1
|
Stieger RB, Lilaj B, Hönigl GP, Pock S, Cvikl B. Flow Cytometry Illuminates Dental Stem Cells: a Systematic Review of Immunomodulatory and Regenerative Breakthroughs. Stem Cell Rev Rep 2025:10.1007/s12015-025-10883-y. [PMID: 40279028 DOI: 10.1007/s12015-025-10883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dental stem cells hold significant potential in regenerative medicine due to their multipotency, accessibility, and immunomodulatory effects. Flow cytometry is a critical tool for analyzing these cells, particularly in identifying and characterizing immunomodulatory markers that enhance their clinical applications. This systematic review aims to answer the question: "How does flow cytometry facilitate the identification and characterization of immunomodulatory markers in dental stem cells to enhance their application in regenerative medicine?". METHODS An exhaustive literature search was conducted in PubMed, retrieving 430 studies, of which 284 met inclusion criteria. Studies were selected based on the use of flow cytometry to analyze immunomodulatory markers in dental stem cells, focusing on methodologies, key findings, and challenges. RESULTS Of the 284 articles, 229 employed flow cytometry, with 115 reporting relevant results. Flow cytometry revealed important insights into the immunological interactions of various dental stem cells, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and stem cells from the apical papilla, by identifying and characterizing immunomodulatory markers such as PD-L1, IDO, and TGF-β1. CONCLUSIONS Flow cytometry is essential for advancing the understanding of dental stem cells' immunomodulatory properties. Standardization of methodologies is required to overcome technical challenges and enhance the clinical applications of dental stem cells in regenerative medicine and immunotherapy.
Collapse
Affiliation(s)
- Robert B Stieger
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| | - Bledar Lilaj
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Gernot P Hönigl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Sophie Pock
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| |
Collapse
|
2
|
Yang Y, Gao N, Ji G, Hu W, Bi R, Liang J, Liu Y. Static magnetic field contributes to osteogenic differentiation of hPDLSCs through the H19/Wnt/β-catenin axis. Gene 2025; 933:148967. [PMID: 39341520 DOI: 10.1016/j.gene.2024.148967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Static magnetic field (SMF) as an effective physical stimulus is capable of osteogenic differentiation for multiple mesenchymal stem cells, including human periodontal ligament stem cells (hPDLSCs). However, the exact molecular mechanism is still unknown. Therefore, this study intends to excavate molecular mechanisms related to SMF in hPDLSCs using functional experiments. METHODS hPDLSCs were treated with different intensities of SMF, H19 lentivirus, and Wnt/β-catenin pathway inhibitor (XAV939). Changes in osteogenic markers (Runx2, Col Ⅰ, and BMP2), Wnt/β-catenin markers (β-catenin and GSK-3β), and calcified nodules were examined using RT-qPCR, western blotting, and alizarin red staining in hPDLSCs. RESULTS SMF upregulated the expression of H19, and SMF and overexpressing H19 facilitated the expression of osteogenic markers (Runx2, Col Ⅰ, and BMP2), activation of the Wnt/β-catenin pathway, and mineralized sediment in hPDLSCs. Knockdown of H19 alleviated SMF function, and treatment with XAV939 limited SMF- and H19-mediated osteogenic differentiation of hPDLSCs. Notably, the expression of hsa-miR-532-3p, hsa-miR-370-3p, hsa-miR-18a-5p, and hsa-miR-483-3p in hPDLSCs was regulated by SMF, and may form an endogenous competitive RNA mechanism with H19 and β-catenin. CONCLUSION SMF contributes to the osteogenic differentiation of hPDLSCs by mediating the H19/Wnt/β-catenin pathway, and hsa-miR-532-3p, hsa-miR-370-3p, hsa-miR-18a-5p, and hsa-miR-483-3p may be the key factors in it.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, No.1088 Haiyuan Middle Road, Kunming, Yunnan 650106, China; Yunnan Key Laboratory of Stomatology, Kunming Medical University, 1168 Chunrong West Road, Kunming, Yunnan 650500, China; Center of Stomatology, Affiliated Hospital of Yunnan University, No.176 Qingnian Road, Kunming, Yunnan 650021, China
| | - Na Gao
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, No.935 Jiaoling Road Kunming, Yunnan 650118, China
| | - Guang Ji
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, No.935 Jiaoling Road Kunming, Yunnan 650118, China
| | - Wenzhu Hu
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, No.935 Jiaoling Road Kunming, Yunnan 650118, China
| | - Rong Bi
- Genetic Engineering and Vaccine Research Center, Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, No.935 Jiaoling Road Kunming, Yunnan 650118, China
| | - Jiangli Liang
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, No.935 Jiaoling Road Kunming, Yunnan 650118, China
| | - Yali Liu
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, No.1088 Haiyuan Middle Road, Kunming, Yunnan 650106, China; Yunnan Key Laboratory of Stomatology, Kunming Medical University, 1168 Chunrong West Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Aly RM, Abohashem RS, Ahmed HH, Halim ASA. Combinatorial intervention with dental pulp stem cells and sulfasalazine in a rat model of ulcerative colitis. Inflammopharmacology 2024; 32:3863-3879. [PMID: 39078564 PMCID: PMC11550242 DOI: 10.1007/s10787-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Ulcerative colitis is an inflammatory bowel disease (IBD) that involves inflammation of the colon lining and rectum. Although a definitive cure for IBD has not been identified, various therapeutic approaches have been proposed to mitigate the symptomatic presentation of this disease, primarily focusing on reducing inflammation. The aim of the present study was to evaluate the therapeutic potential of combining dental pulp stem cells (DPSCs) with sulfasalazine in an acetic acid-induced ulcerative colitis rat model and to assess the impact of this combination on the suppression of inflammatory cytokines and the regulation of oxidative stress in vivo. METHODS Ulcerative colitis was induced in rats through transrectal administration of 3% acetic acid. The therapeutic effect of combining DPSCs and sulfasalazine on UC was evaluated by measuring the colonic weight/length ratio and edema markers; performing histopathological investigations of colon tissue; performing immunohistochemical staining for NF-κB-P65 and IL-1β; and evaluating oxidative stress and antioxidant indices via ELISA. Moreover, the proinflammatory markers NF-κB-P65, TNF-α and TLR-4 were assessed in colon tissue via ELISA. Furthermore, qRT‒PCR was used to estimate the expression levels of the TLR-4, NF-κB-P65, and MYD88 genes in colon tissue. RESULTS The investigated macroscopic and microscopic signs of inflammation were markedly improved after the combined administration of sulfasalazine and DPSCs, where a noticeable improvement in histological structure, with an intact mucosal epithelium and mild inflammatory infiltration in the mucosa and submucosa, with slight hemorrhage. The administration of either DPSCs or sulfasalazine, either individually or in combination, significantly reduced ROS levels and significantly increased XOD activity. The immunohistochemical results demonstrated that the combined administration of DPSCs and sulfasalazine attenuated NFκB-p65 and IL-1β expression. Finally, the combined administration of DPSCs and sulfasalazine significantly downregulated MyD88, NF-κB and TLR4 gene expression. CONCLUSIONS Cotreatment with DPSCs and sulfasalazine had synergistic effects on ulcerative colitis, and these effects were relieved.
Collapse
Affiliation(s)
- Riham M Aly
- Basic Dental Science Department, Oral & Dental Research Institute, National Research Centre, 33 El Bohouth St, Dokki, Giza, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Rehab S Abohashem
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Alyaa S Abdel Halim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Buitrago JC, Morris SL, Backhaus A, Kaltenecker G, Kaipa JM, Girard C, Schneider S, Gruber J. Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles. Sci Rep 2024; 14:24098. [PMID: 39407038 PMCID: PMC11480492 DOI: 10.1038/s41598-024-75956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived mesenchymal stromal cells (iMSCs) offer a promising alternative to primary mesenchymal stromal cells (MSCs) and their derivatives, particularly extracellular vesicles (EVs), for use in advanced therapy medicinal products. In this study we evaluated the immunomodulatory and regenerative potential of iMSCs as well as iMSC-EVs, alongside primary human umbilical cord-derived mesenchymal stromal cells (hUCMSCs). Our findings demonstrate that iMSCs exhibit comparable abilities to hUCMSCs in regulating lymphocyte proliferation and inducing an anti-inflammatory phenotype in monocytes. We also observed decreased TNFα levels and increased IL-10 induction, indicating a potential mechanism for their immunomodulatory effects. Furthermore, iMSC-EVs also showed effective immunomodulation by inhibiting T cell proliferation and inducing macrophage polarization similar to their parental cells. Additionally, iMSC-EVs exhibited pro-regenerative potential akin to hUCMSC-EVs in in vitro scratch assays. Notably, priming iMSCs with pro-inflammatory cytokines significantly enhanced the immunomodulatory potential of iMSC-EVs. These results underscore the considerable promise of iMSCs and iMSCs-EVs as an alternate source for MSC-derived therapeutics, given their potent immunomodulatory and regenerative properties.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Curexsys GmbH, Göttingen, Germany.
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
- Life Science Factory, Curexsys GmbH, Annastraβe 27, Göttingen, Germany, D-37075.
| | | | | | | | | | | | | | - Jens Gruber
- Curexsys GmbH, Göttingen, Germany.
- Life Science Factory, Curexsys GmbH, Annastraβe 27, Göttingen, Germany, D-37075.
| |
Collapse
|
5
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
6
|
Padhi S, Sarkar P, Sahoo D, Rai AK. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38299734 DOI: 10.1002/jsfa.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Srichandan Padhi
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Puja Sarkar
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Amit Kumar Rai
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
7
|
Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024; 16:e54115. [PMID: 38487109 PMCID: PMC10938178 DOI: 10.7759/cureus.54115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Periodontal disease, characterized by inflammation and infection of the supporting structures of teeth, presents a significant challenge in dentistry and public health. Current treatment modalities, while effective to some extent, have limitations in achieving comprehensive periodontal tissue regeneration. This comprehensive review explores the potential of stem cell therapy in advancing the field of periodontal regeneration. Stem cells, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), hold promise due to their immunomodulatory effects, differentiation potential into periodontal tissues, and paracrine actions. Preclinical studies using various animal models have revealed encouraging outcomes, though standardization and long-term assessment remain challenges. Clinical trials and case studies demonstrate the safety and efficacy of stem cell therapy in real-world applications, especially in personalized regenerative medicine. Patient selection criteria, ethical considerations, and standardized treatment protocols are vital for successful clinical implementation. Stem cell therapy is poised to revolutionize periodontal regeneration, offering more effective, patient-tailored treatments while addressing the systemic health implications of periodontal disease. This transformative approach holds the potential to significantly impact clinical practice and improve the overall well-being of individuals affected by this prevalent oral health concern. Responsible regulatory compliance and a focus on ethical considerations will be essential as stem cell therapy evolves in periodontal regeneration.
Collapse
Affiliation(s)
- Tanvi Bharuka
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Cyclic di-adenosine monophosphate regulates the osteogenic and adipogenic differentiation of hPDLSCs via MAPK and NF-κB signaling. Acta Biochim Biophys Sin (Shanghai) 2023; 55:426-437. [PMID: 36825442 PMCID: PMC10160224 DOI: 10.3724/abbs.2023018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that can be recognized by infected host cells and activate the immunoinflammatory response. The purpose of this study is to demonstrate the effect of c-di-AMP on the differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mechanisms. In the present study, we find that the gingival crevicular fluid (GCF) of patients with chronic periodontitis has a higher expression level of c-di-AMP than that of healthy people. In vitro, c-di-AMP influences the differentiation of hPDLSCs by upregulating Toll-like receptors (TLRs); specifically, it inhibits osteogenic differentiation by activating NF-κB and ERK/MAPK and promotes adipogenic differentiation through the NF-κB and p38/MAPK signaling pathways. Inhibitors of TLRs or activated pathways reduce the changes induced by c-di-AMP. Our results establish the potential correlation among bacterial c-di-AMP, periodontal tissue homeostasis and chronic periodontitis pathogenesis.
Collapse
|
10
|
Behm C, Blufstein A, Gahn J, Moritz A, Rausch-Fan X, Andrukhov O. 25-hydroxyvitamin D 3 generates immunomodulatory plasticity in human periodontal ligament-derived mesenchymal stromal cells that is inflammatory context-dependent. Front Immunol 2023; 14:1100041. [PMID: 36761739 PMCID: PMC9902380 DOI: 10.3389/fimmu.2023.1100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) exhibit a tight bi-directional interaction with CD4+ T lymphocytes. The hPDL-MSCs' immunomodulatory abilities are drastically enhanced by pro-inflammatory cytokines via boosting the expression of various immunomediators. 25-hydroxyvitamin D3 (25(OH)D3), the major metabolite of vitamin D3 in the blood, affects both hPDL-MSCs and CD4+ T lymphocytes, but its influence on their interaction is unknown. METHODS Therefore, primary hPDL-MSCs were stimulated in vitro with tumor necrosis factor (TNF)-α a or interleukin (IL)-1β in the absence and presence of 25(OH)D3 followed by an indirect co-culture with phytohemagglutinin-activated CD4+ T lymphocytes. The CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the expression of various immunomediators in hPDL-MSCs was investigated, and their implication was verified by using pharmacological inhibitors. RESULTS 25(OH)D3 significantly counteracted the suppressive effects of IL-1β-treated hPDL-MSCs on CD4+ T lymphocyte proliferation, whereas no effects were observed in the presence of TNF-α. Additionally, 25(OH)D3 significantly increased the percentage of viable CD4+ T lymphocytes via TNF-α- or IL-1β-treated hPDL-MSCs. It also caused a significant decrease in interferon-γ, IL-17A, and transforming growth factor-β productions, which were triggered by TNF-α-treated hPDL-MSCs. 25(OH)D3 significantly decreased the production of various immunomediators in hPDL-MSCs. Inhibition of two of them, prostaglandin E2 and indoleamine-2,3-dioxygenase-1, partially abolished some of the hPDL-MSCs-mediated effects of 25(OH)D3 on CD4+ T lymphocytes. CONCLUSION These data indicate that 25(OH)D3 influences the immunomodulatory activities of hPDL-MSCs. This modulatory potential seems to have high plasticity depending on the local cytokine conditions and may be involved in regulating periodontal tissue inflammatory processes.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mendoza AH, Balzarini D, Alves T, Rovai ES, Holzhausen M. Potential of Mesenchymal Stem Cell Sheets on Periodontal Regeneration: A Systematic Review of Pre-Clinical Studies. Curr Stem Cell Res Ther 2023; 18:958-978. [PMID: 35794765 DOI: 10.2174/1574888x17666220706092520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell sheet technique using mesenchymal stem cells is a high-level strategy in periodontal regenerative medicine. Although recent studies have shown the role of MSCSs in increased dental supporting tissues and bone, there is no systematic review focused specifically on assessing periodontal regeneration in orthotopic animal models. OBJECTIVE To evaluate the potential of mesenchymal stem cell sheets (MSCSs) on periodontal regeneration, compared to control, in experimental animal models Methods: Pre-clinical studies in periodontal defects of animal models were considered eligible. The electronic search included the MEDLINE, Web of Science, EMBASE and LILACS databases. The review was conducted according to the Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement guidelines. RESULTS A total of 17 of the 3989 studies obtained from the electronic database search were included. MSCSs included dental follicle (DF) MSCSs, periodontal ligament (PL) MSCSs, dental pulp (DP) MSCSs, bone marrow (BM) MSCSs, alveolar periosteal (AP) MSCSs and gingival (G) MSCSs. Regarding cell sheet inducing protocol, most of the studies used ascorbic acid (52.94%). Others used culture dishes grafted with a temperature-responsive polymer (47.06%). Adverse effects were not identified in the majority of studies. Meta-analysis was not considered because of methodological heterogeneities. PDL-MSCSs were superior for periodontal regeneration enhancement compared to the control, but in an induced inflammatory microenvironment, DF-MSCSs were better. Moreover, DF-MSCSs, DP-MSCSs, and BM-MSCSs showed improved results compared to the control. CONCLUSION MSCSs can improve periodontal regeneration in animal periodontal defect models.
Collapse
Affiliation(s)
- Aldrin Huamán Mendoza
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Danilo Balzarini
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Tomaz Alves
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Emanuel S Rovai
- Division of Periodontology, Dental School, University of Taubaté, Rua dos Operários, 09, Centro, Taubaté, SP, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Mochi F, Scatena E, Rodriguez D, Ginebra MP, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity 2022; 8:45. [PMID: 36309540 PMCID: PMC9617896 DOI: 10.1038/s41526-022-00236-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
One of humanity's greatest challenges is space exploration, which requires an in-depth analysis of the data continuously collected as a necessary input to fill technological gaps and move forward in several research sectors. Focusing on space crew healthcare, a critical issue to be addressed is tissue regeneration in extreme conditions. In general, it represents one of the hottest and most compelling goals of the scientific community and the development of suitable therapeutic strategies for the space environment is an urgent need for the safe planning of future long-term manned space missions. Osteopenia is a commonly diagnosed disease in astronauts due to the physiological adaptation to altered gravity conditions. In order to find specific solutions to bone damage in a reduced gravity environment, bone tissue engineering is gaining a growing interest. With the aim to critically investigate this topic, the here presented review reports and discusses bone tissue engineering scenarios in microgravity, from scaffolding to bioreactors. The literature analysis allowed to underline several key points, such as the need for (i) biomimetic composite scaffolds to better mimic the natural microarchitecture of bone tissue, (ii) uniform simulated microgravity levels for standardized experimental protocols to expose biological materials to the same testing conditions, and (iii) improved access to real microgravity for scientific research projects, supported by the so-called democratization of space.
Collapse
Affiliation(s)
- Federico Mochi
- E. Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy
| | - Elisa Scatena
- E. Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy
| | - Daniel Rodriguez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | | |
Collapse
|
13
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
14
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Sanchez N, Vignoletti F, Sanz-Martin I, Coca A, Nuñez J, Maldonado E, Sanz-Esporrin J, Hernando-Pradíes I, Santamaría S, Herrera D, Garcia-Sanz JA, Sanz M. Cell Therapy Based on Gingiva-Derived Mesenchymal Stem Cells Seeded in a Xenogeneic Collagen Matrix for Root Coverage of RT1 Gingival Lesions: An In Vivo Experimental Study. Int J Mol Sci 2022; 23:ijms23063248. [PMID: 35328670 PMCID: PMC8950013 DOI: 10.3390/ijms23063248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: To investigate the effect of a xenogeneic collagen matrix (CMX) seeded with autologous gingiva-derived mesenchymal cells (GMSCs) when combined with a coronally advanced flap (CAF) in the treatment of localized gingival recession type 1 (RT1). (2) Methods: Dehiscence-type defects were created in seven dogs. GMSCs were isolated, transfected with a vector carrying green fluorescent protein (GFP) and expanded. Once chronified, the defects were randomly treated with (1) CAF plus the combination of CMX and GFP+ GMSCs, (2) CAF plus CMX with autologous fibroblasts, (3) CAF plus CMX and (4) CAF alone. Histological and clinical outcomes at 2- and 6-week healing periods were analyzed and compared among groups. (3) Results: Histologically, the addition of autologous cells to the CMX resulted in reduced inflammation and a variable degree of new cementum/bone formation. CMX plus GMSCs resulted in greater mean recession reduction (1.42; SD = 1.88 mm) and percentage of teeth with recession reduction of ≥2 mm (57%) when compared to the other groups, although these differences were not statistically significant. (4) Conclusions: The histometric and clinical results indicated a positive trend favouring the combination of CMX and GMSCs with the CAF when compared to the groups without cells, although these differences were not statistically significant.
Collapse
Affiliation(s)
- Nerea Sanchez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Fabio Vignoletti
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Ignacio Sanz-Martin
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Alejandro Coca
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Javier Nuñez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Estela Maldonado
- Department of Anatomy and Embryology, Faculty of Medicine, University Complutense, 28040 Madrid, Spain;
| | - Javier Sanz-Esporrin
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Irene Hernando-Pradíes
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Silvia Santamaría
- Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; (S.S.); (J.A.G.-S.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
| | - Jose A. Garcia-Sanz
- Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; (S.S.); (J.A.G.-S.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, School of Dentistry, University Complutense, 28040 Madrid, Spain; (N.S.); (F.V.); (I.S.-M.); (A.C.); (J.N.); (J.S.-E.); (I.H.-P.); (D.H.)
- Correspondence:
| |
Collapse
|
16
|
Yu XY, Zhang ZQ, Huang JC, Lin JY, Cai XP, Liu CF. IL-7-Treated Periodontal Ligament Cells Regulate Local Immune Homeostasis by Modulating Treg/Th17 Cell Polarization. Front Med (Lausanne) 2022; 9:754341. [PMID: 35280902 PMCID: PMC8905254 DOI: 10.3389/fmed.2022.754341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Both interleukin (IL)-7 and human periodontal ligament cells (hPDLCs) have immunomodulatory properties. However, their combined effect on CD4+T cells has never been studied. In this study, we aimed to investigate the effect of conditioned medium of hPDLCs treated with rhIL-7 on the differentiation of CD4+T cells into regulatory T cells/T helper 17 cells (Treg/Th17 cells) and observe the effect of IL-7 on the immunomodulatory properties of PDLCs. After hPDLCs were treated with different concentrations of rhIL-7 for 24 h, the collected supernatants were used to incubate CD4+T cells for 3 days. A gamma-secretase inhibitor (DAPT) was used to suppress the activation of the Notch1 signaling pathway. Cell proliferation, apoptosis, and necrosis were determined using the cell counting kit-8 (CCK-8) and flow cytometry (FCM). The expressions of forkhead box P3 (Foxp3) in CD4+T cells and transforming growth factor (TGF-β) and IL-6 in the supernatants were determined by ELISA. Reverse transcription-quantitative PCR (RT-qPCR), and the Western blot (WB) determined the mRNA levels and protein expression of various target factors. FCM was used to detect the mean fluorescence intensity of PD-L1 in hPDLCs and to analyze the differentiation of Treg/Th17 cells. Our results showed that IL-7 promoted proliferation and inhibited apoptosis in hPDLCs, promoted the expression of TGF-β, PD-L1, Notch1, Jagged1, and Hes1, and inhibited the levels of hypoxia-inducible factor (HIF)-1α and TCF7, whereas the addition of DAPT effectively reversed these effects. Importantly, we found that the conditioned medium of hPDLCs treated with rhIL-7 promoted the polarization of CD4+T cells into Treg cells but had no significant effect on the differentiation of Th17 cells. Our study indicated that treatment of PDLCs with IL-7 can promote the polarization of CD4+T cells into Treg cells by modulating the expression of inflammatory factors and signaling molecules through activating the Notch1 signaling pathway, thus participating in the regulation of immune homeostasis in the periodontal microenvironment.
Collapse
Affiliation(s)
- Xin-Yi Yu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Qiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Chang Huang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Pei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Feng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Andrukhov O, Blufstein A, Behm C. A Review of Antimicrobial Activity of Dental Mesenchymal Stromal Cells: Is There Any Potential? FRONTIERS IN ORAL HEALTH 2022; 2:832976. [PMID: 35098213 PMCID: PMC8795861 DOI: 10.3389/froh.2021.832976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Dixon DT, Gomillion CT. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater 2021; 13:1. [PMID: 35076518 PMCID: PMC8788550 DOI: 10.3390/jfb13010001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bone tissue engineering strategies attempt to regenerate bone tissue lost due to injury or disease. Three-dimensional (3D) scaffolds maintain structural integrity and provide support, while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. Through this, scaffolds that show great osteoinductive abilities as well as desirable mechanical properties have been studied. Recently, scaffolding for engineered bone-like tissues have evolved with the use of conductive materials for increased scaffold bioactivity. These materials make use of several characteristics that have been shown to be useful in tissue engineering applications and combine them in the hope of improved cellular responses through stimulation (i.e., mechanical or electrical). With the addition of conductive materials, these bioactive synthetic bone substitutes could result in improved regeneration outcomes by reducing current factors limiting the effectiveness of existing scaffolding materials. This review seeks to overview the challenges associated with the current state of bone tissue engineering, the need to produce new grafting substitutes, and the promising future that conductive materials present towards alleviating the issues associated with bone repair and regeneration.
Collapse
Affiliation(s)
- Damion T. Dixon
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA;
| | - Cheryl T. Gomillion
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Paprocka J, Kaminiów K, Kozak S, Sztuba K, Emich-Widera E. Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder-A Systematic Review. Brain Sci 2021; 11:1606. [PMID: 34942908 PMCID: PMC8699362 DOI: 10.3390/brainsci11121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) and cerebral palsy (CP) are some of the most common neurodevelopmental diseases. They have multifactorial origin, which means that each case may manifest differently from the others. In patients with ASD, symptoms associated with deficits in social communication and characteristic, repetitive types of behaviors or interests are predominant, while in patients with CP, motor disability is diagnosed with accompanying cognitive impairment of various degrees. In order to minimize their adverse effects, it is necessary to promptly diagnose and incorporate appropriate management, which can significantly improve patient quality of life. One of the therapeutic possibilities is stem cell therapy, already known from other branches of medicine, with high hopes for safe and effective treatment of these diseases. Undoubtedly, in the future we will have to face the challenges that will arise due to the still existing gaps in knowledge and the heterogeneity of this group of patients. The purpose of this systematic review is to summarize briefly the latest achievements and advances in stem cell therapy for ASD and CP.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Karolina Sztuba
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
20
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
21
|
Kozisek T, Hamann A, Samuelson L, Fudolig M, Pannier AK. Comparison of promoter, DNA vector, and cationic carrier for efficient transfection of hMSCs from multiple donors and tissue sources. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:81-93. [PMID: 34513295 PMCID: PMC8413668 DOI: 10.1016/j.omtn.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are primary cells with high clinical relevance that could be enhanced through genetic modification. However, gene delivery, particularly through nonviral routes, is inefficient. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological "priming" of hMSCs with clinically approved drugs can increase transfection in hMSCs by modulating transfection-induced cytotoxicity. However, even with priming, hMSC transfection remains inefficient for clinical applications. This work takes a complementary approach to addressing the challenges of transfecting hMSCs by systematically investigating key transfection parameters for their effect on transgene expression. Specifically, we investigated two promoters (cytomegalovirus [CMV] and elongation factor 1 alpha), four DNA vectors (plasmid, plasmid with no F1 origin, minicircle, and mini-intronic plasmid), two cationic carriers (Lipofectamine 3000 and Turbofect), and four donors of hMSCs from two tissues (adipose and bone marrow) for efficient hMSC transfection. Following systematic comparison of each variable, we identified adipose-derived hMSCs transfected with mini-intronic plasmids containing the CMV promoter delivered using Lipofectamine 3000 as the parameters that produced the highest transfection levels. The data presented in this work can guide the development of other hMSC transfection systems with the goal of producing clinically relevant, genetically modified hMSCs.
Collapse
Affiliation(s)
- Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Luke Samuelson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Miguel Fudolig
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Observation on the Effect of Bone Grafting Alone and Guided Tissue Regeneration Combined with Bone Grafting to Repair Periodontal Intraosseous Defects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1743677. [PMID: 34675979 PMCID: PMC8526246 DOI: 10.1155/2021/1743677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Objective To investigate the curative effect of guided tissue regeneration (GTR) combined with bone grafting and improve the aesthetic appearance of patients' gingiva. Methods A total of 86 patients with periodontal intraosseous defects were selected from February 2019 to February 2021. All the patients were divided into a control group and an observation group according to the random number table, with 43 patients in each group. Bone grafting was performed in the control group, while GTR was additionally used in the observation group on the basis of the control group. The surgical data and follow-up data were collected and organized. The alveolar bone mineral density, the change in the height of the bone defect, plaque index (PLI), sulcus hemorrhage index (SBI), PD, gingival recession (GR), clinical attachment loss (CAL), and other relevant data of the two groups in 6 months before and after surgery were compared. Six months after surgery, the cosmetic morphology of the patient's gums in the soft tissues around her teeth was evaluated. Results Six months after surgery, the alveolar bone density of patients in two groups increased compared with that before surgery, and the height of the bone defect decreased compared with that before surgery. The alveolar bone density of the observation group was higher than that of the control group, and the height of the bone defect was lower than that of the control group (P < 0.05). Six months after surgery, the PLI, SBI, PD, and CAL of patients in both groups were lower than those before surgery, while the GR was higher than that before surgery. PD and CAL values in the observation group were lower than those in the control group, and GR was higher than that in the control group (P < 0.05). Six months after surgery, there was no significant difference in PLI and SBI scores between the two groups (P < 0.05). Six months after surgery, the gingival cosmetic scores of the two groups of patients were higher than those before surgery. The observation group was higher than the control group (P < 0.05). Conclusion GTR combined with bone grafting has a good effect in the repair of periodontal intraosseous defects and can effectively promote the reconstruction and recovery of periodontal intraosseous defects in patients. At the same time, it can significantly improve the aesthetic appearance of patients' gums, with good clinical application value.
Collapse
|
23
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
24
|
Rajasingh S, Sigamani V, Selvam V, Gurusamy N, Kirankumar S, Vasanthan J, Rajasingh J. Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. J Cell Mol Med 2021; 25:8904-8919. [PMID: 34390186 PMCID: PMC8435459 DOI: 10.1111/jcmm.16851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC‐MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non‐viral and mRNA‐based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE‐iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE‐iPSCs were subsequently differentiated into iMSCs and were compared with the UC‐MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT‐PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC‐MSCs but not in other cells. The comparative qRT‐PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC‐MSCs started losing their MSC characteristics. Importantly, the wound‐healing property demonstrated through migration assay was superior in iMSCs when compared to the UC‐MSCs. In this study, we have demonstrated an excellent non‐invasive and pain‐free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC‐MSCs for treating various diseases.
Collapse
Affiliation(s)
- Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay Selvam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shivaani Kirankumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Jayavardini Vasanthan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Yan YY, Zhou WM, Wang YQ, Guo QR, Zhao FX, Zhu ZY, Xing YX, Zhang HY, Aljofan M, Jarrahi AM, Makabel B, Zhang JY. The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Front Mol Biosci 2021; 8:699929. [PMID: 34368228 PMCID: PMC8345113 DOI: 10.3389/fmolb.2021.699929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection has become an urgent public health concern worldwide, severely affecting our society and economy due to the long incubation time and high prevalence. People spare no effort on the rapid development of vaccine and treatment all over the world. Amongst the numerous ways of tackling this pandemic, some approaches using extracellular vesicles (EVs) are emerging. In this review, we summarize current prevalence and pathogenesis of COVID-19, involving the combination of SARS-CoV-2 and virus receptor ACE2, endothelial dysfunction and micro thrombosis, together with cytokine storm. We also discuss the ongoing EVs-based strategies for the treatment of COVID-19, including mesenchymal stem cell (MSC)-EVs, drug-EVs, vaccine-EVs, platelet-EVs, and others. This manuscript provides the foundation for the development of targeted drugs and vaccines for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yan-yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Xinjiang Institute of Materia Medica, Urumqi, China
| | - Fu-xi Zhao
- School of Medicine, Shanxi Datong University, Datong, China
| | - Zhuang-yan Zhu
- School of Medicine, Shanxi Datong University, Datong, China
| | - Yan-xia Xing
- School of Medicine, Shanxi Datong University, Datong, China
| | - Hai-yan Zhang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Jian-ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Behm C, Nemec M, Weissinger F, Rausch MA, Andrukhov O, Jonke E. MMPs and TIMPs Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of In Vitro and In Vivo Studies. Int J Mol Sci 2021; 22:6967. [PMID: 34203475 PMCID: PMC8268288 DOI: 10.3390/ijms22136967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background: During orthodontic tooth movement (OTM), applied orthodontic forces cause an extensive remodeling of the extracellular matrix (ECM) in the periodontal ligament (PDL). This is mainly orchestrated by different types of matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), which are both secreted by periodontal ligament (PDL) fibroblasts. Multiple in vitro and in vivo studies already investigated the influence of applied orthodontic forces on the expression of MMPs and TIMPs. The aim of this systematic review was to explore the expression levels of MMPs and TIMPs during OTM and the influence of specific orthodontic force-related parameters. Methods: Electronic article search was performed on PubMed and Web of Science until 31 January 2021. Screenings of titles, abstracts and full texts were performed according to PRISMA, whereas eligibility criteria were defined for in vitro and in vivo studies, respectively, according to the PICO schema. Risk of bias assessment for in vitro studies was verified by specific methodological and reporting criteria. For in vivo studies, risk of bias assessment was adapted from the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional study. Results: Electronic article search identified 3266 records, from which 28 in vitro and 12 in vivo studies were included. The studies showed that orthodontic forces mainly caused increased MMPs and TIMPs expression levels, whereas the exact effect may depend on various intervention and sample parameters and subject characteristics. Conclusion: This systematic review revealed that orthodontic forces induce a significant effect on MMPs and TIMPs in the PDL. This connection may contribute to the controlled depletion and formation of the PDLs' ECM at the compression and tension site, respectively, and finally to the highly regulated OTM.
Collapse
Affiliation(s)
- Christian Behm
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
| | - Fabian Weissinger
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Marco Aoqi Rausch
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
| |
Collapse
|
27
|
Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BND, Pelissari C, Trierveiler M, Holzhausen M. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells 2021; 13:605-618. [PMID: 34249230 PMCID: PMC8246246 DOI: 10.4252/wjsc.v13.i6.605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.
Collapse
Affiliation(s)
- Aline Queiroz
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Emmanuel Albuquerque-Souza
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Leticia Miquelitto Gasparoni
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruno Nunes de França
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cibele Pelissari
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marília Trierveiler
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
28
|
Blufstein A, Behm C, Kubin B, Gahn J, Rausch‐Fan X, Moritz A, Andrukhov O. Effect of vitamin D 3 on the osteogenic differentiation of human periodontal ligament stromal cells under inflammatory conditions. J Periodontal Res 2021; 56:579-588. [PMID: 33547643 PMCID: PMC8248386 DOI: 10.1111/jre.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Vitamin D3 is known to activate osteogenic differentiation of human periodontal ligament stromal cells (hPDLSCs). Recently, inflammatory stimuli were shown to inhibit the transcriptional activity of hPDLSCs, but their effect on vitamin D3 -induced osteogenic differentiation is not known. The present study aimed to investigate whether the effects of 1,25-dihydroxvitamin D3 (1,25(OH)2 D3 ) and 25-hydroxvitamin D3 (25(OH)D3 ) on the osteogenic differentiation of hPDLSCs are also altered under inflammatory conditions. Furthermore, the expression of osteogenesis-related factors by hPDLSCs under osteogenic conditions was assessed in the presence of inflammatory stimuli. MATERIALS AND METHODS Primary hPDLSCs of six donors were cultured in osteogenic induction medium containing either 1,25(OH)2 D3 (0-10 nM) or 25(OH)D3 (0-100 nM) in the presence and absence of Porphyromonas gingivalis lipopolysaccharide (LPS) or Pam3CSK4 for 7, 14 and 21 days. Osteogenic differentiation of hPDLSCs was evaluated by analysis of mineralization as assessed by Alizarin Red S staining and gene expression levels of osteogenesis-related factors osteocalcin, osteopontin and runt-related transcription factor 2 (RUNX2) were analysed with qPCR. RESULTS Treatment with 1,25(OH)2 D3 significantly enhanced the osteogenic differentiation of hPDLSCs and their expression of osteocalcin and osteopontin. The 1,25(OH)2 D3 -triggered expression of osteogenesis-related factors was significantly lower in the presence of Pam3CSK4, but not P. gingivalis LPS. None of the inflammatory stimuli had significant effects on the 1,25(OH)2 D3 -induced osteogenic differentiation. 25(OH)D3 neither affected gene expression levels nor osteogenic differentiation of hPDLSCs cultured in osteogenic induction medium. CONCLUSION The results of this study indicate that inflammatory stimuli also diminish the 1,25(OH)2 D3 -induced expression of osteogenesis-related factors in hPDLSCs under osteogenic conditions, while having no effect on the osteogenic differentiation.
Collapse
Affiliation(s)
- Alice Blufstein
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Christian Behm
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
- Division of OrthodonticsUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Barbara Kubin
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2021; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021; 122:306-324. [PMID: 33359765 PMCID: PMC7897289 DOI: 10.1016/j.actbio.2020.12.046] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Orthodontics, Peking University School and Stomatology, Peking, China
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
31
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
32
|
Blufstein A, Behm C, Kubin B, Gahn J, Moritz A, Rausch‐Fan X, Andrukhov O. Transcriptional activity of vitamin D receptor in human periodontal ligament cells is diminished under inflammatory conditions. J Periodontol 2021; 92:137-148. [PMID: 32474936 PMCID: PMC7891446 DOI: 10.1002/jper.19-0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/22/2019] [Accepted: 04/26/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although vitamin D3 deficiency is considered as a risk factor for periodontitis, supplementation during periodontal treatment has not been shown to be beneficial to date. Human periodontal ligament cells (hPDLCs) are regulated by vitamin D3 and play a fundamental role in periodontal tissue homeostasis and inflammatory response in periodontitis. The aim of this study is to investigate possible alterations of the vitamin D3 activity in hPDLCs under inflammatory conditions. METHODS Cells isolated from six different donors were treated with either 1,25(OH)2 D3 (0 to 10 nM) or 25(OH)D3 (0 to 100 nM) in the presence and absence of ultrapure or standard Porphyromonas gingivalis lipopolysaccharide (PgLPS), Pam3CSK4, or interferon-γ for 48 hours. Additionally, nuclear factor (NF)-κB inhibition was performed with BAY 11-7082. The bioactivity of vitamin D in hPDLCs was assessed based on the gene expression levels of vitamin D receptor (VDR)-regulated genes osteocalcin and osteopontin. Additionally, VDR and CYP27B1 expression levels were measured. RESULTS The vitamin D3 -induced increase of osteocalcin and osteopontin expression was significantly decreased in the presence of standard PgLPS and Pam3CSK4, which was not observed by ultrapure PgLPS. Interferon-y had diverse effects on the response of hPDLCs to vitamin D3 metabolites. NF-kB inhibition abolished the effects of standard PgLPS and Pam3CSK4. Standard PgLPS and Pam3CSK4 increased VDR expression in the presence of vitamin D3 . CYP27B1 expression was not affected by vitamin D3 and inflammatory conditions. CONCLUSIONS This study indicates that the transcriptional activity of VDR is diminished under inflammatory conditions, which might mitigate the effectiveness of vitamin D3 supplementation during periodontal treatment.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Christian Behm
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Barbara Kubin
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
33
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
34
|
Behm C, Blufstein A, Gahn J, Kubin B, Moritz A, Rausch-Fan X, Andrukhov O. Continuing Effect of Cytokines and Toll-Like Receptor Agonists on Indoleamine-2,3-Dioxygenase-1 in Human Periodontal Ligament Stem/Stromal Cells. Cells 2020; 9:2696. [PMID: 33339125 PMCID: PMC7765527 DOI: 10.3390/cells9122696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Transplanted mesenchymal stem/stromal cells (MSCs) are a promising and innovative approach in regenerative medicine. Their regenerative potential is partly based upon their immunomodulatory activities. One of the most investigated immunomediators in MSCs, such as in periodontal ligament-derived MSCs (hPDLSCs), is indoleamine-2,3-dioxygenase-1 (IDO-1) which is upregulated by inflammatory stimuli, like cytokines. However, there are no data concerning continuing IDO-1 expression in hPDLSCs after the removal of inflammatory stimuli, such as cytokines and toll-like receptor (TLR) agonist-2 and TLR-3. Hence, primary hPDLSCs were stimulated with interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, TLR-2 agonist Pam3CSK4 or TLR-3 agonist Poly I/C. IDO-1 gene and protein expression and its enzymatic activity were measured up to five days after removing any stimuli. IL-1β- and TNF-α-induced IDO-1 expression and enzymatic activity decreased in a time-dependent manner after cessation of stimulation. IFN-γ caused a long-lasting effect on IDO-1 up to five days after removing IFN-γ. Both, TLR-2 and TLR-3 agonists induced a significant increase in IDO-1 gene expression, but only TLR-3 agonist induced significantly higher IDO-1 protein expression and enzymatic activity in conditioned media (CM). IDO-1 activity of Poly I/C- and Pam3CSK4-treated hPDLSCs was higher at one day after removal of stimuli than immediately after stimulation and declined to basal levels after five days. Among all tested stimuli, only IFN-γ was able to induce long-lasting IDO-1 expression and activity in hPDLSCs. The high plasticity of IDO-1 expression and its enzymatic activity in hPDLSCs due to the variable cytokine and virulence factor milieu and the temporal-dependent responsiveness of hPDLSCs may cause a highly dynamic potential of hPDLSCs to modulate immune responses in periodontal tissues.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Johannes Gahn
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| | - Barbara Kubin
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Xiaohui Rausch-Fan
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| |
Collapse
|
35
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
36
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
37
|
Li X, Zhang B, Wang H, Zhao X, Zhang Z, Ding G, Wei F. The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. Stem Cell Res Ther 2020; 11:326. [PMID: 32727592 PMCID: PMC7392710 DOI: 10.1186/s13287-020-01846-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Periodontal ligament stem cells (PDLSCs) have many applications in the field of cytotherapy, tissue engineering, and regenerative medicine. However, the effect of age on the biological and immunological characteristics of PDLSCs remains unclear. Methods In this study, we compared PDLSCs isolated from young and adult individuals. PDLSC proliferation was analyzed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) staining, and apoptosis level was detected by Annexin V-PE/7-ADD staining. PDLSC osteogenic/adipogenic/chondrogenic differentiation potentials were assessed by alkaline phosphatase (ALP), Alizarin Red, Oil Red O, Alcian Blue staining, and related quantitative analysis. PDLSC immunosuppressive capacity was determined by EdU and Annexin V-PE/7-ADD staining. To explore its underlying mechanism, microarray, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot analyses were performed to detect differentially expressed genes and proteins in PDLSCs. Results Our results demonstrated that with aging, the proliferation and osteogenic/adipogenic/chondrogenic differentiation potential of PDLSCs decreased, whereas apoptosis of PDLSCs increased. Moreover, the immunosuppressive ability of PDLSCs decreased with aging. Compared with PDLSCs from young subjects, analysis of mRNA expression revealed an upregulation of CCND3 and RC3H2, and a downregulation of Runx2, ALP, COL1A1, PPARγ2, CXCL12, FKBP1A, FKBP1B, NCSTN, P2RX7, PPP3CB, RIPK2, SLC11A1, and TP53 in those from adult individuals. Furthermore, protein expression levels of Runx2, ALP, COL1A1, and PPARγ2 in the adult group were decreased, whereas that of CCND3 increased. Conclusions Taken together, aging influences the biological and immunological characteristics of PDLSCs, and thus, it is more appropriate to utilize PDLSCs from young individuals for tissue regeneration, post-aging treatment, and allotransplantation.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Bowen Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaolu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
38
|
Behm C, Blufstein A, Abhari SY, Koch C, Gahn J, Schäffer C, Moritz A, Rausch-Fan X, Andrukhov O. Response of Human Mesenchymal Stromal Cells from Periodontal Tissue to LPS Depends on the Purity but Not on the LPS Source. Mediators Inflamm 2020; 2020:8704896. [PMID: 32714091 PMCID: PMC7352132 DOI: 10.1155/2020/8704896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Human periodontal ligament stromal cells (hPDLSCs) and gingival mesenchymal stromal cells (hGMSCs) are resident mesenchymal stromal cells (MSCs) of the periodontal tissue. The lipopolysaccharide (LPS) from Porphyromonas gingivalis is structurally distinct from that of other Gram-negative bacteria, and earlier studies linked this structural difference to a distinct virulence activity and the ability to activate toll-like receptor 2 (TLR-2), besides TLR-4 as commonly occurring upon LPS challenge. Later studies, in contrast, argue that TLR-2 activation by P. gingivalis LPS is due to lipoprotein contamination. In the present study, we aimed to define the influence of structure versus purity of P. gingivalis LPS on the immune response of hPDLSCs and hGMSCs. Cells were stimulated with commercially available "standard" P. gingivalis LPS, "ultrapure" P. gingivalis LPS, or "ultrapure" Escherichia coli LPS, and the expression of interleukin- (IL-) 8, IL-6, monocyte chemoattractant protein- (MCP-) 1, TLR-2, and TLR-4 was evaluated. The contribution of TLR-4 to the LPS-induced response was assessed using the specific TLR-4 inhibitor TAK-242. "Standard" P. gingivalis LPS induced significantly higher IL-8, IL-6, and MCP-1 production compared to the "ultrapure" LPS preparations, with no significant difference detectable for "ultrapure" LPS from P. gingivalis and E. coli. By using TAK-242, the response of hPDLSCs and hGMSCs to "ultrapure" LPS preparations was effectively inhibited to the levels comparable to those of nonstimulated controls. In contrast, high levels of response to "standard" LPS were observed, even in the presence of TAK-242. Our data show that the response of MSCs from periodontal tissue to LPS depends more on the purity of the LPS preparation than on the LPS source. Even a small amount of contaminating lipoproteins can drastically enhance the hPDLSCs' and hGMSCs; responsiveness to P. gingivalis LPS, which might also contribute to the progression of periodontal disease.
Collapse
Affiliation(s)
- Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Setareh Younes Abhari
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christoph Koch
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology/NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Andrukhov O, Blufstein A, Behm C, Moritz A, Rausch-Fan X. Vitamin D3 and Dental Mesenchymal Stromal Cells. APPLIED SCIENCES 2020; 10:4527. [DOI: 10.3390/app10134527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Vitamin D3 is a hormone involved in the regulation of bone metabolism, mineral homeostasis, and immune response. Almost all dental tissues contain resident mesenchymal stromal cells (MSCs), which are largely similar to bone marrow-derived MSCs. In this narrative review, we summarized the current findings concerning the physiological effects of vitamin D3 on dental MSCs. The existing literature suggests that dental MSCs possess the ability to convert vitamin D3 into 25(OH)D3 and subsequently to the biologically active 1,25(OH)2D3. The vitamin D3 metabolites 25(OH)D3 and 1,25(OH)2D3 stimulate osteogenic differentiation and diminish the inflammatory response of dental MSCs. In addition, 1,25(OH)2D3 influences the immunomodulatory properties of MSCs in different dental tissues. Thus, dental MSCs are both producers and targets of 1,25(OH)2D3 and might regulate the local vitamin D3-dependent processes in an autocrine/paracrine manner. The local vitamin D3 metabolism is assumed to play an essential role in the local physiological processes, but the mechanisms of its regulation in dental MSCs are mostly unknown. The alteration of the local vitamin D3 metabolism may unravel novel therapeutic modalities for the treatment of periodontitis as well as new strategies for dental tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
40
|
Behm C, Blufstein A, Gahn J, Kubin B, Moritz A, Rausch‐Fan X, Andrukhov O. Pleiotropic effects of vitamin D 3 on CD4 + T lymphocytes mediated by human periodontal ligament cells and inflammatory environment. J Clin Periodontol 2020; 47:689-701. [PMID: 32160330 PMCID: PMC7318673 DOI: 10.1111/jcpe.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/06/2020] [Accepted: 03/07/2020] [Indexed: 12/27/2022]
Abstract
AIMS Both, vitamin D3 and human periodontal ligament cells (hPDLCs) possess immunosuppressive properties, but their combined effect on immune cells has never been investigated. Here, we analysed the impact of vitamin D3 on the immunosuppressive properties of hPDLCs towards CD4+ T lymphocytes. MATERIAL AND METHODS Allogenic CD4+ T lymphocytes were activated by phytohemagglutinin either in monoculture or co-culture with hPDLCs, in the presence or absence of IFN-γ and 1,25(OH)2 D3 . After 5 days, CD4+ T-lymphocyte proliferation, CD4+ CD25+ FoxP3+ regulatory T lymphocytes (Tregs ) proportion and IL-10, TGF-β1 and IL-17A production were analysed. RESULTS In monoculture, 1,25(OH)2 D3 suppressed CD4+ T-lymphocyte proliferation, increased the percentage of CD4+ FoxP3+ CD25+ FoxP3+ Tregs and enhanced IL-10 and TGF-β1 production. In the presence of IFN-γ treated hPDLCs, 1,25(OH)2 D3 significantly increased CD4+ T-lymphocyte proliferation and decreased the percentage of CD4+ CD25+ FoxP3+ Tregs . IL-10 and IL-17A expression was significantly diminished by 1,25(OH)2 D3 , whereas TGF-β1 was slightly increased. The effects of 1,25(OH)2 D3 in co-culture were reversed by inhibition of indoleamine-2,3-dioxygenase-1, prostaglandin-endoperoxide synthase and programmed cell death 1 ligand 1. 1,25(OH)2 D3 also suppressed the expression of these proteins in hPDLCs. CONCLUSION Effects of vitamin D3 on CD4+ T lymphocyte are modified by hPDLCs depending on the microenvironment.
Collapse
Affiliation(s)
- Christian Behm
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Alice Blufstein
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Barbara Kubin
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
41
|
Chrzanowski W, Kim SY, McClements L. Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections. Front Bioeng Biotechnol 2020; 8:554. [PMID: 32574317 PMCID: PMC7264098 DOI: 10.3389/fbioe.2020.00554] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
A number of medicines are currently under investigation for the treatment of COVID-19 disease including anti-viral, anti-malarial, and anti-inflammatory agents. While these treatments can improve patient's recovery and survival, these therapeutic strategies do not lead to unequivocal restoration of the lung damage inflicted by this disease. Stem cell therapies and, more recently, their secreted extracellular vesicles (EVs), are emerging as new promising treatments, which could attenuate inflammation but also regenerate the lung damage caused by COVID-19. Stem cells exert their immunomodulatory, anti-oxidant, and reparative therapeutic effects likely through their EVs, and therefore, could be beneficial, alone or in combination with other therapeutic agents, in people with COVID-19. In this review article, we outline the mechanisms of cytokine storm and lung damage caused by SARS-CoV-2 virus leading to COVID-19 disease and how mesenchymal stem cells (MSCs) and their secreted EVs can be utilized to tackle this damage by harnessing their regenerative properties, which gives them potential enhanced clinical utility compared to other investigated pharmacological treatments. There are currently 17 clinical trials evaluating the therapeutic potential of MSCs for the treatment of COVID-19, the majority of which are administered intravenously with only one clinical trial testing MSC-derived exosomes via inhalation route. While we wait for the outcomes from these trials to be reported, here we emphasize opportunities and risks associated with these therapies, as well as delineate the major roadblocks to progressing these promising curative therapies toward mainstream treatment for COVID-19.
Collapse
Affiliation(s)
- Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Behm C, Blufstein A, Gahn J, Nemec M, Moritz A, Rausch-Fan X, Andrukhov O. Cytokines Differently Define the Immunomodulation of Mesenchymal Stem Cells from the Periodontal Ligament. Cells 2020; 9:1222. [PMID: 32423044 PMCID: PMC7290931 DOI: 10.3390/cells9051222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) play an important role in periodontal tissue homeostasis and regeneration. The function of these cells in vivo depends largely on their immunomodulatory ability, which is reciprocally regulated by immune cells via cytokines, particularly interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Different cytokines activate distinct signaling pathways and might differently affect immunomodulatory activities of hPDLSCs. This study directly compared the effect of IFN-γ, TNF-α, or IL-1β treated primary hPDLSCs on allogenic CD4+ T lymphocyte proliferation and apoptosis in an indirect co-culture model. The effects of IFN-γ, TNF-α, and IL-1β on the expression of specific immunomodulatory factors such as intoleamine-2,3-dioxygenase-1 (IDO-1), prostaglandin E2 (PGE2), and programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) in hPDLSCs were compared. The contribution of different immunomodulatory mediators to the immunomodulatory effects of hPDLSCs in the indirect co-culture experiments was assessed using specific inhibitors. Proliferation of CD4+ T lymphocytes was inhibited by hPDLSCs, and this effect was strongly enhanced by IFN-γ and IL-1β but not by TNF-α. Apoptosis of CD4+ T lymphocytes was decreased by hPDLSCs per se. This effect was counteracted by IFN-γ or IL-1β. Additionally, IFN-γ, TNF-α, and IL-1β differently regulated all investigated immunomediators in hPDLSCs. Pharmacological inhibition of immunomediators showed that their contribution in regulating CD4+ T lymphocytes depends on the cytokine milieu. Our data indicate that inflammatory cytokines activate specific immunomodulatory mechanisms in hPDLSCs and the expression of particular immunomodulatory factors, which underlies a complex reciprocal interaction between hPDLSCs and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Christian Behm
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
- Department of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Alice Blufstein
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
| | - Johannes Gahn
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
| | - Michael Nemec
- Department of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
| | - Xiaohui Rausch-Fan
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (A.M.); (X.R.-F.)
| |
Collapse
|
43
|
Behm C, Blufstein A, Gahn J, Kubin B, Nemec M, Moritz A, Rausch-Fan X, Andrukhov O. 1,25(OH) 2D 3 Differently Affects Immunomodulatory Activities of Mesenchymal Stem Cells Depending on the Presence of TNF-α, IL-1β and IFN-γ. J Clin Med 2019; 8:2211. [PMID: 31847340 PMCID: PMC6947512 DOI: 10.3390/jcm8122211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Periodontal ligament-derived mesenchymal stem cells (hPDLSCs) possess immunomodulatory abilities which are strongly enhanced by various inflammatory cytokines. Vitamin D3 has anti-inflammatory effects on hPDLSCs and immune cells. However, no study to date has directly compared the influence of 1,25(OH)2D3 on the immunomodulatory activities of hPDLSCs in the presence of different cytokines. In the present study, the effects of hPDLSCs treated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β, or interferon (IFN)-γ in the presence of 1,25(OH)2D3 on the proliferation of allogenic CD4+ T lymphocyte or on the functional status of primary CD68+ macrophages were analyzed in coculture models. Additionally, the effects of 1,25(OH)2D3 on TNF-α-, IL-1β-, and IFN-γ-induced gene expression of some immunomodulatory factors in hPDLSCs were compared. Under coculture conditions, 1,25(OH)2D3 increased or decreased CD4+ T lymphocyte proliferation via hPDLSCs, depending on the cytokine. hPDLSCs primed with 1,25(OH)2D3 and different cytokines affected pro- and anti-inflammatory cytokine expression in macrophages variably, depending on the priming cytokine. With one exception, 1,25(OH)2D3 significantly reduced TNF-α-, IL-1β-, and IFN-γ-induced expression of all the investigated immunomediators in hPDLSCs, albeit to different extents. These results suggest that 1,25(OH)2D3 influences the immunomodulatory activities of hPDLSCs depending qualitatively and quantitatively on the presence of certain inflammatory cytokines.
Collapse
Affiliation(s)
- Christian Behm
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Alice Blufstein
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Johannes Gahn
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Barbara Kubin
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Xiaohui Rausch-Fan
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (A.M.); (X.R.-F.)
| |
Collapse
|
44
|
Blufstein A, Behm C, Gahn J, Uitz O, Naumovska I, Moritz A, Rausch‐Fan X, Andrukhov O. Synergistic effects triggered by simultaneous Toll-like receptor-2 and -3 activation in human periodontal ligament stem cells. J Periodontol 2019; 90:1190-1201. [PMID: 31049957 PMCID: PMC6852053 DOI: 10.1002/jper.19-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although periodontitis is associated with disruption of the host-microbial homeostasis, viruses are currently discussed to influence disease progression. Viral pathogens are recognized by Toll-like receptor (TLR)-3, which engages a different signaling pathway than other TLRs. This study aimed to investigate the effect of TLR-3 agonist polyinosinic:polycytidylic acid (Poly I:C) on the expression of inflammatory markers and bone metabolism proteins by human periodontal ligament stem cells (hPDLSCs) compared with TLR-2 agonist Pam3CSK4, which mimics the effect of bacterial lipoproteins. To assess potential combined effects of bacterial and viral infections, hPDLSCs response to simultaneous TLR-2 and TLR-3 activation was investigated. METHODS HPDLSCs were stimulated with Poly I:C (0.0001-1 µg/mL), Pam3CSK4 (1 µg/mL), and their combinations for 24 hours. Gene expression and protein levels of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, and osteoprotegerin (OPG) were measured with qPCR and ELISA. RESULTS Production of IL-6, IL-8, MCP-1, and OPG was significantly increased by Poly I:C or Pam3CSK4 to a similar extent. The levels of all inflammatory mediators induced by simultaneous stimulation with Poly I:C and Pam3CSK4 were significantly higher compared with single stimuli as well as to their summed response. Gene expression and protein levels of OPG were enhanced by Poly I:C, but by lesser extent than by Pam3CSK4. OPG levels upon simultaneous stimulation with Pam3CSK4 and Poly I:C were significantly lower compared with Pam3CSK4 stimulation alone. CONCLUSIONS Simultaneous TLR-2 and TLR-3 activation synergistically triggers IL-6, IL-8, and MCP-1 production, which was not observed for OPG. These findings suggest that TLR-3 activation by viral infections might promote periodontitis progression.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Christian Behm
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oksana Uitz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Ivana Naumovska
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
45
|
Saha S, Yang XB, Wijayathunga N, Harris S, Feichtinger GA, Davies RPW, Kirkham J. A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study. Bone 2019; 127:602-611. [PMID: 31351196 DOI: 10.1016/j.bone.2019.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/31/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Rationally designed, pH sensitive self-assembling β-peptides (SAPs) which are capable of reversibly switching between fluid and gel phases in response to environmental triggers are potentially useful injectable scaffolds for skeletal tissue engineering applications. SAP P11-4 (CH3COQQRFEWEFEQQNH2) has been shown to nucleate hydroxyapatite mineral de novo and has been used in dental enamel regeneration. We hypothesised that addition of mesenchymal stromal cells (MSCs) would enhance the in vivo effects of P11-4 in promoting skeletal tissue repair. Cranial defects were created in athymic rats and filled with either Bio-Oss® (anorganic bone chips) or P11-4 ± human dental pulp stromal cells (HDPSCs). Unfilled defects served as controls. After 4 weeks, only those defects filled with P11-4 alone showed significantly increased bone regeneration (almost complete healing), compared to unfilled control defects, as judged using quantitative micro-CT, histology and immunohistochemistry. In silico modelling indicated that fibril formation may be essential for any mineral nucleation activity. Taken together, these data suggest that self-assembling peptides are a suitable scaffold for regeneration of bone tissue in a one step, cell-free therapeutic approach.
Collapse
Affiliation(s)
- Sushmita Saha
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Sarah Harris
- School of Physics and Astronomy, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Georg A Feichtinger
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of Leeds, Leeds, UK
| | - R Philip W Davies
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Jennifer Kirkham
- Department of Oral Biology, School of Dentistry, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
46
|
Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019; 11:604-617. [PMID: 31616538 PMCID: PMC6789188 DOI: 10.4252/wjsc.v11.i9.604] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria.
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
47
|
Kalinec GM, Cohn W, Whitelegge JP, Faull KF, Kalinec F. Preliminary Characterization of Extracellular Vesicles From Auditory HEI-OC1 Cells. Ann Otol Rhinol Laryngol 2019; 128:52S-60S. [DOI: 10.1177/0003489419836226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives: Isolate, purify, and characterize extracellular vesicles (EVs) obtained from auditory HEI-OC1 cells, and evaluate their suitability for intracochlear transport and delivery of pharmacological drugs and/or pro-resolution mediators of acute inflammatory processes. Methods: HEI-OC1 EVs were isolated and purified using the exoEasy Maxi Kit, and their size was evaluated by nanoparticle tracking techniques. Bottom-up proteomics of the EVs, either freshly obtained or stored for up to 4 months at −20°C, was performed by LC-ESI-MS/MS. LC-ESI-MS/MS-MRM was used to measure the loading of dexamethasone inside EVs following co-incubation at room temperature for 1 hour with and without 5 minutes sonication. Results: Routinely, we were able to obtain purified fractions of >2 × 109 EVs/mL, with diameters varying between 50 and 800 nm. Bottom-up proteomics showed that among the most abundant EVs proteins, 19.2% were cytoplasmic, 17.2% were membrane localized, 12.3% were cytosolic, and 14.6% were nucleolar. No significant differences between fresh and stored EVs were detected. Importantly, co-incubation of HEI-OC1 EVs (1 × 108 EVs/mL) with dexamethasone (10 mM) resulted in the incorporation of 10.1 ± 1.9 nM dexamethasone per milliliter of EVs suspension. Conclusions: Altogether, the results suggest that EVs from HEI-OC1 cells could be advantageously used as biological nanocarriers for the delivery of specific molecules and pharmacological drugs into the inner ear.
Collapse
Affiliation(s)
- Gilda M. Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
48
|
Behm C, Blufstein A, Gahn J, Noroozkhan N, Moritz A, Rausch-Fan X, Andrukhov O. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to Toll-Like Receptor 2 Agonists. Mediators Inflamm 2019; 2019:8127301. [PMID: 31178663 PMCID: PMC6507176 DOI: 10.1155/2019/8127301] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) do not express membrane-bound CD14, and their responsiveness to bacterial lipopolysaccharide (LPS) is drastically enhanced by soluble CD14 (sCD14), which is due to the facilitation of the interaction between LPS and Toll-like receptor- (TLR-) 4. Several studies also show that sCD14 enhances the responsiveness of different immune cells to TLR-2, but such effect in hPDLSCs has not been studied so far. In the present study, we investigated for the first time the potential effect of sCD14 on the hPDLSC response to two different TLR-2 agonists, in vitro. Primary hPDLSCs were stimulated with synthetic lipopeptide Pam3CSK4 or lipoteichoic acid (LTA) in concentrations 1-1000 ng/ml in the presence/absence of sCD14 (250 ng/ml). Additionally, the effect of different sCD14 concentrations (2.5-250 ng/ml) on the TLR-2 response was determined in Pam3CSK4- or LTA-triggered hPDLSCs. The resulting expression of interleukin- (IL-) 6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured by qPCR and ELISA. The production of IL-6, CXCL8, and CCL2 was gradually increased by both TLR-2 agonists and was significantly enhanced by sCD14. The response of hPDLSCs to low and submaximal concentrations of TLR-2 agonists (1-100 ng/ml) was most effectively enhanced by sCD14. The effect of sCD14 on TLR-2 response in hPDLSCs was concentration-dependent and was already detectable at low sCD14 levels. Our data showed that exogenous sCD14 significantly enhanced the responsiveness of hPDLSCs to TLR-2 agonists and enabled the detection of their small amounts. This effect was already detectable at low sCD14 levels, which are comparable to those in saliva and gingival crevicular fluid. Changes in the local sCD14 level may be considered as a crucial factor influencing the susceptibility of hPDLSCs to different pathogens and thus may contribute to the progression of periodontitis.
Collapse
Affiliation(s)
- Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Nazanin Noroozkhan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
49
|
Pelissari C, Paris AFC, Mantesso A, Trierveiler M. Apical Papilla Cells Are Capable of Forming a Pulplike Tissue with Odontoblastlike Cells without the Use of Exogenous Growth Factors. J Endod 2019; 44:1671-1676. [PMID: 30409448 DOI: 10.1016/j.joen.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dental pulp is a complex tissue with highly differentiated cells, which makes its reconstruction a challenging task. The apical papilla is an undifferentiated tissue considered as the remnant of the dental papilla that forms the dentin-pulp complex. Aiming to analyze morphologic features of the tissue formed in an in vivo pulp model, we used human apical papilla as a cell source without the use of exogenous growth factors. METHODS A construct was built using newborn mice molar crowns treated with TrypLE (Fisher Scientific, Loughborough, UK) and EDTA. The crowns were filled with PuraMatrix (Corning Inc, Corning, NY) and a pool population of human apical papilla cells. As a control, we used crowns filled only with PuraMatrix and empty crowns. The constructs were transplanted under severe combined immunodeficient mice kidney capsules. Immunohistochemistry for lamin A, dentin sialophosphoprotein, and dentin matrix protein 1 was performed. RESULTS Morphologic analysis of all transplanted crowns showed the formation of a loose connective tissue of variable cellularity with the presence of well-formed functional vessels. In the study group, lamin A-positive cells represented the majority of cells within the pulp chamber and a few cells in the vessel lining. We also found positivity for dentin sialophosphoprotein and dentin matrix protein 1, an indicator of odontoblast differentiation. CONCLUSIONS In our study model, human transplanted apical papilla cells mixed with the host cells and formed a vascularized viable tissue, and these cells were able to differentiate into odontoblastlike cells without the use of exogenous growth factors.
Collapse
Affiliation(s)
- Cibele Pelissari
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adriana F C Paris
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Mantesso
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marília Trierveiler
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
50
|
Berrío Sánchez J, Cucarian Hurtado J, Barcos Nunes R, de Oliveira AA. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson's disease: therapeutic assets beyond the motor domain. Rev Neurosci 2019; 30:165-178. [PMID: 29959887 DOI: 10.1515/revneuro-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a very common neurodegenerative condition in which both motor and nonmotor deficits evolve throughout the course of the disease. Normally characterized as a movement disorder, PD has been broadly studied from a motor perspective. However, mild to moderate cognitive deficits began to appear in the early phases of the disease, even before motor disturbances actually manifest, and continue to progress relentlessly. These nonmotor manifestations are also a source of detriment to the patients' already strained functionality and quality of life, and pose a therapeutic challenge seeing that replacing therapies have had conflicting results. Considering that the currently approved therapies can hardly be considered curative, efforts to find therapeutic approaches with an actual disease-modifying quality and capable of addressing not only motor but also cognitive dysfunctions are clearly needed. Among possible alternatives with such attribute, mesenchymal stem cell transplantation and exercise are worth highlighting given their common neuroprotective, neuroplastic, and immunomodulatory properties. In this paper, we will summarize the existent literature on the topic, focusing on the mechanisms of action through which these two approaches might beget therapeutic benefits for PD beyond the commonly assessed motor dysfunctions, alluding, at the same time, toward a potential synergic association of both therapies as an optimized approach for PD.
Collapse
Affiliation(s)
- Jenny Berrío Sánchez
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Jaison Cucarian Hurtado
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department, Instituto Federal de Educação, Ciência e Tecnologia. SUL-RIO-GRANDENSE, Rua Men de Sá, 800, Bom Sucesso, Gravataí, CEP 94.135-300, Brazil
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|