1
|
Zhylkibayev A, Mobley J, Athar M, Gorbatyuk M. A multiomic study of retinal tissues in mice with direct ocular exposure to vesicants. Exp Eye Res 2025; 257:110414. [PMID: 40379201 DOI: 10.1016/j.exer.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
This study employed a multiomic approach to investigate retinal tissue damage following direct ocular exposure (DOE) to vesicants (VSs)-namely, nitrogen mustard (NM) and lewisite (Lew). We explored both the acute and chronic stages of retinal injury by assessing functional, structural, and molecular changes. C57BL/6 mice were used to measure scotopic and photopic electroretinograms (ERGs) and to analyze TUNEL-positive retinal cells. Global retinal proteomics was conducted to identify common and unique signaling pathways. In addition, we performed targeted metabolomic and lipidomic analyses of retinal tissue to uncover significant metabolic changes. Our results demonstrated remarkable declines in ERG amplitudes at 2 and 4 weeks post-exposure, accompanied by an increase in TUNEL+ retinal cells in response to DOE to both VSs. Our proteomic analysis revealed chronic oxidative stress, mitochondrial dysfunction, elevated RXR signaling, and increased levels of 28 proteins. Moreover, we observed a decline in the KEGG phototransduction pathways, along with the downregulation of photoreceptor-specific proteins, in response to both VSs. Consistent with the proteomic findings, targeted metabolomics identified a decline in phototransduction and steroid hormone biosynthesis, along with increases in D-amino acid and purine metabolism, as well as lysine degradation. These changes were associated with a GSSG/GSH ratio of 2.6, confirming the proteomic data on oxidative stress. Furthermore, lipidomic analysis revealed an increase in oxidative lipid levels, accompanied by a 3.4-fold increase in phosphatidylserine (PS), suggesting apoptotic cell death and a reduction in fatty acids (FAs). In conclusion, exposure to both VSs induced progressive retinal damage, altering major metabolic pathways and dysregulating lipid metabolism. Future studies should focus on identifying the responses of individual neuronal cell types to DOE to VSs to develop cell-specific countermeasures.
Collapse
Affiliation(s)
- Assylbek Zhylkibayev
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, NC, USA.
| | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, USA.
| | - Mohammad Athar
- University of Alabama at Birmingham, School of Medicine, Department of Dermatology, Birmingham, AL, USA.
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, USA.
| |
Collapse
|
2
|
Srivastava RK, Traylor AM, Muzaffar S, Esman SK, Soliman RH, Khan J, Warren P, Bolisetty S, George JF, Agarwal A, Athar M. Chronic kidney disease amplifies severe kidney injury and mortality in a mouse model of skin arsenical exposure. Am J Physiol Renal Physiol 2025; 328:F328-F343. [PMID: 39417795 DOI: 10.1152/ajprenal.00139.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
In previously published work, we elucidated the role of cutaneous arsenical exposure in promoting acute kidney injury (AKI) in adult healthy mice. Here, we determine whether preexisting chronic kidney disease (CKD) increases the severity of AKI. Following exposure to aristolochic acid (AA) (a nephrotoxic phytochemical in humans), mice manifested classical markers of CKD, including robust interstitial fibrosis and loss in kidney function. Skin challenge with phenylarsine oxide (PAO), a surrogate for warfare arsenicals, led to significantly worse kidney injury, as evidenced by tubulointerstitial fibrosis, glomerulosclerosis, a persistent loss of estimated glomerular filtration rate, and mortality in AA-induced CKD mice compared with mice without CKD. These PAO-challenged CKD mice exhibited enhanced production of serum/urine neutrophil gelatinase-associated lipocalin and a significant rise in serum creatinine along with histological markers of kidney injury, including brush border loss, tubular atrophy, cast formation, glomerular injury, and interstitial inflammatory cell infiltration. Serum cytokines IL-4, IL-6, IFN-γ, IL-12p70, TNF-α, and IL-18 significantly elevated in CKD mice following PAO exposure when compared with animals exposed to PAO alone. Furthermore, we found increased TUNEL-positive tubular cells in the kidneys of CKD mice following PAO exposure, suggesting enhanced PAO-mediated cell death in CKD mice. Mechanistically, we determined that DNA damage-regulated p53 signaling was a major mediator of cellular responses to PAO in CKD mice. In summary, our data demonstrate that CKD significantly increased the severity of AKI following exposure to arsenicals and suggest that human populations with preexisting CKD could be highly susceptible to arsenical-mediated kidney injury and associated morbidity and mortality.NEW & NOTEWORTHY Preexisting chronic kidney disease (CKD) predisposes experimental animals to augmented morbidity and mortality following cutaneous vesicant exposure. The mechanism underlying increased susceptibility to renal injury and associated morbidity involves the DNA damage-regulated p53 signaling pathway.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie Mark Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Suhail Muzaffar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jasim Khan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Phoebe Warren
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Srivastava RK, Muzaffar S, Khan J, Bansal M, Agarwal A, Athar M. Common molecular profile of multiple structurally distinct warfare arsenicals in causing cutaneous chemical vesicant injury. Sci Rep 2025; 15:6505. [PMID: 39987158 PMCID: PMC11846883 DOI: 10.1038/s41598-024-83513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/14/2024] [Indexed: 02/24/2025] Open
Abstract
Skin exposure to arsenicals such as lewisite and phenylarsine oxide leads to severe cutaneous damage. Here, we characterized the molecular pathogenesis of skin injury caused by additionally structurally distinct warfare arsenicals including diphenylchlorarsine (DPCA), diphenylcyanoarsine (DPCYA), diethylchloroarsine (DECA). Cutaneous exposure to DPCA/DPCYA showed marked increase in skin erythema and edema at 6 and 24 h followed by scar formation at 72 h, while DECA did not produce such visual injuries in mouse skin. Clinical observations showed significant increase in Draize score and skin bi-fold thickness in a time-dependent manner. DPCA or DPCYA-exposed skin histology revealed highly inflamed hypodermal areas with infiltrated immune cells at 6 and 24 h, however, epidermal cell necrosis was seen at 72 h. Significantly high number of macrophage infiltration observed at 6 h, whereas peak neutrophil infiltration occurred at 72 h. Number of micro-blisters also increased. However, these effects were nonsignificant following topical DECA exposure. RT-PCR confirmed augmented inflammatory responses in the skin challenged with both DPCA/DPCYA, which accompanied increased ROS and unfolded protein response (UPR) signaling. DECA also increased ROS with changes in UPR. Disrupted tight (Yap/ZO-1) and adherens (Yap/α-Catenin) junction proteins underlie time-dependent apoptotic cell death of epidermal keratinocytes. Thus, these studies identify arsenicals-manifested signaling pathways similar to those of lewisite.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Mohit Bansal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
4
|
Thyagarajan A, Travers JB, Sahu RP. Relevance of the Platelet-activating factor system in chemical warfare agents-induced effects. Free Radic Biol Med 2025; 228:62-67. [PMID: 39706499 PMCID: PMC11788046 DOI: 10.1016/j.freeradbiomed.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The threats to chemical warfare-associated agents (CWA), including nitrogen mustard, are increasing, and no direct antidote is currently available to mitigate the deleterious cutaneous and systemic responses to prevent mortality. Though most of these agents act as alkylating agents, a significant knowledge gap exists in the molecular mechanisms of how these vesicants cause toxic effects. Studies, including ours, have shown that exposure to reactive oxygen species (ROS)-generating stimuli, including alkylating chemotherapeutic agents, and thermal burn injuries with ethanol produce the potent family of lipid mediators, Platelet-activating factor (PAF) agonists that induce local inflammation, and multi-system organ dysfunction (MOD). Notably, nano-sized microvesicle particles (MVPs), released from cells in response to stimuli, carry PAF-agonists and act as potent signaling agents to induce the local (cutaneous) and systemic responses. The current review highlights mechanistic insights and applicable approaches to mitigate CWA-induced local and systemic toxic responses with implications in cellular senescence and aging.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Dermatology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, 45428, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Dhummakupt ES, Jenkins CC, Rizzo GM, Clay AE, Horsmon JR, Goralski TDP, Renner JA, Angelini DJ. Multiomic analysis of Lewisite exposed human dermal equivalent tissues. Chem Biol Interact 2025; 405:111295. [PMID: 39486569 DOI: 10.1016/j.cbi.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Lewisite (Military Code: L) is an arsenical vesicant chemical warfare agent (CWA) that was developed in the United States during World War I. Even though its use has not been documented in warfare, large stockpiles were created and still exist in various locations around the world. Given that large quantities exist as well as the relative straightforward process for its creation, Lewisite still presents itself as a serious threat agent. In this study, we examined the effects of Lewisite on human dermal equivalent tissues (EpiDerm™/EpiDerm™-FT) through the evaluation of cellular viability, histology, and multiomic analysis.
Collapse
Affiliation(s)
- Elizabeth S Dhummakupt
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| | - Conor C Jenkins
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Gabrielle M Rizzo
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Allison E Clay
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Jennifer R Horsmon
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tyler D P Goralski
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Julie A Renner
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Daniel J Angelini
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
6
|
Radmard A, Kumar Srivastava R, Shrestha N, Khan J, Muzaffar S, Athar M, Banga AK. Enhancing topical delivery of ISRIB: Optimizing cream formulations with chemical enhancers and pH adjustment. Int J Pharm 2024; 665:124661. [PMID: 39244069 PMCID: PMC11601214 DOI: 10.1016/j.ijpharm.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Chemical warfare agents, particularly vesicants like lewisite, pose a threat due to their ability to cause skin damage through accidental exposure or deliberate attacks. Lewisite rapidly penetrates the skin, causing inflammation and blistering. This study focuses on developing a cream formulation of a therapeutic agent, called integrated stress response inhibitor (ISRIB), to treat lewisite-induced injuries. Moreover, animal studies demonstrate a molecular target engagement (ISR) and significant efficacy of ISRIB against lewisite-induced cutaneous injury. The goal of this formulation is to enhance the delivery of ISRIB directly to affected skin areas using an oil-in-water cream emulsion system. We investigated various excipients, including oils, surfactants, emollients, and permeation enhancers, to optimize ISRIB's solubility and penetration through the skin. The result of this study indicated that the optimal formulation includes 30 % w/w of N-Methyl-2-pyrrolidone, dimethyl sulfoxide and Azone® at a pH of 5. 5. It delivered the highest amount of ISRIB into the skin, demonstrating highest skin absorption with no detectable systemic exposure. Additionally, characterization of the cream, including texture analysis, emulsion type, and content uniformity, confirmed its' suitability for topical application. These findings suggest that ISRIB cream formulation is a promising approach for the localized treatment of skin injuries caused by lewisite.
Collapse
Affiliation(s)
- Ariana Radmard
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nisha Shrestha
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
7
|
Ferreira LVF, Santos TMR, Tavares CA, Rasouli H, Ramalho TC. Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors. Molecules 2024; 29:3684. [PMID: 39125089 PMCID: PMC11314168 DOI: 10.3390/molecules29153684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.
Collapse
Affiliation(s)
- Leonardo V. F. Ferreira
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37200-000, MG, Brazil; (L.V.F.F.); (T.M.R.S.)
| | - Taináh M. R. Santos
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37200-000, MG, Brazil; (L.V.F.F.); (T.M.R.S.)
| | - Camila A. Tavares
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37200-000, MG, Brazil; (L.V.F.F.); (T.M.R.S.)
| | - Hassan Rasouli
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah 6714414971, Iran; (H.R.)
| | - Teodorico C. Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37200-000, MG, Brazil; (L.V.F.F.); (T.M.R.S.)
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Ji C, Zhu Y, Zhao S, Zhang Y, Nie Y, Zhang H, Zhang H, Wang S, Zhou J, Zhao H, Liu X. Arsenic species in soil profiles from chemical weapons (CWs) burial sites of China: Contamination characteristics, degradation process and migration mechanism. CHEMOSPHERE 2024; 349:140938. [PMID: 38101484 DOI: 10.1016/j.chemosphere.2023.140938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In this study, soil profiles and pore water from Japanese abandoned arsenic-containing chemical weapons (CWs) burial sites in Dunhua, China were analyzed to understand the distribution of arsenic (As) contamination, degradation, and migration processes. Results of As species analysis showed that the As-containing agents underwent degradation with an average rate of 87.55 ± 0.13%, producing inorganic pentavalent arsenic (As5+) and organic arsenic such as 2-chlorovinylarsonic acid (CVAOA), triphenylarsenic (TPA), and phenylarsine oxide (PAO). Organic arsenic pollutants accounted for 1.27-18.20% of soil As. In the vertical profiles, total As concentrations peaked at about 40-60 cm burial depth, and the surface agricultural soil exhibited moderate to heavy contamination level, whereas the contamination level was insignificant below 1 m, reflecting As migration was relatively limited throughout the soil profile. Sequential extraction showed Fe/Al-bound As was the predominant fraction, and poorly-crystalline Fe minerals adsorbed 33.23-73.13% of soil As. Oxygen-susceptible surface soil formed poorly-crystalline Fe3+ minerals, greatly reducing downward migration of arsenic. However, the reduction of oxidizing conditions below 2 m soil depth may promote As activity and require attention.
Collapse
Affiliation(s)
- Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| | - Hongjie Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Srivastava RK, Muzaffar S, Khan J, Crossman DK, Agarwal A, Athar M. HSP90, a Common Therapeutic Target for Suppressing Skin Injury Caused by Exposure to Chemically Diverse Classes of Blistering Agents. J Pharmacol Exp Ther 2024; 388:546-559. [PMID: 37914412 PMCID: PMC10801768 DOI: 10.1124/jpet.123.001795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Zafar I, Manzoor S, Mariappan N, Ahmad S, Athar M, Antony V, Ahmad A. A Murine Model of Vesicant-Induced Acute Lung Injury. J Pharmacol Exp Ther 2024; 388:568-575. [PMID: 38050084 PMCID: PMC10801773 DOI: 10.1124/jpet.123.001780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 12/06/2023] Open
Abstract
Burn injuries including those caused by chemicals can result in systemic effects and acute lung injury (ALI). Cutaneous exposure to Lewisite, a warfare and chemical burn agent, also causes ALI. To overcome the limitations in conducting direct research on Lewisite-induced ALI in a laboratory setting, an animal model was developed using phenylarsine oxide (PAO) as a surrogate for Lewisite. Due to lack of a reliable animal model mimicking the effects of such exposures, development of effective therapies to treat such injuries is challenging. We demonstrated that a single cutaneous exposure to PAO resulted in disruption of the alveolar-capillary barrier as evidenced by elevated protein levels in the bronchoalveolar lavage fluid (BALF). BALF supernatant of PAO-exposed animals had increased levels of high mobility group box 1, a damage associated molecular pattern molecule. Arterial blood-gas measurements showed decreased pH, increased PaCO2, and decreased partial pressure of arterial O2, indicative of respiratory acidosis, hypercapnia, and hypoxemia. Increased protein levels of interleukin (IL)-6, CXCL-1, CXCL-2, CXCL-5, granulocyte-macrophage colony-stimulating factor, CXCL-10, leukemia inhibitory factor, leptin, IL-18, CCL-2, CCL-3, and CCL-7 were observed in the lung of PAO-exposed mice. Further, vascular endothelial growth factor levels were reduced in the lung. Pulmonary function evaluated using a flexiVent showed a downward shift in the pressure-volume loop, decreases in static compliance and inspiratory capacity, increases in respiratory elastance and tissue elastance. These changes are consistent with an ALI phenotype. These results demonstrate that cutaneous PAO exposure leads to ALI and that the model can be used as an effective surrogate to investigate vesicant-induced ALI. SIGNIFICANCE STATEMENT: This study presents a robust model for studying ALI resulting from cutaneous exposure to PAO, a surrogate for the toxic vesicating agent Lewisite. The findings in this study mimic the effects of cutaneous Lewisite exposure, providing a reliable model for investigating mechanisms underlying toxicity. The model can also be used to develop medical countermeasures to mitigate ALI associated with cutaneous Lewisite exposure.
Collapse
Affiliation(s)
- Iram Zafar
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Shajer Manzoor
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Nithya Mariappan
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Shama Ahmad
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena Antony
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Aftab Ahmad
- Departments of Anesthesiology and Perioperative Medicine (I.Z., S.M., S.A., A.A.), Department of Dermatology (M.A.), and Department of Medicine (V.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Moore KH, Boitet LM, Chandrashekar DS, Traylor AM, Esman SK, Erman EN, Srivastava RK, Khan J, Athar M, Agarwal A, George JF. Cutaneous Arsenical Exposure Induces Distinct Metabolic Transcriptional Alterations of Kidney Cells. J Pharmacol Exp Ther 2024; 388:605-612. [PMID: 37699712 PMCID: PMC10801764 DOI: 10.1124/jpet.123.001742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Laurence M Boitet
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Darshan S Chandrashekar
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Elise N Erman
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Ritesh K Srivastava
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasim Khan
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - James F George
- Division of Nephrology, Department of Medicine (K.H.M., A.M.T., S.K.E., E.N.E., A.A.), Nephrology Research and Training Center (K.H.M., L.M.B., A.A., J.F.G.), Division of Cardiothoracic Surgery, Department of Surgery (K.H.M., E.N.E., J.F.G.), Molecular and Cellular Pathology, Department of Pathology (D.S.C.), Genomic Diagnostics and Bioinformatics, Department of Pathology (D.S.C.), and Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine (R.K.S., J.K., M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Kshirsagar S, Dandekar A, Srivastava RK, Khan J, Muzaffar S, Athar M, Banga AK. Microneedle-mediated transdermal delivery of N-acetyl cysteine as a potential antidote for lewisite injury. Int J Pharm 2023; 647:123547. [PMID: 37884214 PMCID: PMC10872459 DOI: 10.1016/j.ijpharm.2023.123547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Lewisite is a chemical warfare agent intended for use in World War and a potential threat to the civilian population due to presence in stockpiles or accidental exposure. Lewisite-mediated skin injury is characterized by acute erythema, pain, and blister formation. N-acetyl cysteine (NAC) is an FDA-approved drug for acetaminophen toxicity, identified as a potential antidote against lewisite. In the present study, we have explored the feasibility of rapid NAC delivery through transdermal route for potentially treating chemical warfare toxicity. NAC is a small, hydrophilic molecule with limited passive delivery through the skin. Using skin microporation with dissolving microneedles significantly enhanced the delivery of NAC into and across dermatomed human skin in our studies. Microporation followed by application of solution (poke-and-solution) resulted in the highest in vitro delivery (509.84 ± 155.04 µg/sq·cm) as compared to poke-and-gel approach (474.91 ± 70.09 µg/sq·cm) and drug-loaded microneedles (226.89 ± 33.41 µg/sq·cm). The lag time for NAC delivery through poke-and-solution approach (0.23 ± 0.04 h) was close to gel application (0.25 ± 0.02 h), with the highest for drug-loaded microneedles (1.27 ± 1.16 h). Thus, we successfully demonstrated the feasibility of rapid NAC delivery using various skin microporation approaches for potential treatment against lewisite-mediated skin toxicity.
Collapse
Affiliation(s)
- Sharvari Kshirsagar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Amruta Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Ritesh K Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Kandhari K, Kant R, Mishra N, Agarwal C, Agarwal R. Phenylarsine oxide induced corneal injury involves oxidative stress mediated unfolded protein response and ferroptotic cell death: Amelioration by NAC. Free Radic Biol Med 2023; 209:265-281. [PMID: 38088264 PMCID: PMC10719503 DOI: 10.1016/j.freeradbiomed.2023.10.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 μg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.
Collapse
Affiliation(s)
- Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Mishra N, Kant R, Goswami DG, Petrash JM, Agarwal C, Tewari-Singh N, Agarwal R. Metabolomics for identifying pathways involved in vesicating agent lewisite-induced corneal injury. Exp Eye Res 2023; 236:109672. [PMID: 37797797 PMCID: PMC10843384 DOI: 10.1016/j.exer.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-β-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Wilczynski W, Brzeziński T, Maszczyk P, Ludew A, Czub MJ, Dziedzic D, Nawala J, Popiel S, Beldowski J, Sanderson H, Radlinska M. Acute toxicity of organoarsenic chemical warfare agents to Danio rerio embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115116. [PMID: 37315364 DOI: 10.1016/j.ecoenv.2023.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
During the 20th century, thousands of tons of munitions containing organoarsenic chemical warfare agents (CWAs) were dumped into oceans, seas and inland waters around the world. As a result, organoarsenic CWAs continue to leak from corroding munitions into sediments and their environmental concentrations are expected to peak over the next few decades. There remains, however, a lack of knowledge about their potential toxicity to aquatic vertebrates, such as fish. The aim of this study was to fill in this gap in research, by investigating the acute toxicity of organoarsenic CWAs on fish embryos, using the model species, Danio rerio. To estimate the acute toxicity thresholds of organoarsenic CWAs (Clark I, Adamsite, PDCA), a CWA-related compound (TPA), as well as four organoarsenic CWA degradation products (Clark I[ox], Adamsite[ox], PDCA[ox], TPA[ox]), standardized tests were performed following the OECD no. 236 Fish Embryo Acute Toxicity Test guidelines. Additionally, the detoxification response in D. rerio embryos was investigated by analysing the mRNA expression of five genes encoding antioxidant enzymes (CAT, SOD, GPx, GR and GST). During the 96 h of exposure, organoarsenic CWAs induced lethal effects in D. rerio embryos at very low concentrations (classified as 1st category pollutants according to GHS categorization), and were therefore deemed to be serious environmental hazards. Although TPA and the four CWA degradation products caused no acute toxicity even at their maximum solubility, the transcription of antioxidant-related genes was altered upon exposure to these compounds, indicating the need for further testing for chronic toxicity. Incorporating the results of this study into ecological risk assessments will provide a more accurate prediction of the environmental hazards posed by CWA-related organoarsenicals.
Collapse
Affiliation(s)
- Wojciech Wilczynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland; Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland.
| | - Tomasz Brzeziński
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | | | - Michał J Czub
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland; Institute of Oceanology, Polish Academy of Sciences, Poland; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Daniel Dziedzic
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Warsaw, Poland
| | - Jakub Nawala
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Warsaw, Poland
| | - Stanislaw Popiel
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Warsaw, Poland
| | | | - Hans Sanderson
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
16
|
Ji C, Zhu Y, Zhao S, Zhang H, Wang S, Zhou J, Liu X, Zhang Y, Liu X. Arsenic and heavy metals at Japanese abandoned chemical weapons site in China: distribution characterization, source identification and contamination risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3069-3087. [PMID: 36153764 DOI: 10.1007/s10653-022-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
As-containing chemical weapons (CWs) and their degraded products pose a great threat to the environment and to human health. In this study, concentration and distribution characteristics, source identification, and health risk assessments were determined for As, Cr, Ni, Cu, Zn, Cd and Pb in environmental samples from Lianhuapao (LHP), a typical site of Japanese abandoned chemical weapons (JACWs) in China. The results show that the concentration levels of As, Cr and Ni in the LHP soils are abnormally high, with 69.57%, 83.33% and 91.67%, respectively, of the total sample exceeding the risk screening values for soil contamination of agricultural land. As levels in water samples were generally within safety limits, with the exception of perched water in the core contamination area. In the study area, none of the dominant plant species were enriched with As, except for the Pteris vittata L. Pentavalent arsenic was found to be the predominant arsenic species in the topsoil and water samples. Source identification using statistical approaches indicated that the concentrations of As, Pb, Cu, Cd and Zn are likely influenced by JACWs, while Cr and Ni levels may be related to the natural weathering process. The total concentrations of As, Cr and Ni showed a significant degree of contamination, but only As displayed high potential ecological risk. The calculated indexes of health risk evaluation strongly indicate an unacceptable carcinogenic risk (1E-04) to children, and higher non-carcinogenic risk, relative to that of adults. Our data indicate that the health risk from the resulting As contamination is still a cause for concern, although the JACWs were excavated decades ago from these soils.
Collapse
Affiliation(s)
- Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, 230026, Anhui, China
| | - Xiangcui Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
17
|
Surolia R, Li FJ, Dsouza K, Zeng H, Singh P, Stephens C, Guo Y, Wang Z, Kashyap M, Srivastava R, Lora Gonzalez M, Benson P, Kumar A, Kim H, Kim YI, Ahmad A, Athar M, Antony VB. Cutaneous Exposure to Arsenicals Is Associated with Development of Constrictive Bronchiolitis in Mice. Am J Respir Cell Mol Biol 2023; 68:485-497. [PMID: 36780670 PMCID: PMC10174172 DOI: 10.1165/rcmb.2022-0321ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Organoarsenicals, such as lewisite and related chloroarsine, diphenylchloroarsine (DPCA), are chemical warfare agents developed during World War I. Stockpiles in Eastern Europe remain a threat to humans. The well-documented effects of cutaneous exposure to these organoarsenicals include skin blisters, painful burns, and life-threatening conditions such as acute respiratory distress syndrome. In survivors, long-term effects such as the development of respiratory ailments are reported for the organoarsenical sulfur mustard; however, no long-term pulmonary effects are documented for lewisite and DPCA. No animal models exist to explore the relationship between skin exposure to vesicants and constrictive bronchiolitis. We developed and characterized a mouse model to study the long-term effects of cutaneous exposure on the lungs after exposure to a sublethal dose of organoarsenicals. We exposed mice to lewisite, DPCA, or a less toxic surrogate organoarsenic chemical, phenyl arsine oxide, on the skin. The surviving mice were followed for 20 weeks after skin exposure to arsenicals. Lung microcomputed tomography, lung function, and histology demonstrated increased airway resistance, increased thickness of the smooth muscle layer, increased collagen deposition in the subepithelium, and peribronchial lymphocyte infiltration in mice exposed to arsenical on skin.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huaxiu Zeng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Pooja Singh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crystal Stephens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | - Young-il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, and
| | | | - Veena B. Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Superfund Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Dandekar AA, Vora D, Yeh JS, Srivastava RK, Athar M, Banga AK. Enhanced Transdermal Delivery of N-Acetylcysteine and 4-Phenylbutyric Acid for Potential Use as Antidotes to Lewisite. AAPS PharmSciTech 2023; 24:71. [PMID: 36828949 DOI: 10.1208/s12249-023-02527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Lewisite is a highly toxic chemical warfare agent that leads to cutaneous and systemic damage. N-acetylcysteine (NAC) and 4-phenylbutryic acid (4-PBA) are two novel antidotes developed to treat toxicity caused by lewisite and similar arsenicals. Our in vivo studies demonstrated safety and effectiveness of these agents against skin injury caused by surrogate lewisite (Phenylarsine oxide) proving their potential for the treatment of lewisite injury. We further focused on exploring various enhancement strategies for an enhanced delivery of these agents via skin. NAC did not permeate passively from propylene glycol (PG). Iontophoresis as a physical enhancement technique and chemical enhancers were investigated for transdermal delivery of NAC. Application of cathodal and anodal iontophoresis with the current density of 0.2 mA/cm2 for 4 h followed by passive diffusion till 24 h significantly enhanced the delivery of NAC with a total delivery of 65.16 ± 1.95 µg/cm2 and 87.23 ± 7.02 µg/cm2, respectively. Amongst chemical enhancers, screened oleic acid, oleyl alcohol, sodium lauryl ether sulfate, and dimethyl sulfoxide (DMSO) showed significantly enhanced delivery of NAC with DMSO showing highest delivery of 28,370.2 ± 2355.4 µg/cm2 in 24 h. Furthermore, 4-PBA permeated passively from PG with total delivery of 1745.8 ± 443.5 µg/cm2 in 24 h. Amongst the chemical enhancers screened for 4-PBA, oleic acid, oleyl alcohol, and isopropyl myristate showed significantly enhanced delivery with isopropyl myristate showing highest total delivery of 17,788.7 ± 790.2 µg/cm2. These studies demonstrate feasibility of delivering these antidotes via skin and will aid in selection of excipients for the development of topical/transdermal delivery systems of these agents.
Collapse
Affiliation(s)
- Amruta A Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia, 30341, USA
| | - Deepal Vora
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia, 30341, USA
| | - Jihee Stephanie Yeh
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia, 30341, USA
| | - Ritesh Kumar Srivastava
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA.
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia, 30341, USA.
| |
Collapse
|
19
|
Vora D, Dandekar AA, Srivastava RK, Athar M, Banga AK. Development and Evaluation of a Topical Foam Formulation for Decontamination of Warfare Agents. Mol Pharm 2022; 19:4644-4653. [PMID: 36170149 DOI: 10.1021/acs.molpharmaceut.2c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lewisite is a highly toxic and potent chemical warfare vesicating agent capable of causing pain, inflammation, and blistering. Therapeutic strategies that safely and effectively attenuate this damage are important. Early and thorough decontamination of these agents from skin is required to prevent their percutaneous absorption. In our studies, we used phenylarsine oxide (PAO), a surrogate for arsenicals, to simulate lewisite exposure. Various parameters such as determination of extraction solvents, skin extraction efficiency, donor volume, and donor concentration were optimized for decontamination of PAO. We aimed to develop a novel, easy to apply foam formulation that can decontaminate arsenicals. We screened various foaming agents, vehicles, and chemical enhancers for the development of foam. Lead formulation foam F30 was further characterized for foam density, foam expansion, foam liquid stability, foam volume stability, and foam gas fraction. The amount of PAO delivered into human skin in 30 min of exposure was 228.57 ± 28.44 μg/sq·cm. The amount of PAO remaining in human skin after decontamination with blank foam F30 was 50.09 ± 9.71, demonstrating an overall percentage decontamination efficiency of over 75%. Furthermore, the decontamination efficacy of F30 was also tested in the porcine skin model and results indicated an even higher decontamination efficacy. These studies demonstrated that the developed foam formulation can be used for effective decontamination of chemical warfare agents.
Collapse
Affiliation(s)
- Deepal Vora
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341-4115, United States
| | - Amruta A Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341-4115, United States
| | - Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3412, United States
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3412, United States
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341-4115, United States
| |
Collapse
|
20
|
Srivastava RK, Wang Y, Khan J, Muzaffar S, Lee MB, Weng Z, Croutch C, Agarwal A, Deshane J, Athar M. Role of hair follicles in the pathogenesis of arsenical-induced cutaneous damage. Ann N Y Acad Sci 2022; 1515:168-183. [PMID: 35678766 PMCID: PMC9531897 DOI: 10.1111/nyas.14809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenical vesicants cause skin inflammation, blistering, and pain. The lack of appropriate animal models causes difficulty in defining their molecular pathogenesis. Here, Ptch1+/- /C57BL/6 mice were employed to investigate the pathobiology of the arsenicals lewisite and phenylarsine oxide (PAO). Following lewisite or PAO challenge (24 h), the skin of animals becomes grayish-white, thick, leathery, and wrinkled with increased bi-fold thickness, Draize score, and necrotic patches. In histopathology, infiltrating leukocytes (macrophages and neutrophils), epidermal-dermal separation, edema, apoptotic cells, and disruption of tight and adherens junction proteins can be visualized. PCR arrays and nanoString analyses showed significant increases in cytokines/chemokines and other proinflammatory mediators. As hair follicles (HFs), which provide an immune-privileged environment, may affect immune cell trafficking and consequent inflammatory responses, we compared the pathogenesis of these chemicals in this model to that in Ptch1+/- /SKH-1 hairless mice. Ptch1+/- /SKH-1 mice have rudimentary, whereas Ptch1+/- /C57BL/6 mice have well-developed HFs. Although no significant differences were observed in qualitative inflammatory responses between the two strains, levels of cytokines/chemokines differed. Importantly, the mechanism of inflammation was identical; both reactive oxygen species induction and consequent activation of unfolded protein response signaling were similar. These data reveal that the acute molecular pathogenesis of arsenicals in these two murine models is similar.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Wang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Madison B Lee
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiping Weng
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Claire Croutch
- MRIGlobal Medical Countermeasures Division, Kansas City, Missouri, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Jessy Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Srivastava RK, Mishra B, Muzaffar S, Gorbatyuk MS, Agarwal A, Mukhtar MS, Athar M. Dynamic Regulation of the Nexus Between Stress Granules, Roquin, and Regnase-1 Underlies the Molecular Pathogenesis of Warfare Vesicants. Front Immunol 2022; 12:809365. [PMID: 35082795 PMCID: PMC8784689 DOI: 10.3389/fimmu.2021.809365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
The use of chemical warfare agents is prohibited but they have been used in recent Middle Eastern conflicts. Their accidental exposure (e.g. arsenical lewisite) is also known and causes extensive painful cutaneous injury. However, their molecular pathogenesis is not understood. Here, we demonstrate that a nexus of stress granules (SGs), integrated stress, and RNA binding proteins (RBPs) Roquin and Reganse-1 play a key role. Lewisite and its prototype phenylarsine oxide (PAO) induce SG assembly in skin keratinocytes soon after exposure, which associate with various RBPs and translation-related proteins. SG disassembly was detected several hours after exposure. The dynamics of SG assembly-disassembly associates with the chemical insult and cell damage. Enhanced Roquin and Regnase-1 expression occurs when Roquin was recruited to SGs and Regnase-1 to the ribosome while in the disassembling SGs their expression is decreased with consequent induction of inflammatory mediators. SG-targeted protein translational control is regulated by the phosphorylation-dependent activation of eukaryotic initiation factors 2α (eIF2α). Treatment with integrated stress response inhibitor (ISRIB), which blocks eIF2α phosphorylation, impacted SG assembly dynamics. Topical application of ISRIB attenuated the inflammation and tissue disruption in PAO-challenged mice. Thus, the dynamic regulation of these pathways provides underpinning to cutaneous injury and identify translational therapeutic approach for these and similar debilitating chemicals.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suhail Muzaffar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Nair A, Yadav P, Behl A, Sharma RK, Kulshrestha S, Butola BS, Sharma N. Toxic blister agents: Chemistry, mode of their action and effective treatment strategies. Chem Biol Interact 2021; 350:109654. [PMID: 34634268 DOI: 10.1016/j.cbi.2021.109654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
Since their use during the First World War, Blister agents have posed a major threat to the individuals and have caused around two million casualties. Major incidents occurred not only due to their use as chemical warfare agents but also because of occupational hazards. Therefore, a clear understanding of these agents and their mode of action is essential to develop effective decontamination and therapeutic strategies. The blister agents have been categorised on the basis of their chemistry and the biological interactions that entail post contamination. These compounds have been known to majorly cause blisters/bullae along with alkylation of the contaminated DNA. However, due to the high toxicity and restricted use, very little research has been conducted and a lot remains to be clearly understood about these compounds. Various decontamination solutions and detection technologies have been developed, which have proven to be effective for their timely mitigation. But a major hurdle seems to be the lack of proper understanding of the toxicological mechanism of action of these compounds. Current review is about the detailed and updated information on physical, chemical and biological aspects of various blister agents. It also illustrates the mechanism of their action, toxicological effects, detection technologies and possible decontamination strategies.
Collapse
Affiliation(s)
- Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi-110016, India
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Amanpreet Behl
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi-110016, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical & Technical Sciences, 162, Poonamallee High Road Chennai, Tamil Nadu 600077, India
| | - Shweta Kulshrestha
- Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi-110016, India.
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi-110016, India.
| |
Collapse
|
23
|
A. A. L, Ghazi DA, Al-Harbi NA, Al-Qahtani SM, Hassan S, Abdein MA. Growth, Yield, and Bunch Quality of "Superior Seedless" Vines Grown on Different Rootstocks Change in Response to Salt Stress. PLANTS 2021; 10:plants10102215. [PMID: 34686024 PMCID: PMC8541443 DOI: 10.3390/plants10102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The growth and quality of vines are negatively affected by soil salinity if enough salts accumulate in the root zone. As part of the current study, we estimated the remediating effects of rootstocks under salinity. For this reason, "superior seedless" vines were grafted onto three different rootstocks, such as SO4, 1103 Paulson, and own-root ("superior seedless" with their own-root). The experiment was conducted in the 2019 and 2020 seasons. This study examines the effects of different rootstocks on vine growth, yield, and quality using "superior seedless" vines grown in sandy soil with salinity. Four stages of berry development were examined (flowering, fruit set, veraison, and harvest time). At harvest, yield characteristics (clusters per vine and cluster weight) were also assessed. Each parameter of the growth season was influenced separately. The K+ and Na+ ratios were also significantly increased, as were the salinity symptoms index and bunch yield per vine and quality. Rootstock 1103 Paulson improved photosynthetic pigments, K+ accumulation, Na+ uptake, and cell membrane damage in "superior seedless" vines compared to other rootstocks, according to the study results. As determined in the arid regions of northwestern Egypt, the 1103 Paulson can mitigate salinity issues when planting "superior seedless" vines on sandy soil.
Collapse
Affiliation(s)
- Lo’ay A. A.
- Pomology Department, Faculty of Agriculture, Mansoura University, EL-Mansoura 35516, Egypt
- Correspondence: (L.A.A.); (M.A.A.)
| | - Dina A. Ghazi
- Soil Department, Faculty of Agriculture, Mansoura University, EL-Mansoura 35516, Egypt;
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, Tabuk University, Tabuk 71411, Saudi Arabia; (N.A.A.-H.); (S.M.A.-Q.)
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, Tabuk University, Tabuk 71411, Saudi Arabia; (N.A.A.-H.); (S.M.A.-Q.)
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdein
- Biology Department, Faculty of Arts and Science, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (L.A.A.); (M.A.A.)
| |
Collapse
|
24
|
Herbert J, Laskin DL, Gow AJ, Laskin JD. Chemical warfare agent research in precision-cut tissue slices-a useful alternative approach. Ann N Y Acad Sci 2020; 1480:44-53. [PMID: 32808309 DOI: 10.1111/nyas.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
The use of chemical warfare agents (CWAs) in military conflicts and against civilians is a recurrent problem. Despite ongoing CWA research using in vitro or in vivo models, progress to elucidate mechanisms of toxicity and to develop effective therapies, decontamination procedures, and general countermeasures is still limited. Novel scientific approaches to address these questions are needed to expand perspectives on existing knowledge and gain new insights. To achieve this, the use of ex vivo techniques like precision-cut tissue slices (PCTSs) can be a valuable approach. Existing studies employing this economical and relatively easy to implement method show model suitability and comparability with the use of in vitro and in vivo models. In this article, we review research on CWAs in PCTSs to illustrate the advantages of the approach and to promote future applications.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
25
|
Srivastava RK, Muzaffar S, Khan J, Traylor AM, Zmijewski JW, Curtis LM, George JF, Ahmad A, Antony VB, Agarwal A, Athar M. Protective role of HO-1 against acute kidney injury caused by cutaneous exposure to arsenicals. Ann N Y Acad Sci 2020; 1480:155-169. [PMID: 32885420 PMCID: PMC9109234 DOI: 10.1111/nyas.14475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Lewisite and many other similar arsenicals are warfare vesicants developed and weaponized for use in World Wars I and II. These chemicals, when exposed to the skin and other epithelial tissues, cause rapid severe inflammation and systemic damage. Here, we show that topically applied arsenicals in a murine model produce significant acute kidney injury (AKI), as determined by an increase in the AKI biomarkers NGAL and KIM-1. An increase in reactive oxygen species and ER stress proteins, such as ATF4 and CHOP, correlated with the induction of these AKI biomarkers. Also, TUNEL staining of CHOP-positive renal tubular cells suggests CHOP mediates apoptosis in these cells. A systemic inflammatory response characterized by a significant elevation in inflammatory mediators, such as IL-6, IFN-α, and COX-2, in the kidney could be the underlying cause of AKI. The mechanism of arsenical-mediated inflammation involves activation of AMPK/Nrf2 signaling pathways, which regulate heme oxygenase-1 (HO-1). Indeed, HO-1 induction with cobalt protoporphyrin (CoPP) treatment in arsenical-treated HEK293 cells afforded cytoprotection by attenuating CHOP-associated apoptosis and cytokine mRNA levels. These results demonstrate that topical exposure to arsenicals causes AKI and that HO-1 activation may serve a protective role in this setting.
Collapse
Affiliation(s)
- Ritesh K. Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M. Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Lisa M. Curtis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B. Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Topical delivery of nordihydroguaretic acid for attenuating cutaneous damage caused by arsenicals. J Drug Deliv Sci Technol 2020; 58. [PMID: 32684991 DOI: 10.1016/j.jddst.2020.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the topical delivery of nordihydroguaretic acid (NDGA), a molecule that can potentially alleviate cutaneous damage caused by exposure to arsenic warfare chemicals. N-acetylcysteine (NAC 0.2% w/v) was added as an antioxidant, preventing the oxidation of NDGA to toxic quinones. A 24 h study was performed to arrive at a minimum concentration of NDGA needed to deliver maximum drug. A solution of 3% w/v delivered the maximum amount of drug at the end of 24 h (37.45 ± 4.32 μg). Short duration studies were carried out to determine the time needed to saturate skin with NDGA. There was no significant difference in the skin concentrations for 24 h and 8 h (14.89 ± 2.36 μg), due to skin saturation. However, there was significant difference in the amount of drug delivered to the epidermis (12.29 ± 1.87 μg) and dermis (2.54 ± 0.56 μg) at the end of 8 h. Solution of NDGA was applied on UV treated skin to assess changes in drug delivery. In vivo studies revealed that 3% NDGA was non-toxic for topical administration.
Collapse
|
27
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
28
|
de Castro AA, Assis LC, Soares FV, Kuca K, Polisel DA, da Cunha EFF, Ramalho TC. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019). Biomolecules 2020; 10:biom10030436. [PMID: 32178264 PMCID: PMC7175240 DOI: 10.3390/biom10030436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Acetylcholinesterase (AChE) is the key enzyme responsible for deactivating the ACh neurotransmitter. Irreversible or prolonged inhibition of AChE, therefore, elevates synaptic ACh leading to serious central and peripheral adverse effects which fall under the cholinergic syndrome spectra. To combat the toxic effects of some AChEI, such as organophosphorus (OP) nerve agents, many compounds with reactivator effects have been developed. Within the most outstanding reactivators, the substances denominated oximes stand out, showing good performance for reactivating AChE and restoring the normal synaptic acetylcholine (ACh) levels. This review was developed with the purpose of covering the new advances in AChE reactivation. Over the past years, researchers worldwide have made efforts to identify and develop novel active molecules. These researches have been moving farther into the search for novel agents that possess better effectiveness of reactivation and broad-spectrum reactivation against diverse OP agents. In addition, the discovery of ways to restore AChE in the aged form is also of great importance. This review will allow us to evaluate the major advances made in the discovery of new acetylcholinesterase reactivators by reviewing all patents published between 2016 and 2019. This is an important step in continuing this remarkable research so that new studies can begin.
Collapse
Affiliation(s)
- Alexandre A. de Castro
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
| | - Letícia C. Assis
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.R.)
| | - Daniel A. Polisel
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil; (A.A.d.C.); (L.C.A.); (F.V.S.); (D.A.P.); (E.F.F.d.C.)
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.R.)
| |
Collapse
|
29
|
Polisel DA, de Castro AA, Mancini DT, da Cunha EFF, França TCC, Ramalho TC, Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem Biol Interact 2019; 309:108671. [PMID: 31207225 DOI: 10.1016/j.cbi.2019.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/28/2019] [Accepted: 05/22/2019] [Indexed: 01/26/2023]
Abstract
Studies with oximes have been extensively developed to design new reactivators with better efficiency, and greater spectrum of action. In this study, we aimed to analyze the influence of the Carbamoyl group position change in two isomeric oximes, K203 and K206, on the reactivation percentage of Mus musculus Acetylcholinesterase (MmAChE), inhibited by different nerve agents. Theoretical calculations were performed to assess the difference for the oxime activity with inhibited AChE-complexes and the factors that govern this difference. Comparing theoretical and experimental data, it is possible to observe that this change between the oximes results in different reactivation percentage for the same nerve agent, due to the different interaction modes and activation energy for the studied systems.
Collapse
Affiliation(s)
- Daniel A Polisel
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | | | - Daiana T Mancini
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
30
|
Petrakis D., Vassilopoulou L., Docea AO, Gofita E., Vucinic S., Rakitskii VN, Tsatsakis AM. An overview update in chemical, biological and nuclear weapons and their effects in human health. ACTA ACUST UNITED AC 2019. [DOI: 10.18821/0044-197x-2017-61-2-103-112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | - S. . Vucinic
- University of Defense; National Poison Control Centre MMA
| | | | | |
Collapse
|
31
|
Srivastava RK, Traylor AM, Li C, Feng W, Guo L, Antony VB, Schoeb TR, Agarwal A, Athar M. Cutaneous exposure to lewisite causes acute kidney injury by invoking DNA damage and autophagic response. Am J Physiol Renal Physiol 2018; 314:F1166-F1176. [PMID: 29361668 PMCID: PMC6032074 DOI: 10.1152/ajprenal.00277.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H2A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL2. Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- Department of Dermatology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, Birmingham Veterans Administration Medical Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Wenguang Feng
- Division of Nephrology, Department of Medicine, Birmingham Veterans Administration Medical Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Lingling Guo
- Division of Nephrology, Department of Medicine, Birmingham Veterans Administration Medical Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, Birmingham Veterans Administration Medical Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
32
|
Tewari-Singh N, Goswami DG, Kant R, Ammar DA, Kumar D, Enzenauer RW, Casillas RP, Croutch CR, Petrash JM, Agarwal R. Histopathological and Molecular Changes in the Rabbit Cornea From Arsenical Vesicant Lewisite Exposure. Toxicol Sci 2017; 160:420-428. [PMID: 28973427 PMCID: PMC5837587 DOI: 10.1093/toxsci/kfx198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lewisite (LEW), a potent arsenical vesicating chemical warfare agent, poses a continuous risk of accidental exposure in addition to its feared use as a terrorist weapon. Ocular tissue is exquisitely sensitive to LEW and exposure can cause devastating corneal lesions. However, detailed pathogenesis of corneal injury and related mechanisms from LEW exposure that could help identify targeted therapies are not available. Using an established consistent and efficient exposure system, we evaluated the pathophysiology of the corneal injury in New Zealand white rabbits following LEW vapor exposure (at 0.2 mg/L dose) for 2.5 and 7.5 min, for up to 28 day post-exposure. LEW led to an increase in total corneal thickness starting at day 1 post-exposure and epithelial degradation starting at day 3 post-exposure, with maximal effect at day 7 postexposure followed by recovery at later time points. LEW also led to an increase in the number of blood vessels and inflammatory cells but a decrease in keratocytes with optimal effects at day 7 postexposure. A significant increase in epithelial-stromal separation was observed at days 7 and 14 post 7.5 min LEW exposure. LEW also caused an increase in the expression levels of cyclooxygenase-2, IL-8, vascular endothelial growth factor, and matrix metalloproteinase-9 at all the study time points indicating their involvement in LEW-induced inflammation, vesication, and neovascularization. The outcomes here provide valuable LEW-induced corneal injury endpoints at both lower and higher exposure durations in a relevant model system, which will be helpful to identify and screen therapies against LEW-induced corneal injury.
Collapse
Affiliation(s)
| | | | - Rama Kant
- Department of Pharmaceutical Sciences
| | - David A Ammar
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | | | - Robert W Enzenauer
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Robert P Casillas
- Medical Countermeasures Division, MRIGlobal, Kansas City, Missouri 64110
| | - Claire R Croutch
- Medical Countermeasures Division, MRIGlobal, Kansas City, Missouri 64110
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | | |
Collapse
|
33
|
Goswami DG, Agarwal R, Tewari-Singh N. Phosgene oxime: Injury and associated mechanisms compared to vesicating agents sulfur mustard and lewisite. Toxicol Lett 2017; 293:112-119. [PMID: 29141200 DOI: 10.1016/j.toxlet.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/24/2022]
Abstract
Phosgene Oxime (CX, Cl2CNOH), a halogenated oxime, is a potent chemical weapon that causes immediate acute injury and systemic effects. CX, grouped together with vesicating agents, is an urticant or nettle agent with highly volatile, reactive, corrosive, and irritating vapor, and has considerably different chemical properties and toxicity compared to other vesicants. CX is absorbed quickly through clothing with faster cutaneous penetration compared to other vesicating agents causing instantaneous and severe damage. For this reason, it could be produced as a weaponized mixture with other chemical warfare agents to enhance their deleterious effects. The immediate devastating effects of CX and easy synthesis makes it a dangerous chemical with both military and terrorist potentials. Although CX is the most potent vesicating agent, it is one of the least studied chemical warfare agents and the pathophysiology as well as long term effects are largely unknown. CX exposure results in immediate pain and inflammation, and it mainly affects skin, eye and respiratory system. There are no antidotes available against CX-induced injury and the treatment is only supportive. This review summarizes existing knowledge regarding exposure, toxicity and the probable underlying mechanisms of CX compared to other important vesicants' exposure.
Collapse
Affiliation(s)
- Dinesh Giri Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|