1
|
Chorvinsky E, Bhattacharya S, Bera BS, Welham A, Ismat K, Lawlor CM, Preciado D, Gomez JL, Morizono H, Pillai DK, Gutierrez MJ, Jaiswal JK, Nino G. Dysregulated airway epithelial antiviral immunity in Down Syndrome impairs type III IFN response and amplifies airway inflammation during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624921. [PMID: 39651190 PMCID: PMC11623526 DOI: 10.1101/2024.11.22.624921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Trisomy 21 (TS21), also known as Down syndrome (DS), increases pediatric mortality risk from respiratory syncytial virus (RSV) by nine-fold, yet its underlying immunological basis remains unclear. Here, we investigated RSV-induced immunological responses in TS21 airway epithelial cells (AECs), the primary site of respiratory virus entry and host defense. TS21 AECs exhibit hyperactive interferon (IFN) signaling and reduced RSV infectivity, but they also show impaired type-III IFN responses during viral infection. Furthermore, TS21 AECs demonstrate heightened production of proinflammatory mediators CXCL5 and CXCL10 both before and after RSV exposure. Infants with DS suffering from severe viral bronchiolitis demonstrate dysregulated airway immune responses in vivo, characterized by diminished type-III IFN levels and increased CXCL5/CXCL10 secretion. Our results indicate that RSV severity in DS is not due to impaired viral control but to dysregulated airway proinflammatory responses, offering new therapeutic opportunities to mitigate the severity of RSV infection in children with DS.
Collapse
|
2
|
Welham A, Chorvinsky E, Bhattacharya S, Bera BS, Salka K, Weinstock J, Chen XX, Perez GF, Pillai DK, Gutierrez MJ, Morizono H, Jaiswal J, Nino G. High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity. Immunology 2023. [PMID: 38148520 DOI: 10.1111/imm.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a primarily epithelial-derived cytokine that drives type 2 allergic immune responses. Early life viral respiratory infections elicit high TSLP production, which leads to the development of type 2 inflammation and airway hyperreactivity. The goal of this study was to examine in vivo and in vitro the human airway epithelial responses leading to high TSLP production during viral respiratory infections in early infancy. A total of 129 infants (<1-24 m, median age 10 m) with severe viral respiratory infections were enrolled for in vivo (n = 113), and in vitro studies (n = 16). Infants were classified as 'high TSLP' or 'low TSLP' for values above or below the 50th percentile. High versus low TSLP groups were compared in terms of type I-III IFN responses and production of chemokines promoting antiviral (CXCL10), neutrophilic (CXCL1, CXCL5, CXCL8), and type 2 responses (CCL11, CCL17, CCL22). Human infant airway epithelial cell (AEC) cultures were used to define the transcriptomic (RNAseq) profile leading to high versus low TSLP responses in vitro in the absence (baseline) or presence (stimulated) of a viral mimic (poly I:C). Infants in the high TSLP group had greater in vivo type III IFN airway production (median type III IFN in high TSLP 183.2 pg/mL vs. 63.4 pg/mL in low TSLP group, p = 0.007) and increased in vitro type I-III IFN AEC responses after stimulation with a viral mimic (poly I:C). At baseline, our RNAseq data showed that infants in the high TSLP group had significant upregulation of IFN signature genes (e.g., IFIT2, IFI6, MX1) and pro-inflammatory chemokine genes before stimulation. Infants in the high TSLP group also showed a baseline AEC pro-inflammatory state characterized by increased production of all the chemokines assayed (e.g., CXCL10, CXCL8). High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity and increased baseline AEC production of pro-inflammatory chemokines. These findings present a new paradigm underlying the production of TSLP in the human infant airway epithelium following early life viral exposure and shed light on the long-term impact of viral respiratory illnesses during early infancy and beyond childhood.
Collapse
Affiliation(s)
- Allison Welham
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Elizabeth Chorvinsky
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Surajit Bhattacharya
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Betelehem Solomon Bera
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Kyle Salka
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Jered Weinstock
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Xilei Xu Chen
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Dinesh K Pillai
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Dai H, Zheng Q, Shan S, Lei Y, Zhang J, Zhong C, Xu Y, Liu Z, Ren T. A novel type of serum‑free medium for culturing human airway epithelium cells. Exp Ther Med 2023; 25:239. [PMID: 37114176 PMCID: PMC10126810 DOI: 10.3892/etm.2023.11938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to evaluate the ability of a novel serum-free medium (SFM) to culture human airway epithelium cells (hAECs). hAECs were cultured in the novel SFM as the experimental group in the PneumaCult-Ex medium and Dulbecco's modified eagle medium (DMEM) and fetal bovine serum (FBS) as the control groups. Cell morphology, proliferative capacity, differentiation capacity and expression levels of basal cell markers were assessed accordingly in both culture systems. Optical microscope photos of hAECs were collected for cell morphology assessment. Cell Counting Kit-8 assay was conducted to assess the proliferation ability, and an air-liquid interface (ALI) assay was conducted to assess the differentiation capacity. Markers for proliferating basal and differentiated cells were relatively identified by immunohistochemical and immunofluorescent analysis. The results show that whether grown in the novel SFM or Ex medium, hAECs exhibited similar morphology at every passage, whereas cells could hardly form colonies in the DMEM + FBS group. Cells typically exhibited cobblestone shape, while a proportion of them in the novel SFM at late passage exhibited a larger shape. White vesicles appeared in the cytoplasm of some control cells at the later stage of culture. Basal cell markers (P63+KRT5+KI67+CC10-) for proliferating ability were found in the hAECs cultured by the novel SFM and Ex medium. hAECs at passage 3 cultured in the novel SFM and Ex medium both had the capacity to differentiate into ciliated cells (acetylated tubulin+), goblet cells (MUC5AC+) and club cells (CC10+) in the ALI culture assay. In conclusion, the novel SFM was capable of culturing hAECs. The hAECs cultured by the novel SFM could proliferate and differentiate in vitro. The novel SFM does not change the morphological characteristics or biomarkers of hAECs. The novel SFM has the potential for the amplification of hAECs for scientific research and clinical application.
Collapse
Affiliation(s)
- Haotian Dai
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
- Correspondence to: Professor Tao Ren or Dr Zeyu Liu, Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai 200233, P.R. China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
- Correspondence to: Professor Tao Ren or Dr Zeyu Liu, Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai 200233, P.R. China
| |
Collapse
|
4
|
Maughan EF, Hynds RE, Pennycuick A, Nigro E, Gowers KH, Denais C, Gómez-López S, Lazarus KA, Orr JC, Pearce DR, Clarke SE, Lee DDH, Woodall MN, Masonou T, Case KM, Teixeira VH, Hartley BE, Hewitt RJ, Al Yaghchi C, Sandhu GS, Birchall MA, O’Callaghan C, Smith CM, De Coppi P, Butler CR, Janes SM. Cell-intrinsic differences between human airway epithelial cells from children and adults. iScience 2022; 25:105409. [PMID: 36388965 PMCID: PMC9664344 DOI: 10.1016/j.isci.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells, and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium was similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony formation ability, sustained in vitro growth, and outcompeted adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states.
Collapse
Affiliation(s)
- Elizabeth F. Maughan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Robert E. Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Celine Denais
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Sandra Gómez-López
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Kyren A. Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Jessica C. Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - David R. Pearce
- University College London Cancer Institute, University College London, London WC1E 6DD, UK
| | - Sarah E. Clarke
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Dani Do Hyang Lee
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Maximillian N.J. Woodall
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Tereza Masonou
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Katie-Marie Case
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | | | - Chadwan Al Yaghchi
- The National Centre for Airway Reconstruction, Department of Otolaryngology, Charing Cross Hospital, London W6 8RF, UK
| | - Gurpreet S. Sandhu
- The National Centre for Airway Reconstruction, Department of Otolaryngology, Charing Cross Hospital, London W6 8RF, UK
| | - Martin A. Birchall
- University College London Ear Institute, University College London, London WC1X 8EE, UK
| | - Christopher O’Callaghan
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Claire M. Smith
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 1EH, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Colin R. Butler
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
- Tracheal Service, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| |
Collapse
|
5
|
Osan J, Talukdar SN, Feldmann F, DeMontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiol Spectr 2022; 10:e0045922. [PMID: 35862971 PMCID: PMC9430117 DOI: 10.1128/spectrum.00459-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2's cellular tropism plays a critical role in severe pathophysiology in the lung, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults (those with COPD). We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium, as mostly goblet cells harbor the entry receptor angiotensin-converting enzyme 2 (ACE2) and its cofactor transmembrane serine protease 2 (TMPRSS2). We also found that SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Likewise, SARS-CoV and Middle East respiratory syndrome (MERS-CoV) infection increased disease pathophysiology (e.g., syncytium formation) in the COPD bronchial airway epithelium. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. IMPORTANCE SARS-CoV-2 or COVID-19's first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19. COPD, which is the third leading cause of death worldwide, is one of the conditions listed by the CDC which can increase the chance of severe COVID-19. The present study uses a healthy and COPD-derived bronchial airway epithelial model to study the COVID-19 and host factors which could explain the reason for COPD patients developing severe infection due to COVID-19.
Collapse
Affiliation(s)
- Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Friederike Feldmann
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Beth Ann DeMontigny
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Kristina L. Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Heinz Feldmann
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
6
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
7
|
Analysis of the diagnosis of Japanese patients with primary ciliary dyskinesia using a conditional reprogramming culture. Respir Investig 2022; 60:407-417. [PMID: 35305968 DOI: 10.1016/j.resinv.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is diagnosed through multiple methods, including transmission electron microscopy (TEM), a high-speed video microscopy analysis (HSVA), immunofluorescence (IF), and genetic testing. A primary cell culture has been recommended to avoid the misdiagnosis of secondary ciliary dyskinesia derived from infection or inflammation and improve diagnostic accuracy. However, primary cells fail to differentiate into ciliated cells through repeated passages. The conditional reprogramming culture (CRC) method, a combination of a Rho-kinase inhibitor and fibroblast feeder cells, has been applied to cystic fibrosis. The goal of this study was to evaluate the value of CRC in diagnosing PCD in Japanese patients. METHODS Eleven patients clinically suspected of having PCD were included. Airway epithelial cells were obtained from an endobronchial forceps biopsy and cultured at the air-liquid interface (ALI) combined with CRC. Ciliary movement, ultrastructure, and mutated ciliary protein evaluation were performed using HSVA, TEM, and IF, respectively. Genetic testing was performed on some patients. RESULTS CRC yielded dense and well-differentiated ciliated cells with a high success rate (∼90%). In patients with PCD, the ciliary ultrastructure phenotype (outer dynein arm defects or normal ultrastructure) and IF findings (absence of the mutated ciliary protein) were confirmed after CRC. In DNAH11-mutant cases with normal ultrastructure by TEM, the HSVA revealed stiff and hyperfrequent ciliary beating with low bending capacity in CRC-expanded cells, thereby supporting the diagnosis. CONCLUSIONS CRC could be a potential tool for improving diagnostic accuracy and contributing to future clinical and basic research in PCD.
Collapse
|
8
|
Schmidt H, Gutjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 2022; 322:C591-C604. [PMID: 35196166 PMCID: PMC8977148 DOI: 10.1152/ajpcell.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Cente, Ulm, Germany.,Institute of General Physiology, Ulm University, Ulm, Germany
| | - Lara Gutjahr
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
9
|
Morgan R, Manfredi C, Easley KF, Watkins LD, Hunt WR, Goudy SL, Sorscher EJ, Koval M, Molina SA. A medium composition containing normal resting glucose that supports differentiation of primary human airway cells. Sci Rep 2022; 12:1540. [PMID: 35087167 PMCID: PMC8795386 DOI: 10.1038/s41598-022-05446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.
Collapse
Affiliation(s)
- Rachel Morgan
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Candela Manfredi
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Lionel D Watkins
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - William R Hunt
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Steven L Goudy
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael Koval
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Samuel A Molina
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Bukowy-Bieryłło Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun Signal 2021; 19:63. [PMID: 34044844 PMCID: PMC8159066 DOI: 10.1186/s12964-021-00740-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human airway epithelial (HAE) cellular models are widely used in applicative studies of the airway physiology and disease. In vitro expanded and differentiated primary HAE cells collected from patients seem to be an accurate model of human airway, offering a quicker and cheaper alternative to the induced pluripotent stem cell (iPSCs) models. However, the biggest drawback of primary HAE models is their limited proliferative lifespan in culture. Much work has been devoted to understand the factors, which govern the HAE cell proliferation and differentiation, both in vivo and in vitro. Here, I have summarized recent achievements in primary HAE culture, with the special emphasis on the models of conditionally reprogrammed cells (CRC), which allow longer in vitro proliferation and differentiation of HAE cells. The review compares the CRC HAE technique variants (feeder culture or HAE mono-culture), based on recently published studies exploiting this model. The advantages and limitations of each CRC HAE model variant are summarized, along with the description of other factors affecting the CRC HAE culture success (tissue type, sampling method, sample quality). CONCLUSIONS CRC HAE cultures are a useful technique in respiratory research, which in many cases exceeds the iPSCs and organoid culture methods. Until the current limitations of the iPSCs and organoid culture methods will be alleviated, the primary CRC HAE cultures might be a useful model in respiratory research. Airway epithelium (AE) is a type of tissue, which lines the whole length of human airways, from the nose to the bronchi. Improper functioning of AE causes several human airway disorders, such as asthma, chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF). Much work has been devoted to finding the best scientific model of human AE, in order to learn about its functioning in health and disease. Among the popular AE models are the primary in vitro cultured AE cells collected from human donors. Unfortunately, such human AE (HAE) cells do not easily divide (expand) in vitro; this poses a large logistic and ethical problem for the researchers. Here, I summarize recent achievements in the methods for in vitro culture of human AE cells, with special emphasis on the conditionally reprogrammed cell (CRC) models, which allow longer and more effective expansion of primary human AE cells in vitro. The review describes how the specific chemicals used in the CRC models work to allow the increased HAE divisions and compares the effects of the different so-far developed variants of the CRC HAE culture. The review also pinpoints the areas which need to be refined, in order to maximize the usefulness of the CRC AE cultures from human donors in research on human airway disorders. Video abstract.
Collapse
|
11
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
12
|
XuChen X, Weinstock J, Arroyo M, Salka K, Chorvinsky E, Abutaleb K, Aguilar H, Kahanowitch R, Rodríguez-Martínez CE, Perez GF, Gutierrez MJ, Nino G. Airway Remodeling Factors During Early-Life Rhinovirus Infection and the Effect of Premature Birth. Front Pediatr 2021; 9:610478. [PMID: 33718297 PMCID: PMC7952989 DOI: 10.3389/fped.2021.610478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Early rhinovirus (RV) infection is a strong risk factor for asthma development. Airway remodeling factors play a key role in the progression of the asthmatic condition. We hypothesized that RV infection in young children elicits the secretion of growth factors implicated in airway remodeling and asthma progression. Methods: We examined the nasal airway production of remodeling factors in children ( ≤ 2 years old) hospitalized due to PCR-confirmed RV infection. Airway remodeling proteins included: MMP-1, MMP-2, MMP-7, MMP-9, MMP-10, TIMP-1, TIMP-2, EGF, Angiopoietin-2, G-CSF, BMP-9, Endoglin, Endothelin-1, Leptin, FGF-1, Follistatin, HGF, HB-EGF, PLGF, VEGF-A, VEGF-C, VEGF-D, FGF-2, TGF-β1, TGF-β2, TGF-β3, PDGF AA, PDGF BB, SPARC, Periostin, OPN, and TGF-α. Results: A total of 43 young children comprising RV cases (n = 26) and uninfected controls (n = 17) were included. Early RV infection was linked to (1) enhanced production of several remodeling factors (e.g., HGF, TGFα), (2) lower MMP-9/TIMP-2 and MMP-2/TIMP-2 ratios, and (3) increased MMP-10/TIMP-1 ratios. We also found that relative to term infants, severely premature children had reduced MMP-9/TIMP-2 ratios at baseline. Conclusion: RV infection in young children elicits the airway secretion of growth factors implicated in angiogenesis, fibrosis, and extracellular matrix deposition. Our results highlight the potential of investigating virus-induced airway remodeling growth factors during early infancy to monitor and potentially prevent chronic progression of respiratory disorders in all ages.
Collapse
Affiliation(s)
- Xilei XuChen
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Jered Weinstock
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Maria Arroyo
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Kyle Salka
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Elizabeth Chorvinsky
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Karima Abutaleb
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Hector Aguilar
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Ryan Kahanowitch
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| | - Carlos E Rodríguez-Martínez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, NY, United States
| | - Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD, United States
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Chai J, Han L, Zhang J, Han D, Zou L, Zhu Z, Zhao Y, Guo H. Conditional Reprogramming Inducing Clinical Cells Proliferation: New Research Tools in Tumor and Inflammatory-related Diseases. Curr Pharm Des 2020; 26:2657-2660. [PMID: 32175833 DOI: 10.2174/1381612826666200316155252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/08/2020] [Indexed: 01/11/2023]
Abstract
In the era of precision medicine, establishing a patient-derived cell model is crucial, whether in vitro or in vivo. Compared to the traditional cell lines, patient-derived primary cells represent precise genetic features from specific patients, but poor proliferative activity of human primary cells restricts their popular application. Conditional reprogramming (CR) is a new cell culture technique to achieve rapid growth of patient-derived cells in vitro, making it possible to identify the individual difference and screen drugs sensitivity. In this review, we will summarize the application and limitation of CR in tumor and inflammatory-related diseases, indicating the prospect of this technique for preclinical research.
Collapse
Affiliation(s)
- Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Li Han
- Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Ze Zhu
- Department of Pathogen Biology, Tianjin Medical University, Tianjin, China
| | - Yulong Zhao
- Department of Pathogen Biology, Tianjin Medical University, Tianjin, China
| | - Hongliang Guo
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
14
|
Osan JK, Talukdar SN, Feldmann F, DeMontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in COPD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.11.379099. [PMID: 33200131 PMCID: PMC7668735 DOI: 10.1101/2020.11.11.379099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 has become a major problem across the globe, with approximately 50 million cases and more than 1 million deaths and currently no approved treatment or vaccine. Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illness associated with COVID-19. We established an airway epithelium model to study SARS-CoV-2 infection in healthy and COPD lung cells. We found that both the entry receptor ACE2 and the co-factor transmembrane protease TMPRSS2 are expressed at higher levels on nonciliated goblet cell, a novel target for SARS-CoV-2 infection. We observed that SARS-CoV-2 infected goblet cells and induced syncytium formation and cell sloughing. We also found that SARS-CoV-2 replication was increased in the COPD airway epithelium likely due to COPD associated goblet cell hyperplasia. Our results reveal goblet cells play a critical role in SARS-CoV-2 infection in the lung.
Collapse
Affiliation(s)
- Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Friederike Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Beth Ann DeMontigny
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kristina L. Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heinz Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Lead contact
| |
Collapse
|
15
|
Liu X, Mondal AM. Conditional cell reprogramming for modeling host-virus interactions and human viral diseases. J Med Virol 2020; 92:2440-2452. [PMID: 32478897 PMCID: PMC7586785 DOI: 10.1002/jmv.26093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Conventional cancer and transformed cell lines are widely used in cancer biology and other fields within biology. These cells usually have abnormalities from the original tumor itself, but may also develop abnormalities due to genetic manipulation, or genetic and epigenetic changes during long-term passages. Primary cultures may maintain lineage functions as the original tissue types, yet they have a very limited life span or population doubling time because of the nature of cellular senescence. Primary cultures usually have very low yields, and the high variability from any original tissue specimens, largely limiting their applications in research. Animal models are often used for studies of virus infections, disease modeling, development of antiviral drugs, and vaccines. Human viruses often need a series of passages in vivo to adapt to the host environment because of variable receptors on the cell surface and may have intracellular restrictions from the cell types or host species. Here, we describe a long-term cell culture system, conditionally reprogrammed cells (CRCs), and its applications in modeling human viral diseases and drug discovery. Using feeder layer coculture in presence of Y-27632 (conditional reprogramming, CR), CRCs can be obtained and rapidly propagated from surgical specimens, core or needle biopsies, and other minimally invasive or noninvasive specimens, for example, nasal cavity brushing. CRCs preserve their lineage functions and provide biologically relevant and physiological conditions, which are suitable for studies of viral entry and replication, innate immune responses of host cells, and discovery of antiviral drugs. In this review, we summarize the applications of CR technology in modeling host-virus interactions and human viral diseases including severe acute respiratory syndrome coronavirus-2 and coronavirus disease-2019, and antiviral discovery.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical CenterWashingtonDC
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Abdul M. Mondal
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical CenterWashingtonDC
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| |
Collapse
|
16
|
Salka K, Arroyo M, Chorvinsky E, Abutaleb K, Perez GF, Wolf S, Xuchen X, Weinstock J, Gutierrez MJ, Pérez-Losada M, Pillai DK, Nino G. Innate IFN-lambda responses to dsRNA in the human infant airway epithelium and clinical regulatory factors during viral respiratory infections in early life. Clin Exp Allergy 2020; 50:1044-1054. [PMID: 32623773 PMCID: PMC7484417 DOI: 10.1111/cea.13701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION IFN lambda (type III-IFN-λ1) is a molecule primarily produced by epithelial cells that provides an important first-line defence against viral respiratory infections and has been linked to the pathogenesis of viral-induced wheezing in early life. The goal of this study was to better understand the regulation of innate IFN-lambda responses in vitro in primary human infant airway epithelial cells (AECs) and in vivo using nasal aspirates during viral respiratory infections. METHODS IFN-lambda protein levels were quantified: (a) in human infant AECs exposed to (poly(I:C) dsRNA) under different experimental conditions (n = 8 donors); and (b) in nasal aspirates of young children (≤3 years) hospitalized with viral respiratory infection (n = 138) and in uninfected controls (n = 74). In vivo IFN-lambda airway levels during viral infections were correlated with individual characteristics and respiratory disease parameters. RESULTS Our in vitro experiments showed that the poly(I:C)-induced innate production of IFN lambda in human infant AECs is regulated by (a) p38-MAPK/NF-kB dependent mechanism; and (b) exposure to pro-inflammatory signals such as IL1β. Our in vivo studies demonstrated that (a) infants (<18 months) had higher virus-induced IFN-lambda airway secretion; (b) subjects with RSV infection showed the highest IFN-lambda airway levels; and (c) individuals with the highest virus-induced IFN-lambda levels (>90th percentile) had higher viral loads and were more likely to have respiratory sick visits within 12 months of discharge (OR = 5.8). CONCLUSION IFN-lambda responses to dsRNA in the human infant airway epithelium are regulated by p38-MAPK and NF-kB signalling. High in vivo IFN-lambda production is influenced by virus type and associated with recurrent respiratory sick visits in young children.
Collapse
Affiliation(s)
- Kyle Salka
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Maria Arroyo
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Elizabeth Chorvinsky
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Karima Abutaleb
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Geovanny F. Perez
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Seth Wolf
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Xilei Xuchen
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Jered Weinstock
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Maria J. Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Dinesh K. Pillai
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Medical Center, George Washington University, Washington, D.C, USA
| |
Collapse
|
17
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
18
|
Xia S, Wu M, Chen S, Zhang T, Ye L, Liu J, Li H. Long Term Culture of Human Kidney Proximal Tubule Epithelial Cells Maintains Lineage Functions and Serves as an Ex vivo Model for Coronavirus Associated Kidney Injury. Virol Sin 2020; 35:311-320. [PMID: 32602046 PMCID: PMC7322379 DOI: 10.1007/s12250-020-00253-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanism of how SARS-CoV-2 causes severe multi-organ failure is largely unknown. Acute kidney injury (AKI) is one of the frequent organ damage in severe COVID-19 patients. Previous studies have shown that human renal tubule cells could be the potential host cells targeted by SARS-CoV-2. Traditional cancer cell lines or immortalized cell lines are genetically and phenotypically different from host cells. Animal models are widely used, but often fail to reflect a physiological and pathogenic status because of species tropisms. There is an unmet need for normal human epithelial cells for disease modeling. In this study, we successfully established long term cultures of normal human kidney proximal tubule epithelial cells (KPTECs) in 2D and 3D culture systems using conditional reprogramming (CR) and organoids techniques. These cells had the ability to differentiate and repair DNA damage, and showed no transforming property. Importantly, the CR KPTECs maintained lineage function with expression of specific transporters (SLC34A3 and cubilin). They also expressed angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV and SARS-CoV-2. In contrast, cancer cell line did not express endogenous SLC34A3, cubilin and ACE2. Very interestingly, ACE2 expression was around twofold higher in 3D organoids culture compared to that in 2D CR culture condition. Pseudovirion assays demonstrated that SARS-CoV spike (S) protein was able to enter CR cells with luciferase reporter. This integrated 2D CR and 3D organoid cultures provide a physiological ex vivo model to study kidney functions, innate immune response of kidney cells to viruses, and a novel platform for drug discovery and safety evaluation.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming Wu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Si Chen
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tao Zhang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lina Ye
- Wuhan University Shenzhen Institute, Shenzhen, 518057, China
| | - Jun Liu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hui Li
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,Wuhan University Shenzhen Institute, Shenzhen, 518057, China.
| |
Collapse
|
19
|
Liu X, Wu Y, Rong L. Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses. Virol Sin 2020; 35:280-289. [PMID: 32557270 PMCID: PMC7298165 DOI: 10.1007/s12250-020-00244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinoi at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
20
|
Salka K, Arroyo M, Naime S, Chorvinsky E, Gutierrez MJ, Pillai DK, Perez GF, Nino G. TSLP Production in the Human Infant Airway Epithelium and Clinical Relevance during Viral Respiratory Infections. Am J Respir Cell Mol Biol 2020; 62:115-117. [PMID: 31891308 PMCID: PMC6938137 DOI: 10.1165/rcmb.2019-0248le] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kyle Salka
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | - Maria Arroyo
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | - Samira Naime
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | - Elizabeth Chorvinsky
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | | | - Dinesh K. Pillai
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | - Geovanny F. Perez
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| | - Gustavo Nino
- Children’s National Health SystemWashington, DC
- George Washington UniversityWashington, DCand
| |
Collapse
|
21
|
Rock Inhibitor Y-27632 Enables Feeder-Free, Unlimited Expansion of Sus scrofa domesticus Swine Airway Stem Cells to Facilitate Respiratory Research. Stem Cells Int 2019; 2019:3010656. [PMID: 31871466 PMCID: PMC6906834 DOI: 10.1155/2019/3010656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Current limitations in the efficacy of treatments for chronic respiratory disorders position them as prospective regenerative medicine therapeutic targets. A substantial barrier to these ambitions is that research requires large numbers of cells whose acquisition is hindered by the limited availability of human tissue samples leading to an overreliance on physiologically dissimilar rodents. The development of cell culture strategies for airway cells from large mammals will more effectively support the transition from basic research to clinical therapy. Using readily available porcine lungs, we isolated conducting airway tissue and subsequently a large number of porcine airway epithelial cells (pAECs) using a digestion and mechanical scraping technique. Cells were cultured in a variety of culture media formulations, both foetal bovine serum-containing and serum-free media, in air (21%) and physiological (2%) oxygen tension and in the presence and absence of Rho kinase inhibitor Y-27362 (RI). Cell number at isolation and subsequent population doublings were determined; cells were characterised during culture and following differentiation by immunofluorescence, histology, and IL-8 ELISA. Cells were positive for epithelial markers (pan-cytokeratin and E-cadherin) and negative for fibroblastic markers (vimentin and smooth muscle actin). Supplementation of cultures with Y-27632 allowed for unlimited expansion whilst sustaining an epithelial phenotype. Early passage pAECs readily produced differentiated air-liquid interface (ALI) cultures with a capacity for mucociliary differentiation retained after substantial expansion, strongly modulated by the culture condition applied. Primary pAECs will be a useful tool to further respiratory-oriented research whilst RI-expanded pAECs are a promising tool, particularly with further optimisation of culture conditions.
Collapse
|
22
|
Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, Strome S, Cullen K, Davidson B, Deeken JF, Choudhury S, Ahn PH, Agarwal S, Zhou X, Schlegel R, Furth PA, Pan CX, Liu X. Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells 2019; 8:E1327. [PMID: 31717887 PMCID: PMC6912808 DOI: 10.3390/cells8111327] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2-20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this review, we will summarize applications of conditional cell reprogramming (CR) in cancer research and next generation living biobanks (NGLB). Together with organoids, CR has been cited in two NCI (National Cancer Institute, USA) programs (PDMR: patient-derived cancer model repository; HCMI: human cancer model initiatives. HCMI will be distributed through ATCC). Briefly, the CR method is a simple co-culture technology with a Rho kinase inhibitor, Y-27632, in combination with fibroblast feeder cells, which allows us to rapidly expand both normal and malignant epithelial cells from diverse anatomic sites and mammalian species and does not require transfection with exogenous viral or cellular genes. Establishment of CR cells from both normal and tumor tissue is highly efficient. The robust nature of the technique is exemplified by the ability to produce 2 × 106 cells in five days from a core biopsy of tumor tissue. Normal CR cell cultures retain a normal karyotype and differentiation potential and CR cells derived from tumors retain their tumorigenic phenotype. CR also allows us to enrich cancer cells from urine (for bladder cancer), blood (for prostate cancer), and pleural effusion (for non-small cell lung carcinoma). The ability to produce inexhaustible cell populations using CR technology from small biopsies and cryopreserved specimens has the potential to transform biobanking repositories (NGLB: next-generation living biobank) and current pathology practice by enabling genetic, biochemical, metabolomic, proteomic, and biological assays, including chemosensitivity testing as a functional diagnostics tool for precision cancer medicine. We discussed analyses of patient-derived matched normal and tumor models using a case with tongue squamous cell carcinoma as an example. Last, we summarized applications in cancer research, disease modeling, drug discovery, and regenerative medicine of CR-based NGLB.
Collapse
Affiliation(s)
- Nancy Palechor-Ceron
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Vera Simic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Hang Yuan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Weisheng Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Fleesie Hubbard
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Hancai Dan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Scott Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Kevin Cullen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Bruce Davidson
- Department of Otorhinolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - John F. Deeken
- Inova Translational Medicine Institute, Inova Health System, Fairfax, VA 22031, USA;
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Peter H. Ahn
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Xuexun Zhou
- iCryobiol and iFuture Technologies, Shanghai 200127, China;
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Chong-Xian Pan
- University of California at Davis, Sacramento, CA 95817, USA;
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| |
Collapse
|
23
|
Looi K, Evans DJ, Garratt LW, Ang S, Hillas JK, Kicic A, Simpson SJ. Preterm birth: Born too soon for the developing airway epithelium? Paediatr Respir Rev 2019; 31:82-88. [PMID: 31103368 DOI: 10.1016/j.prrv.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022]
Abstract
Birth prior to term interrupts the normal development of the respiratory system and consequently results in poor respiratory outcomes that persist throughout childhood. The mechanisms underpinning these poor respiratory outcomes are not well understood, but intrinsic abnormalities within the airway epithelium may be a contributing factor. Current evidence suggests that the airway epithelium is both structurally and functionally abnormal after preterm birth, with reports of epithelial thickening and goblet cell hyperplasia in addition to increased inflammation and apoptosis in the neonatal intensive care unit. However, studies focusing on the airway epithelium are limited and many questions remain unanswered; including whether abnormalities are a direct result of interrupted development, a consequence of exposure to inflammatory stimuli in the perinatal period or a combination of the two. In addition, the difficulty of accessing airway tissue has resulted in the majority of evidence being collected in the pre-surfactant era which may not reflect contemporary preterm birth. This review examines the consequences of preterm birth on the airway epithelium and explores the clinical relevance of currently available models whilst highlighting the need to develop a clinically relevant in vitro model to help further our understanding of the airway epithelium in preterm birth.
Collapse
Affiliation(s)
- Kevin Looi
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Denby J Evans
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Sherlynn Ang
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Jessica K Hillas
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6845, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA 6009, Australia; UWA Centre for Child Health Research & School of Biomedical Sciences, Nedlands 6009, Western Australia, Australia
| | - Shannon J Simpson
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia.
| |
Collapse
|
24
|
Rayner RE, Makena P, Prasad GL, Cormet-Boyaka E. Optimization of Normal Human Bronchial Epithelial (NHBE) Cell 3D Cultures for in vitro Lung Model Studies. Sci Rep 2019; 9:500. [PMID: 30679531 PMCID: PMC6346027 DOI: 10.1038/s41598-018-36735-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Robust in vitro lung models are required for risk assessment to measure key events leading to respiratory diseases. Primary normal human bronchial epithelial cells (NHBE) represent a good lung model but obtaining well-differentiated 3D cultures can be challenging. Here, we evaluated the ability to expand primary NHBE cells in different culture conditions while maintaining their 3D culture characteristics such as ciliated and goblet cells, and ion channel function. Differentiated cultures were optimally obtained with PneumaCult-Ex Plus (expansion medium)/PneumaCult-ALI (differentiation medium). Primary cells passaged up to four times maintained airway epithelial characteristics as evidenced by ciliated pseudostratified columnar epithelium with goblet cells, trans-epithelial electrical resistance (TEER) (>400 Ohms.cm2), and cystic fibrosis transmembrane conductance regulator-mediated short-circuit currents (>3 µA/cm2). No change in ciliary beat frequency (CBF) or airway surface liquid (ASL) meniscus length was observed up to passage six. For the first time, this study demonstrates that CFTR ion channel function and normal epithelial phenotypic characteristics are maintained in passaged primary NHBE cells. Furthermore, this study highlights the criticality of evaluating expansion and differentiation conditions for achieving optimal phenotypic and functional endpoints (CBF, ASL, ion channel function, presence of differentiated cells, TEER) when developing in vitro lung models.
Collapse
Affiliation(s)
- Rachael E Rayner
- The Ohio State University, Department of Veterinary Biosciences, Columbus, OH, 43210, USA
| | | | | | - Estelle Cormet-Boyaka
- The Ohio State University, Department of Veterinary Biosciences, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Conditionally reprogrammed human normal bronchial epithelial cells express comparable levels of cytochromes p450 and are sensitive to BaP induction. Biochem Biophys Res Commun 2018; 503:2132-2138. [PMID: 30122317 DOI: 10.1016/j.bbrc.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
Cytochromes p450 (CYPs) metabolize thousands of endogenous and exogenous chemicals, including toxic compounds and drugs. The primary cells have relative short life span and are not able to sustain levels of metabolic enzymes CYPs expression and activity long enough in vitro. The immortalized cell lines are also not ideal for toxicity testing because of their low levels of CYPs expression. In this study, we established human normal bronchial epithelial cells using conditional reprogramming (CR) technique from three human donors (named as CR-HNBE1-3). These CR cells can proliferate continuously in defined culture system over 50 PDs within 2 months. The CR-HNBE cells exhibited the normal diploid karyotype, normal response to DNA damage and normal differentiation potential under the matrigel 3D culture condition. The CR-HNBE cells express the basal epithelial marker cytokeratin 14 (CK14) and epithelial secretory marker Mucin 5AC. Most importantly, CR-HNBE cells express comparable levels of CYP1B1 and CYP2E1 as those in lung tissue. These CR cells also express comparable mRNA of CYP1A1/CYP1A2, CYP2B6/CYP2C9/CYP2D6 and CYP3A4/CYP3A5 compared to the lung tissue. The basal activity of CYP1A1/CYP1B1 in these CR cells was 3-6 folds higher than that of 16HBE cells (an immortalized cell line widely used in toxicology field). Our data also demonstrated that Benzo(a)pyrene (BaP) induced up to 100 folds of mRNA expression of CYP1A1 or CYP1A2 in CR-HNBE cells. The activity of CYP1A1/CYP1B1 was induced by BaP up to 7-8 folds in CR-HNBE cells, while the activity of CYP1A1/CYP1B1 was induced maximum 2.5 folds in 16HBE cells. Taken together, CR-HNBE cells express comparable levels of CYPs and are sensitive to BaP induction, and will serve a sensitive, physiological and valuable in vitro toxicity testing model. This is the first report that normal human airway cells can be propagated for a long time and maintain comparable levels of CYPs.
Collapse
|
26
|
Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E, Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Sci Rep 2017; 7:17971. [PMID: 29269735 PMCID: PMC5740081 DOI: 10.1038/s41598-017-17952-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
Collapse
Affiliation(s)
- Kelly M Martinovich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole C Shaw
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Samuel Montgomery
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francis J Lannigan
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia. .,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia. .,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia. .,Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia.
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|