1
|
Du Y, Ye C, Han P, Sheng Y, Li F, Sun H, Zhang J, Li J. The molecular mechanism of transcription factor regulation of grain size in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112434. [PMID: 40023197 DOI: 10.1016/j.plantsci.2025.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Rice is a crucial food crop in China, and the continuous and stable improvement of rice yield is of great significance for ensuring national food security. Grain size in rice is closely related to thousand-grain weight, making it a key factor influencing yield. Identifying genes associated with grain size and elucidating their molecular mechanisms are essential for breeding high-yield, high-quality rice varieties. Transcription factors play a vital role in regulating plant growth and development, and many transcription factor families are crucial in controlling grain size in rice. Here, we review the mechanisms by which transcription factors regulate rice grain size, summarize and evaluate the regulatory mechanisms of transcription factors that have been discovered in recent decades to regulate rice grain size, construct two possible super networks composed of transcription factors as links to regulate rice grain size, and points out the application of transcription factors regulating grain size in rice breeding. This review will provide a roadmap for understanding the regulatory mechanisms of rice grain size and applying these genes to rice breeding using molecular breeding techniques.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| | - Chun Ye
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Peijie Han
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Yile Sheng
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Fei Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Hongzheng Sun
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Jing Zhang
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Junzhou Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Li X, Xie C, Cheng L, Tong H, Bock R, Qian Q, Zhou W. The next Green Revolution: integrating crop architectype and physiotype. Trends Biotechnol 2025:S0167-7799(25)00129-5. [PMID: 40307093 DOI: 10.1016/j.tibtech.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
In the middle of the last century, the Green Revolution dramatically increased crop yields and transformed global agriculture. As current food production is increasingly challenged by the demands of the growing population, climate change, and environmental degradation, a new Green Revolution is urgently needed. This Review highlights recent progress in defining the morphological ideotypes of four major crops, and proposes essential physiological traits critical for crop improvement and environmental adaptation. We introduce two concepts: the 'architectype' representing optimized morphological features, and the 'physiotype' encompassing improved physiological traits. By integrating these concepts through advanced genomic technologies and precision management practices, the next Green Revolution could potentially enhance crop yields and resource use efficiency by over 20-30%, thereby ensuring sustainable food production.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Bashir T, Husaini AM. Non-coding RNAs and their role in plants: prospective omics-tools for improving growth, development and stress tolerance in field crops. Mol Biol Rep 2025; 52:249. [PMID: 39976851 DOI: 10.1007/s11033-025-10305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/24/2025] [Indexed: 05/10/2025]
Abstract
Plants, as sessile organisms, must adapt to dynamic environmental changes through a range of response strategies that confer phenotypic flexibility. Breakthroughs in next-generation sequencing technologies have led to significant improvements in our understanding of the genomic and molecular mechanisms underlying plant growth, development and stress responses. Non-coding RNAs (ncRNAs), have emerged as pivotal regulators in these processes. This article reviews the roles of regulatory ncRNAs in plant stress responses and development, highlighting their intricate molecular interactions. It presents a comprehensive atlas of differentially regulated ncRNAs across key crop genomes, enhancing our understanding of their roles in stress responses, growth, and development. The atlas presented herein offers a foundation for further research in agronomically important crops, paving the way for crop improvement through genetic engineering and sustainable agricultural practices. Additionally, we discuss the role of ncRNAs that have already been functionally characterized in growth, development and stress tolerance, providing insights into their potential for developing stress-resistant and high-yielding crops.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Zheng X, Tang X, Wu Y, Zheng X, Zhou J, Han Q, Tang Y, Fu X, Deng J, Wang Y, Wang D, Zhang S, Zhang T, Qi Y, Zhang Y. An efficient CRISPR-Cas12a-mediated MicroRNA knockout strategy in plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:128-140. [PMID: 39401095 DOI: 10.1111/pbi.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024]
Abstract
In recent years, the CRISPR-Cas9 nuclease has been used to knock out MicroRNA (miRNA) genes in plants, greatly promoting the study of miRNA function. However, due to its propensity for generating small insertions and deletions, Cas9 is not well-suited for achieving a complete knockout of miRNA genes. By contrast, CRISPR-Cas12a nuclease generates larger deletions, which could significantly disrupt the secondary structure of pre-miRNA and prevent the production of mature miRNAs. Through the case study of OsMIR390 in rice, we confirmed that Cas12a is a more efficient tool than Cas9 in generating knockout mutants of a miRNA gene. To further demonstrate CRISPR-Cas12a-mediated knockout of miRNA genes in rice, we targeted nine OsMIRNA genes that have different spaciotemporal expression and have not been previously investigated via genetic knockout approaches. With CRISPR-Cas12a, up to 100% genome editing efficiency was observed at these miRNA loci. The resulting larger deletions suggest Cas12a robustly generated null alleles of miRNA genes. Transcriptome profiling of the miRNA mutants, as well as phenotypic analysis of the rice grains revealed the function of these miRNAs in controlling gene expression and regulating grain quality and seed development. This study established CRISPR-Cas12a as an efficient tool for genetic knockout of miRNA genes in plants.
Collapse
Affiliation(s)
- Xuelian Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yalan Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinxuan Fu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiao Deng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yibo Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Danning Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Tan C, Guo X, Dong H, Li M, Chen Q, Cheng M, Pu Z, Yuan Z, Wang J. Meta-QTL mapping for wheat thousand kernel weight. FRONTIERS IN PLANT SCIENCE 2024; 15:1499055. [PMID: 39737382 PMCID: PMC11682887 DOI: 10.3389/fpls.2024.1499055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades. We refined 242 loci into 66 MQTL, with an average confidence interval (CI) 3.06 times smaller than that of the original QTL. In these 66 MQTL regions, a total of 4,913 candidate genes related to TKW were identified, involved in ubiquitination, phytohormones, G-proteins, photosynthesis, and microRNAs. Expression analysis of the candidate genes showed that 95 were specific to grain and might potentially affect TKW at different seed development stages. These findings enhance our understanding of the genetic factors associated with TKW in wheat, providing reliable MQTL and potential candidate genes for genetic improvement of this trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, Alagarswamy S, Swaminathan M, Manickam S, Muthurajan R. Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2972. [PMID: 39519891 PMCID: PMC11547960 DOI: 10.3390/plants13212972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs.
Collapse
Affiliation(s)
- Archana Thiruppathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shobica Priya Ramasamy
- Department of Plant Breeding and Genetics, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Rakshana Palaniswamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| |
Collapse
|
8
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
9
|
Wang X, Yan W, Real N, Jia Y, Fu Y, Zhang X, You H, Cai Y, Liu B. Metabolic, transcriptomic, and genetic analyses of candidate genes for seed size in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1394724. [PMID: 39081518 PMCID: PMC11286464 DOI: 10.3389/fpls.2024.1394724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Seed size (SS) constitutes a pivotal trait in watermelon breeding. In this study, we present findings from an examination of two watermelon accessions, namely, BW85 and F211. Seeds from BW85 exhibited a significant enlargement compared to those of F211 at 13 days after pollination (DAP), with the maximal disparity in seed length and width manifesting at 17 DAP. A comprehensive study involving both metabolic and transcriptomic analyses indicated a significant enrichment of the ubiquinone and other terpenoid-quinone biosynthesis KEGG pathways. To detect the genetic region governing seed size, a BSA-seq analysis was conducted utilizing the F2 (BW85 × F211) population, which resulted in the identification of two adjacent QTLs, namely, SS6.1 and SS6.2, located on chromosomes 6. SS6.1 spanned from Chr06:4847169 to Chr06:5163486, encompassing 33 genes, while SS6.2 ranged from Chr06:5379337 to Chr06:5419136, which included only one gene. Among these genes, 11 exhibited a significant differential expression between BW85 and F211 according to transcriptomic analysis. Notably, three genes (Cla97C06G113960, Cla97C06G114180, and Cla97C06G114000) presented a differential expression at both 13 and 17 DAP. Through annotation, Cla97C06G113960 was identified as a ubiquitin-conjugating enzyme E2, playing a role in the ubiquitin pathway that mediates seed size control. Taken together, our results provide a novel candidate gene influencing the seed size in watermelon, shedding light on the mechanism underlying seed development.
Collapse
Affiliation(s)
- Xiqing Wang
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Wen Yan
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Núria Real
- Plant Pathology, IRTA Cabrils, Cabrils, Spain
| | - Yunhe Jia
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Yongkai Fu
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Xuejun Zhang
- Hainan Sanya Crops Breeding Trial Center of Xinjiang Academy Agricultural Sciences, Sanya, China
| | - Haibo You
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Yi Cai
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
10
|
Boccaccini A, Cimini S, Kazmi H, Lepri A, Longo C, Lorrai R, Vittorioso P. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1793. [PMID: 38999633 PMCID: PMC11244240 DOI: 10.3390/plants13131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The seed habit is the most complex and successful method of sexual reproduction in vascular plants. It represents a remarkable moment in the evolution of plants that afterward spread on land. In particular, seed size had a pivotal role in evolutionary success and agronomic traits, especially in the field of crop domestication. Given that crop seeds constitute one of the primary products for consumption, it follows that seed size represents a fundamental determinant of crop yield. This adaptative feature is strictly controlled by genetic traits from both maternal and zygotic tissues, although seed development and growth are also affected by environmental cues. Despite being a highly exploited topic for both basic and applied research, there are still many issues to be elucidated for developmental biology as well as for agronomic science. This review addresses a number of open questions related to cues that influence seed growth and size and how they influence seed germination. Moreover, new insights on the genetic-molecular control of this adaptive trait are presented.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Sara Cimini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Hira Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Andrea Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Chiara Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Riccardo Lorrai
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Paola Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| |
Collapse
|
11
|
Xie H, Su F, Niu Q, Geng L, Cao X, Song M, Dong J, Zheng Z, Guo R, Zhang Y, Deng Y, Ji Z, Pang K, Zhu JK, Zhu J. Knockout of miR396 genes increases seed size and yield in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1148-1157. [PMID: 38597776 DOI: 10.1111/jipb.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.
Collapse
Affiliation(s)
- Hongtao Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Fei Su
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Leping Geng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xuesong Cao
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Minglei Song
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Jinsong Dong
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Zai Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Rui Guo
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Yang Zhang
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Yuanwei Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Zhanbo Ji
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Kang Pang
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Jian-Kang Zhu
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
12
|
Yang Z, Zhao M, Zhang X, Gu L, Li J, Ming F, Wang M, Wang Z. MIR396-GRF/GIF enhances in planta shoot regeneration of Dendrobium catenatum. BMC Genomics 2024; 25:543. [PMID: 38822270 PMCID: PMC11143658 DOI: 10.1186/s12864-024-10360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
Recent studies on co-transformation of the growth regulator, TaGRF4-GIF1 chimera (Growth Regulating Factor 4-GRF Interacting Factor 1), in cultivated wheat varieties (Triticum aestivum), showed improved regeneration efficiency, marking a significant breakthrough. Here, a simple and reproducible protocol using the GRF4-GIF1 chimera was established and tested in the medicinal orchid Dendrobium catenatum, a monocot orchid species. TaGRF4-GIF1 from T. aestivum and DcGRF4-GIF1 from D. catenatum were reconstructed, with the chimeras significantly enhancing the regeneration efficiency of D. catenatum through in planta transformation. Further, mutating the microRNA396 (miR396) target sites in TaGRF4 and DcGRF4 improved regeneration efficiency. The target mimicry version of miR396 (MIM396) not only boosted shoot regeneration but also enhanced plant growth. Our methods revealed a powerful tool for the enhanced regeneration and genetic transformation of D. catenatum.
Collapse
Affiliation(s)
- Zhenyu Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meili Zhao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Xiaojie Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lili Gu
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| | - Zhicai Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| |
Collapse
|
13
|
Wang H, Wang X, Li Y, Cui Y, Yan X, Gao J, Ouyang J, Li S. Pleiotropic Effects of miR5504 Underlying Plant Height, Grain Yield and Quality in Rice. PLANT & CELL PHYSIOLOGY 2024; 65:781-789. [PMID: 38447119 DOI: 10.1093/pcp/pcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are known to play critical roles in regulating rice agronomic traits through mRNA cleavage or translational repression. Our previous study indicated that miR5504 regulates plant height by affecting cell proliferation and expansion. Here, the two independent homozygous mir5504 mutants (CR1 and CR2) and overexpression lines (OE1 and OE2) were further used to investigate the functions of miR5504. The panicle length, 1000-grain weight and grain yield per plant of miR5504-OE lines were identical to those of Nipponbare (NIP), but the 1000-grain weight of mir5504 mutants was reduced by about 10% and 9%, respectively. Meanwhile, the grain width and thickness of mir5504 mutants decreased significantly by approximately 10% and 11%, respectively. Moreover, the cytological results revealed a significant decrease in cell number along grain width direction and cell width in spikelet in mir5504, compared with those in NIP. In addition, several major storage substances of the rice seeds were measured. Compared to NIP, the amylose content of the mir5504 seeds was noticeably decreased, leading to an increase of nearly 10 mm in gel consistency (GC) in mir5504 lines. Further investigation confirmed that LOC_Os08g16914 was the genuine target of miR5504: LOC_Os08g16914 over-expression plants phenocopied the mir5504 mutants. This study provides insights into the role of miR5504 in rice seed development.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yangyang Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Ying Cui
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jiadong Gao
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510555, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
14
|
Fei S, Fu M, Kang J, Luo J, Wang Y, Jia J, Liu S, Li C. Enhancing bacterial cellulose production of Komagataeibacter nataicola through fermented coconut water by Saccharomyces cerevisiae: A metabonomics approach. Curr Res Food Sci 2024; 8:100761. [PMID: 38774267 PMCID: PMC11107218 DOI: 10.1016/j.crfs.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Nata de coco, an edible bacterial cellulose (BC) product, is a traditional dessert fermented in coconut water. Production of Nata de coco by Komagataeibacter nataicola is enhanced by pre-fermented coconut water, but its instability is a challenge. Here, BC production by K. nataicola Y19 was significantly improved by Saccharomyces cerevisiae 84-3 through shaping the metabolite profile of the coconut water. Different fermentation time with S. cerevisiae 84-3 resulted in distinct metabolite profiles and different promoting effect on BC yield. Compared to unfermented coconut water, coconut water fermented by S. cerevisiae 84-3 for 1d and 7d enhanced BC yield by 14.1-fold and 5.63-fold, respectively. Analysis between unfermented coconut water and 1d-fermented coconut water showed 129 significantly different metabolites, including organic acids, amino acids, nucleotides, and their derivatives. Prolonged fermentation for 7d changed levels of 155 metabolites belongs to organic acids, amino acids, nucleotides and their derivatives. Spearman correlation analysis further revealed that 17 metabolites were positively correlated with BC yield and 21 metabolites were negatively correlated with BC yield. These metabolites may affect energy metabolism, cell signaling, membrane integrity, and BC production by K. nataicola Y19. The further verification experiment gave the view that BC yield was not only closely related to the types of metabolites but also the concentration of metabolites. This study provides a novel theoretical framework for a highly efficient BC fermentation system utilizing stable fermented coconut water mediums.
Collapse
Affiliation(s)
- Shuangwen Fei
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Meijuan Fu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaxi Luo
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yanmei Wang
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jia Jia
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, 570228, China
| |
Collapse
|
15
|
Li WF, Zhou Q, Ma ZH, Zuo CW, Chu MY, Mao J, Chen BH. Regulatory mechanism of GA 3 application on grape (Vitis vinifera L.) berry size. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108543. [PMID: 38554534 DOI: 10.1016/j.plaphy.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China; School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, PR China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
16
|
Guo S, Li Y, Wang Y, Xu Y, Li Y, Wu P, Wu J, Wang L, Liu X, Chen Z. OsmiR5519 regulates grain size and weight and down-regulates sucrose synthase gene RSUS2 in rice (Oryza sativa L.). PLANTA 2024; 259:106. [PMID: 38554181 DOI: 10.1007/s00425-024-04377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION The up-regulation of OsmiR5519 results in the decrease of grain size, weight and seed setting rate. OsmiR5519 plays important roles in the process of grain filling and down-regulates sucrose synthase gene RSUS2. MicroRNAs (miRNAs) are one class of small non-coding RNAs that act as crucial regulators of plant growth and development. In rice, the conserved miRNAs were revealed to regulate the yield components, but the function of rice-specific miRNAs has been rarely studied. The rice-specific OsmiR5519 was found to be abundantly expressed during reproductive development, but its biological roles remain unknown. In this study, the function of rice-specific OsmiR5519 was characterized with the miR5519-overexpressing line (miR5519-OE) and miR5519-silenced line (STTM5519). At seedling stage, the content of sucrose, glucose and fructose was obviously lower in the leaves of miR5519-OE lines than those of wild-type (WT) line. The grain size and weight were decreased significantly in miR5519-OE lines, compared to those of WT rice. The cell width of hull in miR5519-OE was smaller than that in WT. The seed setting rate was notably reduced in miR5519-OE lines, but not in STTM5519 lines. Cytological observation demonstrated that the inadequate grain filling was the main reason for the decline of seed setting rate in miR5519-OE lines. The percentage of the defects of grain amounted to 40% in miR5519-OE lines, which almost equaled to the decreased value of seed setting rate. Furthermore, the sucrose synthase gene RSUS2 was identified as a target of OsmiR5519 via RNA ligase-mediated 3'-amplification of cDNA ends (3'-RLM-RACE), dual luciferase assays and transient expression assays. In summary, our results suggest that OsmiR5519 regulates grain size and weight and down-regulates RSUS2 in rice.
Collapse
Affiliation(s)
- Shengyuan Guo
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yajuan Li
- Experimental Basis and Practical Training Center, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwen Xu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Wu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M. Crop bioengineering via gene editing: reshaping the future of agriculture. PLANT CELL REPORTS 2024; 43:98. [PMID: 38494539 PMCID: PMC10944814 DOI: 10.1007/s00299-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.
Collapse
Affiliation(s)
- Mohamed Atia
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
18
|
Kaur G, Jain S, Bhushan S, Das N, Sharma M, Sharma D. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108334. [PMID: 38219424 DOI: 10.1016/j.plaphy.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu and Kashmir (UT), India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Shahpur Parisar, Kangra, Himachal Pradesh, India.
| | - Deepak Sharma
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Ahmar S, Usman B, Hensel G, Jung KH, Gruszka D. CRISPR enables sustainable cereal production for a greener future. TRENDS IN PLANT SCIENCE 2024; 29:179-195. [PMID: 37981496 DOI: 10.1016/j.tplants.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most important tool for targeted genome editing in many plant and animal species over the past decade. The CRISPR/Cas9 technology has also sparked a flood of applications and technical advancements in genome editing in the key cereal crops, including rice, wheat, maize, and barley. Here, we review advanced uses of CRISPR/Cas9 and derived systems in genome editing of cereal crops to enhance a variety of agronomically important features. We also highlight new technological advances for delivering preassembled Cas9-gRNA ribonucleoprotein (RNP)-editing systems, multiplex editing, gain-of-function strategies, the use of artificial intelligence (AI)-based tools, and combining CRISPR with novel speed breeding (SB) and vernalization strategies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea.
| | - Damian Gruszka
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
20
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
21
|
Lv P, Su F, Chen F, Yan C, Xia D, Sun H, Li S, Duan Z, Ma C, Zhang H, Wang M, Niu X, Zhu J, Zhang J. Genome editing in rice using CRISPR/Cas12i3. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:379-385. [PMID: 37822083 PMCID: PMC10826996 DOI: 10.1111/pbi.14192] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/17/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
The CRISPR/Cas type V-I is a family of programmable nuclease systems that prefers a T-rich protospacer adjacent motif (PAM) and is guided by a short crRNA. In this study, the genome-editing application of Cas12i3, a type V-I family endonuclease, was characterized in rice. We developed a CRIPSR/Cas12i3-based Multiplex direct repeats (DR)-spacer Array Genome Editing (iMAGE) system that was efficient in editing various genes in rice. Interestingly, iMAGE produced chromosomal structural variations with a higher frequency than CRISPR/Cas9. In addition, we developed base editors using deactivated Cas12i3 and generated herbicide-resistant rice plants using the base editors. These CRIPSR/Cas12i3-based genome editing systems will facilitate precision molecular breeding in plants.
Collapse
Affiliation(s)
- Ping Lv
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
| | - Fei Su
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| | - Fangyuan Chen
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
| | - Chunxue Yan
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
| | - Dandan Xia
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
| | - Hui Sun
- Bellagen Biotechnology Co. LtdJi'nanChina
| | | | | | - Changle Ma
- School of Life SciencesShandong Normal UniversityJi'nanChina
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghaiChina
| | - Mugui Wang
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaChina
| | - Xiaomu Niu
- Bellagen Biotechnology Co. LtdJi'nanChina
| | - Jian‐Kang Zhu
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Jinshan Zhang
- Bellagen Biotechnology Co. LtdJi'nanChina
- School of Life SciencesShandong Normal UniversityJi'nanChina
| |
Collapse
|
22
|
Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. PLANTA 2023; 259:32. [PMID: 38153530 DOI: 10.1007/s00425-023-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Verenice Chamu-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico
| | - Alma L Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.
| |
Collapse
|
23
|
Wang H, Ouyang J, Jian W, Li M, Zhong J, Yan X, Gao J, Wang X, Li S. Rice miR5504 regulates plant height by affecting cell proliferation and expansion. PHYSIOLOGIA PLANTARUM 2023; 175:e14023. [PMID: 37882316 DOI: 10.1111/ppl.14023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
miRNAs play critical roles in the regulation of plant growth and development by cleaving mRNA or repressing transcription. In our previous study, miR5504 with unknown functions was captured by small RNA sequencing. Here, the function and characters of miR5504 were extensively analyzed using CRISPR/Cas9, overexpression strategy, Northern blot, cytological analysis, and transcriptomics analysis. We found that the dwarf phenotype of mir5504 mutants (mir5504-1 and mir5504-2) appeared on 35-day seedlings and became more apparent at the mature stage. The cytological results showed a substantial decrease in the vascular bundle number, cell number and cell length in the mir5504 mutant compared with NIP. In addition, we found that miR5504 regulated plant height by targeting LOC_Os08g16914. The results of RNA-seq revealed that numerous biological processes were mainly enriched, including DNA-binding transcription factor activity, transferase activity, regulation of transcription, metabolic process, and protein binding. Meanwhile, KEEG analysis showed that numerous proteins were associated with cellular processes and metabolism pathways. Taken together, miR5504 may be involved in the regulation of plant height by affecting cell expansion and division of internode in rice.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Wenjia Jian
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiancong Zhong
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiadong Gao
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
25
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC PLANT BIOLOGY 2023; 23:371. [PMID: 37491223 PMCID: PMC10369843 DOI: 10.1186/s12870-023-04382-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.
Collapse
Affiliation(s)
- Zhenghao Lv
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dongying Zhou
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China.
| | | |
Collapse
|
26
|
Chu LL, Yan Z, Sheng XX, Liu HQ, Wang QY, Zeng RF, Hu CG, Zhang JZ. Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. PLANT PHYSIOLOGY 2023; 192:1947-1968. [PMID: 36913259 PMCID: PMC10315275 DOI: 10.1093/plphys/kiad159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.
Collapse
Affiliation(s)
- Le Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Fang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Han H, Wang C, Yang X, Wang L, Ye J, Xu F, Liao Y, Zhang W. Role of bZIP transcription factors in the regulation of plant secondary metabolism. PLANTA 2023; 258:13. [PMID: 37300575 DOI: 10.1007/s00425-023-04174-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION This study provides an overview of the structure, classification, regulatory mechanisms, and biological functions of the basic (region) leucine zipper transcription factors and their molecular mechanisms in flavonoid, terpenoid, alkaloid, phenolic acid, and lignin biosynthesis. Basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors (TFs) in eukaryotic organisms. The bZIP TFs are widely distributed in plants and play important roles in plant growth and development, photomorphogenesis, signal transduction, resistance to pathogenic microbes, biotic and abiotic stress, and secondary metabolism. Moreover, the expression of bZIP TFs not only promotes or inhibits the accumulation of secondary metabolites in medicinal plants, but also affects the stress response of plants to the external adverse environment. This paper describes the structure, classification, biological function, and regulatory mechanisms of bZIP TFs. In addition, the molecular mechanism of bZIP TFs regulating the biosynthesis of flavonoids, terpenoids, alkaloids, phenolic acids, and lignin are also elaborated. This review provides a summary for in-depth study of the molecular mechanism of bZIP TFs regulating the synthesis pathway of secondary metabolites and plant molecular breeding, which is of significance for the generation of beneficial secondary metabolites and the improvement of plant varieties.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Caini Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
28
|
Wang H, Zhang Y, Liang D, Zhang X, Fan X, Guo Q, Wang L, Wang J, Liu Q. Genome‑wide identification and characterization of miR396 family members and their target genes GRF in sorghum (Sorghum bicolor (L.) moench). PLoS One 2023; 18:e0285494. [PMID: 37163544 PMCID: PMC10171670 DOI: 10.1371/journal.pone.0285494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
MicroRNAs (miRNAs) widely participate in plant growth and development. The miR396 family, one of the most conserved miRNA families, remains poorly understood in sorghum. To reveal the evolution and expression pattern of Sbi-miR396 gene family in sorghum, bioinformatics analysis and target gene prediction were performed on the sequences of the Sbi-miR396 gene family members. The results showed that five Sbi-miR396 members, located on chromosomes 4, 6, and 10, were identified at the whole-genome level. The secondary structure analysis showed that the precursor sequences of all five Sbi-miR396 potentially form a stable secondary stem-loop structure, and the mature miRNA sequences were generated on the 5' arm of the precursors. Sequence analysis identified the mature sequences of the five sbi-miR396 genes were high identity, with differences only at the 1st, 9th and 21st bases at the 5' end. Phylogenetic analysis revealed that Sbi-miR396a, Sbi-miR396b, and Sbi-miR396c were clustered into Group I, and Sbi-miR396d and Sbi-miR396e were clustered into Group II, and all five sbi-miR396 genes were closely related to those of maize and foxtail millet. Expression analysis of different tissue found that Sbi-miR396d/e and Sbi-miR396a/b/c were preferentially and barely expressed, respectively, in leaves, flowers, and panicles. Target gene prediction indicates that the growth-regulating factor family members (SbiGRF1/2/3/4/5/6/7/8/10) were target genes of Sbi-miR396d/e. Thus, Sbi-miR396d/e may affect the growth and development of sorghum by targeting SbiGRFs. In addition, expression analysis of different tissues and developmental stages found that all Sbi-miR396 target genes, SbiGRFs, were barely expressed in leaves, root and shoot, but were predominantly expressed in inflorescence and seed development stage, especially SbiGRF1/5/8. Therefore, inhibition the expression of sbi-miR396d/e may increase the expression of SbiGRF1/5/8, thereby affecting floral organ and seed development in sorghum. These findings provide the basis for studying the expression of the Sbi-mir396 family members and the function of their target genes.
Collapse
Affiliation(s)
- Huiyan Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Du Liang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Xiaojuan Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Xinqi Fan
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Qi Guo
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi Province, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | - Jingxue Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Qingshan Liu
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| |
Collapse
|
29
|
Lee JS, Ko CS, Seo YW. Oat AsDA1-2D enhances heat stress tolerance and negatively regulates seed-storage globulin. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153981. [PMID: 37054580 DOI: 10.1016/j.jplph.2023.153981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.
Collapse
Affiliation(s)
- Joo Sun Lee
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan Seop Ko
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
31
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
32
|
Zhang L, Yang B, Zhang C, Chen H, Xu J, Qu C, Lu K, Li J. Genome-Wide Identification and Posttranscriptional Regulation Analyses Elucidate Roles of Key Argonautes and Their miRNA Triggers in Regulating Complex Yield Traits in Rapeseed. Int J Mol Sci 2023; 24:ijms24032543. [PMID: 36768865 PMCID: PMC9916703 DOI: 10.3390/ijms24032543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Argonautes (AGOs) interact with microRNAs (miRNAs) to form the RNA-induced silencing complex (RISC), which can posttranscriptionally regulate the expression of targeted genes. To date, however, the AGOs and their miRNA triggers remain elusive in rapeseed (Brassica napus). Here, we systematically performed a phylogenetic analysis and examined the collinear relationships of the AGOs among four Brassicaceae species. Their physicochemical properties, gene structures, and expression patterns among 81 tissues from multiple materials and developmental stages were further analyzed. Additionally, their posttranscriptional regulation was analyzed using psRNATarget prediction, miRNA-/mRNA-Seq analyses, and a qRT-PCR verification. We finally identified 10 AtAGOs, 13 BolAGOs, 11 BraAGOs, and 24 BnaAGOs. An expression analysis of the BnaAGOs in the B. napus cultivar ZS11, as well as genotypes with extreme phenotypes in various yield-related traits, revealed the conservation and diversity of these genes. Furthermore, we speculated the posttranscriptional regulation of the B. napus miR168a-AGO1s and miR403-AGO2s modules. Combining miRNA-Seq and mRNA-Seq analyses, we found that the B. napus miR168a-AGO1s module may play an essential role in negatively regulating yield traits, whereas the miR403-AGO2s module positively impacts yield. This is the first attempt to comprehensively analyze the AGOs and their miRNA triggers in B. napus and provides a theoretical basis for breeding high-yielding varieties through the manipulation of the miRNA-AGOs modules.
Collapse
Affiliation(s)
- Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Huan Chen
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Jinxiong Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Cunmin Qu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-23-68250642
| |
Collapse
|
33
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
34
|
Kumar A, Pandey SS, Kumar D, Tripathi BN. Genetic manipulation of photosynthesis to enhance crop productivity under changing environmental conditions. PHOTOSYNTHESIS RESEARCH 2023; 155:1-21. [PMID: 36319887 DOI: 10.1007/s11120-022-00977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Current global agricultural production needs to be increased to feed the unconstrained growing population. The changing climatic condition due to anthropogenic activities also makes the conditions more challenging to meet the required crop productivity in the future. The increase in crop productivity in the post green revolution era most likely became stagnant, or no major enhancement in crop productivity observed. In this review article, we discuss the emerging approaches for the enhancement of crop production along with dealing to the future climate changes like rise in temperature, increase in precipitation and decrease in snow and ice level, etc. At first, we discuss the efforts made for the genetic manipulation of chlorophyll metabolism, antenna engineering, electron transport chain, carbon fixation, and photorespiratory processes to enhance the photosynthesis of plants and to develop tolerance in plants to cope with changing environmental conditions. The application of CRISPR to enhance the crop productivity and develop abiotic stress-tolerant plants to face the current changing climatic conditions is also discussed.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Dhananjay Kumar
- Laboratory of Algal Biotechnology, Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India.
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484886, India
| |
Collapse
|
35
|
Kim Y, Takahashi S, Miyao M. Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO 2 and miR396- GRF module. PLANT SIGNALING & BEHAVIOR 2022; 17:2041280. [PMID: 35318879 PMCID: PMC8959511 DOI: 10.1080/15592324.2022.2041280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Elevated CO2 (eCO2; 1000 ppm) influences developing rice leaf formation, reducing leaf blade length and width as compared to rice grown under ambient CO2 (aCO2; 400 ppm). Since micro RNAs (miRNAs) are known to play multiple roles in plant development, we hypothesized that miRNAs might be involved in modulating leaf size under eCO2 conditions. To identify miRNAs responding to eCO2, we profiled miRNA levels in developing rice leaves (P4; plastochron number of the fourth-youngest leaf) under eCO2 using small RNA-seq. We detected 18 mature miRNA sequences for which expression levels varied more than two-fold between the eCO2 and aCO2 conditions. Among them, only miR396e and miR396f significantly differed between the two conditions. Additionally, the expression of growth-regulating factors (GRFs), potential target mRNA of miR396s, were repressed under the eCO2 condition. We used an antisense oligonucleotide approach to confirm that single-strand DNA corresponding to the miR396e sequence effectively downregulated GRF expression in developing leaves, reducing the leaf blade length, such as for rice grown under eCO2. These results suggest that the miR396-GRF module is crucially relevant to controlling rice leaf blade length in eCO2 environments.
Collapse
Affiliation(s)
- Yonghyun Kim
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sumire Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Jain N, Shiv A, Sinha N, Singh PK, Prasad P, Balyan HS, Gupta PK. Leaf rust responsive miRNA and their target genes in wheat. Funct Integr Genomics 2022; 23:14. [PMID: 36550370 DOI: 10.1007/s10142-022-00928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Small RNA sequencing (sRNA-seq) and degradome analysis were used for the identification of miRNAs and their target host genes in a pair of near-isogenic lines (NILs), which differed for the presence of leaf rust resistance gene Lr28. The study led to identification of (i) 506 known and 346 novel miRNAs; and (ii) 5054 target genes including 4557 in silico predicted and 497 degradome-based genes using 105 differentially expressed (DE) miRNAs. A subset of 128 targets (67 in silico + 61 degradome-based) was differentially expressed in RNA-seq data that was generated by us earlier using the same pair of NILs; among these 128 targets, 58 target genes exhibited an inverse relationship with the DE miRNAs (expression of miRNAs and activation/suppression of target genes). Eight miRNAs which belonged to the conserved miRNA families and were known to be induced in response to fungal diseases in plants included the following: miR156, miR158, miR159, miR168, miR169, miR172, miR319, miR396. The target genes belonged to the following classes of genes known to be involved in downstream disease resistance pathways; peroxidases, sugar transporters, auxin response signaling, oxidation-reduction, etc. It was also noticed that although a majority of miRNAs and target genes followed the above classical inverse relationship, there were also examples, where no such relationship was observed. Among the target genes, there were also 51 genes that were not only regulated by miRNAs, but were also differentially methylated at sequences including the following segments: promotors, introns, TSS, exons. The results of the present study suggest a complex interplay among miRNA genes, target genes, and various epigenetic controls, which regulate the expression of genes involved in downstream pathways for disease resistance.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - P K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Pramod Prasad
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
37
|
Yu Y, Zhang T, Sun J, Jing T, Shen Y, Zhang K, Chen Y, Ding D, Wang G, Yang J, Tang J, Shi Z, Wang D, Gou M. Evolutionary characterization of miR396s in Poaceae exemplified by their genetic effects in wheat and maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111465. [PMID: 36155239 DOI: 10.1016/j.plantsci.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.
Collapse
Affiliation(s)
- Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tongxiang Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingfan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Ding
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
38
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
39
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
40
|
Wang X, Hong Z, Yang A, He Y, Zhu Z, Xu Y. Systematic analysis of the CsmiR396-CsGRFs/CsGIFs module and the opposite role of CsGRF3 and CsGRF5 in regulating cell proliferation in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111407. [PMID: 35932827 DOI: 10.1016/j.plantsci.2022.111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors, and their activities are regulated by miR396 and the GRF-GIF interaction. The miR396-GRFs/GIFs module determines organ size by regulating cell proliferation. However, it is largely unknown in cucumber. In this study, the CsmiR396-CsGRFs/CsGIFs module was investigated in cucumber. Five CsMIR396 loci (CsMIR396A-E), eight CsGRFs and two CsGIFs were identified. CsMIR396A-E was distributed within two clusters and coded three different mature CsmiR396, and all CsGRFs acted as the target of CsmiR396. Bioinformatic analyses showed that miR396s were classified into five types, while GRFs were classified into six groups in plants. The GRFs from group Ⅰ exhibited high diversity and harbored specific characteristics (truncated C-terminus or two WRC domains). qRT-PCR results showed that CsMIR396s (CsMIR396A, CsMIR396B and CsMIR396D) and mature CsmiR396 increased, whereas CsGRFs declined as leaf age increased. In contrast, CsMIR396E was highly expressed in young leaves and shoot tissue, and it was expressed in an age-independent pattern. Yeast two-hybrid assays showed that CsGRF3 strongly interacted with CsGIFs, while CsGRF5 weakly interacted with CsGIFs. Overexpression of CsGRF3 resulted in an enlarged organ size; in contrast, overexpression of CsGRF5, which belonged to group Ⅰ and harbored two WRC domains, resulted in a reduced organ size in Arabidopsis. Section analysis showed that cell proliferation was increased in CsGRF3OE plants, whereas it was decreased in CsGRF5OE plants. In summary, our results reveal the diversity of the CsmiR396-CsGRFs/CsGIFs module in cucumber, and that CsGRF3 and CsGRF5 play an opposite role in regulating cell proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Zezhou Hong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Aiyi Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, Zhejiang, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, Zhejiang, China.
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
41
|
Zhai L, Xie L, Xu J, Xu B, Dong J, Zhang X. Study on exogenous application of thidiazuron on seed size of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:998698. [PMID: 36147221 PMCID: PMC9486165 DOI: 10.3389/fpls.2022.998698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Thidiazuron (TDZ) is a novel and efficient cytokinin commonly used in tissue culture, and numerous studies have demonstrated that TDZ can increase berry size. However, no study to date has explored the effect of TDZ on seed size of Brassica napus and the mechanism. To shed light on the effect of TDZ on the seed size of B. napus, four different concentrations of TDZ were applied to B. napus. Results indicated that TDZ treatment could increase the seed diameter and silique length of B. napus to varying degrees and 100 and 200 μmol/L TDZ treatments were the most effective with a 3.6 and 4.6% increase in seed diameter, respectively. In addition, the yield of B. napus was also substantially increased under TDZ treatment. On the other hand, confocal micrographs of embryos and cotyledon cells suggested that embryos and their cotyledon epidermal cells treated with 200 μmol/L TDZ were obviously larger in size than the control. Furthermore, TDZ promoted the upregulation of some key maternal tissue growth-related genes, including two G-protein signaling genes (AGG3 and RGA1) and two transcriptional regulators (ANT and GS2). The expression analysis of genes related to the auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators confirmed that treatment with TDZ negatively regulated the key genes ABI5, AGB1, AP2, ARF2, and ARF18 during bud development stage and florescence. The results strongly suggested that TDZ might regulate the transcriptional levels of key genes involved in auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators, which resulted in bigger cotyledon epidermal cells and seed size in B. napus. This study explored the mechanism of TDZ treatment on the seed size of B. napus and provided an important reference for improving rapeseed yield.
Collapse
Affiliation(s)
- Lu Zhai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Lingli Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - JinSong Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| | - Benbo Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, China
| | - XueKun Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| |
Collapse
|
42
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
43
|
Lin Y, Chu S, Xu X, Han X, Huang H, Tong Z, Zhang J. Identification of Nitrogen Starvation-Responsive miRNAs to Reveal the miRNA-Mediated Regulatory Network in Betula luminifera. Front Genet 2022; 13:957505. [PMID: 36061195 PMCID: PMC9428261 DOI: 10.3389/fgene.2022.957505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Because of the immobility, plants encounter a series of stresses, such as varied nutrient concentrations in soil, which regulate plant growth, development, and phase transitions. Nitrogen (N) is one of the most limiting factors for plants, which was exemplified by the fact that low nitrogen (LN) has a great adverse effect on plant growth and development. In the present study, we explored the potential role of microRNAs (miRNAs) in response to LN stress in Betula luminifera. We identified 198 miRNAs using sRNA sequencing, including 155 known and 43 novel miRNAs. Among them, 98 known miRNAs and 31 novel miRNAs were differentially expressed after 0.5 h or 24 h of LN stress. Based on degradome data, 122 differential expressed miRNAs (DEmiRNAs) including 102 known miRNAs and 20 novel miRNAs targeted 203 genes, comprising 321 miRNA–target pairs. A big proportion of target genes were transcription factors and functional proteins, and most of the Gene Ontology terms were enriched in biological processes; moreover, one Kyoto Encyclopedia of Genes and Genomes term “ascorbate and aldarate metabolism” was significantly enriched. The expression patterns of six miRNAs and their corresponding target genes under LN stress were monitored. According to the potential function for targets of DEmiRNAs, a proposed regulatory network mediated by miRNA–target pairs under LN stress in B. luminifera was constructed. Taken together, these findings provide useful information to elucidate miRNA functions and establish a framework for exploring N signaling networks mediated by miRNAs in B. luminifera. It may provide new insights into the genetic engineering of the high use efficiency of N in forestry trees.
Collapse
|
44
|
Sun M, Shen Y, Chen Y, Wang Y, Cai X, Yang J, Jia B, Dong W, Chen X, Sun X. Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. PLANT PHYSIOLOGY 2022; 189:2500-2516. [PMID: 35522026 PMCID: PMC9342977 DOI: 10.1093/plphys/kiac208] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/09/2022] [Indexed: 05/08/2023]
Abstract
MicroRNAs play key roles in abiotic stress response. Rice (Oryza sativa L.) miR1320 is a species-specific miRNA that contributes to miR168-regulated immunity. However, it is still unknown whether miR1320 is involved in rice response to abiotic stress. In this study, we illustrated that the miR1320 precursor generated two mature miR1320s, miR1320-3p, and miR1320-5p, and they both displayed decreased expression under cold stress. Genetic evidence showed that miR1320 overexpression resulted in increased cold tolerance, while miR1320 knock down (KD) reduced cold tolerance. Furthermore, an APETALA2/ethylene-responsive factor (ERF) transcription factor OsERF096 was identified as a target of miR1320 via 5'-RACE and dual luciferase assays. OsERF096 expression was altered by miR1320 overexpression and KD and exhibited an opposite pattern to that of miR1320 in different tissues and under cold stress. Consistently, OsERF096 negatively regulated cold stress tolerance. Furthermore, we suggested that OsERF096 could bind to the GCC and DRE cis-elements and act as a transcriptional activator in the nucleus. Based on RNA-sequencing and targeted metabolomics assays, we found that OsERF096 modified hormone content and signaling pathways. Finally, phenotypic and reverse transcription-quantitative PCR assays showed that jasmonic acid (JA) methyl ester application recovered the cold-sensitive phenotype and JA-activated expression of three Dehydration Responsive Element Binding genes in the OsERF096-OE line. Taken together, our results strongly suggest that the miR1320-OsERF096 module regulates cold tolerance by repressing the JA-mediated cold signaling pathway.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Weifeng Dong
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xi Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
45
|
Kumar K, Mandal SN, Neelam K, de los Reyes BG. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC PLANT BIOLOGY 2022; 22:351. [PMID: 35850632 PMCID: PMC9290239 DOI: 10.1186/s12870-022-03723-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/29/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is the major source of daily caloric intake for more than 30% of the human population. However, the sustained productivity of this staple food crop is continuously threatened by various pathogens and herbivores. Breeding has been successful in utilizing various mechanisms of defense by gene pyramiding in elite cultivars, but the continuous resurgence of highly resistant races of pathogens and herbivores often overcomes the inherent capacity of host plant immunity. MicroRNAs (miRNAs) are endogenous, short, single-stranded, non-coding RNA molecules that regulate gene expression by sequence-specific cleavage of target mRNA or suppressing target mRNA translation. While miRNAs function as upstream regulators of plant growth, development, and host immunity, their direct effects on growth and development in the context of balancing defenses with agronomic potential have not been extensively discussed and explored as a more viable strategy in breeding for disease and pest resistant cultivars of rice with optimal agronomic potentials. RESULTS Using the available knowledge in rice and other model plants, this review examines the important roles of miRNAs in regulating host responses to various fungal, bacterial, and viral pathogens, and insect pests, in the context of gains and trade-offs to crop yield. Gains from R-gene-mediated resistance deployed in modern rice cultivars are often undermined by the rapid breakdown of resistance, negative pleiotropic effects, and linkage drags with undesirable traits. In stark contrast, several classes of miRNAs are known to efficiently balance the positive gains from host immunity without significant costs in terms of losses in agronomic potentials (i.e., yield penalty) in rice. Defense-related miRNAs such as Osa-miR156, Osa-miR159, Osa-miR162, Osa-miR396, Osa-530, Osa-miR1432, Osa-miR1871, and Osa-miR1873 are critical in fine-tuning and integrating immune responses with physiological processes that are necessary to the maintenance of grain yield. Recent research has shown that many defense-related miRNAs regulate complex and agronomically important traits. CONCLUSIONS Identification of novel immune-responsive miRNAs that orchestrate physiological processes critical to the full expression of agronomic potential will facilitate the stacking of optimal combinations of miRNA-encoding genes to develop high-yielding cultivars with durable resistance to disease and insect pests with minimal penalties to yield.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700103 India
| | - Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX-79415 USA
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101 India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | | |
Collapse
|
46
|
Qian Z, Ji Y, Li R, Lanteri S, Chen H, Li L, Jia Z, Cui Y. Identifying Quantitative Trait Loci for Thousand Grain Weight in Eggplant by Genome Re-Sequencing Analysis. Front Genet 2022; 13:841198. [PMID: 35664340 PMCID: PMC9157640 DOI: 10.3389/fgene.2022.841198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Eggplant (Solanum melongena L.; 2n = 24) is one of the most important Solanaceae vegetables and is primarily cultivated in China (approximately 42% of world production) and India (approximately 39%). Thousand-grain weight (TGW) is an important trait that affects eggplant breeding cost and variety promotion. This trait is controlled by quantitative trait loci (QTLs); however, no quantitative trait loci (QTL) has been reported for TGW in eggplant so far, and its potential genetic basis remain unclear. In this study, two eggplant lines, 17C01 (P1, wild resource, small seed) and 17C02 (P2, cultivar, large seed), were crossed to develop F1, F2 (308 lines), BC1P1 (44 lines), and BC1P2 (44 lines) populations for quantitative trait association analysis. The TGWs of P1, P2 and F1 were determined as 3.00, 3.98 and 3.77 g, respectively. The PG-ADI (polygene-controlled additive-dominance-epistasis) genetic model was identified as the optimal model for TGW and the polygene heritability value in the F2 generation was as high as 80.87%. A high-quality genetic linkage bin map was constructed with resequencing analysis. The map contained 3,918 recombination bins on 12 chromosomes, and the total length was 1,384.62 cM. A major QTL (named as TGW9.1) located on chromosome 9 was identified to be strongly associated with eggplant TGW, with a phenotypic variance explanation of 20.51%. A total of 45 annotated genes were identified in the genetic region of TGW9.1. Based on the annotation of Eggplant genome V3 and orthologous genes in Arabidopsis thaliana, one candidate gene SMEL_009g329850 (SmGTS1, encoding a putative ubiquitin ligase) contains 4 SNPs and 2 Indels consecutive intron mutations in the flank of the same exon in P1. SmGTS1 displayed significantly higher expression in P1 and was selected as a potential candidate gene controlling TGW in eggplant. The present results contribute to shed light on the genetic basis of the traits exploitable in future eggplant marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Zongwei Qian
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yanhai Ji
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Ranhong Li
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Sergio Lanteri
- DISAFA, Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Haili Chen
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Longfei Li
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Zhiyang Jia
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Yanling Cui
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
47
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
48
|
Liu K, Wang X, Liu H, Wu J, Liang F, Li S, Zhang J, Peng X. OsAT1, an anion transporter, negatively regulates grain size and yield in rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13692. [PMID: 35482934 DOI: 10.1111/ppl.13692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Hengchen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
50
|
Li Y, Zhang D, Zhang S, Lou Y, An X, Jiang Z, Gao Z. Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots. PLANT PHYSIOLOGY 2022; 188:2182-2198. [PMID: 35157078 PMCID: PMC8968251 DOI: 10.1093/plphys/kiac018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Primary thickening determines bamboo yield and wood property. However, little is known about the regulatory networks involved in this process. This study identified a total of 58,652 genes and 150 miRNAs via transcriptome and small RNA sequencing using the underground thickening shoot samples of wild-type (WT) Moso bamboo (Phyllostachys edulis) and a thick wall (TW) variant (P. edulis "Pachyloen") at five developmental stages (WTS1/TWS1-WTS5/TWS5). A total of 14,029 (65.17%) differentially expressed genes and 68 (45.33%) differentially expressed miRNAs were identified from the WT, TW, and WTTW groups. The first two groups were composed of four pairwise combinations, each between two successive stages (WTS2/TWS2_versus_WTS1/TWS1, WTS3/TWS3_versus_WTS2/TWS2, WTS4/TWS4_versus_WTS3/TWS3, and WTS5/TWS5_versus_WTS4/TWS4), and the WTTW group was composed of five combinations, each between two relative stages (TWS1-5_versus_WTS1-5). Additionally, among the phytohormones, zeatin showed more remarkable changes in concentrations than indole-3-acetic acid, gibberellic acid, and abscisic acid throughout the five stages in the WT and the TW groups. Moreover, 125 cleavage sites were identified for 387 miRNA-mRNA pairs via degradome sequencing (P < 0.05). The dual-luciferase reporter assay confirmed that 13 miRNAs bound to 12 targets. Fluorescence in situ hybridization localized miR166 and miR160 in the shoot apical meristem and the procambium of Moso bamboo shoots at the S1 stage. Thus, primary thickening is a complex process regulated by miRNA-gene-phytohormone networks, and the miRNAome and transcriptome dynamics regulate phenotypic plasticity. These findings provide insights into the molecular mechanisms underlying wood formation and properties and propose targets for bamboo breeding.
Collapse
Affiliation(s)
- Ying Li
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuqin Zhang
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Yongfeng Lou
- Jiangxi Academy of Forestry, Jiangxi 330032, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | | | |
Collapse
|