1
|
Monson RK, Li S, Ainsworth EA, Fan Y, Hodge JG, Knapp AK, Leakey ADB, Lombardozzi D, Reed SC, Sage RF, Smith MD, Smith NG, Still CJ, Way DA. C 4 photosynthesis, trait spectra, and the fast-efficient phenotype. THE NEW PHYTOLOGIST 2025; 246:879-893. [PMID: 40143607 DOI: 10.1111/nph.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
It has been 60 years since the discovery of C4 photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C4 photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C4 CO2-concentrating mechanism supports a general C4 plant phenotype capable of fast growth and high resource-use efficiencies. The fast-efficient C4 phenotype has the potential to operate at high productivity rates, while allowing for less biomass allocation to root production and nutrient acquisition, thereby providing opportunities for the evolution of novel trait covariances and the exploitation of new ecological niches. We propose the placement of the C4 fast-efficient phenotype near the acquisitive pole of the world-wide leaf economic spectrum, but with a pathway-specific span of trait space, wherein selection shapes both acquisitive and conservative adaptive strategies. A trait-based perspective of C4 photosynthesis will open new paths to crop improvement, global biogeochemical modeling, the management of invasive species, and the restoration of disturbed ecosystems, particularly in grasslands.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 80309, CO, USA
| | - Shuai Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana, 61801, IL, USA
| | - Yuzhen Fan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - John G Hodge
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, 61801, IL, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, 80523, CO, USA
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, Institute for Genomic Biology, Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danica Lombardozzi
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, 80521, CO, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, 84532, UT, USA
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, M5R 3C6, ON, Canada
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, 80523, CO, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, TX, USA
| | - Christopher J Still
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331, OR, USA
| | - Danielle A Way
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- Department of Biology, University of Western Ontario, London, N6A 3K7, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, 27708, NC, USA
| |
Collapse
|
2
|
Li P, Jia Z, Wu Y, Chang P, Jalaid N, Guo L, Pan S, Wang S, Jiang L, Hu S, Liu L. Deepened snow promotes temporal stability of semi-arid grasslands via improving water acquisition-and-use strategies. Ecology 2025; 106:e70105. [PMID: 40390210 DOI: 10.1002/ecy.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/22/2025] [Accepted: 03/27/2025] [Indexed: 05/21/2025]
Abstract
Precipitation fluctuations strongly influence biomass production and its stability of terrestrial ecosystems. However, our understanding of the extent to which plant communities adjust their water-use strategies in response to non-growing season precipitation variations remains limited. Our 5-year snow manipulation experiment in a semi-arid grassland, complemented with paired stable isotope measurements of δ18O and δ13C for all species within the community, demonstrated that the impact of snowmelt on plant physiological activities extended into the peak growing season. Deepened snow enhanced ecosystem water use efficiency (WUE), biomass production, and its temporal stability. We further examined whether the observed increase in biomass stability was associated with the functional diversity of plant water-use strategies. Plant cellulose Δ18Ocell analysis revealed that both community-weighted mean and functional dispersion of stomatal conductance were positively associated with biomass production and its stability. The δ13C results further indicated that even with increased stomatal conductance, grasses were able to maintain their high intrinsic WUE by increasing photosynthesis more than transpiration. This resulted in higher biomass and greater dominance of high-WUE functional groups under deepened snow. In addition, we also found that deepened snow increased root biomass, particularly in the 0- to 5-cm and 20- to 40-cm soil layers. This increase in root biomass enhanced the uptake of snowmelt from both surface and deep soil layers, further contributing to community stability. Overall, our study demonstrates that plant communities can optimize water acquisition and utilization, thereby enhancing the stability of biomass production through coordinated changes in plant physiology, species reordering, and root distribution under altered snow regimes.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhou Jia
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yuntao Wu
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Chang
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nairsag Jalaid
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lulu Guo
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shuijin Hu
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Lingli Liu
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ramírez-Barahona S, Cuervo-Robayo ÁP, Feeley KJ, Ortiz-Rodríguez AE, Vásquez-Aguilar AA, Ornelas JF, Rodríguez-Correa H. Upslope plant species shifts in Mesoamerican cloud forests driven by climate and land use change. Science 2025; 387:1058-1063. [PMID: 40048523 DOI: 10.1126/science.adn2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/08/2025] [Indexed: 04/23/2025]
Abstract
Global change drives biodiversity shifts worldwide, but these shifts are poorly understood in highly diverse tropical regions. In tropical mountains, plants are mostly expected to migrate upslope in response to warming. To assess this, we analyze shifts in elevation ranges of species in Mesoamerican cloud forests using three decades of species' occurrence records. Our findings reveal a mean upslope shift of 1.8 to 2.7 meters per year since 1979 driven by the upslope retreat of the less thermophilic montane species. These shifts are mostly accompanied by retreating lower and upper edges attributed to varying degrees of species' exposure to deforestation and climate change. Our results highlight the vulnerability of cloud forests under global change and the urgency to increase monitoring of species' responses.
Collapse
Affiliation(s)
- Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad de México, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad de México, Mexico
| | - Ángela P Cuervo-Robayo
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad de México, Mexico
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad de México, Mexico
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Andrés Ernesto Ortiz-Rodríguez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad de México, Mexico
| | - Antonio Acini Vásquez-Aguilar
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec No. 351, El Haya, Xalapa, Veracruz, Mexico
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec No. 351, El Haya, Xalapa, Veracruz, Mexico
| | - Hernando Rodríguez-Correa
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro 8701 Ex Hacienda de San José de la Huerta, Morelia, Michoacán, Mexico
| |
Collapse
|
4
|
Ru J, Wan S, Xia J, Niu S, Hui D, Song J, Feng J, Sun D, Wang H, Qiu X. Advanced precipitation peak offsets middle growing-season drought in impacting grassland C sink. THE NEW PHYTOLOGIST 2024; 244:1775-1787. [PMID: 39301581 DOI: 10.1111/nph.20144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Redistribution of precipitation across seasons is a widespread phenomenon affecting dryland ecosystems globally. However, the impacts of shifting seasonal precipitation patterns on carbon (C) cycling and sequestration in dryland ecosystems remain poorly understood. In this study, we conducted a 10-yr (2013-2022) field manipulative experiment that altered the timing of growing-season precipitation peaks in a semi-arid grassland. We found that the delayed precipitation peak suppressed plant growth and thus reduced gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity due to middle growing-season water stress. Surprisingly, shifting more precipitation to the early growing season can advance plant development, increase the dominance of drought-tolerant forbs, and thus compensate for the negative impacts of middle growing-season water stress on ecosystem C cycling, leading to a neutral change in grassland C sink. Our findings indicate that greater precipitation and plant development in spring could act as a crucial mechanism, maintaining plant growth and stabilizing ecosystem C sink. This underscores the urgent need to incorporate precipitation seasonality into Earth system models, which is crucial for improving projections of terrestrial C cycling and sequestration under future climate change scenarios.
Collapse
Affiliation(s)
- Jingyi Ru
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Shiqiang Wan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jian Song
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Jiayin Feng
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Dasheng Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Haidao Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Xueli Qiu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
5
|
Kopecký M, Hederová L, Macek M, Klinerová T, Wild J. Forest plant indicator values for moisture reflect atmospheric vapour pressure deficit rather than soil water content. THE NEW PHYTOLOGIST 2024; 244:1801-1811. [PMID: 39175085 DOI: 10.1111/nph.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.
Collapse
Affiliation(s)
- Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Lucia Hederová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Tereza Klinerová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Jan Wild
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
6
|
Mabe C, Molefe D, Gololo S. Investigating the Presence and Levels of Some Selected Chemical Parameters in Borehole Water of Ga-Matlala in Limpopo Province, South Africa: Determining the Potential Risks. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241297492. [PMID: 39610456 PMCID: PMC11603471 DOI: 10.1177/11786302241297492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
The safety of borehole water is highly questionable, yet most people in the African continent still depend on borehole water as the primary source for everyday use. To investigate the potential health risk of borehole water on the community, this study analyzed the presence and levels of various chemical parameters in borehole water of Ga-Matlala area in Limpopo province, South Africa. Twenty-four water samples were collected from selected eight villages of ga-Matlala during both the dry and rainy seasons. Techniques such as UV/vis spectrophotometric method, EDTA titrimetric method, Cl- argentometric method and FAAS were used to determine fluoride, nitrate, hardness, calcium, chloride ion and magnesium. In the rainy season, hardness ranged from 146.10 to 1136.49 mg/L, calcium ranged between 252.54 to 448.2 mg/L. In the dry season, hardness ranged between 157.69 to 1003.80 mg/L, calcium concentration ranged between 183.43 and 385.37 mg/L. The recommended limits set by regulatory authorities were exceeded in both seasons. Fewer samples recorded chloride concentration ⩾ 100 mg/L in both seasons. Magnesium concentrations were between 0.72 and 1.35 mg/L in both seasons. Fluoride concentration exceeded the maximum permissible level by regulatory bodies in most samples. In the rainy season, the lowest concentration was 1.94 mg/L, and a maximum was 3.22 mg/L. The nitrate concentration in both seasons was around 0.3 mg/L. Magnesium concentrations were within the acceptable levels. The elevated levels of chemicals in borehole may lead to dental fluorosis, risk of kidney stones and cancer in human beings. It is therefore recommended that risk awareness action should be undertaken, and treatment interventions should be considered.
Collapse
Affiliation(s)
- C.J. Mabe
- Department of Chemistry and Chemical Technology, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - D.M. Molefe
- Department of Chemistry and Chemical Technology, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - S.S. Gololo
- Department of Biochemistry and Biotechnology, School of Science and Technology, Sefako Makgatho Health Sciences University, South Africa
| |
Collapse
|
7
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
8
|
Moss WE, Crausbay SD, Rangwala I, Wason JW, Trauernicht C, Stevens-Rumann CS, Sala A, Rottler CM, Pederson GT, Miller BW, Magness DR, Littell JS, Frelich LE, Frazier AG, Davis KT, Coop JD, Cartwright JM, Booth RK. Drought as an emergent driver of ecological transformation in the twenty-first century. Bioscience 2024; 74:524-538. [PMID: 39872081 PMCID: PMC11770345 DOI: 10.1093/biosci/biae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/02/2024] [Indexed: 01/29/2025] Open
Abstract
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly or through drought's interactions with factors such as land management, biotic interactions, and other disturbances. We emphasize how interactions among mechanisms can inhibit postdrought recovery and can shift trajectories toward alternate states. Providing a holistic picture of how drought initiates long-term change supports the development of risk assessments, predictive models, and management strategies, enhancing preparedness for a complex and growing challenge.
Collapse
Affiliation(s)
- Wynne E Moss
- Conservation Science Partners, Truckee, California, United States
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Truckee, California, United States
- USDA Forest Service, Fort Collins, Colorado, United States
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center and with the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States
| | - Jay W Wason
- School of Forest Resources at the University of Maine, Orono, Maine, United States
| | - Clay Trauernicht
- Department of Natural Resources and Environmental Management at the University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute in the Forest and Rangeland Stewardship Department at Colorado State University in Fort Collins, Colorado, United States
| | - Anna Sala
- Division of Biological Sciences at the University of Montana, Missoula, Montana, United States
| | - Caitlin M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma, United States
| | - Gregory T Pederson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Brian W Miller
- U.S. Geological Survey, North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Dawn R Magness
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - Jeremy S Littell
- U.S. Geological Survey, Alaska Climate Adaptation Science Center, Anchorage, Alaska, United States
| | - Lee E Frelich
- Department of Forest Resources at the University of Minnesota, Saint Paul, Minnesota, United States
| | - Abby G Frazier
- Graduate School of Geography at Clark University, Worcester, Massachusetts, United States
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences at the University of Montana, Missoula, Montana, United States
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station of the USDA Forest Service, Missoula, Montana, United States
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, United States
| | - Jennifer M Cartwright
- U.S. Geological Survey, Southeast Climate Adaptation Science Center, Raleigh, North Carolina, United States
| | - Robert K Booth
- Earth and Environmental Science Department at Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
9
|
Korell L, Andrzejak M, Berger S, Durka W, Haider S, Hensen I, Herion Y, Höfner J, Kindermann L, Klotz S, Knight TM, Linstädter A, Madaj AM, Merbach I, Michalski S, Plos C, Roscher C, Schädler M, Welk E, Auge H. Land use modulates resistance of grasslands against future climate and inter-annual climate variability in a large field experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17418. [PMID: 39036882 DOI: 10.1111/gcb.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany. On large experimental plots, temperature and seasonal patterns of precipitation are manipulated by superimposing regional climate model projections onto background climate variability. Climate manipulation is factorially crossed with agricultural land-use scenarios, including intensively used meadows and extensively used (i.e., low-intensity) meadows and pastures. Inter-annual variation of background climate during our study years was high, including three of the driest years on record for our region. The effects of this temporal variability far exceeded the effects of the experimentally imposed climate change on plant species diversity and productivity, especially in the intensively used grasslands sown with only a few grass cultivars. These changes in productivity and diversity in response to alterations in climate were due to immigrant species replacing the target forage cultivars. This shift from forage cultivars to immigrant species may impose additional economic costs in terms of a decreasing forage value and the need for more frequent management measures. In contrast, the extensively used grasslands showed weaker responses to both experimentally manipulated future climate and inter-annual climate variability, suggesting that these diverse grasslands are more resistant to climate change than intensively used, species-poor grasslands. We therefore conclude that a lower management intensity of agricultural grasslands, associated with a higher plant diversity, can stabilize primary productivity under climate change.
Collapse
Affiliation(s)
- Lotte Korell
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Martin Andrzejak
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sigrid Berger
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Isabell Hensen
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yva Herion
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Johannes Höfner
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Liana Kindermann
- Department of Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Stefan Klotz
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tiffany M Knight
- Department of Species Interaction Ecology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anja Linstädter
- Department of Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Stefan Michalski
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Schädler
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
| | - Erik Welk
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Harald Auge
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Rizzo Pesci N, Teobaldi E, Maina G, Rosso G. Climate Change and Psychiatry: The Correlation between the Mean Monthly Temperature and Admissions to an Acute Inpatient Unit. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:826. [PMID: 39063403 PMCID: PMC11276805 DOI: 10.3390/ijerph21070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Psychiatric disorders are large contributors to the global disease burden, but research on the impact of climate change on them is limited. Our aim is to investigate the correlation between temperature and exacerbations of psychiatric disorders to help inform clinical management and future public health policies. METHODS Temperature records for the summer months from 2013 to 2022 were obtained from the meteorological station of the Department of Physics of Turin University. Data on patients admitted to the acute psychiatric unit were extracted from registries of San Luigi Gonzaga University Hospital (Turin, Italy). Regression analyses were used to investigate the correlation between temperature and number of admissions and to test for confounding variables. RESULTS A total of 1600 admissions were recorded. The monthly temperature and number of admissions were directly correlated (p = 0.0020). The correlation was significant for the subgroup of admissions due to Bipolar Disorders (p = 0.0011), but not for schizophrenia or major depressive disorder. After multiple regression analyses, the effect of temperature remained significant (p = 0.0406). CONCLUSIONS These results confirm the impact of meteorological factors on mental disorders, particularly on BD. This can contribute to personalised follow-up and efficient resource allocation and poses grounds for studies into etiopathological mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Nicola Rizzo Pesci
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (N.R.P.); (E.T.); (G.M.)
| | - Elena Teobaldi
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (N.R.P.); (E.T.); (G.M.)
- Psychiatric Unit, San Luigi Gonzaga University Hospital, 10043 Turin, Italy
| | - Giuseppe Maina
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (N.R.P.); (E.T.); (G.M.)
- Psychiatric Unit, San Luigi Gonzaga University Hospital, 10043 Turin, Italy
| | - Gianluca Rosso
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (N.R.P.); (E.T.); (G.M.)
- Psychiatric Unit, San Luigi Gonzaga University Hospital, 10043 Turin, Italy
| |
Collapse
|
11
|
Ma W, Hu J, Zhang B, Guo J, Zhang X, Wang Z. Later-melting rather than thickening of snowpack enhance the productivity and alter the community composition of temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171440. [PMID: 38442763 DOI: 10.1016/j.scitotenv.2024.171440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Snowpack is closely related to vegetation green-up in water-limited ecosystems, and has effects on growing-season ecosystem processes. However, we know little about how changes in snowpack depth and melting timing affect primary productivity and plant community structure during the growing season. Here, we conducted a four-year snow manipulation experiment exploring how snow addition, snowmelt delay and their combination affect aboveground net primary productivity (ANPP), species diversity, community composition and plant reproductive phenology in seasonally snow-covered temperate grassland in northern China. Snow addition alone increased soil moisture and nutrient availability during early spring, while did not change plant community structure and ANPP. Instead, snowmelt delay alone postponed plant reproductive phenology, and increased ANPP, decreased species diversity and altered species composition. Grasses are more sensitive to changes in snowmelt timing than forbs, and early-flowering forbs showed a higher sensitivity compared to late-flowering forbs. The effect of snowmelt delay on ANPP and species diversity was offset by snow addition, probably because the added snow unnecessarily lengthens the snow-covering duration. The disparate effects of changes in snowpack depth and snowmelt timing necessitate their discrimination for more mechanistic understanding on the effects of snowpack changes on ecosystems. Our study suggests that it is essential to incorporate non-growing-season climate change events (in particular, snowfall and snowpack changes) to comprehensively disclose the effects of climate change on community structure and ecosystem functions.
Collapse
Affiliation(s)
- Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jiaxin Hu
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bingchuan Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jia Guo
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
12
|
Pathirana R, Carimi F. Plant Biotechnology-An Indispensable Tool for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:1133. [PMID: 38674542 PMCID: PMC11054891 DOI: 10.3390/plants13081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Traditional plant breeding has helped to increase food production dramatically over the past five decades, and many countries have managed to produce enough food for the growing population, particularly in the developing world [...].
Collapse
Affiliation(s)
- Ranjith Pathirana
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Urrbra, SA 5064, Australia
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Ricerche, Via Ugo la Malfa, 153, 90146 Palermo, Italy;
| |
Collapse
|
13
|
North MG, Kovaleski AP. Time to budbreak is not enough: cold hardiness evaluation is necessary in dormancy and spring phenology studies. ANNALS OF BOTANY 2024; 133:217-224. [PMID: 37971306 PMCID: PMC11005757 DOI: 10.1093/aob/mcad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Dormancy of buds is an important phase in the life cycle of perennial plants growing in environments where unsuitable growth conditions occur seasonally. In regions where low temperature defines these unsuitable conditions, the attainment of cold hardiness is also required for survival. The end of the dormant period culminates in budbreak and flower emergence, or spring phenology, one of the most appreciated and studied phenological events - a time also understood to be most sensitive to low-temperature damage. Despite this, we have a limited physiological and molecular understanding of dormancy, which has negatively affected our ability to model budbreak. This is also true for cold hardiness. SCOPE Here we highlight the importance of including cold hardiness in dormancy studies that typically only characterize time to budbreak. We show how different temperature treatments may lead to increases in cold hardiness, and by doing so also (potentially inadvertently) increase time to budbreak. CONCLUSIONS We present a theory that describes evaluation of cold hardiness as being key to clarifying physiological changes throughout the dormant period, delineating dormancy statuses, and improving both chill and phenology models. Erroneous interpretations of budbreak datasets are possible by not phenotyping cold hardiness. Changes in cold hardiness were very probably present in previous experiments that studied dormancy, especially when those included below-freezing temperature treatments. Separating the effects between chilling accumulation and cold acclimation in future studies will be essential for increasing our understanding of dormancy and spring phenology in plants.
Collapse
Affiliation(s)
- Michael G North
- Department of Plant and Agroecosystem Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Al P Kovaleski
- Department of Plant and Agroecosystem Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Wigley BJ, Coetsee C, February EC, Dobelmann S, Higgins SI. Will trees or grasses profit from changing rainfall regimes in savannas? THE NEW PHYTOLOGIST 2024; 241:2379-2394. [PMID: 38245858 DOI: 10.1111/nph.19538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Increasing rainfall variability is widely expected under future climate change scenarios. How will savanna trees and grasses be affected by growing season dry spells and altered seasonality and how tightly coupled are tree-grass phenologies with rainfall? We measured tree and grass responses to growing season dry spells and dry season rainfall. We also tested whether the phenologies of 17 deciduous woody species and the Soil Adjusted Vegetation Index of grasses were related to rainfall between 2019 and 2023. Tree and grass growth was significantly reduced during growing season dry spells. Tree growth was strongly related to growing season soil water potentials and limited to the wet season. Grasses can rapidly recover after growing season dry spells and grass evapotranspiration was significantly related to soil water potentials in both the wet and dry seasons. Tree leaf flushing commenced before the rainfall onset date with little subsequent leaf flushing. Grasses grew when moisture became available regardless of season. Our findings suggest that increased dry spell length and frequency in the growing season may slow down tree growth in some savannas, which together with longer growing seasons may allow grasses an advantage over C3 plants that are advantaged by rising CO2 levels.
Collapse
Affiliation(s)
- Benjamin J Wigley
- Plant Ecology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
- School of Natural Resource Management, Nelson Mandela University, George Campus, George, 6530, South Africa
- Savanna Node, Scientific Services, SANParks, Skukuza, 1350, South Africa
| | - Corli Coetsee
- School of Natural Resource Management, Nelson Mandela University, George Campus, George, 6530, South Africa
- Savanna Node, Scientific Services, SANParks, Skukuza, 1350, South Africa
| | - Edmund C February
- Department of Biological Sciences, University of Cape Town, HW Pearson Building, University Ave N, Rondebosch, Cape Town, 7701, South Africa
| | - Svenja Dobelmann
- Department of Remote Sensing, Institute of Geography, Julius-Maximilians-Universitaet Wuerzburg, 97074, Wuerzburg, Germany
| | - Steven I Higgins
- Plant Ecology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
15
|
Hajek OL, Knapp AK. Signatures of autumn deluges revealed during spring drought in a semi-arid grassland. Oecologia 2024; 204:83-93. [PMID: 38108892 DOI: 10.1007/s00442-023-05488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Increases in extremely large precipitation events (deluges) and shifts in seasonal patterns of water availability with climate change will both have important consequences for ecosystem function, particularly in water-limited regions. While previous work in the semi-arid shortgrass steppe of northeastern Colorado has demonstrated this ecosystem's strong sensitivity to growing season deluges, our understanding of ecosystem responses to deluges during the dormant season is limited. Here, we imposed experimental 100 mm deluges (~ 30% of mean annual precipitation) in either September or October in a native C4-dominated shortgrass steppe ecosystem to evaluate the impact of this post-growing season shift in water availability during the autumn and the following growing season. Soil moisture for both deluge treatments remained elevated compared with ambient levels through April as spring precipitation was atypically low. Despite overall low levels of productivity with spring drought, these deluges from the previous autumn increased aboveground net primary production (ANPP), primarily due to increases with C4 grasses. C3 ANPP was also enhanced, largely due to an increase in the annual C3 grass, Vulpia octoflora, in the October deluge treatment. While spring precipitation has historically been the primary determinant of ecosystem function in this ecosystem, this combination of two climate extremes-an extremely wet autumn followed by a naturally-occurring spring drought-revealed the potential for meaningful carryover effects from autumn precipitation. With climate change increasing the likelihood of extremes during all seasons, experiments which create novel climatic conditions can provide new insight into the dynamics of ecosystem functioning in the future.
Collapse
Affiliation(s)
- Olivia L Hajek
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Schemmer A, Wolfram J, Roodt AP, Bub S, Petschick LL, Herrmann LZ, Stehle S, Schulz R. Pesticide Mixtures in Surface Waters of Two Protected Areas in Southwestern Germany. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:10. [PMID: 38085362 PMCID: PMC10716062 DOI: 10.1007/s00128-023-03830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Pesticides enter non-target surface waters as a result of agricultural activities and may reach water bodies in protected areas. We measured in southwestern Germany pesticide concentrations after heavy rainfalls in streams of a drinking water protection area near Hausen (Freiburg) and in the catchment of the Queich (Landau), which originates from the biosphere reserve Palatinate Forest. On average, 32 (n = 21) and 21 (n = 10) pesticides were detected per sample and event in the area of Hausen (n = 56) and in the Queich catchment (n = 17), respectively. The majority of pesticides detected in > 50% of all samples were fungicides, with fluopyram being detected throughout all samples. Aquatic invertebrates exhibited highest risks with 16.1% of samples exceeding mixture toxicity thresholds, whereas risks were lower for aquatic plants (12.9%) and fish (6.5%). Mixture toxicity threshold exceedances indicate adverse ecological effects to occur at half of sites (50%). This study illustrates the presence of pesticide mixtures and highlights ecological risks for aquatic organisms in surface waters of protected areas in Germany.
Collapse
Affiliation(s)
- Anna Schemmer
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Jakob Wolfram
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Alexis P Roodt
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Sascha Bub
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Lara L Petschick
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Larissa Z Herrmann
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Sebastian Stehle
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, iES Landau, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Fortstrasse 7, D-76829, Landau, Germany.
- Eusserthal Ecosystem Research Station, Rhineland-Palatinate Technical University Kaiserslautern- Landau, Birkenthalstrasse 13, D-76857, Eusserthal, Germany.
| |
Collapse
|
17
|
Mehal KK, Sharma A, Kaur A, Kalia N, Kohli RK, Singh HP, Batish DR. Modelling the ecological impact of invasive weed Verbesina encelioides on vegetation composition across dryland ecosystems of Punjab, northwestern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:725. [PMID: 37227526 DOI: 10.1007/s10661-023-11299-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Events of climate change have led to increased aridification, which alters local vegetation patterns and results in the invasion of opportunistic species. Though many studies assess the impact of invasive weeds and aridification at the agronomic level, studies investigating changes in local vegetation are severely lacking. We investigated the impact of the invasive plant Verbesina encelioides (Asteraceae) on the local vegetation composition across different dryland ecosystems in Punjab, northwestern India. Based on the aridity index for the period of 1991-2016, three major dryland ecosystems, i.e., arid, semi-arid, and sub-humid, were found in Punjab. The impact of V. encelioides on local biodiversity was measured in terms of species diversity (using Shannon's diversity index, Simpson's dominance index, Hill's evenness index, and Margalef's richness index), species composition (using non-metric multidimensional scaling based on Bray-Curtis's dissimilarity index), and species proportion in the two invasion classes (uninvaded and invaded) and across the three aridity zones (arid, semi-arid, and sub-humid). The vegetation survey depicted the presence of 53 flowering species belonging to 22 families, including 30 exotics and 23 natives. Verbesina encelioides decreased species diversity and proportion, with a more pronounced impact in arid and semi-arid ecosystems. In contrast, species composition varied between uninvaded and invaded classes only in arid ecosystems. Ecological parameters derived from population statistics (number of individuals) were more drastically affected than those from species abundance data. Since the ecological impacts of V. encelioides were manifested with increased aridification, it is a matter of apprehension under the potential climate change scenario.
Collapse
Affiliation(s)
| | - Aditi Sharma
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Neha Kalia
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Ravinder Kumar Kohli
- Amity University, International Airport Road, Sector 82A, Mohali, Punjab, 140306, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
18
|
Felton AJ, Goldsmith GR. Timing and magnitude of drought impacts on carbon uptake across a grassland biome. GLOBAL CHANGE BIOLOGY 2023; 29:2790-2803. [PMID: 36792968 DOI: 10.1111/gcb.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Although drought is known to negatively impact grassland functioning, the timing and magnitude of these impacts within a growing season remain unresolved. Previous small-scale assessments indicate grasslands may only respond to drought during narrow periods within a year; however, large-scale assessments are now needed to uncover the general patterns and determinants of this timing. We combined remote sensing datasets of gross primary productivity and weather to assess the timing and magnitude of grassland responses to drought at 5 km2 temporal resolution across two expansive ecoregions of the western US Great Plains biome: the C4 -dominated shortgrass steppe and the C3 -dominated northern mixed prairies. Across over 700,000 pixel-year combinations covering more than 600,000 km2 , we studied how the driest years between 2003-2020 altered the daily and bi-weekly dynamics of grassland carbon (C) uptake. Reductions to C uptake intensified into the early summer during drought and peaked in mid- and late June in both ecoregions. Stimulation of spring C uptake during drought was small and insufficient to compensate for losses during summer. Thus, total grassland C uptake was consistently reduced by drought across both ecoregions; however, reductions were twice as large across the more southern and warmer shortgrass steppe. Across the biome, increased summer vapor pressure deficit (VPD) was strongly linked to peak reductions in vegetation greenness during drought. Rising VPD will likely exacerbate reductions in C uptake during drought across the western US Great Plains, with these reductions greatest during the warmest months and in the warmest locations. High spatiotemporal resolution analyses of grassland response to drought over large areas provide both generalizable insights and new opportunities for basic and applied ecosystem science in these water-limited ecoregions amid climate change.
Collapse
Affiliation(s)
- Andrew J Felton
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
19
|
Zhang Z, Zhang Z, Hautier Y, Qing H, Yang J, Bao T, Hajek OL, Knapp AK. Effects of intra-annual precipitation patterns on grassland productivity moderated by the dominant species phenology. FRONTIERS IN PLANT SCIENCE 2023; 14:1142786. [PMID: 37113592 PMCID: PMC10126275 DOI: 10.3389/fpls.2023.1142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Phenology and productivity are important functional indicators of grassland ecosystems. However, our understanding of how intra-annual precipitation patterns affect plant phenology and productivity in grasslands is still limited. Here, we conducted a two-year precipitation manipulation experiment to explore the responses of plant phenology and productivity to intra-annual precipitation patterns at the community and dominant species levels in a temperate grassland. We found that increased early growing season precipitation enhanced the above-ground biomass of the dominant rhizome grass, Leymus chinensis, by advancing its flowering date, while increased late growing season precipitation increased the above-ground biomass of the dominant bunchgrass, Stipa grandis, by delaying senescence. The complementary effects in phenology and biomass of the dominant species, L. chinensis and S. grandis, maintained stable dynamics of the community above-ground biomass under intra-annual precipitation pattern variations. Our results highlight the critical role that intra-annual precipitation and soil moisture patterns play in the phenology of temperate grasslands. By understanding the response of phenology to intra-annual precipitation patterns, we can more accurately predict the productivity of temperate grasslands under future climate change.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihao Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Olivia L. Hajek
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Alan K. Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
20
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
21
|
Kaspari M, Welti EAR. Electrolytes on the prairie: How urine-like additions of Na and K shape the dynamics of a grassland food web. Ecology 2023; 104:e3856. [PMID: 36053835 DOI: 10.1002/ecy.3856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants-where K is the primary electrolyte-than in animals-where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above-ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15-element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K-via large mammal grazers or coastal aerosol deposition-likely enhance the ability of plants to adjust their above-ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
22
|
Kovaleski AP. Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Proc Natl Acad Sci U S A 2022; 119:e2112250119. [PMID: 35500120 PMCID: PMC9171508 DOI: 10.1073/pnas.2112250119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Budbreak is one of the most observed and studied phenological phases in perennial plants, but predictions remain a challenge, largely due to our poor understanding of dormancy. Two dimensions of exposure to temperature are generally used to model budbreak: accumulation of time spent at low temperatures (chilling) and accumulation of heat units (forcing). These two effects have a well-established negative correlation; with more chilling, less forcing is required for budbreak. Furthermore, temperate plant species are assumed to vary in chilling requirements for dormancy completion allowing proper budbreak. Here, dormancy is investigated from the cold hardiness standpoint across many species, demonstrating that it should be accounted for to study dormancy and accurately predict budbreak. Most cold hardiness is lost prior to budbreak, but rates of cold hardiness loss (deacclimation) vary among species, leading to different times to budbreak. Within a species, deacclimation rate increases with accumulation of chill. When inherent differences between species in deacclimation rate are accounted for by normalizing rates throughout winter by the maximum rate observed, a standardized deacclimation potential is produced. Deacclimation potential is a quantitative measurement of dormancy progression based on responsiveness to forcing as chill accumulates, which increases similarly for all species, contradicting estimations of dormancy transition based on budbreak assays. This finding indicates that comparisons of physiologic and genetic control of dormancy require an understanding of cold hardiness dynamics. Thus, an updated framework for studying dormancy and its effects on spring phenology is suggested where cold hardiness in lieu of (or in addition to) budbreak is used.
Collapse
Affiliation(s)
- Al P. Kovaleski
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706
- Arnold Arboretum of Harvard University, Boston, MA 02131
| |
Collapse
|
23
|
Abstract
Globally, the climate is changing, and this has implications for livestock. Climate affects livestock growth rates, milk and egg production, reproductive performance, morbidity, and mortality, along with feed supply. Simultaneously, livestock is a climate change driver, generating 14.5% of total anthropogenic Greenhouse Gas (GHG) emissions. Herein, we review the literature addressing climate change and livestock, covering impacts, emissions, adaptation possibilities, and mitigation strategies. While the existing literature principally focuses on ruminants, we extended the scope to include non-ruminants. We found that livestock are affected by climate change and do enhance climate change through emissions but that there are adaptation and mitigation actions that can limit the effects of climate change. We also suggest some research directions and especially find the need for work in developing country settings. In the context of climate change, adaptation measures are pivotal to sustaining the growing demand for livestock products, but often their relevance depends on local conditions. Furthermore, mitigation is key to limiting the future extent of climate change and there are a number of possible strategies.
Collapse
|
24
|
March‐Salas M, van Kleunen M, Fitze PS. Effects of intrinsic precipitation‐predictability on root traits, allocation strategies and the selective regimes acting on them. OIKOS 2021. [DOI: 10.1111/oik.07970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Martí March‐Salas
- Goethe Univ. Frankfurt, Plant Evolutionary Ecology, Inst. of Ecology, Evolution and Diversity Frankfurt am Main Germany
- Dept of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Dept of Biodiversity and Ecologic Restoration, Inst. Pirenaico de Ecología (IPE‐CSIC) Jaca Spain
| | - Mark van Kleunen
- Ecology, Dept of Biology, Univ. of Konstanz Konstanz Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Patrick S. Fitze
- Dept of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Dept of Biodiversity and Ecologic Restoration, Inst. Pirenaico de Ecología (IPE‐CSIC) Jaca Spain
| |
Collapse
|