1
|
Pütz J, Jansen S, Reutimann O, Rellstab C, Bordács S, Neophytou C. The influence of post-glacial migration and hybridization on the gene pool of marginal Quercus pubescens populations in Central Europe. ANNALS OF BOTANY 2025; 135:867-884. [PMID: 39699027 PMCID: PMC12064428 DOI: 10.1093/aob/mcae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS In Central Europe, the drought-tolerant downy oak (Quercus pubescens) is at the northern edge of its natural distribution range, often growing in small and spatially isolated populations. Here, we elucidate how the population genetic structure of Central European Q. pubescens was shaped by geographical barriers, genetic drift and introgression with the closely related sessile oak (Q. petraea). METHODS In total, 27 Q. pubescens populations from the northern margin of its natural distribution range were sampled. Based on 16 nuclear microsatellite markers (nSSRs), Bayesian clustering and distance-based analyses were performed to determine the intraspecific genetic structure and to identify genetic barriers. To identify drivers of introgression with Q. petraea, generalized linear models were applied to link levels of introgression with environmental conditions. To track post-glacial migration routes, the spatial distribution of haplotypes based on eight chloroplast microsatellite markers (cpSSRs) was investigated. KEY RESULTS Based on nSSRs, the study populations of Q. pubescens were divided into a western and an eastern genetic cluster. Within these clusters, more pronounced genetic substructure was observed in the west, probably due to a rugged topography and limited gene flow. Introgression from Q. petraea was more prevalent at wetter and north-exposed sites and in the west. The identified cpSSR haplotypes followed known migration pathways. CONCLUSIONS Our results suggest two late-glacial refugia in or near the southwestern Alps and the southeastern Alps as potential sources for post-glacial migration. Although some genetic exchange is evident in northern Italy, south of the Alps, the two clusters remain distinct at a large scale. Landscape features and introgression with Q. petraea shaped the genetic substructure at a smaller scale. Our study provides a comprehensive overview of the genetic structure of Q. pubescens in Central Europe, relevant for conservation.
Collapse
Affiliation(s)
- Jil Pütz
- Department of Forest and Soil Sciences, Institute of Silviculture, BOKU University, Peter-Jordan-Str. 82, AT-1190 Vienna, Austria
| | - Simon Jansen
- Department of Forest and Soil Sciences, Institute of Silviculture, BOKU University, Peter-Jordan-Str. 82, AT-1190 Vienna, Austria
| | - Oliver Reutimann
- Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Sándor Bordács
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Ménesi út 42-44. HU-1118 Budapest, Hungary
| | - Charalambos Neophytou
- Department of Forest and Soil Sciences, Institute of Silviculture, BOKU University, Peter-Jordan-Str. 82, AT-1190 Vienna, Austria
- Department of Forest Nature Conservation, Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestr. 4, D-79100 Freiburg, Germany
| |
Collapse
|
2
|
Shagawa T, Ogawa K, Kanaoka MM, Satake A. A seasonal strategy for pollen tube growth and ovule development to overcome winter in Japanese stone oak (Lithocarpus edulis). Sci Rep 2025; 15:16131. [PMID: 40341177 PMCID: PMC12062428 DOI: 10.1038/s41598-025-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Delayed fertilization is commonly observed in many acorn-producing Fagaceae trees, yet its underlying mechanisms and adaptive significance remain poorly understood. In recent years, a new hypothesis has been proposed suggesting that the nearly year-long delay in fertilization is driven by an overwintering strategy, wherein female gametophyte development is delayed, and pollen tube growth is arrested before winter. This mechanism allows ovules to be fertilized and seeds to develop during more favorable seasons while avoiding adverse winter conditions. However, empirical evidence for this overwintering strategy has been limited. To address this, we observed the seasonal progression of pollen tube growth and ovule development in Lithocarpus edulis, a species with spring and autumn flowering seasons. Monthly observations of pistillate flowers from both seasons were conducted using microtome techniques and scanning confocal microscopy. Our findings revealed that pollen tubes were arrested at the style joining site, and ovules remained immature in both spring and autumn flowers prior to winter. Following winter, pollen tube regrowth and ovule maturation were synchronized in the subsequent spring, regardless of the flowering season. These results support the hypothesis that ovule development is delayed, leading to delayed fertilization, until after winter. This study highlights the importance of temporally coordinating fertilization phenology with flowering and fruiting phenology in seasonal environments to avoid unfavorable winter conditions.
Collapse
Affiliation(s)
- Takenori Shagawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masahiro M Kanaoka
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Antonelli G, Puddu G, Cipollini C, Sabatini G, Conticelli M, Simeone MC. A Vanishing Imprint? Modeling the Present and Future Distribution of the Enigmatic Quercus crenata Lam., a Mediterranean Sporadic Tree Species. Ecol Evol 2025; 15:e71482. [PMID: 40421066 PMCID: PMC12104986 DOI: 10.1002/ece3.71482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Poorly known, rare species are important biodiversity elements; understanding the relationships between their effective numbers, geographical distribution, ecology, and adaptive potential is an unquestionable critical aspect to reverse biodiversity decline under climate change. Quercus crenata Lam. is a sporadic Mediterranean tree species with debated taxonomy and evolutionary history. Confusing identifications and a scattered distribution combine to create an incautious lack of comprehensive and reliable information on its spatial distribution, ecology, and genetic resources, thereby hindering correct management and conservation efforts. This work undertook a first decisive step to address these knowledge gaps, integrating all previous dispersive information and presenting a comprehensive map of Q. crenata occurrences, with 923 established records: 495 new field observations and 428 verified from all available literature and online databases. The taxon occurs with extremely low individual numbers across central and northern Italy, southern France, western Slovenia, and Croatia, mainly at altitudes between sea level and 1100 m a.s.l. A large part of the species records are outside current networks of protected areas. The MaxEnt-based distribution model highlights Q. crenata adaptation to mild Mediterranean climates with moderate temperature fluctuations, moderate-to-high water requirements, and diverse soil types. A broader present potential distribution than currently assessed is suggested, underlining the possibility of identifying new occurrences with accurate searches in targeted sites, thus refining the understanding of the species' actual present distribution. Future range projections under three carbon emission scenarios with increasing severity (SSP1, SSP3, and SSP5) predict substantial range losses by 2100, ranging from 32% to a drastic 99% reduction under the most severe scenario (SSP5). On these bases, our findings underline the urgent need to improve current conservation practices, which should be conveniently implemented by exhaustive genetic investigations.
Collapse
Affiliation(s)
- Giuseppe Antonelli
- Department of Agricultural and Forest Sciences (DAFNE)University of TusciaViterboVTItaly
| | - Giuseppe Puddu
- Department of Agricultural and Forest Sciences (DAFNE)University of TusciaViterboVTItaly
- Regione Lazio – Lago di Vico Natural ReserveCaprarolaVTItaly
| | | | | | | | - Marco Cosimo Simeone
- Department of Agricultural and Forest Sciences (DAFNE)University of TusciaViterboVTItaly
| |
Collapse
|
4
|
Tong Z, Zhou H, Qi Z, Jiang J, Li W, Wang C. Metabolomics and Antioxidant Activity of Valonea from Quercus variabilis Produced in Different Geographical Regions in China. Int J Mol Sci 2025; 26:3599. [PMID: 40332131 PMCID: PMC12026628 DOI: 10.3390/ijms26083599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The genus Quercus is widely distributed globally and serves as a potential source of phenolic compounds, which are renowned for their potent biological activities. The primary objective of this study was to determine the concentrations of metabolite components and evaluate the relative antioxidant activities of valonea (acorn cups) from Quercus variabilis (Q. variabilis) of different geographic origins using a UPLC-ESI-MS/MS-based metabolomics approach. A total of 791 metabolite components were identified, with significant variations in their concentrations observed among samples from different geographic locations. Among these, 1-O-galloyl-β-D-glucose was identified as a key active compound. The biosynthesis of galloyl sugars, galactose metabolism, and pathways for starch and sucrose metabolism represent the three pathways that correspond to the differential metabolites, encompassing 23, 11, and 7 metabolites, respectively. The variations in the antioxidant effectiveness of valonea could mainly be linked to the synthesis of galloyl sugars. These findings improve our knowledge of the composition of valonea and offer valuable resources for its extensive utilization and focused development.
Collapse
Affiliation(s)
- Zhenkai Tong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (Z.T.)
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (Z.T.)
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (Z.T.)
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenjun Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (Z.T.)
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (Z.T.)
| |
Collapse
|
5
|
Liu S, Yang Y, Tian Q, Yang Z, Li S, Valdes PJ, Farnsworth A, Kates HR, Siniscalchi CM, Guralnick RP, Soltis DE, Soltis PS, Stull GW, Folk RA, Yi T. An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1119-1141. [PMID: 39297574 PMCID: PMC12016745 DOI: 10.1111/jipb.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 04/24/2025]
Abstract
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization-perhaps in the form of ancient syngameons like those seen today-has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
Collapse
Affiliation(s)
- Shui‐Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Ying Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhi‐Yun Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Shu‐Feng Li
- Chinese Academy of Sciences Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Paul J. Valdes
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Alex Farnsworth
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Heather R. Kates
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Carolina M. Siniscalchi
- Mississippi State University LibrariesMississippi State UniversityMississippi State39762MississippiUSA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi State39762MississippiUSA
| | - Ting‐Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
6
|
Larson DA, Staton ME, Kapoor B, Islam‐Faridi N, Zhebentyayeva T, Fan S, Stork J, Thomas A, Ahmed AS, Stanton EC, Houston A, Schlarbaum SE, Hahn MW, Carlson JE, Abbott AG, DeBolt S, Nelson CD. A haplotype-resolved reference genome of Quercus alba sheds light on the evolutionary history of oaks. THE NEW PHYTOLOGIST 2025; 246:331-348. [PMID: 39931867 PMCID: PMC11883056 DOI: 10.1111/nph.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/15/2025] [Indexed: 03/08/2025]
Abstract
White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important. We report the first haplotype-resolved chromosome-scale genome assembly of Q. alba and conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data. Despite strongly conserved chromosome synteny and genome size across Quercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species - as are the chromosomal locations of R gene clusters - but, gene number within clusters is more labile. We found that Q. alba has high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus. The white oak genome represents a major new resource for studying genome diversity and evolution in Quercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution in Quercus.
Collapse
Affiliation(s)
- Drew A. Larson
- Department of BiologyIndiana UniversityBloomingtonIN47405USA
| | - Margaret E. Staton
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTN37996USA
| | - Beant Kapoor
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTN37996USA
| | - Nurul Islam‐Faridi
- USDA Forest Service, Southern Research StationCollege StationTX77843USA
- Department of Ecology and Conservation BiologyTexas A&M UniversityCollege StationTX77843USA
| | - Tetyana Zhebentyayeva
- Department of Forestry and Natural ResourcesUniversity of KentuckyLexingtonKY40546USA
| | - Shenghua Fan
- Department of HorticultureUniversity of KentuckyLexingtonKY40546USA
| | - Jozsef Stork
- Department of HorticultureUniversity of KentuckyLexingtonKY40546USA
| | - Austin Thomas
- Oak Ridge Institute for Science and Education (ORISE)USDA Forest Service, Southern Research StationLexingtonKY40546USA
| | - Alaa S. Ahmed
- Genome Science and TechnologyUniversity of TennesseeKnoxvilleTN37996USA
| | | | - Allan Houston
- School of Natural ResourcesUniversity of TennesseeKnoxvilleTN37996USA
| | | | - Matthew W. Hahn
- Department of BiologyIndiana UniversityBloomingtonIN47405USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - John E. Carlson
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPA16802USA
| | - Albert G. Abbott
- Department of Forestry and Natural ResourcesUniversity of KentuckyLexingtonKY40546USA
- Abbott Tree Farm and Research ConsultantsCape VincentNY13618USA
| | - Seth DeBolt
- Department of HorticultureUniversity of KentuckyLexingtonKY40546USA
- James B. Beam Institute for Kentucky SpiritsUniversity of KentuckyLexingtonKY40546USA
| | - C. Dana Nelson
- USDA Forest Service, Southern Research StationLexingtonKY40546USA
| |
Collapse
|
7
|
Augusto L, Borelle R, Boča A, Bon L, Orazio C, Arias-González A, Bakker MR, Gartzia-Bengoetxea N, Auge H, Bernier F, Cantero A, Cavender-Bares J, Correia AH, De Schrijver A, Diez-Casero JJ, Eisenhauer N, Fotelli MN, Gâteblé G, Godbold DL, Gomes-Caetano-Ferreira M, Gundale MJ, Jactel H, Koricheva J, Larsson M, Laudicina VA, Legout A, Martín-García J, Mason WL, Meredieu C, Mereu S, Montgomery RA, Musch B, Muys B, Paillassa E, Paquette A, Parker JD, Parker WC, Ponette Q, Reynolds C, Rozados-Lorenzo MJ, Ruiz-Peinado R, Santesteban-Insausti X, Scherer-Lorenzen M, Silva-Pando FJ, Smolander A, Spyroglou G, Teixeira-Barcelos EB, Vanguelova EI, Verheyen K, Vesterdal L, Charru M. Widespread slow growth of acquisitive tree species. Nature 2025; 640:395-401. [PMID: 40108455 DOI: 10.1038/s41586-025-08692-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 01/23/2025] [Indexed: 03/22/2025]
Abstract
Trees are an important carbon sink as they accumulate biomass through photosynthesis1. Identifying tree species that grow fast is therefore commonly considered to be essential for effective climate change mitigation through forest planting. Although species characteristics are key information for plantation design and forest management, field studies often fail to detect clear relationships between species functional traits and tree growth2. Here, by consolidating four independent datasets and classifying the acquisitive and conservative species based on their functional trait values, we show that acquisitive tree species, which are supposedly fast-growing species, generally grow slowly in field conditions. This discrepancy between the current paradigm and field observations is explained by the interactions with environmental conditions that influence growth. Acquisitive species require moist mild climates and fertile soils, conditions that are generally not met in the field. By contrast, conservative species, which are supposedly slow-growing species, show generally higher realized growth due to their ability to tolerate unfavourable environmental conditions. In general, conservative tree species grow more steadily than acquisitive tree species in non-tropical forests. We recommend planting acquisitive tree species in areas where they can realize their fast-growing potential. In other regions, where environmental stress is higher, conservative tree species have a larger potential to fix carbon in their biomass.
Collapse
Affiliation(s)
- L Augusto
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France.
| | - R Borelle
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - A Boča
- Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - L Bon
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - C Orazio
- Institut Européen de la Forêt Cultivée (IEFC), Cestas, France
| | - A Arias-González
- NEIKER, Basque Institute for Agricultural Research and Development, Department of Forest Sciences, Bizkaia, Spain
| | - M R Bakker
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - N Gartzia-Bengoetxea
- NEIKER, Basque Institute for Agricultural Research and Development, Department of Forest Sciences, Bizkaia, Spain
| | - H Auge
- Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - J Cavender-Bares
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - A H Correia
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - A De Schrijver
- Research Centre AgroFoodNature, HOGENT University of Applied Sciences and Arts, Ghent, Belgium
| | - J J Diez-Casero
- Sustainable Forest Management Research Institute (iuFOR), University of Valladolid, Palencia, Spain
| | - N Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - M N Fotelli
- Forest Research Institute, Hellenic Agricultural Organization Dimitra, Thessaloniki, Greece
| | - G Gâteblé
- INRAE, UEVT, Antibes Juan-les-Pins, France
| | - D L Godbold
- Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
- Institute of Forest Ecology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - M Gomes-Caetano-Ferreira
- SRAAC, Azores Regional Ministry for Environment and Climate Change, Angra do Heroísmo, Azores, Portugal
| | - M J Gundale
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - H Jactel
- INRAE, University of Bordeaux, BIOGECO, Cestas, France
| | - J Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - M Larsson
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - V A Laudicina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - J Martín-García
- Sustainable Forest Management Research Institute (iuFOR), University of Valladolid, Palencia, Spain
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
| | - W L Mason
- Forest Research, Northern Research Station, Roslin, UK
| | - C Meredieu
- INRAE, University of Bordeaux, BIOGECO, Cestas, France
| | - S Mereu
- CNR-IBE, Consiglio Nazionale delle Ricerche, Istituto per la BioEconomia, Sassari, Italy
| | - R A Montgomery
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - B Musch
- ONF, UMR 0588 BioForA, Orléans, France
| | - B Muys
- Department of Earth & Environmental Sciences, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - E Paillassa
- Institut pour le Développement Forestier (IDF), Paris, France
| | - A Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - J D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - W C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada
| | - Q Ponette
- Earth and Life Institute, UCLouvain-Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - C Reynolds
- Forest Research, Alice Holt Lodge, Farnham, UK
| | | | - R Ruiz-Peinado
- Institute of Forest Science (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - M Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - F J Silva-Pando
- AGACAL-Centro de Investigación Forestal de Lourizán, Pontevedra, Spain
| | - A Smolander
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - G Spyroglou
- Forest Research Institute, Hellenic Agricultural Organization Dimitra, Thessaloniki, Greece
| | | | | | - K Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - L Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - M Charru
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France.
| |
Collapse
|
8
|
Qi M, Wang J, Wang R, Song Y, Ueno S, Luo Y, Du FK. Intraspecific character displacement in oaks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70165. [PMID: 40265977 DOI: 10.1111/tpj.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Character displacement refers to the process by which species diverge more in sympatry due to competition for resources. This competition-driven speciation can also occur within populations, known as intraspecific character displacement (ICD). ICD can promote divergence within species by influencing intraspecific competition or encouraging the evolution of alternative phenotypes. Despite its significance, ICD remains understudied and requires further exploration. In this study, we investigate how competition influences genetic and morphological differentiation within species in sympatric and allopatric populations. We focused on Quercus serrata (in China and Japan) and Q. serrata var. brevipetiolata (found only in China), which belong to a small monophyletic group of oak species nested within Section Quercus (white oaks). Using genetic markers, we detected divergence between Chinese and Japanese populations and further diversification within China, with asymmetric historical gene flow primarily from Q. serrata (the earlier diverged species) to Q. serrata var. brevipetiolata (the later variety). Although genetic differentiation did not differ between sympatric and allopatric populations, leaf morphological variation, analyzed through the geometric morphometric method (GMM) and traditional morphological method, revealed greater trait variation in sympatry. In addition, we found an allometric growth relationship between leaf size and leaf mass of Q. serrata and Q. serrata var. brevipetiolata, with the leaf area of Q. serrata var. brevipetiolata decreasing more disproportionately to leaf mass. This suggests a resource trade-off, where Q. serrata var. brevipetiolata, the later diverged variety, adopts more resource-conservative traits in sympatry. Further analysis of trait variation with environmental factors supports these findings, while genetic variation along climate gradients showed significant responses primarily in Q. serrata, regardless of sympatric or allopatric conditions. Although neutral genetic markers are insufficient to capture selection-driven adaptive differentiation, we inferred that Q. serrata var. brevipetiolata is progressing towards ecological divergence from Q. serrata. Overall, our results highlight the role of ICD in driving morphological diversification and resource-use strategies within species in response to competitive pressures.
Collapse
Affiliation(s)
- Min Qi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jing Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Rongle Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yigang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, People's Republic of China
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, 3058687, Japan
| | - Yibo Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, 3058687, Japan
| |
Collapse
|
9
|
Fontes CG, Meireles JE, Hipp AL, Cavender-Bares J. Adaptive Evolution of Freezing Tolerance in Oaks Is Key to Their Dominance in North America. Ecol Lett 2025; 28:e70084. [PMID: 39980380 DOI: 10.1111/ele.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025]
Abstract
Freezing tolerance plays a pivotal role in shaping the distribution and diversification of organisms. We investigated the dynamics of adaptation to climate and potential trade-offs between stem freezing tolerance and growth rate in 48 Quercus species. Species from colder regions exhibited higher freezing tolerance, lower growth rates and higher winter-acclimation potential than species from warmer climates. Despite an evolutionary lag, freezing tolerance in oaks is closely aligned with its optimal state. Deciduous species showed marked variability in freezing tolerance across their broad climatic range, while evergreen species, confined to warm climates, displayed low freezing tolerance. Annual growth rates were constrained in all deciduous species, but those that evolved in warm latitudes lost freezing tolerance, precluding a trade-off between freezing tolerance and growth. We provide evidence that the capacity to adapt to a wide range of thermal environments was critical to adaptive radiation and the current dominance of the North American oaks.
Collapse
Affiliation(s)
- Clarissa G Fontes
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- BeZero Carbon, London, UK
| | | | - Andrew L Hipp
- The Morton Arboretum, Lisle, Illinois, USA
- The Field Museum, Chicago, Illinois, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak ( Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:109. [PMID: 39795368 PMCID: PMC11723010 DOI: 10.3390/plants14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Pedunculate oak (Quercus robur L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change. Genetic and dendrochronological studies offer complementary perspectives on this adaptability. Tree-ring analysis (dendrochronology) reveals how Q. robur has historically responded to environmental stressors, linking growth patterns to specific conditions such as drought or temperature extremes. By examining tree-ring width, density, and dynamics, researchers can identify periods of growth suppression or enhancement and predict forest responses to future climatic events. Genetic studies further complement this by uncovering adaptive genetic diversity and inheritance patterns. Identifying genetic markers associated with stress tolerance enables forest managers to prioritize the conservation of populations with higher adaptive potential. These insights can guide reforestation efforts and support the development of climate-resilient oak populations. By integrating genetic and dendrochronological data, researchers gain a holistic understanding of Q. robur's mechanisms of resilience. This knowledge is vital for adaptive forest management and sustainable planning in the face of environmental challenges, ultimately helping to ensure the long-term viability of oak populations and their ecosystems. The topics covered in this review are very broad. We tried to include the most relevant, important, and significant studies, but focused mainly on the relatively recent Eastern European studies because they include the most of the species' area. However, although more than 270 published works have been cited in this review, we have, of course, missed some published studies. We apologize in advance to authors of those relevant works that have not been cited.
Collapse
Affiliation(s)
- Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway;
| | - Yulai A. Yanbaev
- Department of Forestry and Landscape Design, Bashkir State Agrarian University, 450001 Ufa, Russia;
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey M. Matveev
- Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| |
Collapse
|
11
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Zhao J, Li S, Huang J, Ding W, Wu M, Su T, Farnsworth A, Valdes PJ, Chen L, Xing Y, Zhou Z. Heterogeneous occurrence of evergreen broad-leaved forests in East Asia: Evidence from plant fossils. PLANT DIVERSITY 2025; 47:1-12. [PMID: 40041559 PMCID: PMC11873578 DOI: 10.1016/j.pld.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 03/06/2025]
Abstract
Evergreen broad-leaved forests (EBLFs) are widely distributed in East Asia and play a vital role in ecosystem stability. The occurrence of these forests in East Asia has been a subject of debate across various disciplines. In this study, we explored the occurrence of East Asian EBLFs from a paleobotanical perspective. By collecting plant fossils from four regions in East Asia, we have established the evolutionary history of EBLFs. Through floral similarity analysis and paleoclimatic reconstruction, we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia. The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene, followed by southwestern China during the late Eocene-early Oligocene. Subsequently, EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene. Paleoclimate simulation results suggest that the precipitation of wettest quarter (PWetQ, mm) exceeding 600 mm is crucial for the occurrence of EBLFs. Furthermore, the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon. This study provides new insights into the occurrence of EBLFs in East Asia.
Collapse
Affiliation(s)
- Jiagang Zhao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shufeng Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jian Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wenna Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Mengxiao Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Tao Su
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Linlin Chen
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Yaowu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Zhekun Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
13
|
Yang L, Zhang S, Wu C, Jiang X, Deng M. Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2024; 24:1277. [PMID: 39736525 DOI: 10.1186/s12870-024-05874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus. RESULTS The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny. CONCLUSIONS The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage.
Collapse
Affiliation(s)
- Lifang Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shoujun Zhang
- Center for Horticulture and Conservation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chunya Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaolong Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Min Deng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| |
Collapse
|
14
|
Zailaa J, Scoffoni C, Brodersen CR. Stomatal closure as a driver of minimum leaf conductance declines at high temperature and vapor pressure deficit in Quercus. PLANT PHYSIOLOGY 2024; 197:kiae551. [PMID: 39418086 DOI: 10.1093/plphys/kiae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Rising global temperatures and vapor pressure deficits (VPDs) are increasing plant water demand and becoming major drivers of large-scale plant mortality. Controlling transient leaf water loss after stomatal closure (minimum stomatal conductance [gmin]) is recognized as a key trait determining how long plants survive during soil drought. Yet, substantial uncertainty remains regarding how gmin responds to elevated temperatures and VPD and the underlying mechanisms. We measured gmin in 24 Quercus species from temperate and Mediterranean climates to determine whether gmin was sensitive to a coupled temperature and VPD increase. We also explored mechanistic links to phenology, climate, evolutionary history, and leaf anatomy. We found that gmin in all species exhibited a nonlinear negative temperature and VPD dependence. At 25 °C (VPD = 2.2 kPa), gmin varied from 1.19 to 8.09 mmol m-2 s-1 across species but converged to 0.57 ± 0.06 mmol m-2 s-1 at 45 °C (VPD = 6.6 kPa). In a subset of species, the effect of temperature and VPD on gmin was reversible and linked to the degree of stomatal closure, which was greater at 45 °C than at 25 °C. Our results show that gmin is dependent on temperature and VPD, is highly conserved in Quercus species, and is linked to leaf anatomy and stomatal behavior.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
16
|
Zhou YR, Li Y, Yang LH, Kozlowski G, Yi LT, Liu MH, Zheng SS, Song YG. The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species. Sci Rep 2024; 14:20577. [PMID: 39232239 PMCID: PMC11375091 DOI: 10.1038/s41598-024-71838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Collapse
Affiliation(s)
- Yu-Ren Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang-Hai Yang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, 1700, Fribourg, Switzerland
- Natural History Museum Fribourg, 1700, Fribourg, Switzerland
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
17
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
18
|
Huang K, Li B, Chen X, Qin C, Zhang X. Comparative and phylogenetic analysis of chloroplast genomes from ten species in Quercus section Cyclobalanopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1430191. [PMID: 39224852 PMCID: PMC11366656 DOI: 10.3389/fpls.2024.1430191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The genus Quercus L. is widely acknowledged as a significant assemblage within East Asia tropical and subtropical broadleaf evergreen forests, possessing considerable economic importance. Nevertheless, the differentiation of Quercus species is deemed arduous, and the interrelations among these species remain enigmatic. Leveraging Illumina sequencing, we undertook the sequencing and assembly of the chloroplast (cp) genomes of seven species belonging to Quercus section Cyclobalanopsis (Quercus argyrotricha, Q. augustinii, Q. bambusifolia, Q. bella, Q. edithiae, Q. jenseniana, and Q. poilanei). Furthermore, we collated three previously published cp genome sequences of Cyclobalanopsis species (Q. litseoides, Q. obovatifolia, and Q. saravanensis). Our primary objective was to conduct comparative genomics and phylogenetic analyses of the complete cp genomes of ten species from Quercus section Cyclobalanopsis. This investigation unveiled that Quercus species feature a characteristic circular tetrad structure, with genome sizes ranging from 160,707 to 160,999 base pairs. The genomic configuration, GC content, and boundaries of inverted repeats/single copy regions exhibited marked conservation. Notably, four highly variable hotspots were identified in the comparative analysis, namely trnK-rps16, psbC-trnS, rbcL-accD, and ycf1. Furthermore, three genes (atpF, rpoC1, and ycf2) displayed signals of positive selection pressure. Phylogenetic scrutiny revealed that the four sections of Cyclobalanopsis clustered together as sister taxa. The branch support values ranged from moderate to high, with most nodes garnering 100% support, underscoring the utility of cp genomic data in elucidating the relationships within the genus. Divergence time analysis revealed that Section Cyclobalanopsis represents the earliest type of Quercus genus. The outcomes of this investigation establish a foundation for forthcoming research endeavors in taxonomy and phylogenetics.
Collapse
Affiliation(s)
| | | | | | | | - Xuemei Zhang
- College of Life Sciences, China West Normal University, Nanchong, China
| |
Collapse
|
19
|
Ma XG, Ren YB, Sun H. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics 2024; 40:357-373. [PMID: 38197450 DOI: 10.1111/cla.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
Resolving evolutionary relationships among closely related species with interspecific gene flow is challenging. Genome-scale data provide opportunities to clarify complex evolutionary relationships in closely related species and to observe variations in species relationships across the genomes of such species. The Himalayan-Hengduan subalpine oaks have a nearly completely sympatric distribution in southwest China and probably constitute a syngameon. In this study, we mapped resequencing data from different species in this group to the Quercus aquifolioides reference genome to obtain a high-quality filtered single nucleotide polymorphism (SNP) dataset. We also assembled their plastomes. We reconstructed their phylogenetic relationships, explored the level and pattern of introgression among these species and investigated gene tree variation in the genomes of these species using sliding windows. The same or closely related plastomes were found to be shared extensively among different species within a specific geographical area. Phylogenomic analyses of genome-wide SNP data found that most oaks in the Himalayan-Hengduan subalpine clade showed genetic coherence, but several species were found to be connected by introgression. The gene trees obtained using sliding windows showed that the phylogenetic relationships in the genomes of oaks are highly heterogeneous and therefore highly obscured. Our study found that all the oaks of the Himalayan-Hengduan subalpine clade from southwest China form a syngameon. The obscured phylogenetic relationships observed empirically across the genome are best explained by interspecific gene flow in conjunction with incomplete lineage sorting.
Collapse
Affiliation(s)
- Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue-Bo Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
20
|
Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y, Wang F. Relationships within Bolbitis sinensis Species Complex Using RAD Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:1987. [PMID: 39065514 PMCID: PMC11280518 DOI: 10.3390/plants13141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.
Collapse
Affiliation(s)
- Liyun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yuhan Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
| | - Zengqiang Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Faguo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Marinček P, Léveillé-Bourret É, Heiduk F, Leong J, Bailleul SM, Volf M, Wagner ND. Challenge accepted: Evolutionary lineages versus taxonomic classification of North American shrub willows (Salix). AMERICAN JOURNAL OF BOTANY 2024; 111:e16361. [PMID: 38924532 DOI: 10.1002/ajb2.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024]
Abstract
PREMISE The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Étienne Léveillé-Bourret
- Institut de recherche en biologie végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Ferris Heiduk
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Jing Leong
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Stéphane M Bailleul
- Division recherche et développement scientifique, Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
22
|
Yang Q, Li J, Wang Y, Wang Z, Pei Z, Street NR, Bhalerao RP, Yu Z, Gao Y, Ni J, Jiao Y, Sun M, Yang X, Chen Y, Liu P, Wang J, Liu Y, Li G. Genomic basis of the distinct biosynthesis of β-glucogallin, a biochemical marker for hydrolyzable tannin production, in three oak species. THE NEW PHYTOLOGIST 2024; 242:2702-2718. [PMID: 38515244 DOI: 10.1111/nph.19711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that β-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for β-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different β-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding β-glucogallin and HT biosynthesis in closely related oak species.
Collapse
Affiliation(s)
- Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Jinjin Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 90754, Sweden
- SciLifeLab, Umeå University, Umeå, 90754, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Zhaowei Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Jiao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Puyuan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxi Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Guolei Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
23
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
24
|
Cai Y, Anderson E, Xue W, Wong S, Cui L, Cheng X, Wang O, Mao Q, Liu SJ, Davis JT, Magalang PR, Schmidt D, Kasuga T, Garbelotto M, Drmanac R, Kua CS, Cannon C, Maloof JN, Peters BA. Assembly and analysis of the genome of Notholithocarpus densiflorus. G3 (BETHESDA, MD.) 2024; 14:jkae043. [PMID: 38427916 PMCID: PMC11075539 DOI: 10.1093/g3journal/jkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Tanoak (Notholithocarpus densiflorus) is an evergreen tree in the Fagaceae family found in California and southern Oregon. Historically, tanoak acorns were an important food source for Native American tribes, and the bark was used extensively in the leather tanning process. Long considered a disjunct relictual element of the Asian stone oaks (Lithocarpus spp.), phylogenetic analysis has determined that the tanoak is an example of convergent evolution. Tanoaks are deeply divergent from oaks (Quercus) of the Pacific Northwest and comprise a new genus with a single species. These trees are highly susceptible to "sudden oak death" (SOD), a plant pathogen (Phytophthora ramorum) that has caused widespread deaths of tanoaks. In this study, we set out to assemble the genome and perform comparative studies among a number of individuals that demonstrated varying levels of susceptibility to SOD. First, we sequenced and de novo assembled a draft reference genome of N. densiflorus using cobarcoded library processing methods and an MGI DNBSEQ-G400 sequencer. To increase the contiguity of the final assembly, we also sequenced Oxford Nanopore long reads to 30× coverage. To our knowledge, the draft genome reported here is one of the more contiguous and complete genomes of a tree species published to date, with a contig N50 of ∼1.2 Mb, a scaffold N50 of ∼2.1 Mb, and a complete gene score of 95.5% through BUSCO analysis. In addition, we sequenced 11 genetically distinct individuals and mapped these onto the draft reference genome, enabling the discovery of almost 25 million single nucleotide polymorphisms and ∼4.4 million small insertions and deletions. Finally, using cobarcoded data, we were able to generate a complete haplotype coverage of all 11 genomes.
Collapse
Affiliation(s)
- Ying Cai
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Ellis Anderson
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Wen Xue
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Sylvia Wong
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Luman Cui
- Department of Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaofang Cheng
- Department of Research, MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Ou Wang
- Department of Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Mao
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Sophie Jia Liu
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - John T Davis
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Paulo R Magalang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Douglas Schmidt
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Davis, CA 95616, USA
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Radoje Drmanac
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Chai-Shian Kua
- Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - Charles Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Brock A Peters
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| |
Collapse
|
25
|
Kougioumoutzis K, Constantinou I, Panitsa M. Rising Temperatures, Falling Leaves: Predicting the Fate of Cyprus's Endemic Oak under Climate and Land Use Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:1109. [PMID: 38674518 PMCID: PMC11053427 DOI: 10.3390/plants13081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Endemic island species face heightened extinction risk from climate-driven shifts, yet standard models often underestimate threat levels for those like Quercus alnifolia, an iconic Cypriot oak with pre-adaptations to aridity. Through species distribution modelling, we investigated the potential shifts in its distribution under future climate and land-use change scenarios. Our approach uniquely combines dispersal constraints, detailed soil characteristics, hydrological factors, and anticipated soil erosion data, offering a comprehensive assessment of environmental suitability. We quantified the species' sensitivity, exposure, and vulnerability to projected changes, conducting a preliminary IUCN extinction risk assessment according to Criteria A and B. Our projections uniformly predict range reductions, with a median decrease of 67.8% by the 2070s under the most extreme scenarios. Additionally, our research indicates Quercus alnifolia's resilience to diverse erosion conditions and preference for relatively dry climates within a specific annual temperature range. The preliminary IUCN risk assessment designates Quercus alnifolia as Critically Endangered in the future, highlighting the need for focused conservation efforts. Climate and land-use changes are critical threats to the species' survival, emphasising the importance of comprehensive modelling techniques and the urgent requirement for dedicated conservation measures to safeguard this iconic species.
Collapse
Affiliation(s)
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (K.K.); (I.C.)
| |
Collapse
|
26
|
Cao RB, Chen R, Liao KX, Li H, Xu GB, Jiang XL. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution. BMC Genomics 2024; 25:328. [PMID: 38566015 PMCID: PMC10988972 DOI: 10.1186/s12864-024-10177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.
Collapse
Affiliation(s)
- Rui-Bin Cao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Ran Chen
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Ke-Xin Liao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - He Li
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Gang-Biao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China.
| |
Collapse
|
27
|
Luo CS, Li TT, Jiang XL, Song Y, Fan TT, Shen XB, Yi R, Ao XP, Xu GB, Deng M. High-quality haplotype-resolved genome assembly for ring-cup oak (Quercus glauca) provides insight into oaks demographic dynamics. Mol Ecol Resour 2024; 24:e13914. [PMID: 38108568 DOI: 10.1111/1755-0998.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Quercus section Cyclobalanopsis represents a dominant woody lineage in East Asian evergreen broadleaved forests. Regardless of its ecological and economic importance, little is known about the genomes of species in this unique oak lineage. Quercus glauca is one of the most widespread tree species in the section Cyclobalanopsis. In this study, a high-quality haplotype-resolved reference genome was assembled for Q. glauca from PacBio HiFi and Hi-C reads. The genome size, contig N50, and scaffold N50 measured 902.88, 7.60, and 69.28 Mb, respectively, for haplotype1, and 913.28, 7.20, and 71.53 Mb, respectively, for haplotype2. A total of 37,457 and 38,311 protein-coding genes were predicted in haplotype1 and haplotype2, respectively. Homologous chromosomes in the Q. glauca genome had excellent gene pair collinearity. The number of R-genes in Q. glauca was similar to most East Asian oaks but less than oak species from Europe and America. Abundant structural variation in the Q. glauca genome could contribute to environmental stress tolerance in Q. glauca. Sections Cyclobalanopsis and Cerris diverged in the Oligocene, in agreement with fossil records for section Cyclobalanopsis, which document its presence in East Asia since the early Miocene. The demographic dynamics of closely related oak species were largely similar. The high-quality reference genome provided here for the most widespread species in section Cyclobalanopsis will serve as an essential genomic resource for evolutionary studies of key oak lineages while also supporting studies of interspecific introgression, local adaptation, and speciation in oaks.
Collapse
Affiliation(s)
- Chang-Sha Luo
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tian-Tian Li
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Song
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ting-Ting Fan
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiang-Bao Shen
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Rong Yi
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiao-Ping Ao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Gang-Biao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
28
|
Fkiri S, Mohamed B, Khouja M, Stiti B, Ben Salem R, Nasr Z, Ben Slimane L, Nagaz K, Ghayth R, Khaldi A. Effect of geographical origin on the chemical characteristics of Q. canariensis acorns: profiling fatty acids, tocopherols, and phenolic composition. Nat Prod Res 2024:1-7. [PMID: 38557271 DOI: 10.1080/14786419.2024.2335355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The impact of geographical origin on the chemical composition of acorns from Quercus species has significant attention. This study aimed to explore the phenolic composition of methanolic extracts, tocopherol content, and fatty acid composition of acorn oils from six different populations of Q. canariensis acorns. The obtained results revealed that acorn oil from BniMtir exhibited high levels of α-tocopherol (58 mg/kg). The fatty acids identified across all samples were Z-vaccenic + oleic acids (38.44-58.58%). In addition, the data highlighted the presence of quinic (32.514-60.216 µg/g DW) and gallic acids (1.674-10.849 µg/g DW), as well as catechin (+) (0.096-12.647 µg/g DW) in all populations. These variations in chemical composition from different regions are likely linked to their geographical origin. In conclusion, this study's finding should significance for the industry, offering valuable insights into the potential production of bioactive compounds from Q. canariensis acorns, which could have various applications.
Collapse
Affiliation(s)
- Sondes Fkiri
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | - Bagues Mohamed
- Laboratory of Drylands and Oases Cropping, Arid Regions Institute of Medenine, University of Gabes, Medenine, Tunisia
| | - Mariem Khouja
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Department of Biology, National Institute of Applied Science and Technology, University of Carthage, Tunis Cedex, Tunisia
| | - Boutheina Stiti
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | - Ridha Ben Salem
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Zouhair Nasr
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | | | - Kamel Nagaz
- Laboratory of Drylands and Oases Cropping, Arid Regions Institute of Medenine, University of Gabes, Medenine, Tunisia
| | - Rigane Ghayth
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
- Chemistry-Physics Department, Sciences and Technology Faculty, University of Kairouan, Sidi Bouzid, Tunisia
| | - Abdelhamid Khaldi
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| |
Collapse
|
29
|
Koontz AC, Schumacher EK, Spence ES, Hoban SM. Ex situ conservation of two rare oak species using microsatellite and SNP markers. Evol Appl 2024; 17:e13650. [PMID: 38524684 PMCID: PMC10960078 DOI: 10.1111/eva.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Plant collections held by botanic gardens and arboreta are key components of ex situ conservation. Maintaining genetic diversity in such collections allows them to be used as resources for supplementing wild populations. However, most recommended minimum sample sizes for sufficient ex situ genetic diversity are based on microsatellite markers, and it remains unknown whether these sample sizes remain valid in light of more recently developed next-generation sequencing (NGS) approaches. To address this knowledge gap, we examine how ex situ conservation status and sampling recommendations differ when derived from microsatellites and single nucleotide polymorphisms (SNPs) in garden and wild samples of two threatened oak species. For Quercus acerifolia, SNPs show lower ex situ representation of wild allelic diversity and slightly lower minimum sample size estimates than microsatellites, while results for each marker are largely similar for Q. boyntonii. The application of missing data filters tends to lead to higher ex situ representation, while the impact of different SNP calling approaches is dependent on the species being analyzed. Measures of population differentiation within species are broadly similar between markers, but larger numbers of SNP loci allow for greater resolution of population structure and clearer assignment of ex situ individuals to wild source populations. Our results offer guidance for future ex situ conservation assessments utilizing SNP data, such as the application of missing data filters and the usage of a reference genome, and illustrate that both microsatellites and SNPs remain viable options for botanic gardens and arboreta seeking to ensure the genetic diversity of their collections.
Collapse
Affiliation(s)
| | | | - Emma S. Spence
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
- Cornell UniversityDepartment of Public and Ecosystem HealthIthacaNew YorkUSA
| | - Sean M. Hoban
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
| |
Collapse
|
30
|
Wang LL, Li Y, Zheng SS, Kozlowski G, Xu J, Song YG. Complete Chloroplast Genomes of Four Oaks from the Section Cyclobalanopsis Improve the Phylogenetic Analysis and Understanding of Evolutionary Processes in the Genus Quercus. Genes (Basel) 2024; 15:230. [PMID: 38397219 PMCID: PMC10888318 DOI: 10.3390/genes15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Quercus is a valuable genus ecologically, economically, and culturally. They are keystone species in many ecosystems. Species delimitation and phylogenetic studies of this genus are difficult owing to frequent hybridization. With an increasing number of genetic resources, we will gain a deeper understanding of this genus. In the present study, we collected four Quercus section Cyclobalanopsis species (Q. poilanei, Q. helferiana, Q. camusiae, and Q. semiserrata) distributed in Southeast Asia and sequenced their complete genomes. Following analysis, we compared the results with those of other species in the genus Quercus. These four chloroplast genomes ranged from 160,784 bp (Q. poilanei) to 161,632 bp (Q. camusiae) in length, with an overall guanine and cytosine (GC) content of 36.9%. Their chloroplast genomic organization and order, as well as their GC content, were similar to those of other Quercus species. We identified seven regions with relatively high variability (rps16, ndhk, accD, ycf1, psbZ-trnG-GCC, rbcL-accD, and rpl32-trnL-UAG) which could potentially serve as plastid markers for further taxonomic and phylogenetic studies within Quercus. Our phylogenetic tree supported the idea that the genus Quercus forms two well-differentiated lineages (corresponding to the subgenera Quercus and Cerris). Of the three sections in the subgenus Cerris, the section Ilex was split into two clusters, each nested in the other two sections. Moreover, Q. camusiae and Q. semiserrata detected in this study diverged first in the section Cyclobalanopsis and mixed with Q. engleriana in the section Ilex. In particular, 11 protein coding genes (atpF, ndhA, ndhD, ndhF, ndhK, petB, petD, rbcL, rpl22, ycf1, and ycf3) were subjected to positive selection pressure. Overall, this study enriches the chloroplast genome resources of Quercus, which will facilitate further analyses of phylogenetic relationships in this ecologically important tree genus.
Collapse
Affiliation(s)
- Ling-Ling Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, 1700 Fribourg, Switzerland
| | - Jin Xu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| |
Collapse
|
31
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
32
|
Qi M, Du FK, Guo F, Yin K, Tang J. Species identification through deep learning and geometrical morphology in oaks ( Quercus spp.): Pros and cons. Ecol Evol 2024; 14:e11032. [PMID: 38357593 PMCID: PMC10864717 DOI: 10.1002/ece3.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant phenotypic characteristics, especially leaf morphology of leaves, are an important indicator for species identification. However, leaf shape can be extraordinarily complex in some species, such as oaks. The great variation in leaf morphology and difficulty of species identification in oaks have attracted the attention of scientists since Charles Darwin. Recent advances in discrimination technology have provided opportunities to understand leaf morphology variation in oaks. Here, we aimed to compare the accuracy and efficiency of species identification in two closely related deciduous oaks by geometric morphometric method (GMM) and deep learning using preliminary identification of simple sequence repeats (nSSRs) as a prior. A total of 538 Asian deciduous oak trees, 16 Q. aliena and 23 Q. dentata populations, were firstly assigned by nSSRs Bayesian clustering analysis to one of the two species or admixture and this grouping served as a priori identification of these trees. Then we analyzed the shapes of 2328 leaves from the 538 trees in terms of 13 characters (landmarks) by GMM. Finally, we trained and classified 2221 leaf-scanned images with Xception architecture using deep learning. The two species can be identified by GMM and deep learning using genetic analysis as a priori. Deep learning is the most cost-efficient method in terms of time-consuming, while GMM can confirm the admixture individuals' leaf shape. These various methods provide high classification accuracy, highlight the application in plant classification research, and are ready to be applied to other morphology analysis.
Collapse
Affiliation(s)
- Min Qi
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Fang K. Du
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Fei Guo
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Kangquan Yin
- School of Grassland ScienceBeijing Forestry UniversityBeijingChina
| | - Jijun Tang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| |
Collapse
|
33
|
Wagner S, Seguin-Orlando A, Leplé JC, Leroy T, Lalanne C, Labadie K, Aury JM, Poirier S, Wincker P, Plomion C, Kremer A, Orlando L. Tracking population structure and phenology through time using ancient genomes from waterlogged white oak wood. Mol Ecol 2024; 33:e16859. [PMID: 36748324 PMCID: PMC7615563 DOI: 10.1111/mec.16859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Whole genome characterizations of crop plants based on ancient DNA have provided unique keys for a better understanding of the evolutionary origins of modern cultivars, the pace and mode of selection underlying their adaptation to new environments and the production of phenotypes of interest. Although forests are among the most biologically rich ecosystems on earth and represent a fundamental resource for human societies, no ancient genome sequences have been generated for trees. This contrasts with the generation of multiple ancient reference genomes for important crops. Here, we sequenced the first ancient tree genomes using two white oak wood remains from Germany dating to the Last Little Ice Age (15th century CE, 7.3× and 4.0×) and one from France dating to the Bronze Age (1700 BCE, 3.4×). We assessed the underlying species and identified one medieval remains as a hybrid between two common oak species (Quercus robur and Q. petraea) and the other two remains as Q. robur. We found that diversity at the global genome level had not changed over time. However, exploratory analyses suggested that a reduction of diversity took place at different time periods. Finally, we determined the timing of leaf unfolding for ancient trees for the first time. The study extends the application of ancient wood beyond the classical proxies of dendroclimatology, dendrochronology, dendroarchaeology and dendroecology, thereby enhancing resolution of inferences on the responses of forest ecosystems to past environmental changes, epidemics and silvicultural practices.
Collapse
Affiliation(s)
- Stefanie Wagner
- Plant Genomic Resources Center (CNRGV), INRAE, Castanet-Tolosan, France
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | - Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | | | - Thibault Leroy
- IRHS UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Patrick Wincker
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | | | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
De Luna-Bonilla OÁ, Valencia-Á S, Ibarra-Manríquez G, Morales-Saldaña S, Tovar-Sánchez E, González-Rodríguez A. Leaf morphometric analysis and potential distribution modelling contribute to taxonomic differentiation in the Quercus microphylla complex. JOURNAL OF PLANT RESEARCH 2024; 137:3-19. [PMID: 37740854 PMCID: PMC10764464 DOI: 10.1007/s10265-023-01495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Mexico is a major center of evolutionary radiation for the genus Quercus, with oak species occurring across different habitat types and showing a wide variation in morphology and growth form. Despite representing about 20% of Mexican species, scrub oaks have received little attention and even basic aspects of their taxonomy and geographic distribution remain unresolved. In this study, we analyzed the morphological and climatic niche differentiation of scrub oak populations forming a complex constituted by six named species, Quercus cordifolia, Quercus frutex, Quercus intricata, Quercus microphylla, Quercus repanda, Quercus striatula and a distinct morphotype of Q. striatula identified during field and herbarium work (hereafter named Q. striatula II). Samples were obtained from 35 sites covering the geographic distribution of the complex in northern and central Mexico. Morphological differentiation was analyzed through geometric morphometrics of leaf shape and quantification of trichome traits. Our results indicated the presence of two main morphological groups with geographic concordance. The first was formed by Q. frutex, Q. microphylla, Q. repanda and Q. striatula, distributed in the Trans-Mexican Volcanic Belt, the Sierra Madre Occidental and a little portion of the south of the Mexican Altiplano (MA). The second group consists of Q. cordifola, Q. intricata and Q. striatula II, found in the Sierra Madre Oriental and the MA. Therefore, our evidence supports the distinctness of the Q. striatula II morphotype, indicating the need for a taxonomic revision. Within the two groups, morphological differentiation among taxa varied from very clear to low or inexistent (i.e. Q. microphylla-Q. striatula and Q. cordifolia-Q. striatula II) but niche comparisons revealed significant niche differentiation in all pairwise comparisons, highlighting the relevance of integrative approaches for the taxonomic resolution of complicated groups such as the one studied here.
Collapse
Affiliation(s)
- Oscar Ángel De Luna-Bonilla
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Susana Valencia-Á
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n, Ciudad Universitaria, Coyoacán, 04510, México City, México
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP, 62209, Cuernavaca, Morelos, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México.
| |
Collapse
|
35
|
Sánchez-Acevedo V, González-Rodríguez A, Torres-Miranda CA, Rodríguez-Correa H, Valencia-Á S, De-la-Cruz IM, Oyama K. Nuclear and chloroplast DNA phylogeography reveals high genetic diversity and postglacial range expansion in Quercus mexicana. AMERICAN JOURNAL OF BOTANY 2023; 110:e16251. [PMID: 37843974 DOI: 10.1002/ajb2.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
PREMISE Phylogeographical studies are fundamental for understanding factors that influence the spatial distribution of genetic lineages within species. Population expansions and contractions, distribution shifts, and climate changes are among the most important factors shaping the genetic compositions of populations. METHODS We investigated the phylogeography of an endemic oak, Quercus mexicana (Fagaceae), which has a restricted distribution in northeastern Mexico along the Sierra Madre Oriental and adjacent areas. Nuclear and chloroplast DNA microsatellite markers were used to describe the genetic diversity and structure of 39 populations of Q. mexicana along its entire distribution area. We tested whether population expansion or contraction events influenced the genetic diversity and structure of the species. We also modeled the historical distributional range of Q. mexicana (for the Mid Holocene, the Last Glacial Maximum, and the Last Interglacial) to estimate the extent to which climate fluctuations have impacted the distribution of this oak species. RESULTS Our results revealed high genetic diversity and low genetic structure in Q. mexicana populations. Ecological niche models suggested historical fluctuations in the distributional range of Q. mexicana. Historical range changes, gene flow, and physical barriers seem to have played an important role in shaping the phylogeographic structure of Q. mexicana. CONCLUSIONS Our study indicates that the genetic structure of Q. mexicana may have been the result of responses of oak trees not only to heterogeneous environments present in the Sierra Madre Oriental and adjacent areas, but also to elevational and latitudinal shifts in response to climate changes in the past.
Collapse
Affiliation(s)
- Vanessa Sánchez-Acevedo
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
- Posgrado en Ciencias Biológicas, UNAM. Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM. Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - César Andrés Torres-Miranda
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Hernando Rodríguez-Correa
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Susana Valencia-Á
- Facultad de Ciencias, UNAM. Av. Universidad 3000. Coyoacán, Ciudad de México, 04510, México
| | - Ivan M De-la-Cruz
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| |
Collapse
|
36
|
Qian H, Kessler M, Zhang J, Jin Y, Soltis DE, Qian S, Zhou Y, Soltis PS. Angiosperm phylogenetic diversity is lower in Africa than South America. SCIENCE ADVANCES 2023; 9:eadj1022. [PMID: 37967173 PMCID: PMC10651126 DOI: 10.1126/sciadv.adj1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Although originating from a common Gondwanan flora, the diversity and composition of the floras of Africa and South America have greatly diverged since continental breakup of Africa from South America now having much higher plant species richness. However, the phylogenetic diversity of the floras and what this tells us about their evolution remained unexplored. We show that for a given species richness and considering land surface area, topography, and present-day climate, angiosperm phylogenetic diversity in South America is higher than in Africa. This relationship holds regardless of whether all climatically matched areas or only matched areas in tropical climates are considered. Phylogenetic diversity is high relative to species richness in refugial areas in Africa and in northwestern South America, once the gateway for immigration from the north. While species richness is strongly influenced by massive plant radiations in South America, we detect a pervasive influence of historical processes on the phylogenetic diversity of both the South American and African floras.
Collapse
Affiliation(s)
- Hong Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yadong Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
37
|
Chen X, Li B, Zhang X. Comparison of chloroplast genomes and phylogenetic analysis of four species in Quercus section Cyclobalanopsis. Sci Rep 2023; 13:18731. [PMID: 37907468 PMCID: PMC10618267 DOI: 10.1038/s41598-023-45421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The identification in Quercus L. species was considered to be difficult all the time. The fundamental phylogenies of Quercus have already been discussed by morphological and molecular means. However, the morphological characteristics of some Quercus groups may not be consistent with the molecular results (such as the group Helferiana), which may lead to blurring of species relationships and prevent further evolutionary researches. To understand the interspecific relationships and phylogenetic positions, we sequenced and assembled the CPGs (160,715 bp-160842 bp) of four Quercus section Cyclobalanopsis species by Illumina pair-end sequencing. The genomic structure, GC content, and IR/SC boundaries exhibited significant conservatism. Six highly variable hotspots were detected in comparison analysis, among which rpoC1, clpP and ycf1 could be used as molecular markers. Besides, two genes (petA, ycf2) were detected to be under positive selection pressure. The phylogenetic analysis showed: Trigonobalanus genus and Fagus genus located at the base of the phylogeny tree; The Quercus genus species were distincted to two clades, including five sections. All Compound Trichome Base species clustered into a single branch, which was in accordance with the results of the morphological studies. But neither of group Gilva nor group Helferiana had formed a monophyly. Six Compound Trichome Base species gathered together in pairs to form three branch respectively (Quercus kerrii and Quercus chungii; Quercus austrocochinchinensis with Quercus gilva; Quercus helferiana and Quercus rex). Due to a low support rate (0.338) in the phylogeny tree, the interspecies relationship between the two branches differentiated by this node remained unclear. We believe that Q. helferiana and Q. kerrii can exist as independent species due to their distance in the phylogeny tree. Our study provided genetic information in Quercus genus, which could be applied to further studies in taxonomy and phylogenetics.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Life Sciences, China West Normal University, Nanchong, 637009, China
| | - Buyu Li
- College of Life Sciences, China West Normal University, Nanchong, 637009, China
| | - Xuemei Zhang
- College of Life Sciences, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
38
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
39
|
Denk T, Bouchal JM, Güner HT, Coiro M, Butzmann R, Pigg KB, Tiffney BH. Cenozoic migration of a desert plant lineage across the North Atlantic. THE NEW PHYTOLOGIST 2023; 238:2668-2684. [PMID: 36651063 DOI: 10.1111/nph.18743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/29/2022] [Indexed: 05/19/2023]
Abstract
Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely. We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia. We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny. The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.
Collapse
Affiliation(s)
- Thomas Denk
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Johannes M Bouchal
- Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - H Tuncay Güner
- Department of Forest Botany, Faculty of Forestry, Istanbul University-Cerrahpaşa, 34473 Bahçeköy, Istanbul, Turkey
| | - Mario Coiro
- Department of Palaeontology, University of Vienna, 1090, Vienna, Austria
- Ronin Institute for Independent Scholarship, Montclair, NJ, 07043-2314, USA
| | - Rainer Butzmann
- Independent Researcher, Fuggerstraße 8, 81373, Munich, Germany
| | - Kathleen B Pigg
- School of Life Sciences and Biodiversity Knowledge Integration Center, Arizona State University, Box 874501, Tempe, AZ, 85287-4501, USA
| | - Bruce H Tiffney
- Department of Earth Science and College of Creative Studies, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
40
|
Denk T, Grimm GW, Hipp AL, Bouchal JM, Schulze ED, Simeone MC. Niche evolution in a northern temperate tree lineage: biogeographical legacies in cork oaks (Quercus section Cerris). ANNALS OF BOTANY 2023; 131:769-787. [PMID: 36805162 PMCID: PMC10184457 DOI: 10.1093/aob/mcad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.
Collapse
Affiliation(s)
- Thomas Denk
- Department of Palaeobiology, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | | | | | - Johannes M Bouchal
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Marco C Simeone
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
41
|
Alonso-Forn D, Sancho-Knapik D, Fariñas MD, Nadal M, Martín-Sánchez R, Ferrio JP, de Dios VR, Peguero-Pina JJ, Onoda Y, Cavender-Bares J, Arenas TGÁ, Gil-Pelegrín E. Disentangling leaf structural and material properties in relationship to their anatomical and chemical compositional traits in oaks (Quercus L.). ANNALS OF BOTANY 2023; 131:789-800. [PMID: 36794926 PMCID: PMC10184456 DOI: 10.1093/aob/mcad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. Given that it literally means 'hard-leaved', it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait for mechanical properties is not yet well established. METHODS Genus Quercus is an excellent system to shed light on this because it minimizes phylogenetic variation while having a wide variation in sclerophylly. We measured leaf anatomical traits and cell wall composition, analysing their relationship with leaf mass per area and leaf mechanical properties in a set of 25 oak species. KEY RESULTS The upper epidermis outer wall makes a strong and direct contribution to the leaf mechanical strength. Moreover, cellulose plays a crucial role in increasing leaf strength and toughness. The principal component analysis plot based on leaf trait values clearly separates Quercus species into two groups corresponding to evergreen and deciduous species. CONCLUSIONS Sclerophyllous Quercus species are tougher and stronger owing to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits, although they occupy different climates. In addition, evergreen species living in mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.
Collapse
Affiliation(s)
- David Alonso-Forn
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - María Dolores Fariñas
- Sensors and Ultrasonic Technologies Department, Information and Physics Technologies Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Miquel Nadal
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Rubén Martín-Sánchez
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Juan Pedro Ferrio
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Universitat de Lleida, E-25198 Lleida, Spain
- JRU CTFC-Agrotecnio-CERCA Center, E-25198 Lleida, Spain
| | - José Javier Peguero-Pina
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Yusuke Onoda
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto 606-8502, Japan
| | | | - Tomás Gómez Álvarez Arenas
- Sensors and Ultrasonic Technologies Department, Information and Physics Technologies Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Eustaquio Gil-Pelegrín
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
42
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
43
|
Adie H, Lawes MJ. Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest. Biol Rev Camb Philos Soc 2023; 98:643-661. [PMID: 36444419 DOI: 10.1111/brv.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Tree species of Eurasian broadleaved forest possess two divergent trait syndromes with contrasting patterns of resource allocation adapted to different selection environments: short-stature basal resprouters that divert resources to a bud bank adapted to frequent and severe disturbances such as fire and herbivory, and tall trees that delay reproduction by investing in rapid height growth to escape shading. Drawing on theory developed in savanna ecosystems, we propose a conceptual framework showing that the possession of contrasting trait syndromes is essential for the persistence of broadleaved trees in an open ecosystem that burns. Consistent with this hypothesis, trees of modern Eurasian broadleaved forest bear a suite of traits that are adaptive to surface and crown-fire regimes. We contend that limited opportunities in grassland restricts recruitment to disturbance-free refugia, and en masse establishment creates a wooded environment where shade limits the growth of light-demanding savanna plants. Rapid height growth, which involves investment in structural support and the switch from a multi-stemmed to a monopodial growth form, is adaptive in this shaded environment. Although clustering reduces surface fuel loads, these establishment nuclei are vulnerable to high-intensity crown fires. The lethal effects of canopy fire are avoided by seasonal leaf shedding, and aerial resprouting enhances rapid post-fire recovery of photosynthetic capacity. While these woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna. Contrasting trait syndromes thus represent the shift from consumer to resource regulation in savanna ecosystems. Consistent with global trends, the diversification of most contemporary broadleaved taxa coincided with the spread of grasslands, a surge in fire activity and a decline in wooded ecosystems in the late Miocene-Pliocene. Recognition that Eurasian broadleaved forest has savanna origins and persists as an alternative state with adjacent grassy ecosystems has far-reaching management implications in accordance with functional rather than structural criteria. Shade is a severe constraint to the regeneration and growth of both woody and herbaceous growth forms in consumer-regulated ecosystems. However, these ecosystems are highly resilient to disturbance, an essential process that maintains diversity especially among the species-rich herbaceous component that is vulnerable to shading when consumer behaviour is altered.
Collapse
Affiliation(s)
- Hylton Adie
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa
| | - Michael J Lawes
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa
- Institute of Biodiversity and Environmental Conservation (IBEC), Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
44
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
45
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
46
|
Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol Ecol 2023; 32:2850-2868. [PMID: 36847615 DOI: 10.1111/mec.16904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
47
|
Guan X, Wen Y, Zhang Y, Chen Z, Cao KF. Stem hydraulic conductivity and embolism resistance of Quercus species are associated with their climatic niche. TREE PHYSIOLOGY 2023; 43:234-247. [PMID: 36209451 DOI: 10.1093/treephys/tpac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The hydraulic traits of a plant species may reflect its climate adaptations. Southwest China is considered as a biodiversity hotpot of the genus Quercus (oak). However, the hydraulic adaptations of Asian oaks to their climate niches remain unclear. Ten common garden-grown oak species with distinct natural distributions in eastern Asia were used to determine their stem xylem embolism resistance (water potential at 50% loss of hydraulic conductivity, P50), stem hydraulic efficiency (vessel anatomy and sapwood specific hydraulic conductivity (Ks)) and leaf anatomical traits. We also compiled four key functional traits: wood density, hydraulic-weighted vessel diameter, Ks and P50 data for 31 oak species from previous literature. We analyzed the relationship between hydraulic traits and climatic factors over the native ranges of 41 oak species. Our results revealed that the 10 Asian oak species, which are mainly distributed in humid subtropical habitats, possessed a stem xylem with low embolism resistance and moderate hydraulic efficiency. The deciduous and evergreen species of the 10 Asian oaks differed in the stem and leaf traits related to hydraulic efficiency. Ks differed significantly between the two phenological groups (deciduous and evergreens) in the 41-oak dataset. No significant difference in P50 between the two groups was found for the 10 Asian oaks or the 41-oak dataset. The oak species that can distribute in arid habitats possessed a stem xylem with high embolism resistance. Ks negatively related to the humidity of the native range of the 10 Asian oaks, but showed no trend when assessing the entire global oak dataset. Our study suggests that stem hydraulic conductivity and embolism resistance in Quercus species are shaped by their climate niche. Our findings assist predictions of oak drought resistance with future climate changes for oak forest management.
Collapse
Affiliation(s)
- Xinyi Guan
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Wen
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhao Chen
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
48
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|
49
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
50
|
Ouyang ZY, Li ZH, Chen R, Jiang XL, Wu JY. The complete chloroplast genome sequence of Quercus kerrii (Fagaceae), and comparative analysis with related species. Mitochondrial DNA B Resour 2023; 8:527-531. [PMID: 37124995 PMCID: PMC10132218 DOI: 10.1080/23802359.2023.2204167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Quercus kerrii Craib 1911 (section Cyclobalanopsis) is a widespread tree species in the tropical seasonal forests of southwest China and Northern Indo-China areas. In this study, we sequenced, assembled and annotated the complete chloroplast genome of Q. kerrii. The circular genome was 160,743 bp in length and had a GC content of 36.89%. The Q. kerrii chloroplast genome has a typical quadripartite structure, including two inverted repeat regions (length, 25,825 bp; GC content, 42.76%), a large single-copy region (length, 90,196 bp; GC content, 34.74%), and a small single-copy region (length, 18,897 bp; GC content, 30.60%). Genome annotation has indicated that the Q. kerrii chloroplast genome contained 131 genes, including 86 protein-coding genes, 37 tRNA, and eight rRNA. The phylogenetic tree showed that Q. kerrii had a close relationship with Q. schottkyana Rehder & E.H.Wilson 1916.
Collapse
Affiliation(s)
- Ze-Yi Ouyang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Hunan Botanical Garden, Changsha, China
| | - Zhi-Hui Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Ran Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Long Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- CONTACT Xiao-Long Jiang College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ji-You Wu
- Hunan Academy of Forestry, Changsha, China
- Ji-You Wu Hunan Academy of Forestry, Changsha, Hunan, China
| |
Collapse
|