1
|
Tang X, Zhao J, Zhou J, Zhu Q, Sheng X, Yue C. Elevated CO 2 Shifts Photosynthetic Constraint from Stomatal to Biochemical Limitations During Induction in Populus tomentosa and Eucalyptus robusta. PLANTS (BASEL, SWITZERLAND) 2024; 14:47. [PMID: 39795307 PMCID: PMC11722825 DOI: 10.3390/plants14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO2 concentration (Ca). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO2. In this study, we experimentally investigated the influence of elevated CO2 (from 400 to 800 μmol mol-1) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, Populus tomentosa and Eucalyptus robusta. The results show that elevated CO2 increased the steady-state photosynthesis rate (A) and decreased stomatal conductance (gs) and the maximum carboxylation rate (Vcmax) in both species. While E. robusta exhibited a decrease in the linear electron transport rate (J) and the fraction of open reaction centers in photosynthesis II (qL), P. tomentosa showed a significant increase in non-photochemical quenching (NPQ). With respect to non-steady-state photosynthesis, elevated CO2 significantly reduced the induction time of A following a shift from low to high light intensity in both species. Time-integrated limitation analysis during induction revealed that elevated CO2 reduces the relative impacts of stomatal limitations in both species, consequently shifting the predominant limitation on induction efficiency from stomatal to biochemical components. Additionally, species-specific changes in qL and NPQ suggest that elevated CO2 may increase biochemical limitation by affecting energy allocation between carbon fixation and photoprotection. These findings suggest that, in a future CO2-rich atmosphere, plants productivity under fluctuating light may be primarily constrained by photochemical and non-photochemical quenching.
Collapse
Affiliation(s)
- Xianhui Tang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Jiayu Zhou
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Qingchen Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Xiyang Sheng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Chao Yue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Retta MA, Van Doorselaer L, Driever SM, Yin X, de Ruijter NCA, Verboven P, Nicolaï BM, Struik PC. High photosynthesis rates in Brassiceae species are mediated by leaf anatomy enabling high biochemical capacity, rapid CO 2 diffusion and efficient light use. THE NEW PHYTOLOGIST 2024; 244:1824-1836. [PMID: 39294895 DOI: 10.1111/nph.20136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.
Collapse
Affiliation(s)
- Moges A Retta
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Leen Van Doorselaer
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell and Developmental Biology, Wageningen Light Microscopy Centre (WLMC), Wageningen University & Research, PO Box 633, 6700 AP, Wageningen, the Netherlands
| | - Pieter Verboven
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Bart M Nicolaï
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| |
Collapse
|
3
|
Kang H, Yu Y, Ke X, Tomimatsu H, Xiong D, Santiago L, Han Q, Kardiman R, Tang Y. Initial stomatal conductance increases photosynthetic induction of trees leaves more from sunlit than from shaded environments: a meta-analysis. TREE PHYSIOLOGY 2024; 44:tpae128. [PMID: 39361922 DOI: 10.1093/treephys/tpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
It has long been held that tree species/leaves from shaded environments show faster rate of photosynthetic induction than species/leaves from sunlit environments, but the evidence so far is conflicting and the underlying mechanisms are still under debate. To address the debate, we compiled a dataset for 87 tree species and compared the initial increasing slope during the first 2-min induction (SA) and stomatal and biochemical characteristics between sun and shade species from the same study, and those between sun and shade leaves within the same species. In 77% of between-species comparisons, the species with high steady-state photosynthetic rate in the high light (Af) exhibited a larger SA than the species with low Af. In 67% within-species comparisons, the sun leaves exhibited a larger SA than the shade leaves. However, in only a few instances did the sun species/leaves more rapidly achieve 50% of full induction, with an even smaller SA, than the shade species/leaves. At both the species and leaf level, SA increased with increasing initial stomatal conductance before induction (gsi). Despite exhibiting reduced intrinsic water-use efficiency in low light, a large SA proportionally enhances photosynthetic carbon gain during the first 2-min induction in the sun species and leaves. Thus, in terms of the increase in absolute rate of photosynthesis, tree species/leaves from sunlit environments display faster photosynthetic induction responses than those from shaded environments. Our results call for re-consideration of contrasting photosynthetic strategies in photosynthetic adaption/acclimation to dynamic light environments across species.
Collapse
Affiliation(s)
- Huixing Kang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Yu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinran Ke
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hajime Tomimatsu
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Louis Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521-0124, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Reki Kardiman
- Department of Biology, Faculty of Mathematic and Natural Science, Universitas Negeri Padang35171, West Sumatra, Indonesia
| | - Yanhong Tang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wu XP, Gao X, Zhang R, Luan J, Wang Y, Liu S. Nitrogen addition alleviates water loss of Moso bamboo (Phyllostachys edulis) under drought by affecting light-induced stomatal responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173615. [PMID: 38815830 DOI: 10.1016/j.scitotenv.2024.173615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The combined climate-change-evoked drought and nitrogen (N) deposition have severely affected plant carbon and water relations governed by stomata. However, the interplay between steady-state and dynamic stomatal behavior responses to light remains unclear regarding its impact on plant water and carbon relations. The objective here was to investigate whether light-induced stomatal dynamics could mitigate the adverse effects of steady-state gas exchange on water conservation or photosynthesis under drought and N addition conditions. We conducted a manipulative experiment to investigate the impacts of throughfall reduction, N addition, and their combination on light-induced stomatal and photosynthetic dynamics in a Moso bamboo (Phyllostachys edulis) forest. We determined the influence of stomal response rate on water loss and photosynthesis, and further assessed whether it mitigated the effects of steady-state gas exchange (gs). We found that Moso bamboo decreased gs under throughfall reduction, while accelerated stomatal opening and biochemical activation when irradiance increased, which reduced the lag in photosynthesis during the induction period. In contrast, under the combined throughfall reduction and N addition condition, Moso bamboo increased gs but showed faster stomatal closure, which decreased the percentage of transpiration following a decrease in light intensity. Our findings indicate that stomatal dynamic behavior may depend on the effects of steady-state gas exchange on water conservation and carbon uptake under different soil water and N conditions. These discoveries contribute to our understanding of the coupling mechanisms of plant water use and carbon uptake in the context of global changes.
Collapse
Affiliation(s)
- Xi-Pin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruichang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China
| | - Junwei Luan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Yi Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
5
|
Chen L, Li M, Li C, Zheng W, Liu R. Different Physiological Responses to Continuous Drought between Seedlings and Younger Individuals of Haloxylon ammodendron. PLANTS (BASEL, SWITZERLAND) 2023; 12:3683. [PMID: 37960040 PMCID: PMC10647405 DOI: 10.3390/plants12213683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Drought is an important environmental factor that influences physiological processes in plants; however, few studies have examined the physiological mechanisms underlying plants' responses to continuous drought. In this study, the seedlings and younger individuals of Haloxylon ammodendron were experimentally planted in the southern part of the Gurbantunggut Desert. We measured their photosynthetic traits, functional traits and non-structural carbohydrate contents (NSCs) in order to assess the effects of continuous drought (at 15-day and 30-day drought points) on the plants' physiological responses. The results showed that at the 15-day (15 d) drought point, the leaf light-saturated net photosynthetic rate (An) values of both the seedlings and the younger individuals were decreased (by -68.9% and -45.2%, respectively). The intrinsic water use efficiency (iWUE) of the seedlings was significantly lower than that of the control group (-52.2%), but there was no diffenrence of iWUE observed in younger individuals. At the 30-day (30 d) drought point, a decrease in the An (-129.8%) of the seedlings was induced via biochemical inhibition, with a lower potential maximum photochemical rate (Fv/Fm, 0.42) compared with the control group, while a decrease in the An (-52.3%) of the younger individuals was induced due to lower stomatal conductance (gs, -50.5%). Our results indicated that prolonged drought induced a greater risk of seedling mortality as the relatively limited ability of stomatal regulation may increase the possibility of massive embolism, resulting in hydraulic failure.
Collapse
Affiliation(s)
- Lidan Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Fukang 831505, China
| | - Minqing Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Fukang 831505, China
| | - Congjuan Li
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Weihua Zheng
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciecnes, Urumuqi 830091, China;
| | - Ran Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang Z, Wu Z. CO 2 enhances low-nitrogen adaption by promoting amino acid metabolism in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107864. [PMID: 37402344 DOI: 10.1016/j.plaphy.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Increasing concentrations of atmospheric CO2 are driving climate change and negatively impacting the carbon-nitrogen (C/N) balance in crops, which in turn alters fertilizer use efficiency. In this study, Brassica napus was cultivated under different CO2 and NO3--N concentrations to study the impact of C/N ratio on plant growth. Elevated CO2 enhanced biomass and nitrogen assimilation efficiency under low NO3--N conditions, indicating an adaptation by Brassica napus. Transcriptome and metabolome analyses revealed that elevated CO2 promoted amino acid catabolism under low NO3--N conditions. This study provides new insights into how Brassica napus adapts to environmental change.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhimin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
7
|
Yang K, Huang Y, Yang J, Yu L, Hu Z, Sun W, Zhang Q. The determiner of photosynthetic acclimation induced by biochemical limitation under elevated CO 2 in japonica rice. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153889. [PMID: 36493669 DOI: 10.1016/j.jplph.2022.153889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Photosynthetic acclimation to prolonged elevated CO2 could be attributed to the two limited biochemical capacity, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP) regeneration, however, which one is the primary driver is unclear. To quantify photosynthetic acclimation induced by biochemical limitation, we investigated photosynthetic characteristics and leaf nitrogen allocation to photosynthetic apparatus (Rubisco, bioenergetics, and light-harvesting complex) in a japonica rice grown in open-top chambers at ambient CO2 and ambient CO2+200 μmol mol-1 (e [CO2]). Results showed that photosynthesis was stimulated under e [CO2], but concomitantly, photosynthetic acclimation obviously occurred across the whole growth stages. The content of leaf nitrogen allocation to Rubisco and biogenetics was reduced by e [CO2], while not in light-harvesting complex. Unlike the content, there was little effects of CO2 enrichment on the percentage of nitrogen allocation to photosynthetic components. Additionally, leaf nitrogen did not reallocate within photosynthetic apparatus until the imbalance of sink-source under e [CO2]. The contribution of biochemical limitations, including Rubisco carboxylation and RuBP regeneration, to photosynthetic acclimation averaged 36.2% and 63.8% over the growing seasons, respectively. This study suggests that acclimation of photosynthesis is mainly driven by RuBP regeneration limitation and highlights the importance of RuBP regeneration relative to Rubisco carboxylation in the future CO2 enrichment.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lingfei Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Garassino F, Wijfjes RY, Boesten R, Reyes Marquez F, Becker FFM, Clapero V, van den Hatert I, Holmer R, Schranz ME, Harbinson J, de Ridder D, Smit S, Aarts MGM. The genome sequence of Hirschfeldia incana, a new Brassicaceae model to improve photosynthetic light-use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1298-1315. [PMID: 36239071 PMCID: PMC10100226 DOI: 10.1111/tpj.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.
Collapse
Affiliation(s)
| | - Raúl Y. Wijfjes
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
- Present address:
Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - René Boesten
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | | | - Frank F. M. Becker
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | - Vittoria Clapero
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Max Planck Institute for Molecular Plant PhysiologyGolmGermany
| | | | - Rens Holmer
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenNetherlands
| | - Jeremy Harbinson
- Laboratory of BiophysicsWageningen University & ResearchWageningenNetherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
9
|
Galeriani TM, Neves GO, Santos Ferreira JH, Oliveira RN, Oliveira SL, Calonego JC, Crusciol CAC. Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield. PLANTS (BASEL, SWITZERLAND) 2022; 11:2937. [PMID: 36365390 PMCID: PMC9657382 DOI: 10.3390/plants11212937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Foliar fertilization with calcium (Ca) and boron (B) at flowering can promote flower retention and pod fixation, thereby increasing the number of pods per plant and, in turn, crop productivity. The objective of this work was to investigate the effects of Ca + B fertilization during flowering on the nutritional, metabolic and yield performance of soybean (Glycine max L.) The treatments consisted of the presence and the absence of Ca + B fertilization in two growing seasons. Crop nutritional status, gas exchange parameters, photosynthetic enzyme activity (Rubisco), total soluble sugar content, total leaf protein concentration, agronomic parameters, and grain yield were evaluated. Foliar Ca + B fertilization increased water use efficiency and carboxylation efficiency, and the improvement in photosynthesis led to higher leaf sugar and protein concentrations. The improvement in metabolic activity promoted a greater number of pods and grains plant-1, culminating in higher yields. These results indicate that foliar fertilization with Ca + B can efficiently improve carbon metabolism, resulting in better yields in soybean.
Collapse
|
10
|
Improving
C
3
photosynthesis by exploiting natural genetic variation:
Hirschfeldia incana
as a model species. Food Energy Secur 2022. [DOI: 10.1002/fes3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Ren R, Wan Z, Chen H, Zhang Z. The effect of inter-varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:1-13. [PMID: 36030618 DOI: 10.1016/j.plaphy.2022.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Sugar synthesis from photosynthesis and its utilization through sugar metabolism jointly determine leaf sugar content, and in contrast, excess sugar represses leaf photosynthesis. Although plant photosynthesis is affected by leaf sugar metabolism, the relationship between sugar metabolism and photosynthetic capacity of different grape genotypes remains unclear. In this study, two grape (Vitis vinifera L.) genotypes 'Riesling' (RI, high sugar content in leaf) and 'Petit Manseng' (PM, low sugar content in leaf) were used to evaluate the relationship between sugar metabolism and photosynthesis. Sugar content, chlorophyll content, photosynthetic parameters, enzyme activity, and gene expression related to sucrose metabolism in leaves were measured, and the correlations between photosynthesis and sugar metabolism were assessed. The contents of sucrose and glucose were significantly higher in RI leaves than in PM leaves, while the fructose content pattern was reversed. Cell wall invertase activity for sucrose hydrolysis and the transcript levels of VvCWINV, VvHTs, VvTMT1, VvFKs, and VvHXK2 were also higher in RI leaves than in PM leaves, whereas that of VvHXK1 mediating glucose phosphorylation, was lower in RI leaves than in PM leaves. Net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content were lower in RI leaves than in PM leaves and negatively correlated with glucose content, and the transcript levels of VvCWINV, VvHTs, VvTMT1, and VvHXK2. In conclusion, this study indicates that leaf sugar metabolism and transport are related to photosynthesis in Vitis vinifera L., which provides a theoretical basis for improving grape photosynthesis.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Huawei Chen
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China; China Wine Industry Technology Institute, Room 1606, Zhongguancun Innovation Center, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
12
|
Xu Y, Feng Z, Peng J, Tarvainen L. Elevated ozone decreases the activity of Rubisco in poplar but not its activation under fluctuating light. TREE PHYSIOLOGY 2022; 42:1762-1775. [PMID: 35445727 DOI: 10.1093/treephys/tpac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Increasing tropospheric ozone (O3) is well-known to decrease leaf photosynthesis under steady-state light through reductions in biochemical capacity. However, the effects of O3 on photosynthetic induction and its biochemical limitations in response to fluctuating light remain unclear, despite the rapid fluctuations of light intensity occurring under field conditions. In this study, two hybrid poplar clones with different O3 sensitivities were exposed to elevated O3. Dynamic photosynthetic CO2 response measurements were conducted to quantify the impact of elevated O3 and exposure duration on biochemical limitations during photosynthetic induction. We found that elevated O3 significantly reduced the steady-state light-saturated photosynthetic rate, the maximum rate of carboxylation (Vcmax) and Rubisco content. In addition, elevated O3 significantly decreased the time constants for slow phases and weighting of the fast phase of the Vcmax induction in poplar clone '546' but not in clone '107'. However, elevated O3 did not affect the time, it took to reach a given percentage of full Vcmax activation or photosynthetic induction in either clone. Overall, photosynthetic induction was primarily limited by the activity of Rubisco rather than the regeneration of ribulose-1,5-biphosphate regardless of O3 concentration and exposure duration. The lack of O3-induced effects on the activation of Rubisco observed here would simplify the simulation of impacts of O3 on nonsteady-state photosynthesis in dynamic photosynthetic models.
Collapse
Affiliation(s)
- Yansen Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Pukou, Nanjing 210044, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Pukou, Nanjing 210044, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| |
Collapse
|
13
|
Sakoda K, Adachi S, Yamori W, Tanaka Y. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3109-3121. [PMID: 35298629 DOI: 10.1093/jxb/erac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Japan Society for the Promotion of Science, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Sales CRG, Molero G, Evans JR, Taylor SH, Joynson R, Furbank RT, Hall A, Carmo-Silva E. Phenotypic variation in photosynthetic traits in wheat grown under field versus glasshouse conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3221-3237. [PMID: 35271722 PMCID: PMC9126738 DOI: 10.1093/jxb/erac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/08/2022] [Indexed: 05/19/2023]
Abstract
Recognition of the untapped potential of photosynthesis to improve crop yields has spurred research to identify targets for breeding. The CO2-fixing enzyme Rubisco is characterized by a number of inefficiencies, and frequently limits carbon assimilation at the top of the canopy, representing a clear target for wheat improvement. Two bread wheat lines with similar genetic backgrounds and contrasting in vivo maximum carboxylation activity of Rubisco per unit leaf nitrogen (Vc,max,25/Narea) determined using high-throughput phenotyping methods were selected for detailed study from a panel of 80 spring wheat lines. Detailed phenotyping of photosynthetic traits in the two lines using glasshouse-grown plants showed no difference in Vc,max,25/Narea determined directly via in vivo and in vitro methods. Detailed phenotyping of glasshouse-grown plants of the 80 wheat lines also showed no correlation between photosynthetic traits measured via high-throughput phenotyping of field-grown plants. Our findings suggest that the complex interplay between traits determining crop productivity and the dynamic environments experienced by field-grown plants needs to be considered in designing strategies for effective wheat crop yield improvement when breeding for particular environments.
Collapse
Affiliation(s)
- Cristina R G Sales
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Correspondence: or
| | - Gemma Molero
- International Maize and Wheat Improvement Centre (CIMMYT), Int. Apdo. Postal 6-641, 06600 Mexico, DF, Mexico
- KWS Momont Recherche, 7 rue de Martinval, 59246 Mons-en-Pévèle, France
| | - John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Ryan Joynson
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Limagrain Europe, CS 3911, 63720 Chappes, France
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Anthony Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
- Correspondence: or
| |
Collapse
|
15
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
16
|
Kang C, Zhang Y, Cheng R, Kaiser E, Yang Q, Li T. Acclimating Cucumber Plants to Blue Supplemental Light Promotes Growth in Full Sunlight. FRONTIERS IN PLANT SCIENCE 2021; 12:782465. [PMID: 34912362 PMCID: PMC8668241 DOI: 10.3389/fpls.2021.782465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Raising young plants is important for modern greenhouse production. Upon transfer from the raising to the production environment, young plants should maximize light use efficiency while minimizing deleterious effects associated with exposure to high light (HL) intensity. The light spectrum may be used to establish desired traits, but how plants acclimated to a given spectrum respond to HL intensity exposure is less well explored. Cucumber (Cucumis sativus) seedlings were grown in a greenhouse in low-intensity sunlight (control; ∼2.7 mol photons m-2 day-1) and were treated with white, red, blue, or green supplemental light (4.3 mol photons m-2 day-1) for 10 days. Photosynthetic capacity was highest in leaves treated with blue light, followed by white, red, and green, and was positively correlated with leaf thickness, nitrogen, and chlorophyll concentration. Acclimation to different spectra did not affect the rate of photosynthetic induction, but leaves grown under blue light showed faster induction and relaxation of non-photochemical quenching (NPQ) under alternating HL and LL intensity. Blue-light-acclimated leaves showed reduced photoinhibition after HL intensity exposure, as indicated by a high maximum quantum yield of photosystem II photochemistry (F v /F m ). Although plants grown under different supplemental light spectra for 10 days had similar shoot biomass, blue-light-grown plants (B-grown plants) showed a more compact morphology with smaller leaf areas and shorter stems. However, after subsequent, week-long exposure to full sunlight (10.7 mol photons m-2 day-1), B-grown plants showed similar leaf area and 15% higher shoot biomass, compared to plants that had been acclimated to other spectra. The faster growth rate in blue-light-acclimated plants compared to other plants was mainly due to a higher photosynthetic capacity and highly regulated NPQ performance under intermittent high solar light. Acclimation to blue supplemental light can improve light use efficiency and diminish photoinhibition under high solar light exposure, which can benefit plant growth.
Collapse
Affiliation(s)
- Chenqian Kang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Ayyaz A, Miao Y, Hannan F, Islam F, Zhang K, Xu J, Farooq MA, Zhou W. Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. PHYSIOLOGIA PLANTARUM 2021; 172:1133-1148. [PMID: 33599291 DOI: 10.1111/ppl.13375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Climate change, food insecurity, water scarcity, and population growth are some of today's world's frightening problems. Drought stress exerts a constant threat to field crops and is often seen as a major constraint on global agricultural productivity; its intensity and frequency are expected to increase in the near future. The present study investigated the effects of drought stress (15% w/v polyethylene glycol PEG-6000) on physiological and biochemical changes in five Brassica napus cultivars (ZD630, ZD622, ZD619, GY605, and ZS11). For drought stress induction, 3-week-old rapeseed oil seedlings were treated with PEG-6000 in full strength Hoagland nutrient solution for 7 days. PEG treatment significantly decreased the plant growth and photosynthetic efficiency, including primary photochemistry (Fv/Fm) of PSII, intercellular CO2 , net photosynthesis, chlorophyll contents, and water-use efficiency of all studied B. napus cultivars; however, pronounced growth retardations were observed in cultivar GY605. Drought-stressed B. napus cultivars also experienced a sharp rise in H2 O2 generation and malondialdehyde (MDA) content. Additionally, the accumulation of ROS was accompanied by increased activity of enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase), although the increase was more obvious in ZD622 and ZS11. Drought stress also caused an increased endogenous hormonal biosynthesis (abscisic acid, jasmonic acid, salicylic acid) and accumulation of total soluble proteins and proline content, but the extent varies in B. napus cultivars. These results suggest that B. napus cultivars have an efficient drought stress tolerance mechanism, as shown by improved antioxidant enzyme activities, photosynthetic and hormonal regulation.
Collapse
Affiliation(s)
- Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Yilin Miao
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Faisal Islam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Institute of Crop Science, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Orr DJ, Parry MAJ. Overcoming the limitations of Rubisco: fantasy or realistic prospect? JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153285. [PMID: 32987325 DOI: 10.1016/j.jplph.2020.153285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK.
| |
Collapse
|