1
|
Zhang M, Zhao J, Ji H, Tan Y, Zhou S, Sun J, Ding Y, Li X. Multi-omics insight into the molecular networks of mental disorder related genetic pathways in the pathogenesis of inflammatory bowel disease. Transl Psychiatry 2025; 15:91. [PMID: 40118833 PMCID: PMC11928517 DOI: 10.1038/s41398-025-03299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Mental disorders are associated with inflammatory bowel disease (IBD), but the genetic pathophysiology is not fully understood. We obtained data on mental disorder-related gene methylation, expression, protein levels, and summary statistics of IBD, and performed Summary data-based Mendelian randomization and colocalization analyses to explore the causal associations and shared causal genetic variants between multiple molecular traits and IBD. Integrating multi-omics data, we found QDPR, DBI and MAX are associated with ulcerative colitis (UC) risk, while HP is linked to IBD risk. Inverse associations between gene methylation (cg0880851 and cg26689483) and expression are observed in QDPR, consistent with their detrimental role in UC. Methylation of DBI (cg11066750) protects against UC by enhancing expression. Higher levels of DBI (OR = 0.79, 95%CI = 0.69-0.90) and MAX (OR = 0.74, 95%CI = 0.62-0.90) encoded proteins are inversely associated with UC risk, while higher QDPR (OR = 1.17, 95%CI = 1.07-1.28) and HP (OR = 1.09, 95%CI = 1.04-1.14) levels increase UC and IBD risk. Our findings advance the understanding of IBD's pathogenic mechanisms and gut-brain interaction.
Collapse
Affiliation(s)
- Meng Zhang
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jianhui Zhao
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haosen Ji
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuqian Tan
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siyun Zhou
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Sun
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China.
| | - Xue Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
2
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Macura B, Kiecka A, Szczepanik M. Intestinal permeability disturbances: causes, diseases and therapy. Clin Exp Med 2024; 24:232. [PMID: 39340718 PMCID: PMC11438725 DOI: 10.1007/s10238-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Nowadays, a pathological increase in the permeability of the intestinal barrier (the so-called leaky gut) is increasingly being diagnosed. This condition can be caused by various factors, mainly from the external environment. Damage to the intestinal barrier entails a number of adverse phenomena: dysbiosis, translocation of microorganisms deep into the intestinal tissue, immune response, development of chronic inflammation. These phenomena can ultimately lead to a vicious cycle that promotes the development of inflammation and further damage to the barrier. Activated immune cells in mucosal tissues with broken barriers can migrate to other organs and negatively affect their functioning. Damaged intestinal barrier can facilitate the development of local diseases such as irritable bowel disease, inflammatory bowel disease or celiac disease, but also the development of systemic inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, hepatitis, and lupus erythematosus, neurodegenerative or psychiatric conditions, or metabolic diseases such as diabetes or obesity. However, it must be emphasized that the causal links between a leaky gut barrier and the onset of certain diseases often remain unclear and require in-depth research. In light of recent research, it becomes crucial to prevent damage to the intestinal barrier, as well as to develop therapies for the barrier when it is damaged. This paper presents the current state of knowledge on the causes, health consequences and attempts to treat excessive permeability of the intestinal barrier.
Collapse
Affiliation(s)
- Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
4
|
Peter B, Rebeaud J, Vigne S, Bressoud V, Phillips N, Ruiz F, Petrova TV, Bernier-Latmani J, Pot C. Perivascular B cells link intestinal angiogenesis to immunity and to the gut-brain axis during neuroinflammation. J Autoimmun 2024; 148:103292. [PMID: 39067313 DOI: 10.1016/j.jaut.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.
Collapse
Affiliation(s)
- Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Nicholas Phillips
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland.
| |
Collapse
|
5
|
Huang FC, Huang SC. Unveiling the Novel Benefits of Co-Administering Butyrate and Active Vitamin D3 in Mice Subjected to Chemotherapy-Induced Gut-Derived Pseudomonas aeruginosa Sepsis. Biomedicines 2024; 12:1026. [PMID: 38790988 PMCID: PMC11118095 DOI: 10.3390/biomedicines12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
6
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
7
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
8
|
Gudi R, Johnson BM, Gaudreau MC, Sun W, Ball L, Vasu C. Intestinal permeability and inflammatory features of juvenile age correlate with the eventual systemic autoimmunity in lupus-prone female SWR × NZB F1 (SNF1) mice. Immunology 2024; 171:235-249. [PMID: 37947218 PMCID: PMC10842200 DOI: 10.1111/imm.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
The incidence of systemic lupus erythematosus (SLE) is about nine times higher in women than in men, and the underlying mechanisms that contribute to this gender bias are not fully understood. Previously, using lupus-prone (SWR × NZB)F1 (SNF1) mice, we have shown that the intestinal immune system could play a role in the initiation and progression of disease in SLE, and depletion of gut microbiota produces more pronounced disease protection in females than in males. Here, we show that the gut permeability features of lupus-prone female SNF1 mice at juvenile ages directly correlate with the expression levels of pro-inflammatory factors, faecal IgA abundance and nAg reactivity and the eventual systemic autoantibody levels and proteinuria onset. Furthermore, we observed that the disease protection achieved in female SNF1 mice upon depletion of gut microbiota correlates with the diminished gut inflammatory protein levels, intestinal permeability and circulating microbial DNA levels. However, faecal microbiota transplant from juvenile male and females did not result in modulation of gut inflammatory features or permeability. Overall, these observations suggest that the early onset of intestinal inflammation, systemic autoantibody production and clinical stage disease in lupus-prone females is linked to higher gut permeability in them starting at as early as juvenile age. While the higher gut permeability in juvenile lupus-prone females is dependent on the presence of gut microbes, it appears to be independent of the composition of gut microbiota.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Wei Sun
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Lauren Ball
- Department of Pharmacology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| |
Collapse
|
9
|
Huang FC, Huang SC. The Hazards of Probiotics on Gut-Derived Pseudomonas aeruginosa Sepsis in Mice Undergoing Chemotherapy. Biomedicines 2024; 12:253. [PMID: 38397855 PMCID: PMC10886725 DOI: 10.3390/biomedicines12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
10
|
Oral S, Celik S, Akpak YK, Golbasi H, Bayraktar B, Unver G, Sahin S, Yurtcu N, Soyer Caliskan C. Prediction of gestational diabetes mellitus and perinatal outcomes by plasma zonulin levels. Arch Gynecol Obstet 2024; 309:119-126. [PMID: 35994108 DOI: 10.1007/s00404-022-06751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Zonulin has been shown to be associated with many metabolic disorders, including type 2 diabetes mellitus, metabolic syndrome, and obesity. In this study, we aimed to evaluate the association between maternal plasma zonulin levels and gestational diabetes mellitus (GDM) and its perinatal outcomes. MATERIALS A total of 100 pregnant women, 56 with GDM and 44 controls, were included in this prospective case-control study. Maternal plasma zonulin levels were evaluated in each trimester. The association between zonulin levels and GDM, body mass index (BMI) and adverse perinatal outcomes was evaluated. The GDM predictability of zonulin levels for each trimester was analyzed with the receiver operator curve (ROC). RESULTS Plasma zonulin levels were significantly higher in pregnant with GDM in all trimesters (p < 0.001; for all). Optimum cut-off values of plasma zonulin levels in predicting GDM: first trimester: 6.27 ng/mL, second trimester: 12.71 ng/mL, and third trimester: 18.38 ng/mL. BMI was significantly higher in pregnant women with GDM (30.5 vs 26.1; p < 0.001). Zonulin levels were significantly higher in pregnant women with GDM with overweight BMI [≥ 25-30 (kg/m2)] in all trimesters (p < 0.05; for all). Zonulin levels were significantly higher in pregnant women with composite adverse outcomes that included at least one of neonatal intensive care unit (NICU) admission, meconium-stained amniotic fluid, and 1st minute APGAR score < 7. CONCLUSION Increased maternal plasma zonulin levels were associated with increased risk of GDM and adverse perinatal outcomes. Zonulin may be a potential marker to predict GDM risk and perinatal outcomes.
Collapse
Affiliation(s)
- Serkan Oral
- Department of Obstetrics and Gynaecology, Halic University, Istanbul, Turkey
| | - Sebahattin Celik
- Department of Obstetrics and Gynecology, Balikesir State Hospital, Balikesir, Turkey
| | - Yasam Kemal Akpak
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Hakan Golbasi
- Department of Perinatology, Bakırcay University Cigli Education and Research Hospital, Izmir, Turkey.
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Gokhan Unver
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Sami Sahin
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Nazan Yurtcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Canan Soyer Caliskan
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| |
Collapse
|
11
|
Wang YM, Abdullah S, Luebbering N, Langenberg L, Duell A, Lake K, Lane A, Hils B, Vazquez Silva O, Trapp M, Nalapareddy K, Koo J, Denson LA, Jodele S, Haslam DB, Faubion WA, Davies SM, Khandelwal P. Intestinal permeability in patients undergoing stem cell transplantation correlates with systemic acute phase responses and dysbiosis. Blood Adv 2023; 7:5137-5151. [PMID: 37083597 PMCID: PMC10480541 DOI: 10.1182/bloodadvances.2023009960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.
Collapse
Affiliation(s)
- YunZu Michele Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sheyar Abdullah
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian Hils
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ormarie Vazquez Silva
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica Trapp
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lee A. Denson
- University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - David B. Haslam
- University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
12
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
13
|
Assessing Gluten-Free Soy Bread Quality and Amino Acid Content. Foods 2023; 12:foods12061195. [PMID: 36981122 PMCID: PMC10048178 DOI: 10.3390/foods12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The nutritional and palatability relevance of bread prepared with soy flour was examined. There are a few effective nutritional measures that combine palatability, convenience, and functionality in the suppression of muscle loss (contributing to the improvement and prevention of sarcopenia). Therefore, in the present study, we attempted to produce bread using soybeans, which are rich in amino acids involved in the synthesis and degradation of skeletal muscle proteins. Rice flour was also used to avoid gluten intolerance. The bread was baked in an automatic bread maker, and the rheological properties of its breadcrumbs were determined using a creep meter. We found that a 70 g slice of soy bread satisfied approximately one-fifth of the daily nutritional requirement for leucine. Although soy decreased the specific volume of bread by preventing starch construction, the use of preprocessed rice flour recovered the volume, and corn starch improved the taste. We propose that the addition of soy bread to the daily diet may be an effective protein source.
Collapse
|
14
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
15
|
Ozoile Reduces the LPS-Induced Inflammatory Response in Colonic Epithelial Cells and THP-1 Monocytes. Curr Issues Mol Biol 2023; 45:1333-1348. [PMID: 36826032 PMCID: PMC9955553 DOI: 10.3390/cimb45020087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Inappropriate activation of immune functions in intestinal epithelial cells can lead to inflammation that is characterized also by infiltration into intestinal tissue of monocytes/macrophages. Current therapies for intestinal inflammation include anti-inflammatory, immunosuppressive and biological drugs. Ozoile (stable ozonides) has been reported to exert anti-inflammatory effects. However, ozonated oil has been used mainly for topical applications and no data are available about its effects on intestinal cells or immune cells. In this study, we evaluated Ozoile effects on human HT-29 colonic cells and THP-1 monocytic cells stimulated with LPS to induce inflammation. HT-29 and THP-1 cells were treated with LPS in the presence/absence of Ozoile for 4 h. Biomarkers of inflammation, some members of tight junctions and the adhesion molecule ICAM were assessed by qRT-PCR. Protein expression was analyzed by Western blotting. The release of TNF-α and IL-1β was measured by ELISA. In HT-29, Ozoile inhibited LPS-induced expression of TNF-α, IL-1β, ZO-1, CLDN1, NOS2 and MMP-2 and increased the expression of Nrf2 and SOD2 antioxidant proteins. In THP-1 cells, the LPS induction of TNF-α, IL-1β and ICAM was counteracted by Ozoile treatment. Our in vitro results demonstrate the effectiveness of Ozoile in reducing the inflammatory response in intestinal and monocytic cells. Further in vivo studies are necessary to confirm its possible use for intestinal inflammatory conditions.
Collapse
|
16
|
Huang FC, Huang SC. The Pivotal Role of Aryl Hydrocarbon Receptor-Regulated Tight Junction Proteins and Innate Immunity on the Synergistic Effects of Postbiotic Butyrate and Active Vitamin D3 to Defense against Microbial Invasion in Salmonella Colitis. Nutrients 2023; 15:305. [PMID: 36678175 PMCID: PMC9860786 DOI: 10.3390/nu15020305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function, through modulating cecal inflammation and junction proteins expression. Hence, we researched the participation of AhR-regulated tight junction functions on the united effects of butyrate and VD3 on intestinal defense to Salmonella infection. Salmonella colitis model were elicited by oral gavage with 1 × 108 CFU of a S. typhimurium wild-type strain SL1344 in C57BL/6 mice. Before and after the colitis generation, mice were fed with butyrate and/or VD3 by oral gavage in the absence or presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed that butyrate and VD3 could concert together to reduce the invasion of Salmonella in colitis mice by enhancing cecal cytokines and antimicrobial peptides expression and reducing zonulin and claudin-2 protein expressions in mucosal stain, compared to single treatment, which were counteracted by AhR inhibitor. It implies that AhR is involved in the united effects of butyrate and VD3 on the intestinal defense to Salmonella infection in colitis mice. This study discloses the promising alternative therapy of combining postbiotic and VD3 for invasive Salmonellosis and the pivotal role of AhR pathway.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
17
|
Arango-González A, Lara-Guzmán OJ, Rivera DA, Álvarez R, Salazar-Serrano D, Muñoz-Durango K, Escobar JS, Sierra JA. Putative intestinal permeability markers do not correlate with cardiometabolic health and gut microbiota in humans, except for peptides recognized by a widely used zonulin ELISA kit. Nutr Metab Cardiovasc Dis 2023; 33:112-123. [PMID: 36462977 DOI: 10.1016/j.numecd.2022.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND AIMS Cardiometabolic diseases refer to a group of interrelated conditions, sharing metabolic dysfunctions like insulin resistance, obesity, dyslipidemia, and hypertension. The gut microbiota has been associated with CMD and related conditions. Alterations in the intestinal epithelium permeability triggered by chronic stress and diet could bridge gut microbiota with inflammation and CMD development. Here, we assessed the relationship between intestinal permeability and circulating SCFAs with cardiometabolic health status (CMHS) and gut microbiota in a sample of 116 Colombian adults. METHODS AND RESULTS Plasma levels of lipopolysaccharide-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP), claudin-3, and purported zonulin peptides (PZP) were measured by ELISA, whereas plasmatic levels of acetate, propionate, butyrate, isobutyrate, and valerate were measured by gas chromatography/mass spectrometry. In addition, for further statistical analysis, we took data previously published by us on this cohort, including gut microbiota and multiple CMD risk factors that served to categorize subjects as cardiometabolically healthy or cardiometabolically abnormal. From univariate and multivariate statistical analyses, we found the levels of I-FABP, LBP, and PZP increased in the plasma of cardiometabolically abnormal individuals, although only PZP reached statistical significance. CONCLUSIONS Our results did not confirm the applicability of I-FABP, LBP, claudin-3, or SCFAs as biomarkers for associating intestinal permeability with the cardiometabolic health status in these subjects. On the other hand, the poorly characterized peptides detected with the ELISA kit branded as "zonulin" were inversely associated with cardiometabolic dysfunctions and gut microbiota. Further studies to confirm the true identity of these peptides are warranted.
Collapse
Affiliation(s)
- Angela Arango-González
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia; Universidad CES, Facultad de Ciencias y Biotecnología, calle 10A #22-04, Medellin 050021, Colombia
| | - Oscar J Lara-Guzmán
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia
| | - Diego A Rivera
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia
| | - Rafael Álvarez
- Grupo de Investigación en Ciencias Farmacéuticas ICIF, Facultad de Ciencias y Biotecnología, Universidad CES, Calle 10A #22-04, Medellin 050021, Colombia
| | - Daniela Salazar-Serrano
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia; Universidad CES, Facultad de Ciencias y Biotecnología, calle 10A #22-04, Medellin 050021, Colombia
| | - Katalina Muñoz-Durango
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia
| | - Jelver A Sierra
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, calle 8 sur #50-67, Medellin 050023, Colombia.
| |
Collapse
|
18
|
Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Res Rev 2022; 82:101744. [PMID: 36202312 DOI: 10.1016/j.arr.2022.101744] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
Collapse
|
19
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
20
|
Martinez EE, Mehta NM, Fasano A. The Zonulin Pathway as a Potential Mediator of Gastrointestinal Dysfunction in Critical Illness. Pediatr Crit Care Med 2022; 23:e424-e428. [PMID: 35543388 DOI: 10.1097/pcc.0000000000002985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Enid E Martinez
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA
| | - Nilesh M Mehta
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Alessio Fasano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA
| |
Collapse
|
21
|
Ailioaie LM, Ailioaie C, Litscher G, Chiran DA. Celiac Disease and Targeting the Molecular Mechanisms of Autoimmunity in COVID Pandemic. Int J Mol Sci 2022; 23:7719. [PMID: 35887067 PMCID: PMC9322892 DOI: 10.3390/ijms23147719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Celiac disease (CD) comprises over 1% of the world's population and is a chronic multisystem immune-mediated condition manifested by digestive and/or extradigestive symptoms caused by food intake of gluten. This review looked at the risk of children diagnosed with CD developing SARS-CoV-2 infection and possible severe forms of COVID-19. A better understanding of the interaction and effects of SARS-CoV-2 infection in CD is very important, as is the role of environmental and genetic factors, but especially the molecular mechanisms involved in modulating intestinal permeability with impact on autoimmunity. CD inspired the testing of a zonulin antagonist for the fulminant form of multisystem inflammatory syndrome in children (MIS-C) and paved the way for the discovery of new molecules to regulate the small intestine barrier function and immune responses. Original published works on COVID-19 and CD, new data and points of view have been analyzed because this dangerous virus SARS-CoV-2 is still here and yet influencing our lives. Medical science continues to focus on all uncertainties triggered by SARS-CoV-2 infection and its consequences, including in CD. Although the COVID-19 pandemic seems to be gradually extinguishing, there is a wealth of information and knowledge gained over the last two years and important life lessons to analyze, as well as relevant conclusions to be drawn to deal with future pandemics. Zonulin is being studied extensively in immunoengineering as an adjuvant to improving the absorption of new drugs and oral vaccines.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Dragos Andrei Chiran
- Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii St., 700115 Iasi, Romania;
| |
Collapse
|
22
|
Ailioaie LM, Ailioaie C, Litscher G, Chiran DA. Celiac Disease and Targeting the Molecular Mechanisms of Autoimmunity in COVID Pandemic. Int J Mol Sci 2022. [PMID: 35887067 DOI: 10.3390/ijms23147719.pmid:35887067;pmcid:pmc9322892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac disease (CD) comprises over 1% of the world's population and is a chronic multisystem immune-mediated condition manifested by digestive and/or extradigestive symptoms caused by food intake of gluten. This review looked at the risk of children diagnosed with CD developing SARS-CoV-2 infection and possible severe forms of COVID-19. A better understanding of the interaction and effects of SARS-CoV-2 infection in CD is very important, as is the role of environmental and genetic factors, but especially the molecular mechanisms involved in modulating intestinal permeability with impact on autoimmunity. CD inspired the testing of a zonulin antagonist for the fulminant form of multisystem inflammatory syndrome in children (MIS-C) and paved the way for the discovery of new molecules to regulate the small intestine barrier function and immune responses. Original published works on COVID-19 and CD, new data and points of view have been analyzed because this dangerous virus SARS-CoV-2 is still here and yet influencing our lives. Medical science continues to focus on all uncertainties triggered by SARS-CoV-2 infection and its consequences, including in CD. Although the COVID-19 pandemic seems to be gradually extinguishing, there is a wealth of information and knowledge gained over the last two years and important life lessons to analyze, as well as relevant conclusions to be drawn to deal with future pandemics. Zonulin is being studied extensively in immunoengineering as an adjuvant to improving the absorption of new drugs and oral vaccines.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Dragos Andrei Chiran
- Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii St., 700115 Iasi, Romania
| |
Collapse
|
23
|
Plasma and fecal zonulin are not altered by a high green leafy vegetable dietary intervention: secondary analysis of a randomized control crossover trial. BMC Gastroenterol 2022; 22:184. [PMID: 35413837 PMCID: PMC9004007 DOI: 10.1186/s12876-022-02248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zonulin is observed in animal models to regulate intestinal permeability and influenced by dietary intake, gut microbiota, and inflammation. We conducted a secondary analysis of a randomized controlled crossover trial (NCT03582306) in individuals with a BMI greater than 30 kg/m2 and high habitual red meat intake and low habitual green leafy vegetable (GLV) intake. METHODS Participants were provided with frozen GLV during the first or last four weeks (immediate or delayed intervention) of the twelve-week trial. Biological and anthropometric measures were taken at the beginning and at each four-week interval. A subset of 20 participants was selected for this secondary analysis of the intestinal permeability and inflammation-related biomarkers: serum and fecal zonulin; serum lipopolysaccharide binding protein (LBP), Alpha-1-acid glycoprotein 1 (ORM-1), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and C-reactive protein; 8-hydroxy-2'-deoxyguanosine (8OHdG) and plasma Vitamin K1 as a marker of protocol adherence. Nutrient and food group intake from two-24-h dietary recalls collected at each time point were assessed. Fecal microbiota was measured by 16 s rRNA PCR sequencing. Changes in biological markers, dietary factors, and microbial taxa were assessed with Wilcoxon Sign Ranks Tests. Exploratory analyses of the relationship between changes in outcome variables were conducted with Spearman correlations. RESULTS No changes in serum and fecal zonulin and serum LBP were observed. Plasma Vitamin K (p = 0.005) increased, while plasma 8OHdG (p = 0.023) decreased during the intervention compared to the control. The only dietary factors that changed significantly were increases during intervention in Vitamin K and Dark GLV (p < 0.001 for both) compared to control. Fecal microbiota did not change significantly across all times points; however, change in serum zonulin was associated with change in Proteobacteria (ρ = - 0.867, p = 0.001) in females and Bifidobacterium (ρ = - 0.838, p = 0.009) and Bacteroidaceae (ρ = 0.871, p = 0.005) in men. CONCLUSIONS A high GLV dietary intervention increased serum zonulin levels and had no effect on fecal zonulin. Lack of concordance between several inflammation-associated biomarkers and zonulin corroborate recent reports of limited utility of zonulin in obese adults free of lower gastrointestinal disease. Trial Registration information: https://clinicaltrials.gov/ct2/show/NCT03582306 (NCT03582306) registered on 07/11/2018.
Collapse
|
24
|
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33:247-265. [PMID: 35151560 DOI: 10.1016/j.tem.2022.01.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
The intestinal barrier protects the host against gut microbes, food antigens, and toxins present in the gastrointestinal tract. However, gut barrier integrity can be affected by intrinsic and extrinsic factors, including genetic predisposition, the Western diet, antibiotics, alcohol, circadian rhythm disruption, psychological stress, and aging. Chronic disruption of the gut barrier can lead to translocation of microbial components into the body, producing systemic, low-grade inflammation. While the association between gut barrier integrity and inflammation in intestinal diseases is well established, we review here recent studies indicating that the gut barrier and microbiota dysbiosis may contribute to the development of metabolic, autoimmune, and aging-related disorders. Emerging interventions to improve gut barrier integrity and microbiota composition are also described.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Chang Gung Biotechnology Corporation, Taipei, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
25
|
Peruhova M, Mihova A, Altankova I, Velikova T. Specific Immunoglobulin E and G to Common Food Antigens and Increased Serum Zonulin in IBS Patients: A Single-Center Bulgarian Study. Antibodies (Basel) 2022; 11:23. [PMID: 35466276 PMCID: PMC9036216 DOI: 10.3390/antib11020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder whose pathogenesis is considered multifactorial, including abnormal gut motility, visceral hyperreactivity, psychological factors, disturbances in the brain-gut axis, leaky gut, oxidative stress, etc. We aimed to investigate serum levels of specific immunoglobulin E and G to common food antigens and zonulin and to assess their use in clinical practice for patients with IBS. Material and methods. We included 23 participants, 15 with IBS (diagnosed according to the Rome IV criteria) and 8 healthy controls. We investigated serum levels of specific IgG antibodies to 24 food antigens, specific IgE antibodies to 20 food antigens, anti-celiac antibodies, fecal calprotectin and serum zonulin by ELISA. Results. Food-specific positive IgG antibodies were significantly higher in patients with IBS than in controls (p = 0.007). IgE-mediated allergic reactions were found in five patients with IBS; no one had anti-TG antibodies. One-third of IBS patients demonstrated a low degree of chronic inflammation (positive fecal calprotectin test > 50 ng/mL) without specific bacterial infection. Serum levels of zonulin in IBS patients were higher than in healthy controls (0.378 ± 0.13 vs. 0.250 ± 0.14 ng/mL, p = 0.0315). However, no correlations between clinical symptoms and zonulin levels were found. Conclusion. The mechanisms of IgG hypersensitivity and low degree inflammation in IBS and elevated zonulin may contribute to multifactor pathogenesis in IBS.
Collapse
Affiliation(s)
- Milena Peruhova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| | - Antoaneta Mihova
- Laboratory of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria; (A.M.); (I.A.)
| | - Iskra Altankova
- Laboratory of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria; (A.M.); (I.A.)
| | - Tsvetelina Velikova
- Laboratory of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria; (A.M.); (I.A.)
| |
Collapse
|
26
|
Laudisi F, Stolfi C, Bevivino G, Maresca C, Franzè E, Troncone E, Lolli E, Marafini I, Pietrucci D, Teofani A, Di Grazia A, Di Fusco D, Colantoni A, Ortenzi A, Desideri A, Monteleone I, Monteleone G. GATA6 Deficiency Leads to Epithelial Barrier Dysfunction and Enhances Susceptibility to Gut Inflammation. J Crohns Colitis 2022; 16:301-311. [PMID: 34374415 DOI: 10.1093/ecco-jcc/jjab145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases [IBD], but the mechanisms that lead to such a defect are not fully understood. This study was aimed at characterising the factors involved in the defective barrier function in IBD. METHODS Transcriptome analysis was performed on colon samples taken from healthy controls [CTR] and IBD patients. Expression of GATA-binding factor 6 [GATA6], a transcription factor involved in intestinal epithelial cell differentiation, was evaluated in colon samples taken from CTR and IBD patients by real-time polymerase chain reaction [PCR] and immunohistochemistry. Intestinal sections of wild-type and Gata6del mice, which exhibit a conditional Gata6 deletion in intestinal epithelial cells and which are either left untreated or receive subcutaneous indomethacin or rectal trinitrobenzene sulphonic acid, were stained with haematoxylin and eosin. In parallel, some Gata6del mice received antibiotics to deplete intestinal flora. Mucosal inflammatory cell infiltration and cytokine production were evaluated by flow cytometry and real-time PCR, respectively, and tight junction proteins were examined by immunofluorescence. Intestinal barrier integrity was assessed by fluorescein isothiocyanate [FITC]-dextran assay. RESULTS Multiple genes involved in cell commitment/proliferation and wound healing were differentially expressed in IBD compared with CTR. Among these, GATA6 was significantly decreased in the IBD epithelium compared with CTR. In mice, conditional deletion of GATA6 in the intestinal epithelium induced primarily epithelial damage, diminished zonula occludens-1 expression, and enhanced intestinal permeability, ultimately resulting in bacteria-driven local immune response and enhanced susceptibility to gut inflammation. CONCLUSIONS Reduced expression of GATA6 promotes intestinal barrier dysfunction, thus amplifying intestinal inflammatory pathology.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Clinical Biochemistry and Clinical Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Lolli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
27
|
Alharthi A, Alhazmi S, Alburae N, Bahieldin A. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23031363. [PMID: 35163286 PMCID: PMC8835713 DOI: 10.3390/ijms23031363] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota–gut–brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study.
Collapse
Affiliation(s)
- Amani Alharthi
- Department of Biology, Faculty of Science, Majmaah University, Al Zulfi 11932, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Najla Alburae
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| |
Collapse
|
28
|
Al Dera H, Alrafaei B, AL Tamimi MI, Alfawaz HA, Bhat RS, Soliman DA, Abuaish S, El-Ansary A. Leaky gut biomarkers in casein- and gluten-rich diet fed rat model of autism. Transl Neurosci 2021; 12:601-610. [PMID: 35070443 PMCID: PMC8724359 DOI: 10.1515/tnsci-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Abstract
It is proposed that gluten- and casein-rich diets (GRD and CRD) can synergistically exacerbate dysbiosis as comorbidity in autism by worsening leaky gut that affects the brain through the gut–brain axis. In this study, 35 young male rats were divided into 7 groups, Group 1 serves as control; Group 2, clindamycin (CL)-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism. These three groups were fed standard diet until the end of the experiment. Groups 4–7 are rats treated similarly with CL and PPA, then fed on CRD or GRD until the end of the experiment. Serum zonulin, glutathione (GSH), lipid peroxides, and gut microbial composition were measured in the seven studied groups. Data demonstrate the significant increase in serum zonulin as marker of leaky gut in the CL-treated groups fed on CRD or GRD. Lipid peroxides were significantly higher in the serum of GRD-fed rats compared to CRD-fed or normal diet-fed rats. GSH was much lower in CL-treated groups fed on CRD or GRD compared to PPA-treated rats fed on both diets. Both diets differentially affected the diversity of the gut microbiota. This study demonstrates that CRD and GRD exacerbates leaky gut, according to serum zonulin, which was used as marker for increased gut permeability.
Collapse
Affiliation(s)
- Hussain Al Dera
- Basic Medical Science Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
- King Abdullah International Medical Research Center (Kaimrc) , Riyadh , Saudi Arabia
| | - Bahauddeen Alrafaei
- King Abdullah International Medical Research Center (Kaimrc) , Riyadh , Saudi Arabia
| | - Muneerah I. AL Tamimi
- Home Economic Department, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, King Saud University , Riyadh , Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Dina A. Soliman
- Botany and Microbiology Department, College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University , P.O. Box 22452 , Riyadh , Saudi Arabia
| |
Collapse
|
29
|
Novel role of zonulin in the pathophysiology of gastro-duodenal transit: a clinical and translational study. Sci Rep 2021; 11:22462. [PMID: 34789790 PMCID: PMC8599512 DOI: 10.1038/s41598-021-01879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
We examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = − 0.51, CI − 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.
Collapse
|
30
|
Miranda-Ribera A, Serena G, Liu J, Fasano A, Kingsbury MA, Fiorentino MR. The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers 2021; 10:2000299. [PMID: 34775911 DOI: 10.1080/21688370.2021.2000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.,Lurie Center for Autism, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
31
|
High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Dig Dis Sci 2021; 66:3359-3374. [PMID: 33104937 DOI: 10.1007/s10620-020-06664-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM A link between an impaired intestinal barrier, endotoxemia, and the pathogenesis of metabolic diseases, such as type 2 diabetes mellitus (T2DM), has been proposed. In previous work, we have demonstrated that the tight junction (TJ)-mediated intestinal barrier in ileum/colon was marginally changed in prediabetic mice; therefore, it does not seem to mainly contribute to the T2DM onset. In this study, the TJ-mediated epithelial barrier in the duodenum and jejunum was evaluated in mice during the development of type 2 prediabetes. METHODS/RESULTS HF diet induced prediabetes after 60 days associated with a significant rise in intestinal permeability to the small-sized marker Lucifer yellow in these mice, with no histological signs of mucosal inflammation or rupture of the proximal intestine epithelium. As revealed by immunofluorescence, TJ proteins, such as claudins-1, -2, -3, and ZO-1, showed a significant decrease in junctional content in duodenum and jejunum epithelia, already after 15 days of treatment, suggesting a rearrangement of the TJ structure. However, no significant change in total cell content of these proteins was observed in intestinal epithelium homogenates, as assessed by immunoblotting. Despite the changes in intestinal permeability and TJ structure, the prediabetic mice showed similar LPS, zonulin, and TNF-α levels in plasma or adipose tissue, and in intestinal segments as compared to the controls. CONCLUSION Disruption of the TJ-mediated paracellular barrier in the duodenum and jejunum is an early event in prediabetes development, which occurs in the absence of detectable endotoxemia/inflammation and may contribute to the HF diet-induced increase in intestinal permeability.
Collapse
|
32
|
Gu Z, Zhu Y, Mei F, Dong X, Xia G, Shen X. Tilapia head glycolipids protect mice against dextran sulfate sodium-induced colitis by ameliorating the gut barrier and suppressing NF-kappa B signaling pathway. Int Immunopharmacol 2021; 96:107802. [PMID: 34162163 DOI: 10.1016/j.intimp.2021.107802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to evaluate the relieving effect of tilapia head glycolipids (TH-GLs) on dextran sulfate sodium (DSS)-induced colitis in mice and to further explore its mechanism. Mice were orally administered 3% (w/v) DSS to establish a model of ulcerative colitis (UC), and subsequently treated with TH-GLs or sulfasalazine. In addition, the expression of key targets in the intestinal mucosal barrier and the inflammatory signal pathway were studied by combining immunochemical analysis techniques. The results showed that varying doses of TH-GLs can significantly improve colon lesions caused by DSS, reduce histological scores, increase mucus secretion, extend colon length, increase weight, and inhibit the occurrence of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), Interleukin-1β (IL-1β), and Interleukin- 6 (IL-6). Further, studies have shown that TH-GLs increase the secretion of MUC2 and up-regulate the expression of tight junction related proteins, such as ZO-1 and Occludin. In addition, TH-GLs significantly down-regulated the protein expression levels of TNF-α, IKK-β, and nuclear factor-κB (NF-κB). Here, we have elucidated the potential mechanism of TH-GLs in protecting mice with colitis. In general, this study shows that TH-GLs could improve the symptoms of UC by improving the gut barrier and inhibiting inflammatory signals, which provides a scientific basis for future clinical applications.
Collapse
Affiliation(s)
- Zhipeng Gu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Xiuping Dong
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| |
Collapse
|
33
|
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Correspondence: Koji Hase,
| |
Collapse
|
34
|
Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol 2021; 12:673708. [PMID: 33968085 PMCID: PMC8100306 DOI: 10.3389/fimmu.2021.673708] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Corsetti G, Romano C, Pasini E, Testa C, Dioguardi FS. Qualitative Nitrogen Malnutrition Damages Gut and Alters Microbiome in Adult Mice. A Preliminary Histopathological Study. Nutrients 2021; 13:nu13041089. [PMID: 33810512 PMCID: PMC8066208 DOI: 10.3390/nu13041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/03/2022] Open
Abstract
Amino-acids (AAs) are the exclusive source of nitrogen for cells. AAs result from the breakdown of food proteins and are absorbed by mucosa of the small intestine that act as a barrier to harmful materials. The quality of food proteins may differ, since it reflects content in Essential-AAs (EAAs) and digestibility but, until now, attention was paid mainly to the interaction between indigested proteins as a whole and microbiota. The link between microbiome and quality of proteins has been poorly studied, although these metabolic interactions are becoming more significant in different illnesses. We studied the effects of a special diet containing unbalanced EAAs/Non-EAAs ratio, providing excess of Non-EAAs, on the histopathology of gut epithelium and on the microbiome in adult mice, as model of qualitative malnutrition. Excess in Non-EAAs have unfavorable quick effect on body weight, gut cells, and microbiome, promoting weakening of the intestinal barrier. Re-feeding these animals with standard diet partially reversed the body alterations. The results prove that an unbalanced EAAs/Non-EAAs ratio is primarily responsible for microbiome modifications, not vice-versa. Therefore, treating microbiota independently by treating co-existing qualitative malnutrition does not make sense. This study also provides a reproducible model of sarcopenia-wasting cachexia like the human protein malnutrition.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
- Correspondence: ; Fax: +39-030-3717486
| | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Cardiac Rehabilitation Division, Scientific Clinical Institutes Maugeri, IRCCS-Lumezzane, 25065 Lumezzane (Brescia), Italy;
| | - Cristian Testa
- Functional Point, Clinical and Virology Laboratory, 25121 Bergamo, Italy;
| | | |
Collapse
|
36
|
Labarta-Bajo L, Nilsen SP, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Turner JR, Zúñiga EI. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J Exp Med 2021; 217:152069. [PMID: 32880630 PMCID: PMC7953738 DOI: 10.1084/jem.20192276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal barrier leakage constitutes a potential therapeutic target for many inflammatory diseases and represents a disease progression marker during chronic viral infections. However, the causes of altered gut barrier remain mostly unknown. Using murine infection with lymphocytic choriomeningitis virus, we demonstrate that, in contrast to an acute viral strain, a persistent viral isolate leads to long-term viral replication in hematopoietic and mesenchymal cells, but not epithelial cells (IECs), in the intestine. Viral persistence drove sustained intestinal epithelial barrier leakage, which was characterized by increased paracellular flux of small molecules and was associated with enhanced colitis susceptibility. Type I IFN signaling caused tight junction dysregulation in IECs, promoted gut microbiome shifts and enhanced intestinal CD8 T cell responses. Notably, both type I IFN receptor blockade and CD8 T cell depletion prevented infection-induced barrier leakage. Our study demonstrates that infection with a virus that persistently replicates in the intestinal mucosa increases epithelial barrier permeability and reveals type I IFNs and CD8 T cells as causative factors of intestinal leakage during chronic infections.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Steven P Nilsen
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
37
|
D'Avino P, Serena G, Kenyon V, Fasano A. An updated overview on celiac disease: from immuno-pathogenesis and immuno-genetics to therapeutic implications. Expert Rev Clin Immunol 2021; 17:269-284. [PMID: 33472447 DOI: 10.1080/1744666x.2021.1880320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy triggered by ingestion of gluten. While presenting many similarities with other autoimmune diseases, celiac disease is unique in that the external trigger, gluten, and the genetic background necessary for disease development (HLA DQ2/DQ8) are well described. The prevalence of celiac disease is dramatically increasing over the years and new epidemiologic data show changes regarding age of onset and symptoms. A better understanding of CD-pathogenesis is fundamental to highlight the reasons of this rise of celiac diagnoses. AREAS COVERED In this review we describe CD-pathogenesis by dissecting all the components necessary to lose tolerance to gluten (ingestion of gluten, genetic predisposition, loss of barrier function and immune response). Additionally, we also highlight the role that microbiome plays in celiac disease as well as new proposed therapies and experimental tools. EXPERT OPINION Prevalence of autoimmune diseases is increasing around the world. As a result, modern society is strongly impacted by a social and economic burden. Given the unique characteristics of celiac disease, a better understanding of its pathogenesis and the factors that contribute to it may shed light on other autoimmune diseases for which external trigger and genetic background are not known.
Collapse
Affiliation(s)
- Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Vita-Salute San Raffaele University, Milan, Italy
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Victoria Kenyon
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
38
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
39
|
Wang D, Sun M, Zhang Y, Chen Z, Zang S, Li G, Li G, Clark AR, Huang J, Si L. Enhanced therapeutic efficacy of a novel colon-specific nanosystem loading emodin on DSS-induced experimental colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153293. [PMID: 32777486 DOI: 10.1016/j.phymed.2020.153293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an intricate enteric disease with a rising incidence that is closely related to mucosa-barrier destruction, gut dysbacteriosis, and immune disorders. Emodin (1,3,8-trihydroxy-6-methyl-9,10-anthraquinone, EMO) is a natural anthraquinone derivative that occurs in many Polygonaceae plants. Its multiple pharmacological effects, including antioxidant, immune-suppressive, and anti-bacteria activities, make it a promising treatment option for UC. However, its poor solubility, extensive absorption, and metabolism in the upper gastrointestinal tract may compromise its anti-colitis effects. PURPOSE EMO was loaded in a colon-targeted delivery system using multifunctional biomedical materials and the enhanced anti-colitis effect involving mucosa reconstruction was investigated in this study. METHODS EMO-loaded Poly (DL-lactide-co-glycolide)/EudragitⓇ S100/montmorillonite nanoparticles (EMO/PSM NPs) were prepared by a versatile single-step assembly approach. The colon-specific release behavior was characterized in vitro and in vivo, and the anti-colitis effect was evaluated in dextran sulfate sodium (DSS)-induced acute colitis in mice by weight loss, disease activity index (DAI) score, colon length, histological changes, and colitis biomarkers. The integrity of the intestinal mucosal barrier was evaluated through transwell co-culture model in vitro and serum zonulin-related tight junctions and mucin2 (MUC2) in vivo. RESULTS EMO/PSM NPs with a desirable hydrodynamic diameter (~ 235 nm) and negative zeta potential (~ -31 mV) could prevent the premature drug release (< 4% in the first 6 h in vitro) in the upper gastrointestinal tract (GIT) and boost retention in the lower GIT and inflamed colon mucosa in vivo. Compared to free EMO-treatment of different doses in UC mice, the NPs could enhance the remedial efficacy of EMO in DAI decline, histological remission, and regulation of colitis indicators, such as myeloperoxidase (MPO), nitric oxide (NO), and glutathione (GSH). The inflammatory factors including induced nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-1β were suppressed by EMO/PSM NPs at both mRNA and protein levels. The obtained NPs could also promote the regeneration of the mucosal barrier via reduced fluorescein isothiocyanate (FITC)-dextran leakage in the transwell co-culture model and decreased serum zonulin levels, which was demonstrated to be associated with the upregulated tight junctions (TJs)-related proteins (claudin-2, occludin, and zo-1) and MUC2 at mRNA level. Moreover, the NPs could contribute to attenuating the liver injury caused by free EMO under excessive immune inflammation. CONCLUSION Our results demonstrated that EMO/PSM NPs could specifically release EMO in the diseased colon, and effectively enhance the anti-colitis effects of EMO related to intestinal barrier improvement. It can be considered as a novel potential alternative for oral colon-targeted UC therapy by increasing therapeutic efficacy and reducing side-effects.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Minghui Sun
- Department of Pharmaceutics, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, 1227 Jiefang Road, Wuhan 430030, PR China
| | - Shuya Zang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Genyun Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Andrew R Clark
- School of Medicine, Indiana University, 975W. Walnut St, IB 008, Indianapolis, IN 46202, USA
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
40
|
Martinez EE, Zurakowski D, Pereira L, Freire R, Emans JB, Nurko S, Duggan CP, Fasano A, Mehta NM. Interleukin-10 and Zonulin Are Associated With Postoperative Delayed Gastric Emptying in Critically Ill Surgical Pediatric Patients: A Prospective Pilot Study. JPEN J Parenter Enteral Nutr 2020; 44:1407-1416. [PMID: 32386238 PMCID: PMC7754495 DOI: 10.1002/jpen.1874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Impaired gastric emptying (GE) is associated with morbidity in surgical critically ill children. The relationship between inflammation, gut barrier integrity (lipopolysaccharide binding protein [LBP]; zonulin), and GE has not been described in this cohort. METHODS Children ≥2 years of age and requiring critical care after surgery were enrolled. Preoperative and postoperative levels of serum cytokines, LBP, and zonulin, and GE by the acetaminophen absorption test, were measured, allowing patients to serve as their own controls. Postoperative delayed GE was defined as a decrease in GE by ≥20% compared with preoperative GE. The following were examined : comparison between postoperative andpreoperative values, correlations between fold change (postoperative/preoperative) in study variables, and fold change in study variables between patients with and without postoperative delayed GE. RESULTS Twenty patients, median age 14 years (12.25, 18), 12 female, were included. Eight of 20 patients had postoperative delayed GE. Postoperative interleukin-6 (IL-6), IL-8, IL-10, and LBP were increased, and zonulin was decreased (P-values < .05). Fold change in IL-10 and zonulin were inversely correlated (ρ -0.618, P = .004). Patients with postoperative delayed GE had greater fold increase in IL-10 (P = .0159) and fold decrease in zonulin (P = .0160). Five of 7 (71%) patients with both fold increase in IL-10 and decrease in zonulin had delayed GE. CONCLUSION Postoperative changes in IL-10 and zonulin were associated with delayed GE in surgical critically ill children, which might suggest a mechanism to for delayed GE in postoperative inflammation and gut barrier dysregulation after surgery.
Collapse
Affiliation(s)
- Enid E. Martinez
- Department of Anesthesiology, Critical Care and Pain MedicineBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain MedicineBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Luis Pereira
- Department of Anesthesiology, Critical Care and Pain MedicineBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Rachel Freire
- Division of Pediatric Gastroenterology and NutritionDepartment of PediatricsMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - John B. Emans
- Harvard Medical SchoolBostonMassachusettsUSA
- Orthopedic CenterBoston Children's HospitalBostonMassachusettsUSA
| | - Samuel Nurko
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Gastroenterology, Hepatology and NutritionBoston Children's HospitalBostonMassachusettsUSA
| | - Christopher P. Duggan
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Gastroenterology, Hepatology and NutritionBoston Children's HospitalBostonMassachusettsUSA
- Center for NutritionBoston Children's HospitalBostonMassachusettsUSA
| | - Alessio Fasano
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pediatric Gastroenterology and NutritionDepartment of PediatricsMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Nilesh M. Mehta
- Department of Anesthesiology, Critical Care and Pain MedicineBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Center for NutritionBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
41
|
Küçükemre Aydın B, Yıldız M, Akgün A, Topal N, Adal E, Önal H. Children with Hashimoto’s Thyroiditis Have Increased Intestinal Permeability: Results of a Pilot Study. J Clin Res Pediatr Endocrinol 2020; 12:303-307. [PMID: 31990165 PMCID: PMC7499128 DOI: 10.4274/jcrpe.galenos.2020.2019.0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased intestinal permeability (IIP) precedes several autoimmune disorders. Although Hashimoto’s thyroiditis (HT) is the most common autoimmune disorder, the role of IIP in its pathogenesis had received little attention. Zonulin plays a critical role in IIP by modulating intracellular tight junctions. Rise of serum zonulin levels were shown to indicate IIP in human subjects. In this case-control study, we examined the hypothesis that patients with HT have IIP. We studied 30 children and adolescents with HT, and 30 patients with congenital hypothyroidism (CH) matched for age, gender and body mass index (BMI). Serum zonulin levels, free thyroxine (fT4), thyroid stimulating hormone (TSH), anti-thyroglobulin antibody and anti-thyroid peroxidase antibody were measured. Zonulin levels were significantly higher in patients with HT than patients with CH (59.1±22.9 ng/mL vs. 43.3±32.9 ng/mL, p=0.035). In patients with HT, zonulin levels were positively correlated with weight (r=0.406, p=0.03), BMI (r=0.486, p=0.006) and levothyroxine dose (r=0.463, p=0.02). In patients with CH, zonulin levels were positively correlated with age (r=0.475, p=0.008), weight (r=0.707, p<0.001), BMI (r=0.872, p<0.001) and levothyroxine dose (r=0.485, p=0.007). After adjusting for age, weight, TSH and fT4 levels, serum zonulin was only associated with levothyroxine dose in patients with HT (R2=0.36, p=0.05). In patients with CH, only weight was associated with zonulin levels (R2=0.62, p<0.001). In conclusion, higher zonulin levels in children and adolescents with HT suggested IIP in these patients. Additionally, the association between zonulin levels and levothyroxine dose might imply a relationship between serum zonulin and disease severity.
Collapse
Affiliation(s)
- Banu Küçükemre Aydın
- University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey,* Address for Correspondence: University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey Phone: +90 212 404 15 00 E-mail:
| | - Melek Yıldız
- University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey
| | - Abdurrahman Akgün
- University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey
| | - Neval Topal
- University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey
| | - Erdal Adal
- Medipol University Faculty of Medicine, Department of Pediatric Endocrinology and Metabolism, İstanbul, Turkey
| | - Hasan Önal
- University of Health Sciences Turkey, Kanuni Sultan Süleyman Training and Research Hospital, Unit of Pediatric Endocrinology and Metabolism, İstanbul, Turkey
| |
Collapse
|
42
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
43
|
|
44
|
Zonulin-Dependent Intestinal Permeability in Children Diagnosed with Mental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12071982. [PMID: 32635367 PMCID: PMC7399941 DOI: 10.3390/nu12071982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Worldwide, up to 20% of children and adolescents experience mental disorders, which are the leading cause of disability in young people. Research shows that serum zonulin levels are associated with increased intestinal permeability (IP), affecting neural, hormonal, and immunological pathways. This systematic review and meta-analysis aimed to summarize evidence from observational studies on IP in children diagnosed with mental disorders. The review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search of the Cochrane Library, PsycINFO, PubMed, and the Web of Science identified 833 records. Only non-intervention (i.e., observational) studies in children (<18 years) diagnosed with mental disorders, including a relevant marker of intestinal permeability, were included. Five studies were selected, with the risk of bias assessed according to the Newcastle–Ottawa scale (NOS). Four articles were identified as strong and one as moderate, representing altogether 402 participants providing evidence on IP in children diagnosed with attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive–compulsive disorder (OCD). In ADHD, elevated serum zonulin levels were associated with impaired social functioning compared to controls. Children with ASD may be predisposed to impair intestinal barrier function, which may contribute to their symptoms and clinical outcome compared to controls. Children with ASD, who experience gastro-intestinal (GI) symptoms, seem to have an imbalance in their immune response. However, in children with OCD, serum zonulin levels were not significantly different compared to controls, but serum claudin-5, a transmembrane tight-junction protein, was significantly higher. A meta-analysis of mean zonulin plasma levels of patients and control groups revealed a significant difference between groups (p = 0.001), including the four studies evaluating the full spectrum of the zonulin peptide family. Therefore, further studies are required to better understand the complex role of barrier function, i.e., intestinal and blood–brain barrier, and of inflammation, to the pathophysiology in mental and neurodevelopmental disorders. This review was PROSPERO preregistered, (162208).
Collapse
|
45
|
Wood Heickman LK, DeBoer MD, Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes Metab Res Rev 2020; 36:e3309. [PMID: 32162764 PMCID: PMC7340576 DOI: 10.1002/dmrr.3309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
The incidence of type 1 diabetes (T1D) is increasing annually, in addition to other childhood-onset autoimmune diseases. This review is inspired by recent strides in research defining the pathophysiology of autoimmunity in celiac disease, a disease that has significant genetic overlap with T1D. Population genetic studies have demonstrated an increased proportion of newly diagnosed young children with T1D also have a higher genetic risk of celiac disease, suggesting that shared environmental risk factors are driving the incidence of both diseases. The small intestine barrier forms a tightly regulated interface of the immune system with the outside world and largely controls the mucosal immune response to non-self-antigens, dictating the balance between tolerance and immune response. Zonulin is the only known physiological modulator of the intercellular tight junctions, important in antigen trafficking, and therefore, is a key player in regulation of the mucosal immune response. While usually tightly controlled, when the zonulin pathway is dysregulated by changes in microbiome composition and function, antigen trafficking control is lost, leading to loss of mucosal tolerance in genetically susceptible individuals. The tenant of this hypothesis is that loss of tolerance would not occur if the zonulin-dependent intestinal barrier function is restored, thereby preventing the influence of environmental triggers in individuals genetically susceptible to autoimmunity. This review outlines the current research and a structured hypothesis on how a dysregulated small intestinal epithelial barrier, a "leaky gut," may be important in the pathogenesis of autoimmunity in certain individuals at risk of both T1D and celiac disease.
Collapse
Affiliation(s)
- Lauren K Wood Heickman
- Department of Pediatrics, Division of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D DeBoer
- Department of Pediatrics, Division of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School Boston, Boston, Massachusetts, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
46
|
Changes in the Intestinal Microbiome during a Multispecies Probiotic Intervention in Compensated Cirrhosis. Nutrients 2020; 12:nu12061874. [PMID: 32585997 PMCID: PMC7353185 DOI: 10.3390/nu12061874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Probiotics have been used in trials to therapeutically modulate the gut microbiome and have shown beneficial effects in cirrhosis. However, their effect on the microbiome of cirrhosis patients is not fully understood yet. Here, we tested the effects of a multispecies probiotic on microbiome composition in compensated cirrhosis. The gut microbiome composition of 58 patients with compensated cirrhosis from a randomized controlled trial who received a daily dose of multispecies probiotics or placebo for six months was analysed by 16S rRNA gene sequencing. Microbiome composition of patients who received probiotics was enriched with probiotic strains and the abundance of Faecalibacterium prausnitzii, Syntrophococcus sucromutans, Bacteroides vulgatus, Alistipes shahii and a Prevotella species was increased in the probiotic group compared to the placebo group. Patients who had microbiome changes in response to probiotic treatment also showed a significant increase in neopterin and a significant decrease in faecal zonulin levels after intervention, which was not observed in placebo-treated patients or patients with unchanged microbiome compositions. In conclusion, multispecies probiotics may enrich the microbiome of compensated cirrhotic patients with probiotic bacteria during a six-month intervention and beneficially change the residential microbiome and gut barrier function.
Collapse
|
47
|
Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2020; 12:nu12061832. [PMID: 32575561 PMCID: PMC7353361 DOI: 10.3390/nu12061832] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) and non-celiac gluten/wheat sensitivity (NCG/WS) are the two most frequent conditions belonging to gluten-related disorders (GRDs). Both these diseases are triggered and worsened by gluten proteins ingestion, although other components, such as amylase/trypsin inhibitors (ATI) and fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), seem to be involved in the NCG/WS onset. Therefore, the only effective treatment to date is the long-life adherence to a strictly gluten-free diet. Recently, increasing attention has been paid to the intestinal barrier, a dynamic system comprising various components, which regulate the delicate crosstalk between metabolic, motor, neuroendocrine and immunological functions. Among the elements characterizing the intestinal barrier, the microbiota plays a key role, modulating the gut integrity maintenance, the immune response and the inflammation process, linked to the CD and NCG/WS outbreak. This narrative review addresses the most recent findings on the gut microbiota modulation induced by the gluten-free diet (GFD) in healthy, CD and NCG/WS patients.
Collapse
|
48
|
Ibrahim S, Zhu X, Luo X, Feng Y, Wang J. PIK3R3 regulates ZO-1 expression through the NF-kB pathway in inflammatory bowel disease. Int Immunopharmacol 2020; 85:106610. [PMID: 32473571 DOI: 10.1016/j.intimp.2020.106610] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) are the major risk factor for developing colitis associated cancer (CAC). Previously, we have reported that Phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) was overexpressed in colorectal cancer (CRC), but we don't know the role of PIK3R3 in IBD. METHODS We investigated the differential expression of PIK3R3 and ZO-1 in IBD patients by using Immunohistochemical (IHC) and Gene Expression Omnibus (GEO) database analysis. Caco-2 cells were exposed to different conditions to assess protein level changes of PIK3R3 and ZO-1. Caco-2 cell monolayers were transfected with PIK3R3/siPIK3R3 to assess transepithelial electrical resistance. Tight junction protein integrity was assessed by immunoblot and immunofluorescence. For further, intestinal permeability and tight junction protein integrity were assessed in animal study to assess the treatment role of PIK3R3 specific inhibitor TAT-N 15 (N15). RESULTS PIK3R3 was increased in IBD patients, and negatively controlled the expression of ZO-1. In vitro, PIK3R3 regulates ZO-1 by activating NF-kB pathway. Overexpression of PIK3R3 in Caco-2 cells decreased transepithelial electrical resistance (TEER), an opposite result was observed in siPIK3R3 cells. In animal study, inhibition of PIK3R3 by N15 contributed to amelioration of DSS-induced intestinal permeability. Mice treated with N15 exhibited less disruption of TJs in colon tissues. CONCLUSIONS PIK3R3 was increased in clinical IBD patients with accompanying disruption of ZO-1 expression. Inhibition of PIK3R3 attenuated DSS-induced IBD symptoms in a mouse model. These findings indicated that PIK3R3 could be a therapeutic target for IBD.
Collapse
Affiliation(s)
- Sidikjan Ibrahim
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Zhu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China; Renmin Hospital, Wuhan University, Wuhan 430060, China.
| | - Xuelai Luo
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yongdong Feng
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
49
|
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, Woerther PL, Vozy A, Naigeon M, Nebot-Bral L, Desbois M, Simeone E, Mateus C, Boselli L, Grivel J, Soularue E, Lepage P, Carbonnel F, Ascierto PA, Robert C, Chaput N. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun 2020; 11:2168. [PMID: 32358520 PMCID: PMC7195489 DOI: 10.1038/s41467-020-16079-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota composition influences the clinical benefit of immune checkpoints in patients with advanced cancer but mechanisms underlying this relationship remain unclear. Molecular mechanism whereby gut microbiota influences immune responses is mainly assigned to gut microbial metabolites. Short-chain fatty acids (SCFA) are produced in large amounts in the colon through bacterial fermentation of dietary fiber. We evaluate in mice and in patients treated with anti-CTLA-4 blocking mAbs whether SCFA levels is related to clinical outcome. High blood butyrate and propionate levels are associated with resistance to CTLA-4 blockade and higher proportion of Treg cells. In mice, butyrate restrains anti-CTLA-4-induced up-regulation of CD80/CD86 on dendritic cells and ICOS on T cells, accumulation of tumor-specific T cells and memory T cells. In patients, high blood butyrate levels moderate ipilimumab-induced accumulation of memory and ICOS + CD4 + T cells and IL-2 impregnation. Altogether, these results suggest that SCFA limits anti-CTLA-4 activity. The gut microbiota has been reported to regulate the efficacy of cancer therapy. Here, the authors show that short-chain fatty acids, which are generated through bacterial fermentation, increases immune tolerance leading to resistance to anti-CTLA-4 immunotherapy in mice and patients with metastatic melanoma.
Collapse
Affiliation(s)
- Clélia Coutzac
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France.,Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France.,Université Paris-Descartes, Faculté de Médicine, F-75006, Paris, France.,Hôpital Européen Georges Pompidou, Département de Gastroentérologie et Oncologie Digestive, Assistance Publique-Hôpitaux de Paris, F-75015, Paris, France
| | - Jean-Mehdi Jouniaux
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France.,Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France
| | - Angelo Paci
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Vectorologie et thérapeutiques anticancéreuses, F-94805, Villejuif, France.,Institut Gustave Roussy, Pharmacology and Drug Analysis Department, Villejuif, F-94805, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, F-92296, France
| | - Julien Schmidt
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France.,Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France
| | - Domenico Mallardo
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Instituto Nazionale Tumori- IRCCS -Fondazione G. Pascale, Napoli, Italia
| | - Atmane Seck
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Vectorologie et thérapeutiques anticancéreuses, F-94805, Villejuif, France.,Institut Gustave Roussy, Pharmacology and Drug Analysis Department, Villejuif, F-94805, France
| | - Vahe Asvatourian
- Institut Gustave Roussy, Biostatistics and Epidemiology Unit, Villejuif, F-94805, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, 94807, Villejuif, France
| | - Lydie Cassard
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Patrick Saulnier
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Genomic platform Molecular Biopathology unit and Biological Resource Center, F-94805, Villejuif, France
| | - Ludovic Lacroix
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Genomic platform Molecular Biopathology unit and Biological Resource Center, F-94805, Villejuif, France
| | - Paul-Louis Woerther
- Institut Gustave Roussy, Department of Medical Biology and Pathology, Microbiology unit, Villejuif, F-94805, France
| | - Aurore Vozy
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Marie Naigeon
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Laetitia Nebot-Bral
- Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France.,Université Paris-Saclay, Institut Gustave Roussy, CNRS, Stabilité génétique et oncogenèse, 94805, Villejuif, France
| | - Mélanie Desbois
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Ester Simeone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Instituto Nazionale Tumori- IRCCS -Fondazione G. Pascale, Napoli, Italia
| | - Christine Mateus
- Institut Gustave Roussy, Dermatology Unit, Department of Medicine, Villejuif, F-94805, France
| | - Lisa Boselli
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Jonathan Grivel
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France
| | - Emilie Soularue
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France.,Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France.,Hôpital du Kremlin Bicêtre Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Franck Carbonnel
- Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France.,Hôpital du Kremlin Bicêtre Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Instituto Nazionale Tumori- IRCCS -Fondazione G. Pascale, Napoli, Italia
| | - Caroline Robert
- Université Paris-Saclay, Faculté de Médicine, Le Kremlin Bicêtre, F-94276, France.,Institut Gustave Roussy, Dermatology Unit, Department of Medicine, Villejuif, F-94805, France
| | - Nathalie Chaput
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, CNRS, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, F-94805, Villejuif, France. .,Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, F-92296, France. .,Université Paris-Saclay, Institut Gustave Roussy, CNRS, Stabilité génétique et oncogenèse, 94805, Villejuif, France.
| |
Collapse
|
50
|
Zhang L, Wallace CD, Erickson JE, Nelson CM, Gaudette SM, Pohl CS, Karsen SD, Simler GH, Peng R, Stedman CA, Laroux FS, Wurbel MA, Kamath RV, McRae BL, Schwartz Sterman AJ, Mitra S. Near infrared readouts offer sensitive and rapid assessments of intestinal permeability and disease severity in inflammatory bowel disease models. Sci Rep 2020; 10:4696. [PMID: 32170183 PMCID: PMC7070059 DOI: 10.1038/s41598-020-61756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal permeability and neutrophil activity are closely linked to inflammatory bowel disease (IBD) pathophysiology. Here we discuss two techniques for assessing permeability and neutrophil activity in mouse IBD models using near infrared (NIR) detection. To address the limitation of visible light readouts-namely high background-IRDye 800CW was used to enable rapid, non-terminal measurements of intestinal permeability. The increased sensitivity of NIR readouts for colon permeability is shown using dextran sulfate sodium (DSS) and anti-CD40 murine colitis models in response to interleukin-22 immunoglobulin Fc (IL22Fc) fusion protein and anti-p40 monoclonal antibody treatments, respectively. In addition to enhanced permeability, elevated levels of neutrophil elastase (NE) have been reported in inflamed colonic mucosal tissue. Activatable NIR fluorescent probes have been extensively used for disease activity evaluation in oncologic animal models, and we demonstrate their translatability using a NE-activatable reagent to evaluate inflammation in DSS mice. Confocal laser endomicroscopy (CLE) and tissue imaging allow visualization of spatial NE activity throughout diseased colon as well as changes in disease severity from IL22Fc treatment. Our findings with the 800CW dye and the NE probe highlight the ease of their implementation in preclinical IBD research.
Collapse
Affiliation(s)
- Liang Zhang
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA.
| | | | | | | | | | | | | | | | - Ruoqi Peng
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | | | | | - Marc A Wurbel
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | | | | | | | - Soumya Mitra
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| |
Collapse
|