1
|
Bhardwaj D, Sharma S, Sharma A, Gill R, Gill SS, Verma R, Kaul T, Tuteja N. Decoding the signaling triad: Molecular interactions of G-proteins, MAP kinases, and helicases in environmental stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112514. [PMID: 40228609 DOI: 10.1016/j.plantsci.2025.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Plant signaling and stress response systems depend heavily on the essential functions of heterotrimeric G-proteins, mitogen-activated protein kinases (MAPKs), and helicases. Researchers have thoroughly investigated each molecular component separately but still lack comprehensive knowledge about how they work together functionally. This review investigates the interactions between G-proteins, MAPKs, and helicases as fundamental components of plant stress signaling networks. G-proteins function as molecular switches that perceive stress signals to initiate downstream cascades which activate MAPK pathways. MAPKs trigger phosphorylation of vital target proteins such as transcription factors and helicases which in turn regulate gene expression and RNA metabolism. Helicases, crucial for plant stress response mechanisms, unwind nucleic acid structures. Recent research shows that MAPKs and helicases together manage ribosome loading along with mRNA stability and protein production when plants face environmental stress. The review examines molecular interactions that provide new insights into plant stress physiology, while highlighting the need for further investigation into plant adaptive mechanisms involving G-proteins, MAPKs, and helicases.
Collapse
Affiliation(s)
- Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India.
| | - Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir 181143, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Rachana Verma
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanushri Kaul
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Narendra Tuteja
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
2
|
Li J, Yang Y, Wang F, Ma Q, Jia H. Magnesium-dependent phosphatase 1 (MDP1) interacts with WRKY 53 and protein phosphatase 2C 80 (PP2C80) to improve salt stress tolerance by scavenging reactive oxygen species in Salix psammophila. Int J Biol Macromol 2025; 316:144687. [PMID: 40441560 DOI: 10.1016/j.ijbiomac.2025.144687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/22/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
The roles of haloacid dehalogenase-like hydrolase (HAD) proteins in plants under salt stress remain largely unexplored. In the present study, we identified and functionally characterized SpsMDP1, a member of the HAD family, from Salix psammophila, which is a shrub adapted to desert environments. SpsMDP1 was strongly upregulated by salt stress. Ectopic expression of SpsMDP1 in Arabidopsis and poplar enhanced salt tolerance, with increased peroxidase activity and less ROS accumulation. Enhanced xylem development was in transgenic poplar plants overexpressing SpsMDP1. Moreover, Y2H, Co-IP, BiFC, and luciferase complementation analyses demonstrated that SpsPP2C80 can interact with SpsMDP1 both in vitro and in vivo. In addition, Y1H, EMSA, and transient expression analysis revealed that SpsWRKY53 is an upstream regulator of SpsMDP1 and can directly bind to the W-box in the promoter region and activate its expression. Both SpsWRKY53 and SpsPP2C80 can increase salt stress tolerance by increasing the activity of antioxidant enzymes. Taken together, in our study we propose a model for the SpsWRKY53-SpsMDP1-SpsPP2C80 module to defend against salt stress by scavenging reactive oxygen species. Our results provide a foundation for better understanding the function of SpsMDP1 in response to salt in S. psammophila and identifying candidate genes for transgenic salt resistance breeding.
Collapse
Affiliation(s)
- Jianbo Li
- China National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yangfei Yang
- China National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Fei Wang
- China National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Qinghua Ma
- China National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Huixia Jia
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Jo SH, Park HJ, Jung H, Lee GS, Moon JH, Kim HS, Lee HJ, Jung C, Cho HS. PROTEIN PHOSPHATASE 2A B'η drives spliceosome subunit dephosphorylation to mediate alternative splicing following heat stress. THE PLANT CELL 2025; 37:koaf117. [PMID: 40359319 DOI: 10.1093/plcell/koaf117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 05/15/2025]
Abstract
Dephosphorylation of spliceosome components is an essential regulatory step for intron removal from pre-mRNA, thereby controlling gene expression. However, the specific phosphatase responsible for this dephosphorylation step has not been identified. Here, we show that Arabidopsis thaliana (Arabidopsis) PROTEIN PHOSPHATASE 2A B'η (PP2A B'η), a B subunit of PP2A, interacts with the splicing factors PRP18a, PRP16, and RH2 and facilitates their dephosphorylation by recognizing substrates through a conserved binding motif. This dephosphorylation is crucial for proper splicing of retained introns in heat stress-responsive genes, which is mediated by the PP2A interactor PRE-MRNA PROCESSING FACTOR 18a. Genetic inactivation of PP2A B'η abolished thermotolerance during seed germination and resulted in widespread intron retention in heat stress-responsive genes. Conversely, overexpression of PP2A B'η conferred enhanced thermotolerance, accompanied by the efficient removal of retained introns under heat stress. We demonstrate that a B regulatory subunit of PP2A plays a central role in dephosphorylating spliceosome components, regulating alternative splicing, facilitating acclimation to heat stress, and targeting specific spliceosome subunits that activate pre-mRNA splicing.
Collapse
Affiliation(s)
- Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon 34113, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
4
|
Xu C, Gao KK, Cui MQ, Wang YX, Cen ZY, Xu JM, Wu YR, Ding WN, Yan JY, Li GX, Benhamed M, Jin CW, Zheng SJ, Ding ZJ. The PP2CH- and PBL27-mediated phosphorylation switch of aluminium ion receptor PSKR1/ALR1 controls plant aluminum sensing ability. NATURE PLANTS 2025; 11:1074-1088. [PMID: 40216985 DOI: 10.1038/s41477-025-01983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 05/23/2025]
Abstract
The ability of plants to sense toxic and nutrient ions is critical for their growth and survival, yet how this ability is regulated remains largely unknown. We previously identified the receptor-like kinase PSKR1/ALR1 (ALR1) in Arabidopsis as a receptor that senses phytotoxic aluminium (Al) ions, which cause severe crop yield loss and forest decline on acidic soils widely distributed over the world. Here we further show that the phosphorylation status of specific Ser residues in ALR1(Ser696/698) controls plant Al-sensing ability. ALR1(Ser696/698) phosphorylation levels are rapidly reduced by Al ions, and the dephosphorylation promotes the interaction and inter-phosphorylation of ALR1 and the BAK1 coreceptor, thereby activating STOP1-dependent Al signalling and resistance. We next identify a clade of PP2C-type phosphatases (PP2CH1 and PP2CH2) that mediate the dephosphorylation of ALR1(Ser696/698). We show that Al ions rapidly increase the protein accumulation of PP2CH1/2 and promote their interaction with ALR1. The lack of both PP2CHs notably increases the phosphorylation levels of ALR1(Ser696/698), therefore reducing the strength of Al signalling. Additionally, we found a receptor-like cytoplasmic kinase, PBL27, responsible for phosphorylating ALR1(Ser696/698) and playing a negative role in the regulation of ALR1-mediated Al signalling. These findings uncover a phosphatase/kinase-mediated phosphorylation switching mechanism of ALR1 that controls plant Al-sensing ability, providing insights into ion-sensing mechanisms in living organisms.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ke Ke Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ze Yu Cen
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Yang J, Chen R, Liu W, Fan C. Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the PP2C gene family in litchi ( Litchi chinensis Sonn.). FRONTIERS IN PLANT SCIENCE 2025; 16:1547526. [PMID: 40353233 PMCID: PMC12063536 DOI: 10.3389/fpls.2025.1547526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025]
Abstract
As an important regulatory protein phosphatase in the abscisic acid (ABA) signal transduction pathway and mitogen-activated protein kinases (MAPK) cascade, type-2C protein phosphatase (PP2C) plays crucial roles in plant responses to abiotic stresses. However, the PP2C gene family's responses to abiotic stress in litchi (Litchi chinensis Sonn.) have not been systematically studied. In this study, we predicted the 68 PP2C (designated LcPP2C) genes randomly distributed across fourteen chromosomes in the litchi genome. Phylogenetic tree analysis among litchi, Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa) revealed that the phylogenetic tree was divided into thirteen groups (A, B, C, D, E, F1, F2, G, H, I, J, K, and L). Closely linked LcPP2C genes within the same group exhibited various similarities in gene structures and motif compositions. Collinearity analysis demonstrated that segmental duplication (SD) events were the main dramatically increasing numbers in the LcPP2C gene family members. Cis-acting element analysis revealed that the 68 LcPP2C genes contained hormone and stress response elements with varying quantities, implying their potential in litchi stress resistance. Expression analysis showed that all the LcPP2C genes exhibited varying expression levels across nine different litchi tissues, more than 50% of genes within each group displayed similar tissue-specific expression patterns. The expression intensity, duration and regulation direction (up- or down-regulation) of the LcPP2C genes were varied under different abiotic stresses (cold, heat, and drought). The physiological and biochemical tests indicated that eight activation indexes (peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), proline (PRO), soluble protein (SP), hydrogen peroxide (H2O2), and soluble sugar (SS)) increase at different level. Additionally, we analyzed physicochemical properties, subcellular locations, and secondary structures of the LcPP2C family members. Notably, the extensive connectivity of LcPP2C32/60/9/37 underscored their vital roles in orchestrating and regulating biomolecular networks. These results provide valuable information for the identification of the LcPP2C genes and ideas for the cultivation of its transgenic induction lines in litchi.
Collapse
Affiliation(s)
| | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Zhao H, Jia Y, Niu Y, Wang Y. The BpPP2C-BpMADS11-BpERF61 signaling confers drought tolerance in Betula platyphylla. THE NEW PHYTOLOGIST 2024; 244:2364-2381. [PMID: 39351656 DOI: 10.1111/nph.20164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 11/22/2024]
Abstract
Plant MADS-box proteins are vital for abiotic stress tolerance, yet their mechanisms for responding to drought remain poorly understood. Here, we investigated the drought tolerance mechanism of a MADS-box protein (BpMADS11) from birch (Betula platyphylla) using immunoprecipitation, Western blotting, yeast two-hybrid, yeast one-hybrid, ChIP, RNA-seq, and dual-luciferase assays to explore post-translational modifications, protein interactions, and gene regulation. Birch plants overexpressing BpMADS11 exhibited enhanced drought tolerance, while knockout lines displayed reduced tolerance. Under drought conditions, BpMADS11 interacts with protein phosphatase 2C22 (BpPP2C22), which dephosphorylates BpMADS11. Birch plants that overexpress BpMADS11 and lack BpPP2C22 show significantly reduced drought tolerance compared with those that only overexpress BpMADS11. BpMADS11 regulates the expression of BpERF61 by binding to CArG-box in its promoter. The dephosphorylated BpMADS11 exhibits increased DNA binding ability and increased expression of BpERF61. Like BpMADS11, birch plants overexpressing BpERF61 show improved drought tolerance, while those with BpERF61 knockout exhibit decreased tolerance. BpERF61 binds to specific DNA motifs including 'CACGTG' (G-box), 'GGGCCCC', and 'TTGGAT' to regulate the genes related to drought stress. Collectively, BpMADS11 undergoes dephosphorylation through its interaction with BpPP2C22, prompting the expression of BpERF61. Subsequently, BpERF61 regulates downstream genes by binding to specific DNA motifs, thereby enhancing drought tolerance.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yaqi Jia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
- Key Laboratory of Forest Tree Genetic Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| |
Collapse
|
7
|
Su B, Li Z, Liu H, Niu X, Zhao X, Wu Y, Wang Q, Yuan Y, Xiao Z, Huang D. Identification and validation of reference genes for RT-qPCR analysis in Iris domestica under Cd stress. Heliyon 2024; 10:e36923. [PMID: 39281568 PMCID: PMC11400969 DOI: 10.1016/j.heliyon.2024.e36923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Iris domestica is a widely used ornamental garden and important medicinal plant. Our previous studies have shown that it exhibits significant uptake and translocation capacity under Cd stress compared to other Iris species. Gene expression is studied using RT-qPCR; however, there are no reference genes have been found for I. domestica under Cd stress. In this investigation, thirteen possible reference genes from previous studies and our transcriptome were screened using RT-qPCR in the leaves and roots of Cd-stressed plants. The findings revealed that UBC9 and ACT were the best reference genes for roots with and without Cd stress, whereas YLS8 and ACT7 were the best reference genes for leaves. Among the different tissues without Cd stress, UBC9 and UBC28 exhibited the best results, whereas PP2C06 and UBC9 exhibited the best results under Cd stress. The most stable reference genes in the leaves and roots were UBC9 and UBC28, respectively, under and without Cd stress, and GADPH was the most unstable. Finally, three metal ion response genes, NRAMP2, YSL9 and CYP81Q32 were detected using RT-qPCR and compared with the transcriptome data to further confirm the reliability of the chosen genes. This study identified suitable reference genes for I. domestica under Cd-stress conditions.
Collapse
Affiliation(s)
- Beibei Su
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
- Shijiazhuang Information Engineering Vocational College, Shijiazhuang, 052161, China
| | - Ziwei Li
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojie Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yumeng Wu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Zhuolin Xiao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
8
|
Wang H, Bi Y, Yan Y, Yuan X, Gao Y, Noman M, Li D, Song F. A NAC transcription factor MNAC3-centered regulatory network negatively modulates rice immunity against blast disease. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2017-2041. [PMID: 38953747 DOI: 10.1111/jipb.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Chakraborty J, Sobol G, Xia F, Zhang N, Martin GB, Sessa G. PP2C phosphatase Pic14 negatively regulates tomato Pto/Prf-triggered immunity by inhibiting MAPK activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2622-2637. [PMID: 39032095 DOI: 10.1111/tpj.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
10
|
Rankenberg T, van Veen H, Sedaghatmehr M, Liao CY, Devaiah MB, Stouten EA, Balazadeh S, Sasidharan R. Differential leaf flooding resilience in Arabidopsis thaliana is controlled by ethylene signaling-activated and age-dependent phosphorylation of ORESARA1. PLANT COMMUNICATIONS 2024; 5:100848. [PMID: 38379284 PMCID: PMC11211547 DOI: 10.1016/j.xplc.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans van Veen
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Evolutionary Plant-Ecophysiology, Groningen Institute for Evolutionary LIfe Sciences, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Che-Yang Liao
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Muthanna Biddanda Devaiah
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Evelien A Stouten
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Rashmi Sasidharan
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
11
|
Gao Y, Qu D, Zhou M, Tang R, Ye J, Li X, Wang Y. Rhizobial-induced phosphatase GmPP2C61A positively regulates soybean nodulation. PHYSIOLOGIA PLANTARUM 2024; 176:e14341. [PMID: 38741264 DOI: 10.1111/ppl.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Yongkang Gao
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Dejie Qu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Miaomiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Ruiheng Tang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Junjie Ye
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
12
|
Su M, Hou S. Ethylene insensitive 2 (EIN2) destiny shaper: The post-translational modification. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154190. [PMID: 38460400 DOI: 10.1016/j.jplph.2024.154190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.
Collapse
Affiliation(s)
- Meifei Su
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Qiu M, Sun Y, Tu S, Li H, Yang X, Zhao H, Yin M, Li Y, Ye W, Wang M, Wang Y. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. MOLECULAR PLANT PATHOLOGY 2024; 25:e13425. [PMID: 38462784 PMCID: PMC10925823 DOI: 10.1111/mpp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaru Sun
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Siqun Tu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Huaibo Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Haiyang Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Maozhu Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaning Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Ming Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
14
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
15
|
Wong MM, Huang XJ, Bau YC, Verslues PE. AT Hook-Like 10 phosphorylation determines ribosomal RNA processing 6-like 1 (RRP6L1) chromatin association and growth suppression during water stress. PLANT, CELL & ENVIRONMENT 2024; 47:24-37. [PMID: 37727952 DOI: 10.1111/pce.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Phosphorylation of AT Hook-Like 10 (AHL10), one of the AT-hook family of plant-specific DNA binding proteins, is critical for growth suppression during moderate severity drought (low water potential, ψw ) stress. To understand how AHL10 phosphorylation determines drought response, we identified putative AHL10 interacting proteins and further characterized interaction with RRP6L1, a protein involved in epigenetic regulation. RRP6L1 and AHL10 mutants, as well as ahl10-1rrp6l1-2, had similar phenotypes of increased growth maintenance during low ψw . Chromatin precipitation demonstrated that RRP6L1 chromatin association increased during low ψw stress and was dependent upon AHL10 phosphorylation. Transcriptome analyses showed that AHL10 and RRP6L1 have concordant effects on expression of stress- and development-related genes. Together these results indicate that stress signalling can act via AHL10 phosphorylation to control the chromatin association of the key regulatory protein RRP6L1. AHL10 and RRP6L1 interaction in meristem cells is part of a mechanism to downregulate growth during low ψw stress. Interestingly, the loss of AHL13, which is homologous to AHL10 and phosphorylated at a similar C-terminal site, blocked the enhanced growth maintenance of ahl10-1. Thus, AHL10 and AHL13, despite their close homology, are not redundant but rather have distinct roles, likely related to the formation of AHL hetero-complexes.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Xin-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Bau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
17
|
Wu H, Zhu L, Cai G, Lv C, Yang H, Ren X, Hu B, Zhou X, Jiang T, Xiang Y, Wei R, Li L, Liu H, Muhammad I, Xia C, Lan H. Genome-Wide Identification and Characterization of the PP2C Family from Zea mays and Its Role in Long-Distance Signaling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3153. [PMID: 37687398 PMCID: PMC10490008 DOI: 10.3390/plants12173153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The protein phosphatase 2C (PP2C) constitutes a large gene family that plays crucial roles in regulating stress responses and plant development. A recent study has shown the involvement of an AtPP2C family member in long-distance nitrogen signaling in Arabidopsis. However, it remains unclear whether maize adopts a similar mechanism. In this study, we conducted a genome-wide survey and expression analysis of the PP2C family in maize. We identified 103 ZmPP2C genes distributed across 10 chromosomes, which were further classified into 11 subgroups based on an evolutionary tree. Notably, cis-acting element analysis revealed the presence of abundant hormone and stress-related, as well as nitrogen-related, cis-elements in the promoter regions of ZmPP2Cs. Expression analysis demonstrated the distinct expression patterns of nine genes under two nitrogen treatments. Notably, the expression of ZmPP2C54 and ZmPP2C85 in the roots was found to be regulated by long-distance signals from the shoots. These findings provide valuable insights into understanding the roles of ZmPP2Cs in long-distance nitrogen signaling in maize.
Collapse
Affiliation(s)
- Huan Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Ling Zhu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Guiping Cai
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Chenxi Lv
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Huan Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Xiaoli Ren
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Bo Hu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Xuemei Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Tingting Jiang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Yong Xiang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Rujun Wei
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Lujiang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Hailan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Imran Muhammad
- Department of Chemistry, Punjab College of Science, Faisalabad 54000, Pakistan
| | - Chao Xia
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.W.)
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
19
|
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100495. [PMID: 36419364 PMCID: PMC10030365 DOI: 10.1016/j.xplc.2022.100495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.
Collapse
Affiliation(s)
- Rui Albuquerque-Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK.
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
20
|
Wu Z, Luo L, Wan Y, Liu F. Genome-wide characterization of the PP2C gene family in peanut ( Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1093913. [PMID: 36778706 PMCID: PMC9911800 DOI: 10.3389/fpls.2023.1093913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance.
Collapse
Affiliation(s)
- Zhanwei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
21
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
22
|
Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 2022; 73:e12804. [PMID: 35488179 DOI: 10.1111/jpi.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.
Collapse
Affiliation(s)
- Yujing Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Jingru Guo
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yabin Dong
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Liyan Zheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| |
Collapse
|
23
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
24
|
Nibau C, van de Koot W, Spiliotis D, Williams K, Kramaric T, Beckmann M, Mur L, Hiwatashi Y, Doonan JH. Molecular and physiological responses to desiccation indicate the abscisic acid pathway is conserved in the peat moss, Sphagnum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4576-4591. [PMID: 35383351 PMCID: PMC9291362 DOI: 10.1093/jxb/erac133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Mosses of the genus Sphagnum are the main components of peatlands, a major carbon-storing ecosystem. Changes in precipitation patterns are predicted to affect water relations in this ecosystem, but the effect of desiccation on the physiological and molecular processes in Sphagnum is still largely unexplored. Here we show that different Sphagnum species have differential physiological and molecular responses to desiccation but, surprisingly, this is not directly correlated with their position in relation to the water table. In addition, the expression of drought responsive genes is increased upon water withdrawal in all species. This increase in gene expression is accompanied by an increase in abscisic acid (ABA), supporting a role for ABA during desiccation responses in Sphagnum. Not only do ABA levels increase upon desiccation, but Sphagnum plants pre-treated with ABA display increased tolerance to desiccation, suggesting that ABA levels play a functional role in the response. In addition, many of the ABA signalling components are present in Sphagnum and we demonstrate, by complementation in Physcomitrium patens, that Sphagnum ABI3 is functionally conserved. The data presented here, therefore, support a conserved role for ABA in desiccation responses in Sphagnum.
Collapse
Affiliation(s)
| | - Willem van de Koot
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dominic Spiliotis
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Kevin Williams
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tina Kramaric
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Luis Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - John H Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
25
|
Shamma F, Rego EH, Boutte CC. Mycobacterial serine/threonine phosphatase PstP is phosphoregulated and localized to mediate control of cell wall metabolism. Mol Microbiol 2022; 118:47-60. [PMID: 35670057 PMCID: PMC10070032 DOI: 10.1111/mmi.14951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
The mycobacterial cell wall is profoundly regulated in response to environmental stresses, and this regulation contributes to antibiotic tolerance. The reversible phosphorylation of different cell wall regulatory proteins is a major mechanism of cell wall regulation. Eleven serine/threonine protein kinases phosphorylate many critical cell wall-related proteins in mycobacteria. PstP is the sole serine/ threonine phosphatase, but few proteins have been verified as PstP substrates. PstP is itself phosphorylated, but the role of its phosphorylation in regulating its activity has been unclear. In this study, we aim to discover novel substrates of PstP in Mycobacterium tuberculosis (Mtb). We show in vitro that PstP dephosphorylates two regulators of peptidoglycan in Mtb, FhaA, and Wag31. We also show that a phosphomimetic mutation of T137 on PstP negatively regulates its catalytic activity against the cell wall regulators FhaA, Wag31, CwlM, PknB, and PknA, and that the corresponding mutation in Mycobacterium smegmatis causes misregulation of peptidoglycan in vivo. We show that PstP is localized to the septum, which likely restricts its access to certain substrates. These findings on the regulation of PstP provide insight into the control of cell wall metabolism in mycobacteria.
Collapse
Affiliation(s)
- Farah Shamma
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
26
|
Liu N, Ling R, Tang X, Yu Y, Zhou Y, Chen D. Post-Translational Modifications of BRD4: Therapeutic Targets for Tumor. Front Oncol 2022; 12:847701. [PMID: 35402244 PMCID: PMC8993501 DOI: 10.3389/fonc.2022.847701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Over 30 targeted inhibitors currently in preclinical and clinical trials have significant inhibitory effects on various tumors, including acute myelogenous leukemia (AML), diffuse large B cell lymphoma, prostate cancer, breast cancer and so on. However, resistance frequently occurs, revealing the limitations of BET inhibitor (BETi) therapy and the complexity of the BRD4 expression mechanism and action pathway. Current studies believe that when the internal and external environmental conditions of cells change, tumor cells can directly modify proteins by posttranslational modifications (PTMs) without changing the original DNA sequence to change their functions, and epigenetic modifications can also be activated to form new heritable phenotypes in response to various environmental stresses. In fact, research is constantly being supplemented with regards to that the regulatory role of BRD4 in tumors is closely related to PTMs. At present, the PTMs of BRD4 mainly include ubiquitination and phosphorylation; the former mainly regulates the stability of the BRD4 protein and mediates BETi resistance, while the latter is related to the biological functions of BRD4, such as transcriptional regulation, cofactor recruitment, chromatin binding and so on. At the same time, other PTMs, such as hydroxylation, acetylation and methylation, also play various roles in BRD4 regulation. The diversity, complexity and reversibility of posttranslational modifications affect the structure, stability and biological function of the BRD4 protein and participate in the occurrence and development of tumors by regulating the expression of tumor-related genes and even become the core and undeniable mechanism. Therefore, targeting BRD4-related modification sites or enzymes may be an effective strategy for cancer prevention and treatment. This review summarizes the role of different BRD4 modification types, elucidates the pathogenesis in the corresponding cancers, provides a theoretical reference for identifying new targets and effective combination therapy strategies, and discusses the opportunities, barriers, and limitations of PTM-based therapies for future cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyu Chen
- *Correspondence: Deyu Chen, ; Yuepeng Zhou,
| |
Collapse
|
27
|
Guo J, Bai Y, Wei Y, Dong Y, Zeng H, Reiter RJ, Shi H. Fine-tuning of pathogenesis-related protein 1 (PR1) activity by the melatonin biosynthetic enzyme ASMT2 in defense response to cassava bacterial blight. J Pineal Res 2022; 72:e12784. [PMID: 34936113 DOI: 10.1111/jpi.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.
Collapse
Affiliation(s)
- Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
28
|
Longkumer T, Chen CY, Biancucci M, Bhaskara GB, Verslues PE. Spatial differences in stoichiometry of EGR phosphatase and Microtubule-associated Stress Protein 1 control root meristem activity during drought stress. THE PLANT CELL 2022; 34:742-758. [PMID: 34865106 PMCID: PMC8824564 DOI: 10.1093/plcell/koab290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 05/16/2023]
Abstract
During moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Arabidopsis thaliana Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule-Associated Stress Protein 1 (MASP1) differed in their stoichiometry of protein accumulation across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψw stress. This, along with the ability of phosphomimic MASP1 to overcome the EGR-mediated suppression of root meristem size and the observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low ψw EGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low ψw. Conversely, both the egr1-1 egr2-1 and egr1-1 egr2-1 masp1-1 mutants had similarly increased root cell size but only egr1-1egr2-1 had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.
Collapse
|
29
|
Yang J, Gu W, Feng Z, Yu B, Niu J, Wang G. Synthesis of Abscisic Acid in Neopyropia yezoensis and Its Regulation of Antioxidase Genes Expressions Under Hypersaline Stress. Front Microbiol 2022; 12:775710. [PMID: 35082766 PMCID: PMC8784606 DOI: 10.3389/fmicb.2021.775710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA) is regarded as crucial for plant adaptation to water-limited conditions and it functions evolutionarily conserved. Thus, insights into the synthesis of ABA and its regulation on downstream stress-responsive genes in Neopyropia yezoensis, a typical Archaeplastida distributed in intertidal zone, will improve the knowledge about how ABA signaling evolved in plants. Here, the variations in ABA contents, antioxidant enzyme activities and expression of the target genes were determined under the presence of exogenous ABA and two specific inhibitors of the ABA precursor synthesis. ABA content was down-regulated under the treatments of each or the combination of the two inhibitors. Antioxidant enzyme activities like SOD, CAT and APX were decreased slightly with inhibitors, but up-regulated when the addition of exogenous ABA. The quantitative assays using real-time PCR (qRT-PCR) results were consistent with the enzyme activities. All the results suggested that ABA can also alleviate oxidative stress in N. yezoensis as it in terrestrial plant. Combined with the transcriptome assay, it was hypothesized that ABA is synthesized in N. yezoensis via a pathway that is similar to the carotenoid pathway in higher plants, and both the MVA and that the MEP pathways for isoprenyl pyrophosphate (IPP) synthesis likely exist simultaneously. The ABA signaling pathway in N. yezoensis was also analyzed from an evolutionary standpoint and it was illustrated that the emergence of the ABA signaling pathway in this alga is an ancestral one. In addition, the presence of the ABRE motif in the promoter region of antioxidase genes suggested that the antioxidase system is regulated by the ABA signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Zezhong Feng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Bin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Niu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| |
Collapse
|
30
|
Krzywinska E, Szymanska KP, Dobrowolska G. Inhibition of SnRK2 Kinases by Type 2C Protein Phosphatases. Methods Mol Biol 2022; 2462:17-30. [PMID: 35152377 DOI: 10.1007/978-1-0716-2156-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SNF1-related protein kinase 2 s (SnRK2s) are major regulators of plant growth, development and responses to environmental stresses. Together with clade A protein phosphatases of type 2C (PP2C) and REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR also known as PYRABACTIN RESISTANCE1 (PYR1) or PYR1-LIKE (PYL)) soluble abscisic acid (ABA) receptors they form the core of ABA-signaling. Clade A PP2Cs play a negative role in ABA signaling, primarily by inhibiting SnRK2 activity, through direct interaction and dephosphorylation of SnRK2s. Here, we describe two methods, which can be used for monitoring inhibition of the SnRK2 activity by PP2C phosphatases. One of them is an in vitro dephosphorylation assay using SnRK2 as the substrate followed by a classical in-gel kinase-activity assay and the other is immunocomplex kinase-activity assay, which can be applied for analysis of the SnRK2 activity in plant material.
Collapse
Affiliation(s)
- Ewa Krzywinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Katarzyna Patrycja Szymanska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
32
|
Overexpression of antisense phosphatase 2C affords cold resistance in hybrid Populus davidiana × Populus bolleana. Genes Genomics 2021; 43:1209-1222. [PMID: 34338987 DOI: 10.1007/s13258-021-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Overexpression of the abiotic and biotic stress-resistance genes of the plant signaling pathway is well known for its significant role in the regulation of plant growth and enhancement of the productivity of agricultural land under changing climatic conditions. OBJECTIVES This research aimed to clone Populus davidiana × Populus bolleana PP2C (PdPP2C) gene and analyze its structure and function, and downregulate PdPP2C by overexpression of its antisense PdPP2C (AS-PdPP2C) gene for enhancing cold resistance in transgenic lines of hybrid P. davidiana × P. bolleana. METHODS PdPP2C was cloned and transformed to identify its function, and its antisense was overexpressed via downregulation to increase the cold resistance in transgenic lines of hybrid P. davidiana × P. bolleana. RESULTS Antisense inhibition of protein phosphatase 2C accelerates the cold acclimation of Poplar (P. davidiana × P. bolleana) gene in terms of antifreeze. CONCLUSION PdPP2C was expressed in the roots, stems, and leaves of P. davidiana × P. bolleana, and the expression was higher in the leaves. The expression of PdPP2C was also significantly downregulated at low-temperature (0 °C and 4 °C) stress. The relative conductivity and malondialdehyde content of non-transgenic lines were higher than those of AS-PdPP2C lines after 2 days of cold treatment at - 1 °C. The leaves of the transgenic lines were not wilted and showed no chlorosis compared with those of the non-transgenic lines. The AS-PdPP2C transgenic lines also showed higher freezing resistance than the non-transgenic lines. AS-PdPP2C participated in the regulation of freezing resistance.
Collapse
|
33
|
Praat M, De Smet I, van Zanten M. Protein kinase and phosphatase control of plant temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab345. [PMID: 34283227 DOI: 10.1093/jxb/erab345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. Suboptimal high and low temperatures, and stressful extreme temperatures, induce adaptive mechanisms that allow optimal performance and survival, respectively. These processes have been extensively studied at the physiological, transcriptional and (epi)genetic level. Cellular temperature signalling cascades and tolerance mechanisms also involve post-translational modifications (PTMs), particularly protein phosphorylation. Many protein kinases are known to be involved in cold acclimation and heat stress responsiveness but research on the role and importance of kinases and phosphatases in triggering responses to mild changes in temperature such as thermomorphogenesis is inadequately understood. In this review, we summarize the current knowledge on the roles of kinases and phosphatases in plant temperature responses. We discuss how kinases can function over a range of temperatures in different signalling pathways and provide an outlook to the application of PTM-modifying factors for the development of thermotolerant crops.
Collapse
Affiliation(s)
- Myrthe Praat
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| |
Collapse
|
34
|
Kamiyama Y, Katagiri S, Umezawa T. Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. PLANTS 2021; 10:plants10071443. [PMID: 34371646 PMCID: PMC8309267 DOI: 10.3390/plants10071443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.
Collapse
Affiliation(s)
- Yoshiaki Kamiyama
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Sotaro Katagiri
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
- Correspondence:
| |
Collapse
|
35
|
Chen Y, Wang Y, Yang J, Zhou W, Dai S. Exploring the diversity of plant proteome. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1197-1210. [PMID: 33650765 DOI: 10.1111/jipb.13087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 05/10/2023]
Abstract
The tremendous functional, spatial, and temporal diversity of the plant proteome is regulated by multiple factors that continuously modify protein abundance, modifications, interactions, localization, and activity to meet the dynamic needs of plants. Dissecting the proteome complexity and its underlying genetic variation is attracting increasing research attention. Mass spectrometry (MS)-based proteomics has become a powerful approach in the global study of protein functions and their relationships on a systems level. Here, we review recent breakthroughs and strategies adopted to unravel the diversity of the proteome, with a specific focus on the methods used to analyze posttranslational modifications (PTMs), protein localization, and the organization of proteins into functional modules. We also consider PTM crosstalk and multiple PTMs temporally regulating the life cycle of proteins. Finally, we discuss recent quantitative studies using MS to measure protein turnover rates and examine future directions in the study of the plant proteome.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
36
|
Ohkubo Y, Kuwata K, Matsubayashi Y. A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1. NATURE PLANTS 2021; 7:310-316. [PMID: 33686225 DOI: 10.1038/s41477-021-00870-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The nitrate transporter NRT2.1, which plays a central role in high-affinity nitrate uptake in roots, is activated at the post-translational level in response to nitrogen (N) starvation1,2. However, the critical enzymes required for the post-translational activation of NRT2.1 remain to be identified. Here, we show that a type 2C protein phosphatase, designated CEPD-induced phosphatase (CEPH), activates high-affinity nitrate uptake by directly dephosphorylating Ser501 of NRT2.1, a residue that functions as a negative phospho-switch in Arabidopsis2. CEPH is predominantly expressed in epidermal and cortex cells in roots and is upregulated by N starvation via a CEPDL2/CEPD1/2-mediated long-distance signalling from shoots3,4. The loss of CEPH leads to marked decreases in high-affinity nitrate uptake, tissue nitrate content and plant biomass. Collectively, our results identify CEPH as a crucial enzyme in the N-starvation-dependent activation of NRT2.1 and provide molecular and mechanistic insights into how plants regulate high-affinity nitrate uptake at the post-translational level in response to the N environment.
Collapse
Affiliation(s)
- Yuri Ohkubo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
37
|
Xia C, Gong Y, Chong K, Xu Y. Phosphatase OsPP2C27 directly dephosphorylates OsMAPK3 and OsbHLH002 to negatively regulate cold tolerance in rice. PLANT, CELL & ENVIRONMENT 2021; 44:491-505. [PMID: 33150964 DOI: 10.1111/pce.13938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 05/08/2023]
Abstract
Improving chilling tolerance is a major target of rice breeding. The OsMAPK3-OsbHLH002-OsTPP1 signalling pathway enhances chilling tolerance in rice: the kinase is activated by cold stress, and subsequently the transcription factor is phosphorylated by the activated kinase, triggering the expression of cold response genes. However, it is largely unknown how this pathway is suppressed in time to avoid it being in a continuously activated state. We found that a novel type 2C protein phosphatase, OsPP2C27, functions as a negative regulator of the OsMAPK3-OsbHLH002-OsTPP1 pathway. A dynamic change in OsMAPK3 activity was found during cold treatment. We show that OsPP2C27 interacts physically with and dephosphorylates OsMAPK3 in vitro and in vivo. Interestingly, OsPP2C27 can also directly dephosphorylate OsbHLH002, the target of OsMAPK3. After cold treatment, survival rates were higher in OsPP2C27-RNAi lines and a T-DNA insertion mutant, and lower in OsPP2C27-overexpression lines, compared to wild type. Moreover, expression of the OsTPP1 and OsDREBs were increased in OsPP2C27-RNAi lines and decreased in OsPP2C27-overexpression lines. These results indicate that cold-induced OsPP2C27 negatively regulates the OsMAPK3-OsbHLH002-OsTPP1 signalling pathway by directly dephosphorylating both phospho-OsMAPK3 and phospho-OsbHLH002, preventing the sustained activation of a positive pathway for cold stress and maintaining normal growth under chilling conditions.
Collapse
Affiliation(s)
- Changxuan Xia
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanshan Gong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Phosphorylation on PstP Regulates Cell Wall Metabolism and Antibiotic Tolerance in Mycobacterium smegmatis. J Bacteriol 2021; 203:JB.00563-20. [PMID: 33257524 DOI: 10.1128/jb.00563-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis and its relatives, like many bacteria, have dynamic cell walls that respond to environmental stresses. Modulation of cell wall metabolism in stress is thought to be responsible for decreased permeability and increased tolerance to antibiotics. The signaling systems that control cell wall metabolism under stress, however, are poorly understood. Here, we examine the cell wall regulatory function of a key cell wall regulator, the serine/threonine phosphatase PstP, in the model organism Mycobacterium smegmatis We show that the peptidoglycan regulator CwlM is a substrate of PstP. We find that a phosphomimetic mutation, pstP T171E, slows growth, misregulates both mycolic acid and peptidoglycan metabolism in different conditions, and interferes with antibiotic tolerance. These data suggest that phosphorylation on PstP affects its activity against various substrates and is important in the transition between growth and stasis.IMPORTANCE Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in mycobacteria, including pathogens such as Mycobacterium tuberculosis However, little is known about how the cell wall is regulated in stress. We describe a pathway of cell wall modulation in Mycobacterium smegmatis through the only essential Ser/Thr phosphatase, PstP. We showed that phosphorylation on PstP is important in regulating peptidoglycan metabolism in the transition to stasis and mycolic acid metabolism in growth. This regulation also affects antibiotic tolerance in growth and stasis. This work helps us to better understand the phosphorylation-mediated cell wall regulation circuitry in Mycobacteria.
Collapse
|
39
|
Lapshin NK, Piotrovskii MS, Trofimova MS. Involvement of plasma membrane H +-ATPase in diamide-induced extracellular alkalization by roots from pea seedlings. PLANTA 2021; 253:10. [PMID: 33389194 DOI: 10.1007/s00425-020-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.
Collapse
Affiliation(s)
- Nikita K Lapshin
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Michail S Piotrovskii
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Marina S Trofimova
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276.
| |
Collapse
|
40
|
Mayoral J, Tomita T, Tu V, Aguilan JT, Sidoli S, Weiss LM. Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export. PLoS Pathog 2020; 16:e1008771. [PMID: 33370417 PMCID: PMC7793252 DOI: 10.1371/journal.ppat.1008771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2021] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell. The flexible life cycle of the intracellular parasite Toxoplasma gondii allows it to infect many different types of warm-blooded hosts, as well as diverse cell types once inside the host organism. This formidable achievement is partly mediated by the establishment of a unique compartment following host cell invasion, termed the parasitophorous vacuole. While advancements have been made in cataloguing Toxoplasma secreted proteins that reside within this vacuole, the specific functions and contributions of many of these secreted parasite “tools” remain elusive. Here, we assessed the contribution of a parasite vacuolar protein called TgPPM3C, predicted to function as an enzyme that dephosphorylates other proteins. We found that deleting the TgPPM3C gene in the parasite results in a profound virulence defect during infection in mice, likely due to the dysregulated phosphorylation status of many vacuolar proteins detected by phosphoproteomic analysis of TgPPM3C-deleted parasites. We found that the phosphorylation status of one such protein, GRA16, influences its ability to cross the parasitophorous vacuole membrane and enter the host cell, where it is known to induce host transcriptional changes that benefit parasite growth. These findings illustrate the emerging role of Toxoplasma vacuolar phosphatases in regulating host-parasite interactions during infection.
Collapse
Affiliation(s)
- Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Komatsu K, Takezawa D, Sakata Y. Decoding ABA and osmostress signalling in plants from an evolutionary point of view. PLANT, CELL & ENVIRONMENT 2020; 43:2894-2911. [PMID: 33459424 DOI: 10.1111/pce.13869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 05/21/2023]
Abstract
The plant hormone abscisic acid (ABA) is fundamental for land plant adaptation to water-limited conditions. Osmostress, such as drought, induces ABA accumulation in angiosperms, triggering physiological responses such as stomata closure. The core components of angiosperm ABA signalling are soluble ABA receptors, group A protein phosphatase type 2C and SNF1-related protein kinase2 (SnRK2). ABA also has various functions in non-angiosperms, however, suggesting that its role in adaptation to land may not have been angiosperm-specific. Indeed, among land plants, the core ABA signalling components are evolutionarily conserved, implying their presence in a common ancestor. Results of ongoing functional genomics studies of ABA signalling components in bryophytes and algae have expanded our understanding of the evolutionary role of ABA signalling, with genome sequencing uncovering the ABA core module even in algae. In this review, we describe recent discoveries involving the ABA core module in non-angiosperms, tracing the footprints of how ABA evolved as a phytohormone. We also cover the latest findings on Raf-like kinases as upstream regulators of the core ABA module component SnRK2. Finally, we discuss the origin of ABA signalling from an evolutionary perspective.
Collapse
Affiliation(s)
- Kenji Komatsu
- Department of Bioresource Development, Tokyo University of Agriculture, Kanagawa, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
42
|
Song H, Mao W, Duan Z, Que Q, Zhou W, Chen X, Li P. Selection and validation of reference genes for measuring gene expression in Toona ciliata under different experimental conditions by quantitative real-time PCR analysis. BMC PLANT BIOLOGY 2020; 20:450. [PMID: 33003996 PMCID: PMC7528382 DOI: 10.1186/s12870-020-02670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions. RESULTS The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 (TcMYB3) gene. CONCLUSIONS This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.
Collapse
Affiliation(s)
- Huiyun Song
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Wenmai Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Zhihao Duan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Qingmin Que
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Xiaoyang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Pei Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China.
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Chen Y, Weckwerth W. Mass Spectrometry Untangles Plant Membrane Protein Signaling Networks. TRENDS IN PLANT SCIENCE 2020; 25:930-944. [PMID: 32359835 DOI: 10.1016/j.tplants.2020.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Plasma membranes (PMs) act as primary cellular checkpoints for sensing signals and controlling solute transport. Membrane proteins communicate with intracellular processes through protein interaction networks. Deciphering these signaling networks provides crucial information for elucidating in vivo cellular regulation. Large-scale proteomics enables system-wide characterization of the membrane proteome, identification of ligand-receptor pairs, and elucidation of signals originating at membranes. In this review we assess recent progress in the development of mass spectrometry (MS)-based proteomic pipelines for determining membrane signaling pathways. We focus in particular on current techniques for the analysis of membrane protein phosphorylation and interaction, and how these proteins may be connected to downstream changes in gene expression, metabolism, and physiology.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
44
|
Alazem M, Lin NS. Interplay between ABA signaling and RNA silencing in plant viral resistance. Curr Opin Virol 2020; 42:1-7. [PMID: 32222536 DOI: 10.1016/j.coviro.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to different stimuli including viral infections through two different defense mechanisms; the antiviral RNA silencing pathway and callose accumulation. In some pathosystems, induction of these defense mechanisms is stronger in plants with resistance (R)-genes than in more susceptible plants. Mutants in several RNA silencing genes are hypersensitive to ABA, which suggests that these genes exert a regulatory feedback loop on ABA signaling. This scenario suggests that the RNA silencing pathway can target genes involved in the ABA pathway to control ABA production/signaling since prolonged production of this stress hormone arrests plant growth and development. Mutations in the ABA or salicylic acid pathways do not completely repress RNA silencing genes, indicating that RNA silencing represents a regulatory hub through which different pathways exert some of their functions, and thus the regulation of RNA silencing could be subject to hormone balancing in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
45
|
Amtmann A. Then and now. PLANT, CELL & ENVIRONMENT 2019; 42:2747-2749. [PMID: 31603569 DOI: 10.1111/pce.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
|
46
|
Alazem M, Widyasari K, Kim KH. An Avirulent Strain of Soybean Mosaic Virus Reverses the Defensive Effect of Abscisic Acid in a Susceptible Soybean Cultivar. Viruses 2019; 11:E879. [PMID: 31546878 PMCID: PMC6783863 DOI: 10.3390/v11090879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
In soybean cultivar L29, the Rsv3 gene is responsible for extreme resistance (ER) against the soybean mosaic virus avirulent strain G5H, but is ineffective against the virulent strain G7H. Part of this ER is attributed to the rapid increase in abscisic acid (ABA) and callose, and to the rapid induction of several genes in the RNA-silencing pathway. Whether these two defense mechanisms are correlated or separated in the ER is unknown. Here, we found that ABA treatment of L29 plants increased the expression of several antiviral RNA-silencing genes as well as the PP2C3a gene, which was previously shown to increase callose accumulation; as a consequence, ABA increased the resistance of L29 plants to G7H. The effect of ABA treatment on these genes was weaker in the rsv3-null cultivar (Somyungkong) than in L29. Besides, G5H-infection of Somyungkong plants subverted the effect of ABA leading to reduced callose accumulation and decreased expression of several RNA-silencing genes, which resulted in increased susceptibility to G5H infection. ABA treatment, however, still induced some resistance to G7H in Somyungkong, but only AGO7b was significantly induced. Our data suggest that Rsv3 modulates the effect of ABA on these two resistance mechanisms, i.e., callose accumulation and the antiviral RNA-silencing pathway, and that in the absence of Rsv3, some strains can reverse the effect of ABA and thereby facilitate their replication and spread.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|