDACs deacetylate non-histone proteins and thereby regulate multiple pathways. Like other post-translational modifications (PTMs), acetylation/deacetylation is a reversible switch regulating different cellular processes in plants. Here, by focusing on results obtained in arabidopsis (Arabidopsis thaliana) and rice plants, we analyze the different aspects of HDAC functions and the underlying regulatory mechanisms in modulating plant responses to stress. We hypothesize that, in addition to epigenetic regulation of gene expression, HDACs can also control plant tolerance to stress by regulating transcription, translation, and metabolic activities and possibly assembly-disassembly of stress granules (SGs) through lysine deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, - 9052 Ghent, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
36
|
Bleckmann A, Spitzlberger N, Denninger P, Ehrnsberger HF, Wang L, Bruckmann A, Reich S, Holzinger P, Medenbach J, Grasser KD, Dresselhaus T. Cytosolic RGG RNA-binding proteins are temperature sensitive flowering time regulators in Arabidopsis. Biol Chem 2023; 404:1069-1084. [PMID: 37674329 DOI: 10.1515/hsz-2023-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
mRNA translation is tightly regulated by various classes of RNA-binding proteins (RBPs) during development and in response to changing environmental conditions. In this study, we characterize the arginine-glycine-glycine (RGG) motif containing RBP family of Arabidopsis thaliana representing homologues of the multifunctional translation regulators and ribosomal preservation factors Stm1 from yeast (ScStm1) and human SERBP1 (HsSERBP1). The Arabidopsis genome encodes three RGG proteins named AtRGGA, AtRGGB and AtRGGC. While AtRGGA is ubiquitously expressed, AtRGGB and AtRGGC are enriched in dividing cells. All AtRGGs localize almost exclusively to the cytoplasm and bind with high affinity to ssRNA, while being capable to interact with most nucleic acids, except dsRNA. A protein-interactome study shows that AtRGGs interact with ribosomal proteins and proteins involved in RNA processing and transport. In contrast to ScStm1, AtRGGs are enriched in ribosome-free fractions in polysome profiles, suggesting additional plant-specific functions. Mutant studies show that AtRGG proteins differentially regulate flowering time, with a distinct and complex temperature dependency for each AtRGG protein. In conclusion, we suggest that AtRGGs function in fine-tuning translation efficiency to control flowering time and potentially other developmental processes in response to environmental changes.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Nicole Spitzlberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Denninger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Hans F Ehrnsberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Stefan Reich
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Holzinger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
37
|
Hatzianestis IH, Mountourakis F, Stavridou S, Moschou PN. Plant condensates: no longer membrane-less? TRENDS IN PLANT SCIENCE 2023; 28:1101-1112. [PMID: 37183142 DOI: 10.1016/j.tplants.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Cellular condensation is a reinvigorated area of study in biology, with scientific discussions focusing mainly on the forces that drive condensate formation, properties, and functions. Usually, condensates are called 'membrane-less' to highlight the absence of a surrounding membrane and the lack of associated contacts. In this opinion article we take a different direction, focusing on condensates that may be interfacing with membranes and their possible functions. We also highlight changes in condensate material properties brought about by condensate-membrane interactions, proposing how condensates-membrane interfaces could potentially affect interorganellar communication, development, and growth, but also adaptation in an evolutionary context. We would thus like to stimulate research in this area, which is much less understood in plants compared with the animal field.
Collapse
Affiliation(s)
- Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Fanourios Mountourakis
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | | | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece; Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
38
|
Thirumalaikumar VP, Chodasiewicz M, Skirycz A. Silencing translation with phenolic acids. NATURE PLANTS 2023; 9:1381-1382. [PMID: 37640932 DOI: 10.1038/s41477-023-01497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
| | - Monika Chodasiewicz
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | |
Collapse
|
39
|
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. THE NEW PHYTOLOGIST 2023; 239:2235-2247. [PMID: 37403528 DOI: 10.1111/nph.19100] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.
Collapse
Affiliation(s)
- Jingjing Wen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongli Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
41
|
Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, van Midden KP, Phukkan UJ, Koyuncu S, Borràs-Bisa J, Li L, Popa C, Eisele F, Eisele-Bürger AM, Hill SM, Gutiérrez-Beltrán E, Nyström T, Valls M, Llamas E, Vilchez D, Klemenčič M, Ventura S, Coll NS. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. THE PLANT CELL 2023; 35:3325-3344. [PMID: 37401663 PMCID: PMC10473220 DOI: 10.1093/plcell/koad172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Stress granules (SGs) are highly conserved cytoplasmic condensates that assemble in response to stress and contribute to maintaining protein homeostasis. These membraneless organelles are dynamic, disassembling once the stress is no longer present. Persistence of SGs due to mutations or chronic stress has been often related to age-dependent protein-misfolding diseases in animals. Here, we find that the metacaspase MC1 is dynamically recruited into SGs upon proteotoxic stress in Arabidopsis (Arabidopsis thaliana). Two predicted disordered regions, the prodomain and the 360 loop, mediate MC1 recruitment to and release from SGs. Importantly, we show that MC1 has the capacity to clear toxic protein aggregates in vivo and in vitro, acting as a disaggregase. Finally, we demonstrate that overexpressing MC1 delays senescence and this phenotype is dependent on the presence of the 360 loop and an intact catalytic domain. Together, our data indicate that MC1 regulates senescence through its recruitment into SGs and this function could potentially be linked to its remarkable protein aggregate-clearing activity.
Collapse
Affiliation(s)
- Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Katarina P van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ujjal J Phukkan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Júlia Borràs-Bisa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Frederik Eisele
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Sandra Malgrem Hill
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and Consejo Superior de Investigaciones Científicas), 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Thomas Nyström
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain
| |
Collapse
|
42
|
Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, Gutierrez-Beltran E. Stress-related biomolecular condensates in plants. THE PLANT CELL 2023; 35:3187-3204. [PMID: 37162152 PMCID: PMC10473214 DOI: 10.1093/plcell/koad127] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
43
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
44
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Chen YH, Chao KH, Wong JY, Liu CF, Leu JY, Tsai HK. A feature extraction free approach for protein interactome inference from co-elution data. Brief Bioinform 2023; 24:bbad229. [PMID: 37328692 DOI: 10.1093/bib/bbad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Protein complexes are key functional units in cellular processes. High-throughput techniques, such as co-fractionation coupled with mass spectrometry (CF-MS), have advanced protein complex studies by enabling global interactome inference. However, dealing with complex fractionation characteristics to define true interactions is not a simple task, since CF-MS is prone to false positives due to the co-elution of non-interacting proteins by chance. Several computational methods have been designed to analyze CF-MS data and construct probabilistic protein-protein interaction (PPI) networks. Current methods usually first infer PPIs based on handcrafted CF-MS features, and then use clustering algorithms to form potential protein complexes. While powerful, these methods suffer from the potential bias of handcrafted features and severely imbalanced data distribution. However, the handcrafted features based on domain knowledge might introduce bias, and current methods also tend to overfit due to the severely imbalanced PPI data. To address these issues, we present a balanced end-to-end learning architecture, Software for Prediction of Interactome with Feature-extraction Free Elution Data (SPIFFED), to integrate feature representation from raw CF-MS data and interactome prediction by convolutional neural network. SPIFFED outperforms the state-of-the-art methods in predicting PPIs under the conventional imbalanced training. When trained with balanced data, SPIFFED had greatly improved sensitivity for true PPIs. Moreover, the ensemble SPIFFED model provides different voting schemes to integrate predicted PPIs from multiple CF-MS data. Using the clustering software (i.e. ClusterONE), SPIFFED allows users to infer high-confidence protein complexes depending on the CF-MS experimental designs. The source code of SPIFFED is freely available at: https://github.com/bio-it-station/SPIFFED.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei 106, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academic Sinica, Taipei 11529, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Hao Chao
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Jin Yung Wong
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Fu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei 106, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academic Sinica, Taipei 11529, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
46
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
47
|
Manavella PA, Godoy Herz MA, Kornblihtt AR, Sorenson R, Sieburth LE, Nakaminami K, Seki M, Ding Y, Sun Q, Kang H, Ariel FD, Crespi M, Giudicatti AJ, Cai Q, Jin H, Feng X, Qi Y, Pikaard CS. Beyond transcription: compelling open questions in plant RNA biology. THE PLANT CELL 2023; 35:1626-1653. [PMID: 36477566 PMCID: PMC10226580 DOI: 10.1093/plcell/koac346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 05/30/2023]
Abstract
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Micaela A Godoy Herz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Alberto R Kornblihtt
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Reed Sorenson
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Kentaro Nakaminami
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, Orsay 91405, France
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
48
|
Mateos JL, Staiger D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. THE PLANT CELL 2023; 35:1708-1726. [PMID: 36461946 PMCID: PMC10226577 DOI: 10.1093/plcell/koac345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding proteins (RBPs) have a broad impact on most biochemical, physiological, and developmental processes in a plant's life. RBPs engage in an on-off relationship with their RNA partners, accompanying virtually every stage in RNA processing and function. While the function of a plethora of RBPs in plant development and stress responses has been described, we are lacking a systems-level understanding of components in RNA-based regulation. Novel techniques have substantially enlarged the compendium of proteins with experimental evidence for binding to RNAs in the cell, the RNA-binding proteome. Furthermore, ribonomics methods have been adapted for use in plants to profile the in vivo binding repertoire of RBPs genome-wide. Here, we discuss how recent technological achievements have provided novel insights into the mode of action of plant RBPs at a genome-wide scale. Furthermore, we touch upon two emerging topics, the connection of RBPs to phase separation in the cell and to extracellular RNAs. Finally, we define open questions to be addressed to move toward an integrated understanding of RBP function.
Collapse
Affiliation(s)
- Julieta L Mateos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
49
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
50
|
Lohmann J, de Luxán-Hernández C, Gao Y, Zoschke R, Weingartner M. Arabidopsis translation factor eEF1Bγ impacts plant development and is associated with heat-induced cytoplasmic foci. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2585-2602. [PMID: 36749654 DOI: 10.1093/jxb/erad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 06/06/2023]
Abstract
The important role of translational control for maintenance of proteostasis is well documented in plants, but the exact mechanisms that coordinate translation rates during plant development and stress response are not well understood. In Arabidopsis, the translation elongation complex eEF1B consists of three subunits: eEF1Bα, eEF1Bβ, and eEF1Bγ. While eEF1Bα and eEF1Bβ have a conserved GDP/GTP exchange function, the function of eEF1Bγ is still unknown. By generating Arabidopsis mutants with strongly reduced eEF1Bγ levels, we revealed its essential role during plant growth and development and analysed its impact on translation. To explore the function of the eEF1B subunits under high temperature stress, we analysed their dynamic localization as green fluorescent protein fusions under control and heat stress conditions. Each of these fusion proteins accumulated in heat-induced cytoplasmic foci and co-localized with the stress granule marker poly(A)-binding protein 8-mCherry. Protein-protein interaction studies and co-expression analyses indicated that eEF1Bβ physically interacted with both of the other subunits and promoted their recruitment to cytoplasmic foci. These data provide new insights into the mechanisms allowing for rapid adaptation of translation rates during heat stress response.
Collapse
Affiliation(s)
- Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Cloe de Luxán-Hernández
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| |
Collapse
|