1
|
Li H, Yang Q, Liu W, Li R, Zhang D, Zhang G, Xu Y. Plant secretions and volatiles contribute to the evolution of bacterial antibiotic resistance in soil-crop system. J Environ Sci (China) 2025; 152:516-526. [PMID: 39617572 DOI: 10.1016/j.jes.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 12/10/2024]
Abstract
The exponential growth of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in soil-crop systems in recent years has posed a great challenge to ecological security and human health. While many studies have documented the residues of ARGs in soils and crops, but little is known about who drives the proliferation of ARGs in farming systems and what their underlying mechanisms are. Herein, we explored the occurrence and proliferating behavior of ARGs in soil-crop environments in terms of root secretions and plant volatiles. This review highlighted that plant root secretions and volatile organic compounds (VOCs) served as key substances mediating the development of antibiotic resistance in the soil-crop system. Still, there is controversy here as to plant root secretions promote the ARGs proliferation or inhibit. Some studies indicated that root secretions can suppress the colonization of ARGs, mainly attributed by the production of blunted metabolic enzymes and blocking of cellular exocytosis systems. Whereas the others have evidenced that root secretions can promote ARGs proliferation, primarily by altering the structure of microbial communities to influence species interactions and thus indirectly affect the proliferation of ARGs. Also, VOCs can act as molecular signals to convey antibiotic resistance information to their neighbors, which in turn drive the up-regulation of ARGs expression. Even so, the mechanism by which VOC-driven antibiotic resistance acquisition and proliferation need to be further probed. Overall, this review contributed to the development of products and technologies to impede the ARGs proliferation in agricultural environment.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Qifan Yang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland
| | - Ruolan Li
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Thomas G, Tabanca N. Harnessing chemical ecology for improved pest management- advances and future opportunities. PEST MANAGEMENT SCIENCE 2025. [PMID: 40390587 DOI: 10.1002/ps.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/21/2025]
Abstract
One aspect of chemical ecology is the study of interactions between organisms across trophic levels that are mediated by naturally occurring chemicals. These chemical cues are produced by organisms, including plants, insects, and microorganisms, enabling them to communicate intra- and inter-specifically. These cues can be exploited for the management of pests that affect crops through several mechanisms, including, but not limited to, inducing plant defences against pests, direct suppression of pests, and signalling to beneficial predators/parasitoids for pest control. Identifying the chemical cues (semiochemicals) involved in these biological activities, and advancing our understanding of their roles could enable the development of novel, sustainable tools to increase crop productivity. This special issue presents 21 articles published in Pest Manag. Sci. from 2023 to 2025 that report on plant-insect-microbe interactions and microbe-insect interactions. This editorial has a brief overview of manuscripts from the special issue, highlighting substantial advancements in chemical ecology research and priorities for future research. We hope this special issue inspires new ideas for the future of chemical ecology research, highlights opportunities for joint and collaborative approaches, and showcases cutting-edge research that can advance the field forward in tackling global pest management challenges in agricultural and horticultural crops. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, Florida, USA
| |
Collapse
|
3
|
Otto P, Célestin G, Kergunteuil A, Valantin-Morison M, Pashalidou FG. Oviposition-induced plant volatiles prime defences against impending herbivores in neighbouring non-damaged plants. Sci Rep 2025; 15:17461. [PMID: 40394137 DOI: 10.1038/s41598-025-02371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Plants exploit environmental cues about the risks of encountering insect herbivores, often sensitising defensive responses. While herbivore-induced plant volatiles (HIPVs) are reported to enhance plant defences against incoming herbivores, responses to oviposition-induced plant volatiles (OIPVs) are massively under-explored. We studied whether OIPV emissions from Brassica napus enhance defences in non-damaged neighbouring B. napus when subsequently infested with Pieris brassicae larvae. We collected and analysed the emission rates of plant volatile organic compounds under different treatments and measured P. brassicae larvae biomass as a proxy for defence. We show that oviposition triggers the release of specific volatiles, i.e. α-pinene, dimethyl-trisulfide, and limonene, potentially serving as herbivore early warning cues for neighbouring non-damaged plants. Initially, after three days of herbivory, OIPV-receivers emitted lower levels of volatiles compared to control receivers; however, following seven days of herbivory, both control and OIPV-receivers emitted similar amounts of volatiles. We suggest a potential trade-off between direct and indirect defences, with sensitised plants investing metabolic resources initially towards direct and later enhancing indirect defences. We show that OIPVs mediate plant-plant communication, a natural potential for Brassicaceae crop protection.
Collapse
Affiliation(s)
- Pius Otto
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Gerlens Célestin
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Alan Kergunteuil
- INRAE, LAE, Université de Lorraine, 54000, Nancy, France
- INRAE, PSH, 84000, Avignon, France
| | - Muriel Valantin-Morison
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Foteini G Pashalidou
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France.
- UMR ABSys-Agrosystèmes Biodiversifiés (INRAE), Campus Supagro Montpellier 2 Place Viala, 34060, Montpellier Cedex 2, France.
| |
Collapse
|
4
|
Pawar SV, Paranjape SM, Kalowsky GK, Peiffer M, McCartney N, Ali JG, Felton GW. Tomato Defenses Under Stress: The Impact of Salinity on Direct Defenses Against Insect Herbivores. PLANT, CELL & ENVIRONMENT 2025; 48:3647-3659. [PMID: 39806825 PMCID: PMC11963492 DOI: 10.1111/pce.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv. Better Boy) impacts the behavior and performance of a devastating insect pest, the tomato fruitworm caterpillar (Helicoverpa zea). Through choice assays and performance experiments, we demonstrate that salt-stressed tomato plants are poor hosts for H. zea, negatively affecting caterpillar feeding preferences and growth rates. While changes in plant nutritional quality were observed, the primary factor influencing insect performance appears to be direct ionic toxicity, which significantly impairs multiple life history parameters of H. zea including survival, pupation, adult emergence, and fecundity. Plant defense responses show complex interactions between salt stress and herbivory, with two proteinase inhibitor genes - PIN2 and AspPI, showing a higher induced response to insect herbivory under salt conditions. However, plant defenses do not seem to be the main driver of reduced caterpillar performance on salt-treated plants. Furthermore, we report reduced oviposition by H. zea moths on salt-treated plants, which was correlated with altered volatile emissions. Our findings reveal that H. zea exhibits optimal host selection behaviours for both larval feeding and adult oviposition decisions, which likely contribute to its success as an agricultural pest. This research provides insights into the complex interactions between abiotic stress, plant physiology, and insect behaviour, with potential implications for pest management strategies in saline agricultural environments.
Collapse
Affiliation(s)
- Sahil V. Pawar
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sujay M. Paranjape
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Grace K. Kalowsky
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michelle Peiffer
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nate McCartney
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jared G. Ali
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Gary W. Felton
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
5
|
Grof-Tisza P, Patiño Moreno Y, Erb C, Nobel G, Clancy MV, Benrey B. Associational resistance in the milpa: herbivore-induced maize volatiles enhance extrafloral nectar-mediated defenses in common bean via shared parasitoids. THE NEW PHYTOLOGIST 2025; 246:1319-1332. [PMID: 40051222 DOI: 10.1111/nph.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 04/11/2025]
Abstract
Mixed cropping systems typically provide better natural pest control compared with monocultures, although the success varies depending on the crop and cultivar combinations. Understanding trait interactions that confer associational resistance (AR) to companion plants is key to optimizing these benefits. The Mesoamerican milpa system, known for its pest resistance, provides a model for studying these interactions. We tested two hypotheses to investigate whether access to extrafloral nectar (EFN) produced by Phaseolus vulgaris (common bean) can protect companion Zea mays (maize): (1) access to EFN enhances the survival and performance of a parasitoid wasp, leading to increased parasitism of fall armyworm (FAW) caterpillars on accompanying maize and reduced herbivory, and (2) bean plants can detect maize herbivore-induced plant volatiles (HIPVs) and respond by increasing EFN secretion. Controlled experiments demonstrated that wasps with access to EFN from bean plants lived longer, had higher fecundity, and parasitized more caterpillars on companion maize, thereby reducing herbivore damage. Additionally, caterpillar-damaged maize primed EFN secretion in companion bean plants via HIPVs. Our findings reveal a potentially important AR mechanism in the milpa, contributing to its reputed pest resistance. This understanding could inform the design of sustainable mixed cropping systems that enhance natural pest control.
Collapse
Affiliation(s)
- Patrick Grof-Tisza
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Department of Natural Sciences, Converse University, Spartanburg, 29032, SC, USA
| | - Yulisa Patiño Moreno
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Research Institute of Organic Agriculture FiBL, Frick, 5070, Switzerland
| | - Clarisse Erb
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Gaston Nobel
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Mary V Clancy
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| |
Collapse
|
6
|
Chen Y, Jiang Z, Wu S, Cheng B, Zhou L, Liu T, Yu C. Structure and release function of fragrance glands. HORTICULTURE RESEARCH 2025; 12:uhaf031. [PMID: 40224323 PMCID: PMC11992339 DOI: 10.1093/hr/uhaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 04/15/2025]
Abstract
Volatile compounds serve physiological, signaling, and defensive purposes in plants and have beneficial effects on the growth, reproduction, resistance, and yield of horticultural plants. They are released through fragrance glands and become gasses by passing through the plasma membrane, cell walls that contain water, and cuticle. Transporter proteins facilitate their transport and reduce the resistance of these barriers. They also regulate the rate of release and concentration of volatiles inside and outside of the membrane. However, there has been no summary of the structure and function of the fragrance glands of horticultural plants, as well as an introduction to the latest research progress on the mechanism of the transport of volatiles. This review focuses on the structure and function of the release of aromas in horticultural plants and explores the mechanism of the release of volatiles through a transporter model. Additionally, it considers the factors that affect their release and ecological functions and suggests directions for future research.
Collapse
Affiliation(s)
- Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Ziying Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| |
Collapse
|
7
|
Amélie S, Salomé C, Xuan-Minh-Ai N, Abdessalem S, Elena O, Catherine F. Biogenic volatile organic compounds from marine benthic organisms: a review. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107162. [PMID: 40286479 DOI: 10.1016/j.marenvres.2025.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Biogenic Volatile Organic Compounds (BVOCs) play crucial roles in terrestrial environments, acting as defense compounds against environmental stresses and as chemical cues in species interactions. These roles were mainly highlighted on terrestrial plants whereas marine BVOCs are still understudied except dimethyl sufide (DMS) or isoprene. However, recent research highlights that marine organisms, particularly phytoplankton, and to a lesser extent benthic organisms such as macroalgae, seagrasses, and corals, also produce and emit a larger panel of BVOCs. In this review, we compiled and analyzed articles focusing on BVOCs production and emission by benthic photosynthetic organisms. Our review synthesizes current knowledge on the BVOCs produced or emitted by these species, categorized by compounds classes, geographic location and sampling methods. This synthesis provides a preliminary overview of the chemical diversity among benthic organisms, indicating rich and varied BVOCs profiles that warrants further investigation. Furthermore, we explore the potential physiological and ecological roles of BVOCs in benthic ecosystems, discussing their implications for environmental stress responses and interspecies communication. This review underscores the need for more comprehensive studies to fully understand the ecological significance and chemical complexity of BVOCs in benthic environments.
Collapse
Affiliation(s)
- Saunier Amélie
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France.
| | - Coquin Salomé
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France
| | - Nguyen Xuan-Minh-Ai
- Department of Ecology and Evolutionary Biology, Faculty of Biology and Biotechnology, University of Science, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | | | - Ormeno Elena
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France
| | | |
Collapse
|
8
|
Mathieu L, Ballini E, Morel JB. A Simplified and Integrated View of Disease Control in Varietal Mixtures Using the Phytobiome Framework. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40200643 DOI: 10.1111/pce.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Increasing intraspecific diversity within crop systems is a promising strategy to manage aerial diseases, particularly those caused by fungal aerial pathogens. This review examines how cultivar mixtures reduce disease incidence and severity using the phytobiome framework, identifying three major types of processes: (1) physical ones, which alter disease dynamics through dilution effects, barrier effects, and microclimate modifications; (2) processes that are mediated by microbial interactions, which influence disease severity via induced resistance and indirect plant-plant interactions mediated by the microbiome; and (3) processes involving direct plant-plant interactions, where danger signaling and signaling from healthy neighbors modulate plant physiology and immunity through resource management and molecular cues. This review provides a comprehensive understanding of how cultivar mixtures enhance disease resistance and emphasizes that direct plant-plant interactions are likely stronger contributors than so far considered. It highlights the need for further research into the roles of microbiomes and direct plant-plant interactions to optimize mixtures' performance.
Collapse
Affiliation(s)
- Laura Mathieu
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, Institut Agro, INRAE, IRD, Montpellier, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
9
|
Markovic D, Seimandi-Corda G, Harizanova V, Stoeva A, Himanen S, Saussure S, Radonjic A, Đurić G, Lalićević I, Kheam S, Rensing M, Gallinger J, Cook SM, Ninkovic V. Volatile-mediated plant interactions: an innovative approach to cultivar mixture selection for enhanced pest resilience. FRONTIERS IN PLANT SCIENCE 2025; 16:1550678. [PMID: 40265116 PMCID: PMC12011781 DOI: 10.3389/fpls.2025.1550678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Mixing different cultivars has been recognized as a promising strategy for the reduction of pest pressure and the enhancement of crop performance. However, this applies only in specific combinations, creating a need to select cultivars that interact synergistically in mixtures. We propose a trait-based laboratory method to identify complementary pairs of cereal cultivars based on their ability to prime one another's defense response through volatile organic compounds (VOCs). In this study, we screened 25 locally-grown cultivars from six European countries to assess their responsiveness to volatile priming under controlled conditions. The tested cultivars exhibited three primary types of volatile interactions: no interaction, one-way interaction (where one cultivar responded to volatiles from another) and two-way interaction (where both cultivars reciprocally responded). Subsequently, the efficacy of these cultivar pairs was evaluated over a three-year period in field trials where aphid infestation, natural enemy abundance and plant traits (height, number of plants per 1-meter, Thousand Grain Weight (TGW) and yield) were assessed. Field trials results demonstrated that only specific cultivar mixtures led to a significant reduction in aphid infestation, indicating a robust genetic and environmental interaction. Mixtures in which both cultivars exhibited two-way interaction under controlled conditions, demonstrated reductions in aphid abundance in comparison to monoculture controls. In contrast, the abundance of natural enemies was not significantly affected by cultivar mixtures, and there were no notable changes in plant traits. We propose that the strategic pairing of cultivars, which actively engage in volatile interactions in the laboratory, can effectively reduce aphid pressure in the field without compromising plant traits or crop yield, thereby reducing reliance on chemical control. Given the role of aphids as vectors of economically significant viruses, reducing their population could also limit the spread of plant diseases in the field. This approach underscores the importance of understanding plant interactions at a chemical level to optimize cultivar pairing and develop sustainable pest management strategies.
Collapse
Affiliation(s)
- Dimitrije Markovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Gaëtan Seimandi-Corda
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- French National Research Institute for Agriculture, Food and Environment (INRAE), National Polytechnic Institute of Toulouse (INPT), PURPAN Engineering School (EI PURPAN), AGroécologie - Innovations – TeRritoires (AGIR), Toulouse, France
| | | | | | - Sari Himanen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | - Andja Radonjic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Gordana Đurić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ivana Lalićević
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Sokha Kheam
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Faculty of Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Merlin Rensing
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jannicke Gallinger
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Samantha M. Cook
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Sorg A, Luo ZW, Li QB, Roy K, Basset GJ, Kim J, Hunter C, Chapple C, Rering C, Block AK. The airborne herbivore-induced plant volatile indole is converted to benzoxazinoid defense compounds in maize plants. THE NEW PHYTOLOGIST 2025; 246:718-728. [PMID: 40007166 DOI: 10.1111/nph.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Herbivore-induced plant volatiles act as danger signals to prime defense responses in neighboring plants, yet in many cases the mechanism behind this priming is not known. Volatile signals may be recognized directly by receptors and/or converted into other active compounds. Here we investigate the metabolic fate of volatile indole, a known priming signal in maize (Zea mays), to determine if its conversion to other compounds could play a role in its priming of defenses. We identified benzoxazinoids as major products from volatile indole using heavy isotope-labeled volatile indole and Pathway of Origin Determination in Untargeted Metabolomics (PODIUM) analysis. We then used benzoxazinoid biosynthesis maize mutants to investigate their role in indole-mediated priming. Labeled volatile indole was converted into DIMBOA-glucoside in a bx2 (benzoxazinone synthesis2)-dependent manner. The bx2 mutant plants showed elevated green leaf volatile (GLV) production in response to wounding and Spodoptera frugiperda regurgitant irrespective of indole exposure. Thus, volatile indole is converted into benzoxazinoids, and part of its priming mechanism may be due to the enhanced production of these phytoanticipins. However, indole-mediated enhanced GLV production does not rely on the conversion of indole to benzoxazinoids, so indole also has other signaling functions.
Collapse
Affiliation(s)
- Ariel Sorg
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Zhi-Wei Luo
- Department of Biochemistry and the Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qin-Bao Li
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Kristin Roy
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Gilles J Basset
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Charles Hunter
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Clint Chapple
- Department of Biochemistry and the Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Caitlin Rering
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Anna K Block
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| |
Collapse
|
11
|
Kanjana N, Li Y, Ahmed MA, Ma L, Zhang L. Volatile signaling in weed plant Ageratina adenophora: Understanding the key emissions influencing Procecidochares utilis attraction to gall formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112404. [PMID: 39889885 DOI: 10.1016/j.plantsci.2025.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The stem gall fly (Procecidochares utilis) significantly impacts host-plant biology by inhabiting specific parts of stem tissue, ensuring its own survival. Despite this, comprehensive identification of the primary bioactive compounds within host plants that are involved in gall formation remains elusive. This study aims to elucidate the crucial volatile compounds utilized by gall flies to alter host-plant defenses, either through direct or indirect manipulation via the release of an enticing volatile compound attractive to the fly. Employing Y-tube olfactometer assays, we examined the response of Procecidochares utilis to host plants from three Asteraceae weed species-Ageratina adenophora, Ageratum conyzoides, and Praxelis clematidea. Volatile compounds were extracted using headspace solid-phase microextraction (HS-SPME) and SPME-FIBER. Subsequently, gas chromatography-electroantennography and electroantennography were employed to analyze the antennal responses to individual odorants. The analysis revealed that the primary bioactive compound varied among the three weed species. Out of a total of 805 known volatiles, 65 main active compounds were exclusive to Ageratina adenophora (host plant). Remarkably, only 8 bioactive compounds were identified to elicit an antennal response from Procecidochares utilis. Notably, caryophyllene, β-bisabolene, and 4-thujen-2-α-yl acetate exhibited the remarkable ability to elicit an attraction response from both sexes of Procecidochares utilis. Among these, β-bisabolene emerged as the key compound, eliciting the most significant response from the gall fly antenna. Our findings offer novel insights into the specific attraction of the stem gall fly to Ageratina adenophora, utilizing key odorants as unique cues for initiating gall formation on its host plant. This discovery highlights how these cues enable the gall fly to exert direct or indirect control over its host. Additionally, these findings underscore the potential of this approach in the development of sustainable pest management strategies in the context of field trials.
Collapse
Affiliation(s)
- Nipapan Kanjana
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuyan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Muhammad Afaq Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lisheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
12
|
Fyie JQ, Stratton CA, Morrison WR, Murrell EG. Intercropping Alters Phytochemicals Associated With Insect Herbivory. J Chem Ecol 2025; 51:46. [PMID: 40164956 DOI: 10.1007/s10886-025-01555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical profiles, which include phytochemical defense compounds, of crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on plant biomass and aerial volatile organic compound (VOC) emission profiles by intercropping sweetclover (Melilotus alba) and wheat (Triticum aestivum) with silflower (Silphium integrifolium) in AMF-inoculated soil. We also assessed the impact of intercropping on induced VOC profiles by conducting an in-situ, no-choice bioassay with fall armyworm (Spodoptera frugiperda). Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was introduced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. Wheat and sweetclover biomass increased when intercropped with silflower, but silflower biomass was unaffected by intercropping. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on volatile profile emissions, and possible pest resistance in agroecological systems, could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.
Collapse
Affiliation(s)
| | - Chase A Stratton
- The Land Institute, Salina, KS, 67401, USA
- Department of Biology, Delaware State University, 120 North State Street, Dover, DE, 19904, USA
| | - William R Morrison
- Agricultural Research Service, Center for Grain and Animal Health Research, USDA, 1515. College Ave., Manhattan, KS, 66502, USA
| | | |
Collapse
|
13
|
Bergman ME, Huang XQ, Baudino S, Caissard JC, Dudareva N. Plant volatile organic compounds: Emission and perception in a changing world. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102706. [PMID: 40153896 DOI: 10.1016/j.pbi.2025.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Volatile organic compounds (VOCs) are produced by all kingdoms of life and play crucial roles in mediating the communication between organisms and their environment through emission and perception. Plants, in particular, produce and emit an exceptional variety of VOCs that together serve as a complex chemical language facilitating intra-plant, inter-plant, plant-animal, and plant-microbe interactions. VOC signals are perceived and decrypted by receiver plants; however, the emission, composition, distribution and effective range, as well as uptake of these infochemicals depend on temperature and atmospheric chemistry in addition to their physicochemical properties. Since both emission and perception are directly affected by ongoing climate change, research into these processes is urgently needed to develop mitigation strategies against this threat to plant communication networks. In this brief review, we highlight the recent advances about plant VOC emission and perception, emphasizing the effect of the current climate crisis on these processes. Despite some progress in understanding VOC emission and perception, significant gaps remain in elucidating their molecular mechanisms in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sylvie Baudino
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales Appliquées Aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-Etienne F-42023, France
| | - Jean-Claude Caissard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales Appliquées Aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-Etienne F-42023, France
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Zhao W, Hou R, Liu M, Shen H, Deng X, Wang M, Yun X. Analysis of soil microbial community structure changes in the drainage field of the Shengli coalfield based on high-throughput sequencing. BMC Microbiol 2025; 25:132. [PMID: 40069602 PMCID: PMC11899194 DOI: 10.1186/s12866-025-03761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The study of soil environment in drainage fields is important for environmental management and ecological restoration, and there is currently a knowledge gap in understanding the impact of soil microbial communities in the Shengli coalfield drainage fields and the corresponding ecological effects. To investigate the changes in rhizosphere soil microbial communities of different dominant plants after years of restoration, this study examines the improvement effects of different dominant plants on the soil environment. RESULTS This study is based on high-throughput sequencing to restore the slope of coal mine spoil after 15 years as the sampling site. The rhizosphere soil of five dominant plants was selected for microbial community analysis, and functional prediction of the microbial community was conducted. The dominant plants selected included Erect Milkvetch (Astragalus adsurgens), Lemongrass (Caragana korshinskii), Alfalfa (Medicago sativa), Phyllanthus pinnatifida (Elymus dahuricus), and Brassica Rapa (Brassica campestris). The results showed that after 15 years of restoration, the soil physicochemical properties in the Phyllanthus pinnatifida group were better than those in the other groups overall, but some of them were inferior to those in the lemon-stripped mallard group. Abundant saprophytic fungal communities were found in different dominant plant groups, mainly belonging to the phyla Ascomycota and Basidiomycota, resulting in significantly higher organic matter content in the dominant plant groups compared to the CK group. The bacterial communities were dominated by the phyla Actinobacteriota, Proteobacteria, Chloroflexi, and Firmicutes. Among these microbial phyla, the Phyllanthus pinnatifida group had higher abundance, which is beneficial for vegetation colonization. Redundancy analysis showed that soil pH was significantly correlated with microbial communities. Organic matter content and pH are the main factors influencing the composition of soil microbial communities, significantly affecting the composition of microorganisms in different groups. After years of restoration, the environment of the Shengli Coalfield's spoil heap has been greatly improved. CONCLUSIONS The planting of various beneficial plants has resulted in significant improvements to the soil microbial community and physicochemical properties, with Phyllanthus pinnatifida having the most positive impact. This lays the foundation for the subsequent restoration of the slope of the spoil heap.
Collapse
Affiliation(s)
- Weixuan Zhao
- College of Grassland and Resource Environment, the Key Laboratory of Grassland Resources under the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Ruihong Hou
- Institute of Grassland Research of CAAS, Hohhot, 010013, China
| | - Mingjian Liu
- College of Grassland and Resource Environment, the Key Laboratory of Grassland Resources under the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Haowei Shen
- College of Grassland and Resource Environment, the Key Laboratory of Grassland Resources under the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaochen Deng
- College of Grassland and Resource Environment, the Key Laboratory of Grassland Resources under the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Mingjiu Wang
- College of Grassland and Resource Environment, the Key Laboratory of Grassland Resources under the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| | - Xiangjun Yun
- Institute of Grassland Research of CAAS, Hohhot, 010013, China.
| |
Collapse
|
15
|
Yang R, Su C, Xue Z, Wei H, Wang Z, Zhu J, Meng J, Luan Y. Combination of PAMP-induced peptide signaling and its regulator SpWRKY65 boosts tomato resistance to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70098. [PMID: 40089908 DOI: 10.1111/tpj.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/02/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), seriously compromises tomato growth and yield. PAMP-induced peptides (PIPs) are secreted peptides that act as endogenous elicitors, triggering plant immune responses. Our previous research indicated that the exogenous application of PIP1 from Solanum pimpinelifolium L3708, named SpPIP1, enhances tomato resistance to P. infestans. However, little is known about the roles of additional family members in tomato resistance to P. infestans. In addition, there remains a significant gap in understanding the receptors of SpPIPs and the transcription factors (TFs) that regulate SpPIPs signaling in tomato defense, and the combination of SpPIPs signaling and TFs in defending against pathogens is rarely studied. This study demonstrates that the exogenous application of SpPIP-LIKE1 (SpPIPL1) also strengthens tomato resistance by affecting the phenylpropanoid biosynthesis pathway. Both SpPIP1 and SpPIPL1 trigger plant defense responses in a manner dependent on RLK7L. Tomato plants overexpressing the precursors of SpPIP1 and SpPIPL1 (SpprePIP1 and SpprePIPL1) exhibited enhanced expression of pathogenesis-related genes, elevated H2O2 and ABA levels, and increased lignin accumulation. Notably, SpWRKY65 was identified as a transcriptional activator of SpprePIP1 and SpprePIPL1. Disease resistance assays and gene expression analyses revealed that overexpression of SpWRKY65 (OEWRKY65) confers tomato resistance to P. infestans, while wrky65 knockout led to the opposite effect. Intriguingly, transgenic tomato studies showed that either spraying OEWRKY65 with SpPIPs or co-overexpressing SpprePIP1 and SpWRKY65 further augmented tomato resistance, underscoring the potential of gene stacking in enhancing disease resistance. In summary, this study offers new perspectives on controlling late blight and developing tomato varieties with improved resistance. The results emphasize the potential of exogenous SpPIPs application as an eco-friendly strategy for crop protection, laying a theoretical foundation for advancing crop breeding.
Collapse
Affiliation(s)
- Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhiyuan Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongbo Wei
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhengjie Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
16
|
Jin J, Zhao M, Yu K, Zhang M, Wang J, Hu Y, Guo D, Wang K, Wang Q, Cui J, Liu Y, Jing T, Schwab W, Song C. Squalene acts as a feedback signaling molecule in facilitating bidirectional communication between tea plants. SCIENCE ADVANCES 2025; 11:eads4888. [PMID: 39951519 PMCID: PMC11827622 DOI: 10.1126/sciadv.ads4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Plants respond to environmental stimuli by releasing volatile organic compounds (VOCs), which play diverse roles in plant-to-plant interactions. Previous studies have primarily focused on how receiving plants respond. However, little is known about how these receivers communicate back to the emitter plants and their subsequent impacts. Our findings indicated increased plant tolerance when neighboring plants were present, suggesting bidirectional plant communication. Furthermore, we established a model to explore the role of signals from receiver plants, identifying squalene as a crucial feedback signal enhancing the cold tolerance in emitter plants by up-regulating CsCBF5 expression. Further analysis using yeast one-hybrid analysis coupled with inhibition of brassinosteroid pathways suggested that squalene-induced castasterone (CS) accumulation directly activated CsCBF5 expression modulated by CsBES1/BZR1. Overall, these results demonstrated the role of the squalene-CS-BES1/BZR1-CBF5 pathway in the bidirectional communication between plants, expanding our understanding of plant interactions.
Collapse
Affiliation(s)
- Jieyang Jin
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Mingyue Zhao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Keke Yu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Mengting Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Jingming Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Yutong Hu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Danyang Guo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Kai Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Qiang Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Jilai Cui
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People’s Republic of China
| | - Yuantao Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Tingting Jing
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Wilfried Schwab
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| |
Collapse
|
17
|
Balanzá M, Vázquez-Prol F, Rodrigo I, Bellés JM, Vera-Sirera F, López-Gresa MP, Lisón P. Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants. Metabolites 2025; 15:102. [PMID: 39997727 PMCID: PMC11857198 DOI: 10.3390/metabo15020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Background:Citrus Exocortis Viroid (CEVd) is a non-coding RNA pathogen capable of infecting a wide range of plant species, despite its lack of protein-coding ability. Viroid infections induce significant alterations in various physiological and biochemical processes, particularly impacting plant metabolism. This study shows the metabolic changes upon viroid infection in tomato plants (Solanum lycopersicum var. 'MoneyMaker') exhibiting altered levels of salicylic acid (SA), a key signal molecule involved in the plant defence against this pathogen. Methods: Transgenic RNAi_S5H lines, which have the salicylic acid 5-hydroxylase gene silenced to promote SA accumulation, and NahG lines, which overexpress a salicylate hydroxylase to degrade SA into catechol and prevent its accumulation, were used to establish different SA levels in plants, resulting in varying degrees of resistance to viroid infection. The analysis was performed by using gas chromatography-mass spectrometry (GC-MS) to explore the role of volatile organic compounds (VOCs) in plant immunity against this pathogen. Results: Our results revealed distinct volatile profiles associated with plant immunity, where RNAi_S5H-resistant plants showed significantly enhanced production of monoterpenoids upon viroid infection. Moreover, viroid-susceptible NahG plants emitted a broad range of VOCs, whilst viroid-tolerant RNAi_S5H plants exhibited less variation in VOC emission. Conclusions: This study demonstrates that SA levels significantly influence metabolic responses and immunity in tomato plants infected by CEVd. The identification of differential emitted VOCs upon CEVd infection could allow the development of biomarkers for disease or strategies for disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Camino de Vera s/n, 46022 Valencia, Spain; (M.B.); (F.V.-P.); (I.R.); (J.M.B.); (F.V.-S.); (M.P.L.-G.)
| |
Collapse
|
18
|
Bede JC, Blande JD. Effects of Elevated CO 2 and O 3 on Aboveground Brassicaceous Plant-Insect Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:205-227. [PMID: 39357072 DOI: 10.1146/annurev-ento-022024-015159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Atmospheric gases, such as carbon dioxide (CO2) and ozone (O3), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO2 (eCO2; 750-900 ppm) or elevated O3 (eO3; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO2 negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO2 or eO3. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO2. In general, eCO2 does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O3, affecting pollination and foraging natural enemy behavior. Thus, eCO2 and eO3 alter plant-insect interactions; however, many aspects remain poorly understood.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada;
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Feng D, Liu S, Chen M, Wang S, Xu M, Liu C, Huang W, Wang M, Xie P, Chai L, Ye J, Xu Q, Zeng X, Xu J, Deng X. Volatile content and genetic variation of citron in Tibet and Yunnan. PLANT PHYSIOLOGY 2024; 197:kiae634. [PMID: 39656821 DOI: 10.1093/plphys/kiae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
Citron (Citrus medica) is a representative aromatic species of the Citrus genus in the Rutaceae family. To determine the volatile profiles and genetic variation of citron, we collected 218 citron accessions within China, including 130 from Yunnan and 88 from Tibet. We identified a total of 80 volatile compounds from their pericarps. Among the volatile profiles, monoterpenes were identified as the predominant compounds, with d-limonene being the most abundant. The correlation analysis indicated that the content of 5 volatile compounds was significantly associated with the proportion of juice vesicles in citron fruits. Citrons from Tibet exhibited a higher total volatile content and lower variability in their volatile profile than those from Yunnan. Comparative analysis revealed significant differences in the levels of 48 volatile compounds between Tibetan and Yunnan citrons. Furthermore, we assembled a 402.23-Mb chromosome-scale citron genome (contig N50 = 37.51 Mb) and resequenced 105 representative citron accessions. The population structure analysis divided these citron accessions into two populations: Yunnan and Tibet. The nucleotide diversity in the Tibet population was significantly lower than that in the Yunnan population on a genome-wide scale. Based on d-limonene content, we identified JUNGBRUNNEN1-like (CmJUB1-like), a NAC transcription factor, (-) on chromosome 7 through a genome-wide association study. Overexpressing CmJUB1-like significantly enhanced d-limonene and total monoterpene levels in citron. These results broaden our understanding of the genetic mechanisms influencing volatile profiles and may facilitate the molecular breeding of citrus.
Collapse
Affiliation(s)
- Di Feng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjun Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaohua Wang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Miao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglang Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenkai Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pu Xie
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Zeng
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Savić J, Nakarada Đ, Stupar S, Tubić L, Milutinović M, Mojović M, Devrnja N. Glutathione Involvement in Potato Response to French Marigold Volatile Organic Compounds. Antioxidants (Basel) 2024; 13:1565. [PMID: 39765893 PMCID: PMC11673417 DOI: 10.3390/antiox13121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
To elucidate the involvement of glutathione in the mitigation of induced oxidative changes and the sequestration of perceived volatiles in cells, we exposed potato plants to French marigold essential oil. The formation of short-lived radicals, the determination of scavenging activity towards ascorbyl and DPPH radicals, and the assessment of the potato plants' overall intra/extracellular reduction status were performed using electron paramagnetic resonance spectroscopy (EPR). The results showed the presence of hydroxyl radicals in potatoes, with significantly reduced accumulation in exposed plants compared to the control group after 8 h. However, the kinetics of EPR signal intensity change for the pyrrolidine spin probe (3CP) in these plants showed very low reducing potential, suggesting that the antioxidant system acts lethargically and/or the probe has been reoxidized. Total glutathione and its reduced/oxidized form ratio, determined spectrophotometrically, showed that the exposed plants initially had lower glutathione levels with diminutive, reduced form compared to the control. Still, after 8 h, both characteristics were similar to those of the control. RT-qPCR analysis revealed that the volatiles altered the expression of glutathione metabolism-involved genes, especially that of glutathione-S-transferase, after 8 h. Glutathione metabolism was affected by volatiles in the initial response of potato plants exposed to French marigold essential oil, and glutathione molecules were involved in the mitigation of induced oxidative burst.
Collapse
Affiliation(s)
- Jelena Savić
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Đura Nakarada
- BioScope Labs, Center for Physical Chemistry of Biological Systems, Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Sofija Stupar
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Ljiljana Tubić
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Milica Milutinović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Miloš Mojović
- BioScope Labs, Center for Physical Chemistry of Biological Systems, Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Nina Devrnja
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| |
Collapse
|
21
|
Mercanti N, Macaluso M, Pieracci Y, Bertonelli L, Flamini G, Zinnai A. Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results. PLANTS (BASEL, SWITZERLAND) 2024; 13:3168. [PMID: 39599377 PMCID: PMC11597952 DOI: 10.3390/plants13223168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Microorganisms play a crucial role in addressing the challenges related to the increasing detrimental effects of intensive agriculture in vineyards by contributing to various aspects, from maintaining soil health and vine vitality to influencing fermentation and the overall wine features. Among microorganisms, mycorrhizal fungi are widely distributed in both natural and agricultural ecosystems, and their mutually beneficial relationship with most terrestrial plants provides valuable ecological benefits. Nowadays, the wine industry is increasingly moving toward the production of organic wines, highlighting the need for novel and healthier strategies that prioritize both the consumer well-being and the quality of the final wine product. Following our previous study in collaboration with the Bioma SA Company (Quartino, Switzerland), the investigation was continued by extending the organic practice to the cultivation. The present work, indeed, aimed to evaluate the influence of the treatment with mycorrhizal fungi on the metabolism of "Sangiovese" grapevines. In particular, the chemical parameters, including alcohol content, pH, acidity, phenolic composition, and sulfur dioxide, were assessed on the must, while the analysis of the volatile emission was conducted both on whole and pressed grapes, on must, as well as on the grape skins. To the best of our knowledge, this is the first study investigating the mycorrhizal fungi association effect on the quality of "Sangiovese" grapes and, further, its effect on the VOCs emission.
Collapse
Affiliation(s)
- Nicola Mercanti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Ylenia Pieracci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56124 Pisa, Italy;
| | - Leonardo Bertonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56124 Pisa, Italy;
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
22
|
Laupheimer S, Ghirardo A, Kurzweil L, Weber B, Stark TD, Dawid C, Schnitzler J, Hückelhoven R. Blumeria hordei affects volatile emission of susceptible and resistant barley plants and modifies the defense response of recipient plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14646. [PMID: 39648862 PMCID: PMC11626344 DOI: 10.1111/ppl.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants. VOC profiles of susceptible MLO wild type (MLO WT) and a resistant near-isogenic backcross line (mlo5) were characterized over time (one day or three days after Bh inoculation) using TD-GC/MS. Comparative analysis revealed genotype-dependent VOC profiles and significant differences in emission rates for β-caryophyllene, linalool, (Z)-3-hexenol, and methyl salicylate. Furthermore, susceptible barley plants were exposed to the complex VOC bouquet of MLO WT or mlo5 sender plants in plant-to-plant communication. We found that VOC-induced resistance in receiver plants depended on the sender genotype in a Bh susceptibility assay. Additionally, untargeted metabolomics and gene expression studies provide evidence toward an SA-dependent pathway mediating VOC-induced resistance against powdery mildew. The exogenous application of methyl salicylate resulted in the enhanced expression of the BARLEY CHEMICALLY INDUCED-4 marker gene and induced resistance in receiver plants. The findings suggest genotype-dependent alterations in barley VOC profiles during biotrophic plant-fungus interactions and show a VOC-mediated resistance that shares components with salicylic acid-related pathways. The VOC signals identified here could serve as non-invasive markers for disease progression in barley-powdery mildew interactions and as signals for resistance induction in recipient plants.
Collapse
Affiliation(s)
- Silvana Laupheimer
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Lisa Kurzweil
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Baris Weber
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
23
|
Francis C, Rektor A, Valayil-Varghese T, McKibben N, Estrada I, Forbey J, Estrada D. Laser-induced graphene gas sensors for environmental monitoring. Front Chem 2024; 12:1448205. [PMID: 39544719 PMCID: PMC11560773 DOI: 10.3389/fchem.2024.1448205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Artemesia tridentata is a foundational plant taxon in western North America and an important medicinal plant threatened by climate change. Low-cost fabrication of sensors is critical for developing large-area sensor networks for understanding and monitoring a range of environmental conditions. However, the availability of materials and manufacturing processes is still in the early stages, limiting the capacity to develop cost-effective sensors at a large scale. In this study, we demonstrate the fabrication of low-cost flexible sensors using laser-induced graphene (LIG); a graphitic material synthesized using a 450-nm wavelength bench top laser patterned onto polyimide substrates. We demonstrate the effect of the intensity and focus of the incident beam on the morphology and electrical properties of the synthesized material. Raman analyses of the synthesized LIG show a defect-rich graphene with a crystallite size in the tens of nanometers. This shows that the high level of disorder within the LIG structure, along with the porous nature of the material provide a good surface for gas adsorption. The initial characterization of the material has shown an analyte response represented by a change in resistance of up to 5% in the presence of volatile organic compounds (VOCs) that are emitted and detected by Artemisia species. Bend testing up to 100 cycles provides evidence that these sensors will remain resilient when deployed across the landscapes to assess VOC signaling in plant communities. The versatile low-cost laser writing technique highlights the promise of low-cost and scalable fabrication of LIG sensors for gas sensor monitoring.
Collapse
Affiliation(s)
- Cadré Francis
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Attila Rektor
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Tony Valayil-Varghese
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Department of Electrical and Computer and Engineering, Boise State University, Boise, ID, United States
| | - Nicholas McKibben
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Isaac Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Jennifer Forbey
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Center for Advanced Energy Studies, Boise State University, Boise, ID, United States
| |
Collapse
|
24
|
Song C, Guo N, Xue A, Jia C, Shi W, Liu M, Zhang M, Qin J. Self-assembled thymol-betaine co-crystals with controlled release and hygroscopic properties as green preservatives for aflatoxin prevention. Food Chem 2024; 456:140037. [PMID: 38870801 DOI: 10.1016/j.foodchem.2024.140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Aoran Xue
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Jianchun Qin
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Yang F, Huang T, Tong H, Shi X, Zhang R, Gu W, Li Y, Han P, Zhang X, Yang Y, Zhou Z, Wu Q, Zhang Y, Su Q. Herbivore-induced volatiles reduce the susceptibility of neighboring tomato plants to transmission of a whitefly-borne begomovirus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6663-6675. [PMID: 39126232 DOI: 10.1093/jxb/erae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Plant viruses exist in a broader ecological community that includes non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivore infestation on virus transmission by vector insects on neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of neighboring plants by tomato yellow leaf curl virus (TYLCV) transmitted by whitefly (Bemisia tabaci). Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and the jasmonic acid signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-β-ocimene and methyl salicylic acid were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemics of multiple herbivores and viruses in agroecosystems, and ultimately to manage pest and virus outbreaks.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaobin Shi
- Yuelushan Laboratory, Changsha, Hunan 410125, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weina Gu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
| | - Xiaoming Zhang
- College of Plant Protection, Yunnan Agricultural University, National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, Kunming 650201, China
| | - Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Zhixiong Zhou
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
26
|
Zhou X, Zhang J, Shi J, Khashi U Rahman M, Liu H, Wei Z, Wu F, Dini-Andreote F. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. MICROBIOME 2024; 12:207. [PMID: 39428455 PMCID: PMC11492557 DOI: 10.1186/s40168-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment. RESULTS First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities. CONCLUSIONS Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jibo Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Muhammad Khashi U Rahman
- Department of Microbiology and Genetics and Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Vandergrift GW, Bell SL, Schrader SE, Jensen SM, Wahl JH, Tagestad JD, China S, Hofmockel KS. Harvest Initiated Volatile Organic Compound Emissions from In-Field Tall Wheatgrass. ACS EARTH & SPACE CHEMISTRY 2024; 8:1961-1969. [PMID: 39440017 PMCID: PMC11492378 DOI: 10.1021/acsearthspacechem.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024]
Abstract
While crop and grassland usage continues to increase, the full diversity of plant-specific volatile organic compounds (VOCs) emitted from these ecosystems, including their implications for atmospheric chemistry and carbon cycling, remains poorly understood. It is particularly important to investigate VOCs in the context of potential biofuels: aside from the implications of large-scale land use, harvest may shift both the flux and speciation of emitted VOCs. To this point, we evaluate the diversity of VOCs emitted both pre and postharvest from "Alkar" tall wheatgrass (Thinopyrum ponticum), a candidate biofuel that exhibits greater tolerance to frost and saline land compared to other grass varieties. Mature plants grown under field conditions (n = 6) were sampled for VOCs both pre- and postharvest (October 2022). Via hierarchical clustering of emitted VOCs from each plant, we observe distinct "volatilomes" (diversity of VOCs) specific to the pre- and postharvest conditions despite plant-to-plant variability. In total, 50 VOCs were found to be unique to the postharvest tall wheatgrass volatilome, and these unique VOCs constituted a significant portion (26%) of total postharvest signal. While green leaf volatiles (GLVs) dominate the speciation of postharvest emissions (e.g., 54% of unique postharvest VOC signal was due to 1-penten-3-ol), we demonstrate novel postharvest VOCs from tall wheatgrass that are under characterized in the context of carbon cycling and atmospheric chemistry (e.g., 3-octanone). Continuing evaluations will quantitatively investigate tall wheatgrass VOC fluxes, better informing the feasibility and environmental impact of tall wheatgrass as a biofuel.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sheryl L Bell
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Shannon E Schrader
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sonja M Jensen
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jon H Wahl
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jerry D Tagestad
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Swarup China
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| |
Collapse
|
28
|
Wang Y, Wang L, Li D, Chen Z, Luo Y, Zhou J, Luo B, Yan R, Liu H, Wang L. Advancements in the Impact of Insect Gut Microbiota on Host Feeding Behaviors. Genes (Basel) 2024; 15:1320. [PMID: 39457444 PMCID: PMC11507998 DOI: 10.3390/genes15101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the application and development of high-throughput sequencing technology, the structure and function of insect gut microbiota have been analysed, which lays a foundation for further exploring the intricate relationships between gut microbiota and host feeding behaviour. The microbial community in the insect gut, as an important ecological factor, affects the host's food selection and nutritional metabolic processes through various mechanisms, which play a key role in population dynamics and ecosystems. The implications of these interactions are profound, affecting agricultural practices, biodiversity, and the broader environment, such as pollination and pest control. In-depth exploration of the molecular mechanism of the interaction between gut microbiota and hosts contributes to the grasp of insect biology and evolution and offers novel avenues for manipulating insect behaviour for practical applications in agriculture and environmental management. This paper focuses on the possible mechanisms of insect gut microbiota regulating host feeding behaviour. It inspires further research on the interaction between gut microbiota and insects affecting host behaviour.
Collapse
Affiliation(s)
- Yikang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Zhenfu Chen
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Yang Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Juan Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai 200025, China
| |
Collapse
|
29
|
Wang GL, Wu JQ, Chen YY, Xu YJ, An YH, Ren XQ, Xiong AS. Integrated volatile metabolome and transcriptome analyses provide insights into the warm aroma formation elicited by methyl jasmonate in carrot root. FRONTIERS IN PLANT SCIENCE 2024; 15:1467957. [PMID: 39376232 PMCID: PMC11457697 DOI: 10.3389/fpls.2024.1467957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Carrot is a highly significant vegetable cultivated worldwide and possesses a unique aroma with abundant edible and medicinal values. However, it remains largely unknown whether jasmonic acid could regulate aroma formation in carrot. Here, an integrated analysis of the volatile metabolome and transcriptome of carrot roots exposed to different concentrations of methyl jasmonate (MeJA) was performed. The results revealed 1,227 volatile organic compounds and 972 differential accumulated metabolites, with terpenes representing the largest portion. MeJA treatment evidently increased the relative odor activity values as well as the accumulation of most volatile compounds. In addition, 4,787 differentially expressed genes were identified and subjected to function enrichment analysis, indicating a role of terpene biosynthesis and metabolism in response to MeJA application. A network consisting of 4,680 transcription factor-structural pairs that showed highly significant positive correlations was constructed, which may be utilized as genetic targets for examining terpene accumulation and aroma formation elicited by methyl jasmonate. The results from the present work substantially improved our understanding of MeJA-mediated aroma formation in carrot.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaiyin Institute of Technology, Huaian, China
| | - Jia-Qi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yang-Yang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yu-Jie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaiyin Institute of Technology, Huaian, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Yu H, Buchholz A, Pullinen I, Saarela S, Li Z, Virtanen A, Blande JD. Biogenic secondary organic aerosol participates in plant interactions and herbivory defense. Science 2024; 385:1225-1230. [PMID: 39265014 DOI: 10.1126/science.ado6779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 09/14/2024]
Abstract
Biogenic secondary organic aerosols (SOAs) can be formed from the oxidation of plant volatiles in the atmosphere. Herbivore-induced plant volatiles (HIPVs) can elicit plant defenses, but whether such ecological functions persist after they form SOAs was previously unknown. Here we show that Scots pine seedlings damaged by large pine weevils feeding on their roots release HIPVs that trigger defenses in neighboring conspecific plants. The biological activity persisted after HIPVs had been oxidized to form SOAs, which was indicated by receivers displaying enhanced photosynthesis, primed volatile defenses, and reduced weevil damage. The elemental composition and quantity of SOAs likely determines their biological functions. This work demonstrates that plant-derived SOAs can mediate interactions between plants, highlighting their ecological significance in ecosystems.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Angela Buchholz
- Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Iida Pullinen
- Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Silja Saarela
- Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Zijun Li
- Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Annele Virtanen
- Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
31
|
Krishnan S, Karpe SD, Kumar H, Nongbri LB, Venkateswaran V, Sowdhamini R, Grosse-Wilde E, Hansson BS, Borges RM. Sensing volatiles throughout the body: geographic- and tissue-specific olfactory receptor expression in the fig wasp. INSECT SCIENCE 2024. [PMID: 39183553 DOI: 10.1111/1744-7917.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
An essential adaptive strategy in insects is the evolution of olfactory receptors (ORs) to recognize important volatile environmental chemical cues. Our model species, Ceratosolen fusciceps, a specialist wasp pollinator of Ficus racemosa, likely possesses an OR repertoire that allows it to distinguish fig-specific volatiles in highly variable environments. Using a newly assembled genome-guided transcriptome, we annotated 63 ORs in the species and reconstructed the phylogeny of Ceratosolen ORs in conjunction with other hymenopteran species. Expression analysis showed that though ORs were mainly expressed in the female antennae, 20% were also expressed in nonantennal tissues such as the head, thorax, abdomen, legs, wings, and ovipositor. Specific upregulated expression was observed in OR30C in the head and OR60C in the wings. We identified OR expression from all major body parts of female C. fusciceps, suggesting novel roles of ORs throughout the body. Further examination of the OR expression of C. fusciceps in widely separated geographical locations, that is, South (urban) and Northeast (rural) India, revealed distinct OR expression levels in different locations. This discrepancy likely parallels the observed variation in fig volatiles between these regions and provides new insights into the evolution of insect ORs and their expression across geographical locations and tissues.
Collapse
Affiliation(s)
- Sushma Krishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Snehal Dilip Karpe
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Hithesh Kumar
- Genotypic Technology Pvt. Ltd., Bangalore, Karnataka, India
| | - Lucy B Nongbri
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Suchdol, Czech Republic
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
32
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
33
|
d’Aquino L, Cozzolino R, Malorni L, Bodhuin T, Gambale E, Sighicelli M, Della Mura B, Matarazzo C, Piacente S, Montoro P. Light Flux Density and Photoperiod Affect Growth and Secondary Metabolism in Fully Expanded Basil Plants. Foods 2024; 13:2273. [PMID: 39063357 PMCID: PMC11275332 DOI: 10.3390/foods13142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Indoor production of basil (Ocimum basilicum L.) is influenced by light spectrum, photosynthetic photon flux density (PPFD), and the photoperiod. To investigate the effects of different lighting on growth, chlorophyll content, and secondary metabolism, basil plants were grown from seedlings to fully expanded plants in microcosm devices under different light conditions: (a) white light at 250 and 380 μmol·m-2·s-1 under 16/8 h light/dark and (b) white light at 380 μmol·m-2·s-1 under 16/8 and 24/0 h light/dark. A higher yield was recorded under 380 μmol·m-2·s-1 compared to 250 μmol·m-2·s-1 (fresh and dry biomasses 260.6 ± 11.3 g vs. 144.9 ± 14.6 g and 34.1 ± 2.6 g vs. 13.2 ± 1.4 g, respectively), but not under longer photoperiods. No differences in plant height and chlorophyll content index were recorded, regardless of the PPFD level and photoperiod length. Almost the same volatile organic compounds (VOCs) were detected under the different lighting treatments, belonging to terpenes, aldehydes, alcohols, esters, and ketones. Linalool, eucalyptol, and eugenol were the main VOCs regardless of the lighting conditions. The multivariate data analysis showed a sharp separation of non-volatile metabolites in apical and middle leaves, but this was not related to different PPFD levels. Higher levels of sesquiterpenes and monoterpenes were detected in plants grown under 250 μmol·m-2·s-1 and 380 μmol·m-2·s-1, respectively. A low separation of non-volatile metabolites based on the photoperiod length and VOC overexpression under longer photoperiods were also highlighted.
Collapse
Affiliation(s)
- Luigi d’Aquino
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Rosaria Cozzolino
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Livia Malorni
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | | | - Emilia Gambale
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Maria Sighicelli
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, Santa Maria di Galeria, 00060 Roma, Italy;
| | - Brigida Della Mura
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Cristina Matarazzo
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| |
Collapse
|
34
|
Kumar V, Nadarajan S, Boddupally D, Wang R, Bar E, Davidovich-Rikanati R, Doron-Faigenboim A, Alkan N, Lewinsohn E, Elad Y, Oren-Shamir M. Phenylalanine treatment induces tomato resistance to Tuta absoluta via increased accumulation of benzenoid/phenylpropanoid volatiles serving as defense signals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:84-99. [PMID: 38578218 DOI: 10.1111/tpj.16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, 500043, India
| | - Stalin Nadarajan
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Dayakar Boddupally
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Einat Bar
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| |
Collapse
|
35
|
Goodale E, Magrath RD. Species diversity and interspecific information flow. Biol Rev Camb Philos Soc 2024; 99:999-1014. [PMID: 38279871 DOI: 10.1111/brv.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Interspecific information flow is known to affect individual fitness, population dynamics and community assembly, but there has been less study of how species diversity affects information flow and thereby ecosystem functioning and services. We address this question by first examining differences among species in the sensitivity, accuracy, transmissibility, detectability and value of the cues and signals they produce, and in how they receive, store and use information derived from heterospecifics. We then review how interspecific information flow occurs in communities, involving a diversity of species and sensory modes, and how this flow can affect ecosystem-level functions, such as decomposition, seed dispersal or algae removal on coral reefs. We highlight evidence that some keystone species are particularly critical as a source of information used by eavesdroppers, and so have a disproportionate effect on information flow. Such keystone species include community informants producing signals, particularly about predation risk, that influence other species' landscapes of fear, and aggregation initiators creating cues or signals about resources. We suggest that the presence of keystone species means that there will likely be a positive relationship in many communities between species diversity and information through a 'sampling effect', in which larger pools of species are more likely to include the keystone species by chance. We then consider whether the number and relative abundance of species, irrespective of the presence of keystone species, matter to interspecific information flow; on this issue, the theory is less developed, and the evidence scant and indirect. Higher diversity could increase the quantity or quality of information that is used by eavesdroppers because redundancy increases the reliability of information or because the species provide complementary information. Alternatively, there could be a lack of a relationship between species diversity and information if there is widespread information parasitism where users are not sources, or if information sourced from heterospecifics is of lower value than that gained personally or sourced from conspecifics. Recent research suggests that species diversity does have information-modulated community and ecosystem consequences, especially in birds, such as the diversity of species at feeders increasing resource exploitation, or the number of imitated species increasing responses to vocal mimics. A first step for future research includes comprehensive observations of information flow among different taxa and habitats. Then studies should investigate whether species diversity influences the cumulative quality or quantity of information at the community level, and consequently ecosystem-level processes. An applied objective is to conserve species in part for their value as sources of information for other species, including for humans.
Collapse
Affiliation(s)
- Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
36
|
Nawaz M, Sun J, Bo Y, He F, Shabbir S, Hassan MU, Pan L, Ahmad P, Sonne C, Du D. Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133931. [PMID: 38447369 DOI: 10.1016/j.jhazmat.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohsin Nawaz
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Kashmir, Jammu and Kashmir 192301, India
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
37
|
Kheam S, Gallinger J, Ninkovic V. Communication between undamaged plants can elicit changes in volatile emissions from neighbouring plants, thereby altering their susceptibility to aphids. PLANT, CELL & ENVIRONMENT 2024; 47:1543-1555. [PMID: 38254306 DOI: 10.1111/pce.14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Plant volatiles play an important role in intra- and interspecific plant communication, inducing direct and indirect defenses against insect pests. However, it remains unknown whether volatile interactions between undamaged cultivars alter host plant volatile emissions and their perception by insect pests. Here, we tested the effects of exposure of a spring barley, Hordeum vulgare L., cultivar, Salome, to volatiles from other cultivars: Fairytale and Anakin. We found that exposing Salome to Fairytale induced a significantly higher emission of trans-β-ocimene and two unidentified compounds compared when exposed to Anakin. Aphids were repelled at a higher concentration of trans-β-ocimene. Salome exposure to Fairytale had significant repulsive effects on aphid olfactory preference, yet not when Salome was exposed to Anakin. We demonstrate that volatile interactions between specific undamaged plants can induce changes in volatile emission by receiver plants enhancing certain compounds, which can disrupt aphid olfactory preferences. Our results highlight the significant roles of volatiles in plant-plant interactions, affecting plant-insect interactions in suppressing insect pests. This has important implications for crop protection and sustainable agriculture.
Collapse
Affiliation(s)
- Sokha Kheam
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Faculty of Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jannicke Gallinger
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
39
|
Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, Yang Z, He M. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108619. [PMID: 38604013 DOI: 10.1016/j.plaphy.2024.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.
Collapse
Affiliation(s)
- Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| | - Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Han Qin
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - ZhiJuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| |
Collapse
|
40
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
41
|
Ojeda-Prieto L, Medina-van Berkum P, Unsicker SB, Heinen R, Weisser WW. Intraspecific chemical variation of Tanacetum vulgare affects plant growth and reproductive traits in field plant communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38593287 DOI: 10.1111/plb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.
Collapse
Affiliation(s)
- L Ojeda-Prieto
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - P Medina-van Berkum
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S B Unsicker
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Kiel, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
42
|
Reeves LA, Garratt MPD, Fountain MT, Senapathi D. A whole ecosystem approach to pear psyllid ( Cacopsylla pyri) management in a changing climate. JOURNAL OF PEST SCIENCE 2024; 97:1203-1226. [PMID: 39188924 PMCID: PMC11344733 DOI: 10.1007/s10340-024-01772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 08/28/2024]
Abstract
Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (Cacopsylla pyri Linnaeus) within pear (Pyrus communis L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in C. pyri management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of C. pyri as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.
Collapse
Affiliation(s)
- Laura A. Reeves
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | - Michael P. D. Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| |
Collapse
|
43
|
Bawin T, Krause K. Rising from the shadows: Selective foraging in model shoot parasitic plants. PLANT, CELL & ENVIRONMENT 2024; 47:1118-1127. [PMID: 38058242 DOI: 10.1111/pce.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Despite being sessile, plants nonetheless forage for resources by modulating their growth. Adaptative foraging in response to changes in resource availability and presence of neighbours has strong implications for performance and fitness. It is an even more pressing issue for parasitic plants, which draw resources directly from other plants. Indeed, parasitic plants were demonstrated over the years to direct their growth towards preferred hosts and invest resources in parasitism relative to host quality. In contrast to root parasites that rely mostly on chemical cues, some shoot parasites seem to profit from the ability to integrate different types of abiotic and biotic cues. While significant progress in this field has been made recently, there are still many open questions regarding the molecular perception and the integration of diverse signalling pathways under different ecological contexts. Addressing how different cues are integrated in parasitic plants will be important when unravelling variations in plant interaction pathways, and essential to predict the spread of parasites in natural and agricultural environments. In this review, we discuss this with a focus on Cuscuta species as an emerging parasitic model, and provide research perspectives based on the recent advances in the topic and plant-plant interactions in general.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
44
|
Verni MC, Matos TS, Alberto MR, Blázquez MA, Sussulini A, Arena ME, Cartagena E. UHPLC-MS/MS and GC-MS Metabolic Profiling of a Medicinal Flourensia Fiebrigii Chemotype. Chem Biodivers 2024; 21:e202301978. [PMID: 38379213 DOI: 10.1002/cbdv.202301978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750 m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50 μg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.
Collapse
Affiliation(s)
- María Cecilia Verni
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán, 4000, Argentina
- INBIOFAL (CONICET-UNT), Av. Kirchner 1900, Tucumán, 4000, Argentina
| | - Taynara Simão Matos
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP-13083-970, Brazil
| | - María Rosa Alberto
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán, 4000, Argentina
- INBIOFAL (CONICET-UNT), Av. Kirchner 1900, Tucumán, 4000, Argentina
| | - María Amparo Blázquez
- Departament de Farmacología, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP-13083-970, Brazil
| | - Mario Eduardo Arena
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán, 4000, Argentina
- INBIOFAL (CONICET-UNT), Av. Kirchner 1900, Tucumán, 4000, Argentina
| | - Elena Cartagena
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán, 4000, Argentina
- INBIOFAL (CONICET-UNT), Av. Kirchner 1900, Tucumán, 4000, Argentina
| |
Collapse
|
45
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
46
|
Modesti M, Alfieri G, Chieffo C, Mencarelli F, Vannini A, Catalani A, Chilosi G, Bellincontro A. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2314-2325. [PMID: 37950679 DOI: 10.1002/jsfa.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Botrytis cinerea (Bc) is the causative agent of gray mold disease in wine grape bunches. Under particular climatic and edaphic conditions, typical of some wine regions, the grapes infected by this fungus can develop noble rot, the basic phenomenon for the production of sweet botrytized wines or some high-quality dry wines, such as Amarone. The possibility of early detection of noble rot on plants and at postharvest is an interesting option for managing botrytized wines. RESULTS The present work aimed at early detection of noble rot and monitoring its development, at postharvest, on Trebbiano wine grapes by means of destructive and non-destructive analytical approaches (e.g., electronic nose and near-infrared spectroscopy). The development of Bc led to substantial modifications in grape composition, including dehydration, biosynthesis, and accumulation of different compounds due to Bc metabolism, grape stress responses, or both. However, these modifications are appreciable, notably at advanced stages of infection. Consequently, a specific focus was to monitor the infection in the first 72 h post inoculation for testing, potentially through non-destructive technologies, and to identify the real early stages of Bc development. CONCLUSION The destructive chemical analyses performed over the 16 monitored days confirmed what is widely reported in the literature regarding the metabolic/compositional changes that occur following the development of Bc. Moreover, non-destructive technologies allowed us to identify the evolution of Bc, even at early stages of its presence. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Margherita Modesti
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Gianmarco Alfieri
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Chiara Chieffo
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Fabio Mencarelli
- Department of Agriculture Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Andrea Vannini
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Alessia Catalani
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Gabriele Chilosi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
47
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
48
|
Kong CH, Li Z, Li FL, Xia XX, Wang P. Chemically Mediated Plant-Plant Interactions: Allelopathy and Allelobiosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:626. [PMID: 38475470 DOI: 10.3390/plants13050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zheng Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Li Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin-Xin Xia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
49
|
Yoneyama K, Bennett T. Whispers in the dark: Signals regulating underground plant-plant interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102456. [PMID: 37741801 DOI: 10.1016/j.pbi.2023.102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Plants are able to actively detect and respond to the presence in neighboring plants, in order to optimize their physiology to promote survival and reproduction despite the presence of competing organisms. A key but still poorly understood mechanism for neighbor detection is through the perception of root exudates. In this review, we explore recent findings on the role of root exudates in plant-plant interactions, focusing both on general interactions and also the highly specialized example of root parasite-host plant interactions.
Collapse
Affiliation(s)
- Kaori Yoneyama
- Research and Development Bureau, Saitama University, Japan.
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
50
|
Yamauchi A, Takabayashi J, Shiojiri K, Karban R. Evolution of sensitivity to warning cues from kin in plants with a structured population. Ecol Evol 2024; 14:e11057. [PMID: 38384830 PMCID: PMC10879904 DOI: 10.1002/ece3.11057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Plants exchange a variety of information intra- and interspecifically by using various mediating cues. For example, plant individuals that are injured by herbivores release volatile chemicals, which induce receiver plants to express anti-herbivore resistance. Remarkably, some plant species were known to represent kin specificity in the response, where cues from a damaged individual induce a higher level of resistance in a kin receiver than in a non-kin receiver. Such higher sensitivity to warning cues from kin could be advantageous via two mechanisms. If each herbivore tends to attack plants with a certain genotype, plants should be more sensitive to warning cues from kin that share genetic properties. In addition, if herbivores successively attack the neighboring plant with a high probability, and if related plants tend to grow in close proximity, plants may be more sensitive to warning cues from neighboring kin under the presence of a trade-off between sensitivity to kin and non-kin. In the present study, we constructed a mathematical model including those mechanisms to investigate the evolutionary process of the higher sensitivity to warning cues from kin than sensitivities to cues from non-kin. According to the analysis of evolutionary dynamics, we revealed that both mechanisms could contribute, although higher sensitivity to cues from kin is more likely to evolve when the spatial range of competition is greater than the range of effective alarm cues. This result highlights the importance of the competition regime in the evolution of signaling among kin.
Collapse
Affiliation(s)
| | | | | | - Richard Karban
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|