1
|
Wen J, Shi J, Meng M, Xu K, Xu Y, Ji D, Wang W, Xie C. Metabolic Responses of Pyropia haitanensis to Dehydration-Rehydration Cycles Revealed by Metabolomics. Mar Drugs 2025; 23:203. [PMID: 40422793 DOI: 10.3390/md23050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Pyropia haitanensis (T.J. Chang and B.F. Zheng) undergoes periodic dehydration and rehydration cycles, necessitating robust adaptive mechanisms. Despite extensive research on its physiological responses to desiccation stress, the comprehensive metabolic pathways and recovery mechanisms post-rehydration remain poorly understood. This study investigated the metabolic responses of P. haitanensis to varying degrees of desiccation stress using LC-MS and UPLC-MS/MS. Under mild dehydration, the thallus primarily accumulated sugars and proline, while moderate and severe dehydration triggered the accumulation of additional osmoprotectants like alanine betaine and trehalose to maintain turgor pressure and water retention. Concurrently, the alga activated a potent antioxidant system, including enzymes and non-enzymatic antioxidants, to counteract the increased reactive oxygen species levels and prevent oxidative damage. Hormonal regulation also plays a crucial role in stress adaptation, with salicylic acid and jasmonic acid upregulating under mild dehydration and cytokinins and gibberellin GA15 accumulating under severe stress. Rehydration triggered the recovery process, with indole acetic acid, abscisic acid, and jasmonic acid promoting rapid cell recovery. Additionally, arachidonic acid, acting as a signaling molecule, induced general stress resistance, facilitating the adaptation of the thallus to the dynamic intertidal environment. These findings reveal P. haitanensis' metabolic adaptation strategies in intertidal environments, with implications for enhancing cultivation and stress resistance in this economically important seaweed.
Collapse
Affiliation(s)
- Jian Wen
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Jianzhi Shi
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Muhan Meng
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| |
Collapse
|
2
|
Wan Q, Yao R, Zhao Y, Xu L. JA and ABA signaling pathways converge to protect plant regeneration in stress conditions. Cell Rep 2025; 44:115423. [PMID: 40088448 DOI: 10.1016/j.celrep.2025.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
In cuttings, detached leaves or stems are exposed to many stresses during the root regeneration process. Here, we show that the detached Arabidopsis thaliana leaf can tolerate mild osmotic stress and still regenerate roots. Under stress conditions, wounding and stress upregulate the jasmonate (JA) signaling pathway transcription factor gene MYC2 and the abscisic acid (ABA) signaling pathway transcription factor gene ABA INSENSITIVE5 (ABI5). The MYC2-ABI5 complex upregulates the expression of β-GLUCOSIDASE18 (BGLU18), which releases ABA from ABA glucose ester, resulting in ABA accumulation in the detached leaf. Mutations in MYC2, ABI5, and BGLU18 lead to the loss of stress tolerance and defects in root regeneration under osmotic stress. The successive application of JA and ABA can enhance the root regeneration ability in Arabidopsis and poplar cuttings. Overall, the JA-mediated wound signaling pathway and the ABA-mediated stress signaling pathway collaboratively amplify ABA signals to protect root regeneration under stress conditions.
Collapse
Affiliation(s)
- Qihui Wan
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Research Center of the Basic Discipline for Cell Signaling, College of Biology, Hunan University, Changsha 410082, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Miryeganeh M, Armitage DW. Epigenetic responses of trees to environmental stress in the context of climate change. Biol Rev Camb Philos Soc 2025; 100:131-148. [PMID: 39192567 PMCID: PMC11718629 DOI: 10.1111/brv.13132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In long-lived tree populations, when environmental change outpaces rates of evolutionary adaptation, plasticity in traits related to stress tolerance, dormancy, and dispersal may be vital for preventing extinction. While a population's genetic background partly determines its ability to adapt to a changing environment, so too do the many types of epigenetic modifications that occur within and among populations, which vary on timescales orders of magnitude faster than the emergence of new beneficial alleles. Consequently, phenotypic plasticity driven by epigenetic modification may be especially critical for sessile, long-lived organisms such as trees that must rely on this plasticity to keep pace with rapid anthropogenic environmental change. While studies have reported large effects of DNA methylation, histone modification, and non-coding RNAs on the expression of stress-tolerance genes and resulting phenotypic responses, little is known about the role of these effects in non-model plants and particularly in trees. Here, we review new findings in plant epigenetics with particular relevance to the ability of trees to adapt to or escape stressors associated with rapid climate change. Such findings include specific epigenetic influences over drought, heat, and salinity tolerance, as well as dormancy and dispersal traits. We also highlight promising findings concerning transgenerational inheritance of an epigenetic 'stress memory' in plants. As epigenetic information is becoming increasingly easy to obtain, we close by outlining ways in which ecologists can use epigenetic information better to inform population management and forecasting efforts. Understanding the molecular mechanisms behind phenotypic plasticity and stress memory in tree species offers a promising path towards a mechanistic understanding of trees' responses to climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| | - David W. Armitage
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| |
Collapse
|
4
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Shafi I, Gautam M, Kariyat R. Integrating ecophysiology and omics to unlock crop response to drought and herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1500773. [PMID: 39559770 PMCID: PMC11570275 DOI: 10.3389/fpls.2024.1500773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Affiliation(s)
| | | | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Pratx L, Crawford T, Bäurle I. Mechanisms of heat stress-induced transcriptional memory. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102590. [PMID: 38968911 DOI: 10.1016/j.pbi.2024.102590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.
Collapse
Affiliation(s)
- Loris Pratx
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Tim Crawford
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
7
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
8
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
9
|
Yuan Y, Tan M, Zhou M, Hassan MJ, Lin L, Lin J, Zhang Y, Li Z. Drought priming-induced stress memory improves subsequent drought or heat tolerance via activation of γ-aminobutyric acid-regulated pathways in creeping bentgrass. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38509772 DOI: 10.1111/plb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Recurrent drought can induce stress memory in plants to induce tolerance to subsequent stress, such as high temperature or drought. Drought priming (DP) is an effective approach to improve tolerance to various stresses; however, the potential mechanism of DP-induced stress memory has not been fully resoved. We examined DP-regulated subsequent drought tolerance or thermotolerance associated with changes in physiological responses, GABA and NO metabolism, heat shock factor (HSF) and dehydrin (DHN) pathways in perennial creeping bentgrass. Plants can recover after two cycle of DP, and DP-treated plants had significantly higher tolerance to subsequent drought or heat stress, with higher leaf RWC, Chl content, photochemical efficiency, and cell membrane stability. DP significantly alleviated oxidative damage through enhancing total antioxidant capacity in response to subsequent drought or heat stress. Endogenous GABA was significantly increased by DP through activating glutamic acid decarboxylase activity and inhibiting GABA transaminase activity. DP also enhanced accumulation of NO, depending on NOS activity, under subsequent drought or heat stress. Transcript levels of multiple transcription factors, heat shock proteins, and DHNs in the HSF and DHN pathways were up-regulated by DP under drought or heat stress, but there were differences between DP-regulated heat tolerance and drought tolerance in these pathways. The findings indicate that under recurrent moderate drought, DP improves subsequent tolerance to drought or heat stress in relation to GABA-regulated pathways, providing new insight into understanding of the role of stress memory in plant adaptation to complex environmental stresses.
Collapse
Affiliation(s)
- Y Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M J Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Z Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Ding Y, Zhang X, Li J, Wang R, Chen J, Kong L, Li X, Yang Z, Zhuang L. Transcriptome-Based Weighted Gene Co-Expression Network Analysis Reveals the Photosynthesis Pathway and Hub Genes Involved in Promoting Tiller Growth under Repeated Drought-Rewatering Cycles in Perennial Ryegrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:854. [PMID: 38592951 PMCID: PMC10976046 DOI: 10.3390/plants13060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Drought stress, which often occurs repeatedly across the world, can cause multiple and long-term effects on plant growth. However, the repeated drought-rewatering effects on plant growth remain uncertain. This study was conducted to determine the effects of drought-rewatering cycles on aboveground growth and explore the underlying mechanisms. Perennial ryegrass plants were subjected to three watering regimes: well-watered control (W), two cycles of drought-rewatering (D2R), and one cycle of drought-rewatering (D1R). The results indicated that the D2R treatment increased the tiller number by 40.9% and accumulated 28.3% more aboveground biomass compared with W; whereas the D1R treatment reduced the tiller number by 23.9% and biomass by 42.2% compared to the W treatment. A time-course transcriptome analysis was performed using crown tissues obtained from plants under D2R and W treatments at 14, 17, 30, and 33 days (d). A total number of 2272 differentially expressed genes (DEGs) were identified. In addition, an in-depth weighted gene co-expression network analysis (WGCNA) was carried out to investigate the relationship between RNA-seq data and tiller number. The results indicated that DEGs were enriched in photosynthesis-related pathways and were further supported by chlorophyll content measurements. Moreover, tiller-development-related hub genes were identified in the D2R treatment, including F-box/LRR-repeat MAX2 homolog (D3), homeobox-leucine zipper protein HOX12-like (HOX12), and putative laccase-17 (LAC17). The consistency of RNA-seq and qRT-PCR data were validated by high Pearson's correlation coefficients ranging from 0.899 to 0.998. This study can provide a new irrigation management strategy that might increase plant biomass with less water consumption. In addition, candidate photosynthesis and hub genes in regulating tiller growth may provide new insights for drought-resistant breeding.
Collapse
Affiliation(s)
- Yunjia Ding
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Xiaxiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Jialei Li
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Jie Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingna Kong
- National Experimental Teaching Center for Plant Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| | - Lili Zhuang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Y.D.)
| |
Collapse
|
11
|
Morales M, Munné-Bosch S. Hormonal response to recurrent seasonal stress in coastal and mountain scabiouses growing in their natural habitat: linking ABA and jasmonates with photoprotection. PHYSIOLOGIA PLANTARUM 2024; 176:e14265. [PMID: 38556740 DOI: 10.1111/ppl.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Plant species distribution across ecosystems is influenced by multiple environmental factors, and recurrent seasonal stress events can act as natural selection agents for specific plant traits and limit species distribution. For that, studies aiming at understanding how environmental constraints affect adaptive mechanisms of taxonomically closely related species are of great interest. We chose two Scabiosa species inhabiting contrasting environments: the coastal scabious S. atropurpurea, typically coping with hot-dry summers in a Mediterranean climate, and the mountain scabious S. columbaria facing cold winters in an oceanic climate. A set of functional traits was examined to assess plant performance in these congeneric species from contrasting natural habitats. Both S. atropurpurea and S. columbaria appeared to be perfectly adapted to their environment in terms of adjustments in stomatal closure, CO2 assimilation rate and water use efficiency over the seasons. However, an unexpected dry period during winter followed by the typical Mediterranean hot-dry summer forced S. atropurpurea plants to deploy a set of photoprotective responses during summer. Aside from reductions in leaf water content and Fv/Fm, photoprotective molecules (carotenoids, α-tocopherol and anthocyanins) per unit of chlorophyll increased, mostly as a consequence of a severe chlorophyll loss. The profiling of stress-related hormones (ABA, salicylic acid and jasmonates) revealed associations between ABA and the bioactive jasmonoyl-isoleucine with the underlying photoprotective response to recurrent seasonal stress in S. atropurpurea. We conclude that jasmonates may be used together with ABA as a functional trait that may, at least in part, help understand plant responses to recurrent seasonal stress in the current frame of global climate change.
Collapse
Affiliation(s)
- Melanie Morales
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Kashyap S, Agarwala N, Sunkar R. Understanding plant stress memory traits can provide a way for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111954. [PMID: 38092267 DOI: 10.1016/j.plantsci.2023.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/01/2024]
Abstract
Being sessile, plants encounter various biotic and abiotic threats in their life cycle. To minimize the damages caused by such threats, plants have acquired sophisticated response mechanisms. One major such response includes memorizing the encountered stimuli in the form of a metabolite, hormone, protein, or epigenetic marks. All of these individually as well as together, facilitate effective transcriptional and post-transcriptional responses upon encountering the stress episode for a second time during the life cycle and in some instances even in the future generations. This review attempts to highlight the recent advances in the area of plant memory. A detailed understanding of plant memory has the potential to offer solutions for developing climate-resilient crops for sustainable agriculture.
Collapse
Affiliation(s)
- Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
14
|
Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, Nie X, Bo Y, Javed Q, Du D, Sonne C. A review of plants strategies to resist biotic and abiotic environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165832. [PMID: 37524179 DOI: 10.1016/j.scitotenv.2023.165832] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Plants exposed to a variety of abiotic and biotic stressors including environmental pollution and global warming pose significant threats to biodiversity and ecosystem services. Despite substantial literature documenting how plants adapt to distinct stressors, there still is a lack of knowledge regarding responses to multiple stressors and how these affects growth and development. Exposure of plants to concurrent biotic and abiotic stressors such as cadmium and drought, leads to pronounced inhibition in above ground biomass, imbalance in oxidative homeostasis, nutrient assimilation and stunted root growth, elucidating the synergistic interactions of multiple stressors culminating in adverse physiological outcomes. Impact of elevated heavy metal and water deficit exposure extends beyond growth and development, influencing the biodiversity of the microenvironment including the rhizosphere nutrient profile and microbiome. These findings have significant implications for plant-stress interactions and ecosystem functioning that prompt immediate action in order to eliminate effect of pollution and address global environmental issues to promote sustainable tolerance for multiple stress combinations in plants. Here, we review plant tolerance against stress combinations, highlighting the need for interdisciplinary approaches and advanced technologies, such as omics and molecular tools, to achieve a comprehensive understanding of underlying stress tolerance mechanisms. To accelerate progress towards developing stress-tolerance in plants against multiple environmental stressors, future research in plant stress tolerance should adopt a collaborative approach, involving researchers from multiple disciplines with diverse expertise and resources.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
15
|
Pan R, Ren W, Liu S, Zhang H, Deng X, Wang B. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01361-5. [PMID: 37341869 DOI: 10.1007/s11103-023-01361-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Haloxylon ammodendron, an important shrub utilized for afforestation in desert areas, can withstand harsh ecological conditions such as drought, high salt and extreme heat. A better understanding of the stress adaptation mechanisms of H. ammodendron is vital for ecological improvement in desert areas. In this study, the role of the H. ammodendron 14-3-3 protein HaFT-1 in thermotolerance was investigated. qRT-PCR analysis showed that heat stress (HS) priming (the first HS) enhanced the expression of HaFT-1 during the second HS and subsequent recovery phase. The subcellular localization of YFP-HaFT-1 fusion protein was mainly detected in cytoplasm. HaFT-1 overexpression increased the germination rate of transgenic Arabidopsis seeds, and the survival rate of HaFT-1 overexpression seedlings was higher than that of wild-type (WT) Arabidopsis after priming-and-triggering and non-primed control treatments. Cell death staining showed that HaFT-1 overexpression lines exhibited significantly reduced cell death during HS compared to WT. Transcriptome analysis showed that genes associated with energy generation, protein metabolism, proline metabolism, autophagy, chlorophyll metabolism and reactive oxygen species (ROS) scavenging were important to the thermotolerance of HS-primed HaFT-1 transgenic plants. Growth physiology analysis indicated that priming-and-triggering treatment of Arabidopsis seedlings overexpressing HaFT-1 increased proline content and strengthened ROS scavenging activity. These results demonstrated that overexpression of HaFT-1 increased not only HS priming but also tolerance to the second HS of transgenic Arabidopsis, suggesting that HaFT-1 is a positive regulator in acquired thermotolerance.
Collapse
Affiliation(s)
- Rong Pan
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wenjing Ren
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shuanshuan Liu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Hua Zhang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
16
|
Gai Z, Zhang M, Zhang P, Zhang J, Liu J, Cai L, Yang X, Zhang N, Yan Z, Liu L, Feng G. 2-Oxoglutarate contributes to the effect of foliar nitrogen on enhancing drought tolerance during flowering and grain yield of soybean. Sci Rep 2023; 13:7274. [PMID: 37142711 PMCID: PMC10160060 DOI: 10.1038/s41598-023-34403-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Drought severely affects the growth and yield of soybean plants especially during the flowering period. To investigate the effect of 2-oxoglutarate (2OG) in combination with foliar nitrogen (N) at flowering stage on drought resistance and seed yield of soybean under drought stress. This experiment was conducted in 2021 and 2022 on drought-resistant variety (Hefeng 50) and drought-sensitive variety (Hefeng 43) soybean plants treated with foliar N (DS + N) and 2-oxoglutarate (DS + 2OG) at flowering stage under drought stress. The results showed that drought stress at flowering stage significantly increased leaf malonaldehyde (MDA) content and reduced soybean yield per plant. However, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were significantly increased by foliar N treatment, and 2-oxoglutarate synergistically with foliar N treatment (DS + N + 2OG) was more beneficial to plant photosynthesis. 2-oxoglutarate significantly enhanced plant N content, glutamine synthetase (GS) and glutamate synthase (GOGAT) activity. Furthermore, 2-oxoglutarate increased the accumulation of proline and soluble sugars under drought stress. Under drought stress, soybean seed yield was increased by DS + N + 2OG treatment by 16.48-17.10% and 14.96-18.84% in 2021 and 2022, respectively. Thus, the combination of foliar N and 2-oxoglutarate better mitigated the adverse effects of drought stress and could better compensate for the yield loss of soybean under drought stress.
Collapse
Affiliation(s)
- Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Maoming Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Pengfei Zhang
- Department of Agronomy, Northeast Agricultural University, Harbin, 15000, China
| | - Jingtao Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Jingqi Liu
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Lijun Cai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Xu Yang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Na Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Zhengnan Yan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Guozhong Feng
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
17
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Su Y, Jiao M, Guan H, Zhao Y, Deji C, Chen G. Comparative transcriptome analysis of Saposhnikovia divaricata to reveal drought and rehydration adaption strategies. Mol Biol Rep 2023; 50:3493-3502. [PMID: 36781610 DOI: 10.1007/s11033-023-08305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Water scarcity has become one of the most prevalent environmental factors adversely affecting plant growth and development. Different species have developed multiple ways of drought resistance. Saposhnikovia divaricata is a commonly used traditional herb in East Asia. However, limited information is available on the drought response of this herb and further clarification of underlying molecular mechanism remains a challenge. METHODS AND RESULTS In this study, a comparative transcriptome analysis was firstly conducted to identify the major pathways and candidate genes involved in the drought adaptive response of S. divaricata. The seedlings of S. divaricata were subjected to progressive drought by withholding water for 16 days followed by 8 days of rehydration. Transcriptome analysis identified a total of 89,784 annotated unigenes. The number of differentially expressed genes (DEGs) gradually increased with the deepening of drought and decreased after rehydration. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested genes related to oxidoreductase activity, carbohydrate metabolism, plant hormone signaling pathway and secondary metabolism were important in drought response of S. divaricata. Specific genes involved in reactive oxygen species scavenging system (POD, Cu/Zn-SOD, APX), abscisic acid and jasmonic acid signaling pathway (PYL4, PP2Cs, JAR1, JAZ) and phenylpropanoid biosynthesis (4CL, CCR, CAD) underwent dynamic alterations under drought and rehydration. Finally, the expression pattern of 12 selected DEGs from the transcriptomic profiling was validated by real-time quantitative PCR. CONCLUSION Our study laid a foundation for understanding the stress response of S. divaricata and other Apiaceae family plant at molecular level.
Collapse
Affiliation(s)
- Youla Su
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Miaomiao Jiao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Huan Guan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Yuhuan Zhao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Cuomu Deji
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Guilin Chen
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China. .,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China. .,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China.
| |
Collapse
|
19
|
Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:546-561. [PMID: 36534116 DOI: 10.1111/tpj.16067] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.
Collapse
Affiliation(s)
- Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingjing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingqin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuehui Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Aidong Sun
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
20
|
Hudeček M, Nožková V, Plíhalová L, Plíhal O. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1103088. [PMID: 36743569 PMCID: PMC9889983 DOI: 10.3389/fpls.2022.1103088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
Collapse
Affiliation(s)
- Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
21
|
Liu L, Li H, Li N, Li S, Guo J, Li X. Parental salt priming improves the low temperature tolerance in wheat offspring via modulating the seed proteome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111428. [PMID: 36007631 DOI: 10.1016/j.plantsci.2022.111428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Na Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
22
|
Chen YH, Wei GW, Cui Y, Luo FL. Nutrient Inputs Alleviate Negative Effects of Early and Subsequent Flooding on Growth of Polygonum hydropiper With the Aid of Adventitious Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:919409. [PMID: 35937344 PMCID: PMC9355131 DOI: 10.3389/fpls.2022.919409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Riparian plants are exposed to harmful stress induced by flooding, which is often accompanied by eutrophication in the Three Gorges Reservoir Region. The phenomenon is mainly caused by domestic sewage discharges, slow water flow, and agricultural fertilizer pollution. Simulating abiotic stress, such as flooding at the initial period, can act as a signal and induce positive responses of plants to subsequent severe stress. In addition, eutrophication supplies nutrients, provides a favorable environment in the early stages of plant, and facilitates good performance in later development. However, whether early flooding (with or without eutrophication) acts as positive cue or as stress on plants at different developmental stages remains unclear. To address this question, seeds of Polygonum hydropiper were collected from low and high elevations in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Plants germinated from these seeds were subjected to shallower and shorter early flooding treatments with or without eutrophication. Subsequently, plants were subjected to deeper and longer flooding treatments with or without eutrophication. Early flooding and eutrophic flooding significantly induced generation of adventitious roots, suggesting morphological adaptation to flooding. Although early flooding and eutrophic flooding treatments did not increase plant biomass in subsequent treatments compared with control, stem length, length and width of the 1st fully expanded leaf, and biomass of plants in the early eutrophic treatment were higher than these of the early flooding treatment plants. These results suggest a negative lag-effect of early flooding, and also indicate that nutrient inputs can alleviate such effects. Similarly, subsequent eutrophic flooding also enhanced plant growth compared with subsequent flooding, showing significantly higher values of leaf traits and adventitious root number. Plants originated from low elevation had significantly higher functional leaf length and stem biomass compared with those from high elevation. These results suggest that nutrient inputs can alleviate negative effects of early and subsequent flooding on growth of P. hydropiper with the generation of adventitious roots.
Collapse
Affiliation(s)
- Yu-Han Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Guan-Wen Wei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
23
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
24
|
Liu H, Able AJ, Able JA. Priming crops for the future: rewiring stress memory. TRENDS IN PLANT SCIENCE 2022; 27:699-716. [PMID: 34906381 DOI: 10.1016/j.tplants.2021.11.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. 'Rewired plants' with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
25
|
Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. How do plants remember drought? PLANTA 2022; 256:7. [PMID: 35687165 DOI: 10.1007/s00425-022-03924-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, India.
| | - Shiva Sai Prasad
- Department of Agriculture, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Jayeeta Mitra
- Department of Botany, Arunachal University of Studies, Arunachal Pradesh, Namsai, 792103, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
26
|
Qu K, Cheng Y, Gao K, Ren W, Fry EL, Yin J, Liu Y. Growth-Defense Trade-Offs Induced by Long-term Overgrazing Could Act as a Stress Memory. FRONTIERS IN PLANT SCIENCE 2022; 13:917354. [PMID: 35720531 PMCID: PMC9201768 DOI: 10.3389/fpls.2022.917354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023]
Abstract
Long-term overgrazing (OG) is one of the key drivers of global grassland degradation with severe loss of productivity and ecosystem functions, which may result in stress memory such as smaller stature of grassland plants. However, how the OG-induced stress memory could be regulated by phytohormones is unknown. In this study, we investigated the changes of four phytohormones of cloned offspring of Leymus chinensis that were developed from no-grazing (NG) plants and OG plants with a grazing history of 30 years. The concentrations of auxin (IAA) and gibberellic acid (GA) in OG plant leaves were 45% and 20% lower than control, respectively. Meanwhile, the level of abscisic acid (ABA) in OG leaves nearly doubled compared with that in NG leaves. The situation was quite similar in roots. Unexpectedly, no significant changes in the jasmonic acid (JA) level were observed between OG and NG plants. The changes in gene expression patterns between OG and NG plants were also investigated by transcriptomic analysis. In total, 302 differentially expressed genes (DEGs) were identified between OG and NG plants, which were mainly classified into the functions of synthesis, receptor, and signal transduction processes of phytohormones. The expression of 24 key genes related to the biosynthesis and signal transduction of IAA and GA was downregulated in OG plants. Among them, OASA1 and AO1 (regulating the biosynthesis of IAA and ABA, respectively) were reduced significantly by 88 and 92%, respectively. In addition, the content of secondary metabolites related to plant defense such as flavonoids and phenols was also increased in leaves. Taken together, the decrease of positive plant growth-related hormones (IAA and GA) together with the increase of plant stress-related hormones or factors (ABA, flavonoids, and phenols) induced the growth-defense trade-offs for L. chinensis adaptation to long-term OG stress. The findings reported in this study shed new light on the mechanism of plant-animal interaction in the grassland ecosystem and provide a deeper insight into optimizing grazing management and sustainable utilization of grassland.
Collapse
Affiliation(s)
- Kairi Qu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yunxiang Cheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kairu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yaling Liu
- Inner Mongolia Mongolian Grass Seed Industry Science and Technology Research Institute Co., Ltd., Hohhot, China
| |
Collapse
|
27
|
Nair AU, Bhukya DPN, Sunkar R, Chavali S, Allu AD. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3355-3371. [PMID: 35274680 DOI: 10.1093/jxb/erac089] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The growth, survival, and productivity of plants are constantly challenged by diverse abiotic stresses. When plants are exposed to stress for the first time, they can capture molecular information and store it as a form of memory, which enables them to competently and rapidly respond to subsequent stress(es). This process is referred to as a priming-induced or acquired stress response. In this review, we discuss how (i) the storage and retrieval of the information from stress memory modulates plant physiological, cellular, and molecular processes in response to subsequent stress(es), (ii) the intensity, recurrence, and duration of priming stimuli influences the outcomes of the stress response, and (iii) the varying responses at different plant developmental stages. We highlight current understanding of the distinct and common molecular processes manifested at the epigenetic, (post-)transcriptional, and post-translational levels mediated by stress-associated molecules and metabolites, including phytohormones. We conclude by emphasizing how unravelling the molecular circuitry underlying diverse priming-stimuli-induced stress responses could propel the use of priming as a management practice for crop plants. This practice, in combination with precision agriculture, could aid in increasing yield quantity and quality to meet the rapidly rising demand for food.
Collapse
Affiliation(s)
- Akshay U Nair
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Durga Prasad Naik Bhukya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Annapurna Devi Allu
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
28
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
30
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
31
|
Bittner A, Hause B, Baier M. Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7163-7179. [PMID: 34185054 PMCID: PMC8547158 DOI: 10.1093/jxb/erab314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Cold-priming uncouples cold and light regulation of otherwise tightly co-regulated genes. In this study, we focused on the early regulatory processes in Arabidopsis within the first 2 h in cold and in high light after a 5-d lag-phase at 20 °C and 24 h cold-priming at 4 °C. Priming quickly modified gene expression in a trigger-specific manner. In the early stress-response phase during cold and high-light triggering, it reduced the regulatory amplitudes of many up- and down-regulated genes. A third of the priming-regulated genes were jasmonate-sensitive, including the full set of genes required for oxylipin biosynthesis. Analysis of wild-type and mutant plants based on qPCR demonstrated that biosynthesis of the jasmonic acid (JA) precursor 12-oxo phytenoic acid (OPDA) relative to the availability of JA dampened the response of the genes for oxylipin biosynthesis. In oxylipin biosynthetic mutants, cold-priming more strongly affected genes involved in the biosynthesis of OPDA than in its conversion to JA. In addition, priming-dependent dampening of the triggering response was more linked to OPDA than to regulation of the JA concentration. Spray application of OPDA prior to triggering counteracted the priming effect. Regulation of the oxylipin hub was controlled by modulation of the oxylipin-sensitivity of the genes for OPDA biosynthesis, but it was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase, thus identifying a parallel-acting cold-priming pathway.
Collapse
Affiliation(s)
- Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| |
Collapse
|
32
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
33
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
34
|
Fan R, Su X, Guo Y, Sun F, Qu Y, Chen Q. Cotton seedling drought tolerance is improved via salt preconditioning. PROTOPLASMA 2021; 258:263-277. [PMID: 33057801 DOI: 10.1007/s00709-020-01561-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/26/2020] [Indexed: 05/22/2023]
Abstract
In this study, 12 upland cotton seedlings were used as the material, and four treatments were designed (15% PEG for 6 h, 250 mM NaCl for 3 h, 15% PEG for 6 h after 250 mM NaCl pretreatment, and blank control). Various physiological indicators, including the malondialdehyde (MDA) and proline (Pro) contents and superoxide dismutase (SOD) and peroxidase (POD) activities, and the relative electrolyte leakage (REL), were measured during exposure to the aforementioned stresses, and three stress-related transcription factors (GhHsfA, GhbZIP, and GhNAC) were used to assess the differences in the drought resistance of cotton during exposure to PEG stress and NaCl/PEG combined stress. The analyses of the physiological and biochemical indicators revealed that the cotton seedlings exposed to NaCl/PEG combined stress exhibited the highest relative changes in the SOD and POD enzyme activities, while the relative changes in the MDA content and REL were relatively small. The cluster analysis showed that the treatments could be ranked as follows based on degree of damage exhibited by the exposed cotton seedlings: PEG > NaCl > NaCl/PEG. The exposure of cotton to NaCl/PEG combined stress resulted in a lower degree of damage than that obtained after exposure to PEG alone, which indicated that an appropriate amount of NaCl could partially relieve the adverse effects of drought on cotton seedlings. In addition, the relative expression levels of GhHsfA, GhbZIP, and GhNAC were significantly correlated with multiple physiological and biochemical indicators under different stresses, and the principal component analysis identified these transcription factors as important indicators. Based on these findings, these three transcription factors can be used as molecular indicators for the identification of drought resistance. A comprehensive D value cluster analysis ranked the 12 cotton varieties based on their drought resistance, and the most drought-resistant variety was ND359-5. This study provides new methods and materials for research on drought resistance in cotton.
Collapse
Affiliation(s)
- Rong Fan
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | - Xiujuan Su
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | - Yaping Guo
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | - Fenglei Sun
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, Xinjiang, China.
| |
Collapse
|
35
|
Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:489-504. [PMID: 33617121 PMCID: PMC7898868 DOI: 10.1111/tpj.15124] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
Plant hormones are essential for regulating the interactions between plants and their complex biotic and abiotic environments. Each hormone initiates a specific molecular pathway and these different hormone pathways are integrated in a complex network of synergistic, antagonistic and additive interactions. This inter-pathway communication is called hormone crosstalk. By influencing the immune network topology, hormone crosstalk is essential for tailoring plant responses to diverse microbes and insects in diverse environmental and internal contexts. Crosstalk provides robustness to the immune system but also drives specificity of induced defense responses against the plethora of biotic interactors. Recent advances in dry-lab and wet-lab techniques have greatly enhanced our understanding of the broad-scale effects of hormone crosstalk on immune network functioning and have revealed underlying principles of crosstalk mechanisms. Molecular studies have demonstrated that hormone crosstalk is modulated at multiple levels of regulation, such as by affecting protein stability, gene transcription and hormone homeostasis. These new insights into hormone crosstalk regulation of plant defense are reviewed here, with a focus on crosstalk acting on the jasmonic acid pathway in Arabidopsis thaliana, highlighting the transcription factors MYC2 and ORA59 as major targets for modulation by other hormones.
Collapse
Affiliation(s)
- Niels Aerts
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Marciel Pereira Mendes
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| |
Collapse
|
37
|
Bharath P, Gahir S, Raghavendra AS. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:615114. [PMID: 33746999 PMCID: PMC7969522 DOI: 10.3389/fpls.2021.615114] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.
Collapse
|
38
|
Brenya E, Chen ZH, Tissue D, Papanicolaou A, Cazzonelli CI. Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC PLANT BIOLOGY 2020; 20:548. [PMID: 33287718 PMCID: PMC7720613 DOI: 10.1186/s12870-020-02759-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/26/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Prolonged mechanical stress (MS) causes thigmomorphogenesis, a stress acclimation response associated with increased disease resistance. What remains unclear is if; 1) plants pre-exposed to a short period of repetitive MS can prime defence responses upon subsequent challenge with necrotrophic pathogens, 2) MS mediates plant immunity via jasmonic acid (JA) signalling, and 3) a short period of repetitive MS can cause long-term changes in gene expression resembling a stress-induced memory. To address these points, 10-days old juvenile Arabidopsis seedlings were mechanically stressed for 7-days using a soft brush and subsequently challenged with the necrotrophic pathogens, Alternaria brassicicola, and Botrytis cinerea. Here we assessed how MS impacted structural cell wall appositions, disease symptoms and altered gene expression in response to infection. RESULTS The MS-treated plants exhibited enhanced cell wall appositions and jasmonic acid (JA) accumulation that correlated with a reduction in disease progression compared to unstressed plants. The expression of genes involved in JA signalling, callose deposition, peroxidase and phytoalexin biosynthesis and reactive oxygen species detoxification were hyper-induced 4-days post-infection in MS-treated plants. The loss-of-function in JA signalling mediated by the JA-insensitive coronatine-insensitive 1 (coi1) mutant impaired the hyper-induction of defense gene expression and promoted pathogen proliferation in MS-treated plants subject to infection. The basal expression level of PATHOGENESIS-RELATED GENE 1 and PLANT DEFENSIN 1.2 defense marker genes were constitutively upregulated in rosette leaves for 5-days post-MS, as well as in naïve cauline leaves that differentiated from the inflorescence meristem well after ceasing MS. CONCLUSION This study reveals that exposure of juvenile Arabidopsis plants to a short repetitive period of MS can alter gene expression and prime plant resistance upon subsequent challenge with necrotrophic pathogens via the JA-mediated COI1 signalling pathway. MS may facilitate a stress-induced memory to modulate the plant's response to future stress encounters. These data advance our understanding of how MS primes plant immunity against necrotrophic pathogens and how that could be utilised in sustainable agricultural practices.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Present address: Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Hesler Biology Building. 1441 Circle Drive, Knoxville, TN, 37996, USA
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
39
|
Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. Int J Mol Sci 2020; 21:ijms21207457. [PMID: 33050358 PMCID: PMC7589735 DOI: 10.3390/ijms21207457] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 01/17/2023] Open
Abstract
Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful “invasions” of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.
Collapse
|
40
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|
41
|
Barton KE, Shiels AB. Additive and non‐additive responses of seedlings to simulated herbivory and drought. Biotropica 2020. [DOI: 10.1111/btp.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- School of Life Sciences University of Hawai'i at Mānoa Honolulu Hawaii USA
| | - Aaron B. Shiels
- USDA National Wildlife Research Center Fort Collins Colorado USA
| |
Collapse
|
42
|
Guo H, Sun Y, Yan H, Li C, Ge F. O 3-Induced Priming Defense Associated With the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2020; 11:93. [PMID: 32210979 PMCID: PMC7069499 DOI: 10.3389/fpls.2020.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Elevated ozone (O3) modulates phytohormone signals, which subsequently alters the interaction between plants and herbivorous insects. It has been reported that elevated O3 activates the plant abscisic acid (ABA) signaling pathway, but its cascading effect on the performance of herbivorous insects remains unclear. Here, we used the ABA-deficient tomato mutant notabilis (not) and its wild type, Ailsa Craig (AC), to determine the role of ABA signaling in mediating the effects of elevated O3 on Bemisia tabaci in field open-top chambers (OTCs). Our results showed that the population abundance and the total phloem-feeding duration of B. tabaci were decreased by O3 exposure in AC plants compared with not plants. Moreover, elevated O3 and B. tabaci infestation activated the ABA signaling pathway and enhanced callose deposition in AC plants but had little effect on those in not plants. The exogenous application of a callose synthesis inhibitor (2-DDG) neutralized O3-induced resistance to B. tabaci, and the application of ABA enhanced callose deposition and exacerbated the negative effects of elevated O3 on B. tabaci. However, the application of 2-DDG counteracted the negative effects of O3 exposure on B. tabaci in ABA-treated AC plants. Collectively, this study revealed that callose deposition, which relied on the ABA signaling pathway, was an effective O3-induced priming defense of tomato plants against B. tabaci infestation.
Collapse
Affiliation(s)
- Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Zhang X, Wang X, Zhuang L, Gao Y, Huang B. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. PHYSIOLOGIA PLANTARUM 2019; 167:488-501. [PMID: 30977137 DOI: 10.1111/ppl.12975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) may play roles in mediating cross stress tolerance in plants. The objectives of this study were to investigate the priming effects of drought and ABA on heat tolerance and to determine how ABA may be involved in enhanced heat tolerance by drought. Focusing on the transcriptional level, two independent experiments were conducted, using a perennial grass species, tall fescue (Festuca arundinacea) and Arabidopsis. In experiment 1, tall fescue plants were exposed to mild drought by withholding irrigation for 8 days (drought priming) and foliar sprayed with ABA or an ABA-synthesis inhibitor (fluridone). After that they were subsequently subjected to heat stress (38/33°C day/night) for 25 days in growth chambers. In experiment 2, Arabidopsis Columbia ecotype (wild-type) and ABA-deficient mutant (aba3-1, CS157) were pre-treated with drought priming and then exposed to heat stress (45/40°C) for 3 days. The physiological analysis demonstrated that both drought priming and foliar application of ABA-enhanced heat tolerance in tall fescue, while drought priming had no significant effects on heat tolerance in ABA-deficient Arabidopsis plants. Application of fluridone to tall fescue and ABA-deficient mutants of Arabidopsis exhibited diminished or attenuated positive effects of drought priming on heat tolerance. ABA mediation of acquired heat tolerance by drought priming was associated with the upregulation of CDPK3, MPK3, DREB2A, AREB3, MYB2, MYC4, HsfA2, HSP18, and HSP70. Our study revealed the roles of ABA in drought priming-enhanced heat tolerance, which may involve transcriptional regulation for stress signaling, ABA responses and heat protection.
Collapse
Affiliation(s)
- Xiaxiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Xiuyun Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Zhuang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Gao
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
44
|
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. PLANT, CELL & ENVIRONMENT 2019; 42:753-761. [PMID: 30779228 DOI: 10.1111/pce.13526] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants need to cope with changing environmental conditions, be it variable light or temperature, different availability of water or nutrients, or attack by pathogens or insects. Some of these changing conditions can become stressful and require strong countermeasures to ensure plant survival. Plants have evolved numerous distinct sensing and signalling mechanisms to perceive and respond appropriately to a variety of stresses. Because of the unpredictable nature of numerous stresses, resource-saving stress response mechanisms are inducible and become activated only upon a stress experience. Furthermore, plants have evolved mechanisms by which they can remember past stress events and prime their responses in order to react more rapidly or more strongly to recurrent stress. Research over the last decade has revealed mechanisms of this information storage and retrieval, which include epigenetic regulation, transcriptional priming, primed conformation of proteins, or specific hormonal or metabolic signatures. There is also increasing understanding of the ecological constraints and relevance of stress priming and memory. This special issue presents research articles and reviews addressing various aspects of this exciting and growing field of research. Here, we introduce the topic by referring to the articles published in this issue, and we outline open questions and future directions of research.
Collapse
Affiliation(s)
- Monika Hilker
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Zoology & Ecology, Freie Universität Berlin, D-14163, Berlin, Germany
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Genetics, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|