1
|
Cabral JV, Voukali E, Smorodinova N, Balogh L, Kolin V, Studeny P, Netukova M, Jirsova K. Cultivation and characterization of oral mucosal epithelial cells on fibrin gel in a xenobiotic-free medium for the treatment of limbal stem cell deficiency. Exp Eye Res 2025; 253:110300. [PMID: 39978745 DOI: 10.1016/j.exer.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
For the treatment of bilateral limbal stem cell deficiency (LSCD), cell therapy with transplantation of cultivated oral mucosa epithelial cells (COMET) is a promising alternative. Although not yet established, current protocols on the cultivation of oral mucosal epithelial cell (OMECs) sheets are based mainly on substrates and xenobiotic additives that may lead to variable outcomes and undesirable immune responses by the patient. The aim of this study was to characterize OMECs cultivated in xenobiotic-free media (XF) seeded on fibrin gel, in comparison to conventional complex (COM) medium. Oral mucosal biopsies were retrieved from 31 donors. After cultivation in COM or XF medium, OMECs were compared based on growth kinetics, morphology, cell size and viability. Using immunofluorescence and gene expression analyses, the degree of stemness, proliferation and differentiation was evaluated in OMEC cultures. Our findings showed that although OMECs showed a similar morphology and viability, and comparable growth kinetics, immunofluorescence revealed the preservation of stemness (p63 + p40 positivity in cells ≤11 μm) and proliferation in both COM and XF. Gene expression analyses showed that keratin (K)13 and K15 expression levels were significantly higher in XF (adj. p < 0.001), but otherwise COM and XF-treated OMECs had comparable transcriptional profiles in a panel of stemness, proliferation and differentiation genes. These results demonstrate the feasibility of culturing OMECs on fibrin gel without xenogeneic additives, while maintaining their undifferentiated state and preserving stemness. In conclusion, both in terms of results and methodology, the procedures presented here are suitable for implementation in clinical practice.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Natalie Smorodinova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lukas Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vojtech Kolin
- Department of Pathology of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Magdalena Netukova
- Ophthalmology Department of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katerina Jirsova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
2
|
Cunha G, D'Angieri Saugo G, Gabrielli MAC, Barbeiro CDO, de Almeida LY, Bufalino A, Pereira-Filho VA. Cytotoxicity evaluation of Chlorhexidine and Blue®M applied to a human gingival fibroblast (HGF-1) and keratinocytes (NOK-SI): In vitro study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101923. [PMID: 38815722 DOI: 10.1016/j.jormas.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Chlorhexidine (CHX) is a prime choice to control the oral microbiota. However, it's a chemical agent leading to side effects such as teeth strains, taste disturbance, and desquamation of oral mucosa. Alternatively, the lactoferrin and oxygen-based Blue®M has been introduced as an alternative to the CHX, not disturbing tissue repair. Therefore, the study aimed to evaluate the effects of Blue®M and CHX on oral human fibroblasts (HGF-1) and keratinocytes (NOK-SI). Cell cultures using HGF-1 and NOK-SI evaluated cell proliferation, cell cycle, apoptosis and necrosis, and migration. In the dose-effect test, Blue®M reduced the HGF-1 sample in a 4-fold concentration than CHX (CHX: 173.07 ±10.27; Blue®M: 43.86 ±3.04). The proliferation test revealed an eightfold reduction of the sample for CHX, while for Blue®M, the proliferation rate was eighteen times lower. The apoptosis and necrosis rates increased by 25% (p<0.0001) for HGF-1 for both substances. In NOK-SI, the apoptosis rates increased by 10% (p=0.02) and 15% (p=0.001) for CHX and Blue®M, respectively. Furthermore, the fibroblast had a lower capacity for wound closure in the Scratch Assay (monolayer cell migration) for Blue®M. Despite the limitations of this in vitro study, the results of the lactoferrin and oxygen-based Blue®M demonstrated cytotoxicity in doses over the Minimum inhibitory concentration and Minimum bactericidal concentration for Oral fibroblasts (HGF- 1) and Keratinocytes (NOK-SI).
Collapse
Affiliation(s)
- Giovanni Cunha
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil; Private Practice. Louveira, Brazil.
| | | | - Marisa Aparecida Cabrini Gabrielli
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Camila de Oliveira Barbeiro
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Luciana Yamamoto de Almeida
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Andréia Bufalino
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Valfrido Antônio Pereira-Filho
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| |
Collapse
|
3
|
Hu Q, Zhang B, Jing Y, Ma S, Hu L, Li J, Zheng Y, Xin Z, Peng J, Wang S, Cheng B, Qu J, Zhang W, Liu GH, Wang S. Single-nucleus transcriptomics uncovers a geroprotective role of YAP in primate gingival aging. Protein Cell 2024; 15:612-632. [PMID: 38577810 PMCID: PMC11259548 DOI: 10.1093/procel/pwae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024] Open
Abstract
Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Bin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jianmin Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Pacheco-García U, Varela-López E, Serafín-López J. Immune Stimulation with Imiquimod to Best Face SARS-CoV-2 Infection and Prevent Long COVID. Int J Mol Sci 2024; 25:7661. [PMID: 39062904 PMCID: PMC11277483 DOI: 10.3390/ijms25147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Through widespread immunization against SARS-CoV-2 prior to or post-infection, a substantial segment of the global population has acquired both humoral and cellular immunity, and there has been a notable reduction in the incidence of severe and fatal cases linked to this virus and accelerated recovery times for those infected. Nonetheless, a significant demographic, comprising around 20% to 30% of the adult population, remains unimmunized due to diverse factors. Furthermore, alongside those recovered from the infection, there is a subset of the population experiencing persistent symptoms referred to as Long COVID. This condition is more prevalent among individuals with underlying health conditions and immune system impairments. Some Long COVID pathologies stem from direct damage inflicted by the viral infection, whereas others arise from inadequate immune system control over the infection or suboptimal immunoregulation. There are differences in the serum cytokines and miRNA profiles between infected individuals who develop severe COVID-19 or Long COVID and those who control adequately the infection. This review delves into the advantages and constraints associated with employing imiquimod in human subjects to enhance the immune response during SARS-CoV-2 immunization. Restoration of the immune system can modify it towards a profile of non-susceptibility to SARS-CoV-2. An adequate immune system has the potential to curb viral propagation, mitigate symptoms, and ameliorate the severe consequences of the infection.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Elvira Varela-López
- Laboratory of Translational Medicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| |
Collapse
|
5
|
Zhu S, Cui Y, Zhang W, Ji Y, Li L, Luo S, Cui J, Li M. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des Devel Ther 2024; 18:2793-2812. [PMID: 38979400 PMCID: PMC11229984 DOI: 10.2147/dddt.s456811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Stomatology, Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yu Ji
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Lingshuang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, People's Republic of China
- Central Laboratory, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
6
|
Meto A, Sula A, Peppoloni S, Meto A, Blasi E. Leveraging Dental Stem Cells for Oral Health during Pregnancy: A Concise Review. Dent J (Basel) 2024; 12:127. [PMID: 38786525 PMCID: PMC11120089 DOI: 10.3390/dj12050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pregnancy induces significant changes in oral health because of hormonal fluctuations, making it a crucial period for preventive measures. Dental stem cells (DSCs), particularly those derived from the dental pulp and periodontal ligaments, offer promising avenues for regenerative therapies and, possibly, preventive interventions. While the use of DSCs already includes various applications in regenerative dentistry in the general population, their use during pregnancy requires careful consideration. This review explores recent advancements, challenges, and prospects in using DSCs to address oral health issues, possibly during pregnancy. Critical aspects of the responsible use of DSCs in pregnant women are discussed, including safety, ethical issues, regulatory frameworks, and the need for interdisciplinary collaborations. We aimed to provide a comprehensive understanding of leveraging DSCs to improve maternal oral health.
Collapse
Affiliation(s)
- Aida Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
- Department of Conservative Dentistry and Endodontics, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Ana Sula
- Department of Obstetrics and Gynecology, American Hospital, 1060 Tirana, Albania;
| | - Samuele Peppoloni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| | - Agron Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
| | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| |
Collapse
|
7
|
Jayanthi A, Tiwari D, Puzhankara L. Substance P-A neuropeptide regulator of periodontal disease pathogenesis and potential novel therapeutic entity: A narrative review. J Indian Soc Periodontol 2024; 28:284-289. [PMID: 39742059 PMCID: PMC11684568 DOI: 10.4103/jisp.jisp_56_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/25/2024] [Indexed: 01/03/2025] Open
Abstract
Substance P (SP), a neuropeptide primarily released by neurons, has emerged as a key player in the intricate network of factors governing periodontal inflammation, immune responses, bone metabolism, and tissue regeneration. Due to its multifaceted role, it may be explored for its potential participation in periodontal therapeutic strategies. The databases, PubMed/MEDLINE, and SCOPUS were searched for all published articles on SP, its role in inflammation, and periodontal disease. The following search terms, adapted to the specific database, were used; "substance p AND periodontal *" AND "therapeutics" and records were retrieved. All articles not pertaining to SP in periodontal health and disease were excluded from the study. The full texts of eligible articles were retrieved. Data on SP and its role in inflammation and in periodontal health, disease, and therapy were extracted and have been presented as a narrative review. SP manifests during inflammatory phase of periodontal disease and is one of the causes of bone loss. According to studies, the gingival crevicular fluid from areas with active periodontal disease and bone loss had the greatest levels of SP. These chemicals may linger long enough to trigger neurogenic inflammation and elicit pain in tissues that are vulnerable to it. SP expression during progression of periodontal disease might be a risk factor for individuals with systemic inflammatory diseases, such as chronic arthritis. However, SP may be manipulated to provide avenues for management of periodontal disease and thereby serve as therapeutic target.
Collapse
Affiliation(s)
- A Jayanthi
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - D Tiwari
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - L Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Hazrati R, Davaran S, Keyhanvar P, Soltani S, Alizadeh E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev Rep 2024; 20:362-393. [PMID: 37922106 DOI: 10.1007/s12015-023-10636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/05/2023]
Abstract
To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Peyman Keyhanvar
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Cai X, Zhang J, Zhang H, Li T. Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside. J Zhejiang Univ Sci B 2023; 24:868-882. [PMID: 37752089 PMCID: PMC10522567 DOI: 10.1631/jzus.b2200589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 05/16/2023]
Abstract
Oral leukoplakia is a common precursor lesion of oral squamous cell carcinoma, which indicates a high potential of malignancy. The malignant transformation of oral leukoplakia seriously affects patient survival and quality of life; however, it is difficult to identify oral leukoplakia patients who will develop carcinoma because no biomarker exists to predict malignant transformation for effective clinical management. As a major problem in the field of head and neck pathologies, it is imperative to identify biomarkers of malignant transformation in oral leukoplakia. In this review, we discuss the potential biomarkers of malignant transformation reported in the literature and explore the translational probabilities from bench to bedside. Although no single biomarker has yet been applied in the clinical setting, profiling for genomic instability might be a promising adjunct.
Collapse
Affiliation(s)
- Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
11
|
Meng Z, Li Z, Guo S, Wu D, Wei R, Liu J, Hu L, Sui L. MED1 Ablation Promotes Oral Mucosal Wound Healing via JNK Signaling Pathway. Int J Mol Sci 2022; 23:13414. [PMID: 36362197 PMCID: PMC9655393 DOI: 10.3390/ijms232113414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/12/2023] Open
Abstract
Mediator complex subunit 1 (MED1) is a coactivator of multiple transcription factors and plays a key role in regulating epidermal homeostasis as well as skin wound healing. It is unknown, however, whether it plays a role in healing oral mucosal wounds. In this study, we investigate MED1's functional effects on oral mucosal wound healing and its underlying mechanism. The epithelial-specific MED1 null (Med1epi-/-) mice were established using the Cre-loxP system with C57/BL6 background. A 3 mm diameter wound was made in the cheek mucosa of the 8-week-old mice. In vivo experiments were conducted using HE staining and immunostaining with Ki67 and uPAR antibodies. The in vitro study used lentiviral transduction, scratch assays, qRT-PCR, and Western blotting to reveal the underlying mechanisms. The results showed that ablation of MED1 accelerated oral mucosal wound healing in 8-week-old mice. As a result of ablation of MED1, Activin A/Follistatin expression was altered, resulting in an activation of the JNK/c-Jun pathway. Similarly, knockdown of MED1 enhanced the proliferation and migration of keratinocytes in vitro, promoting re-epithelialization, which accelerates the healing of oral mucosal wounds. Our study reveals a novel role for MED1 in oral keratinocytes, providing a new molecular therapeutic target for accelerated wound healing.
Collapse
Affiliation(s)
- Zhaosong Meng
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Zhe Li
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Shuling Guo
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Danfeng Wu
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Ran Wei
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Jiacheng Liu
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin 300014, China
| | - Lei Sui
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| |
Collapse
|
12
|
Ahmad M, Sun Y, Jia X, Li J, Zhang L, Yang Z, Lin Y, Zhang X, Khan ZA, Qian J, Luo Y. Therapeutic values of chick early amniotic fluid (ceAF) that facilitates wound healing via potentiating a SASP-mediated transient senescence. Genes Dis 2022; 9:1345-1356. [PMID: 35873014 PMCID: PMC9293714 DOI: 10.1016/j.gendis.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory, proliferative and remodeling phases constitute a cutaneous wound healing program. Therapeutic applications and medication are available; however, they commonly are comprised of fortified preservatives that might prolong the healing process. Chick early amniotic fluids (ceAF) contain native therapeutic factors with balanced chemokines, cytokines and growth-related factors; their origins in principle dictate no existence of harmful agents that would otherwise hamper embryo development. Instead, they possess a spectrum of molecules driving expeditious mitotic divisions and possibly exerting other functions. Employing both in vitro and in vivo models, we examined ceAF's therapeutic potentials in wound healing and found intriguing involvement of transient senescence, known to be intimately intermingled with Senescence Associated Secretory Phenotypes (SASP) that function in addition to or in conjunction with ceAF to facilitate wound healing. In our cutaneous wound healing models, a low dose of ceAF exhibited the best efficacies; however, higher doses attenuated the wound healing presumably by inducing p16 expression over a threshold. Our studies thus link an INK4/ARF locus-mediated signaling cascade to cutaneous wound healing, suggesting therapeutic potentials of ceAF exerting functions likely by driving transient senescence, expediting cellular proliferation, migration, and describing a homeostatic and balanced dosage strategy in medical intervention.
Collapse
Affiliation(s)
- Mashaal Ahmad
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yandi Sun
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xueyao Jia
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Jingjia Li
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Lihong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Ze Yang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yindan Lin
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xueyun Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Zara Ahmad Khan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jin Qian
- Zhejiang HygeianCells BioMedical Co. Ltd., Hangzhou, Zhejiang 310000, PR China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
13
|
Hu Z, Chen Y, Gao M, Chi X, He Y, Zhang C, Yang Y, Li Y, Lv Y, Huang Y, Deng X. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Prolif 2022; 56:e13320. [PMID: 35920005 PMCID: PMC9816927 DOI: 10.1111/cpr.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Different strategies for epithelial cell isolation significantly affect the viability and physiological properties of primary cells. Trypsin digestion, a conventional method, causes collateral damage owing to its strong digestive potential. To better preserve the physiological properties of epithelial tissues, we aimed to develop a modified method (hyaluronidase and collagenase I combination) for primary cell isolation. METHOD We used conventional and modified methods to compare cell viability, morphology and stemness. Additionally, we investigated the passaging stability of epithelial cells and their capacity for organoid formation. Finally, we compared the two methods for isolating urothelial, oesophageal, lingual, and epidermal epithelial cells. RESULT Gingival epithelial cells obtained using the modified method had higher viability, better morphology and stronger stemness than those obtained using the conventional method. Additionally, primary cells obtained using the modified method were stably passaged. Regarding organoid culture, adopting the modified method led to a significant increase in the growth rate and expression of the stem cell markers cytokeratin (CK)-19 and Ki-67. Furthermore, the modified method outperformed the conventional method for isolating urothelial, epidermal, oesophageal and lingual epithelial cells. CONCLUSION We demonstrated that the combination of hyaluronidase and collagenase I outperformed trypsin in preserving the physiological properties of primary cells and organoid formation. The modified method could be broadly applied to isolate different types of epithelial cells and facilitate studies on organoids and tissue engineering.
Collapse
Affiliation(s)
- Zhewen Hu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Yiming Chen
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Min Gao
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Xiaopei Chi
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Ying He
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Chenguang Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical DivisionPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Yuman Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Yan Lv
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of StomatologyCapital Medical UniversityBeijingPeople's Republic of China
| | - Ying Huang
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|
14
|
Tizu M, Mărunțelu I, Cristea BM, Nistor C, Ishkitiev N, Mihaylova Z, Tsikandelova R, Miteva M, Caruntu A, Sabliov C, Calenic B, Constantinescu I. PLGA Nanoparticles Uptake in Stem Cells from Human Exfoliated Deciduous Teeth and Oral Keratinocyte Stem Cells. J Funct Biomater 2022; 13:jfb13030109. [PMID: 35997447 PMCID: PMC9397094 DOI: 10.3390/jfb13030109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymeric nanoparticles have been introduced as a delivery vehicle for active compounds in a broad range of medical applications due to their biocompatibility, stability, controlled release of active compounds, and reduced toxicity. The oral route is the most used approach for delivery of biologics to the body. The homeostasis and function of oral cavity tissues are dependent on the activity of stem cells. The present work focuses, for the first time, on the interaction between two types of polymeric nanoparticles, poly (lactic-co-glycolic acid) or PLGA and PLGA/chitosan, and two stem cell populations, oral keratinocyte stem cells (OKSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). The main results show that statistical significance was observed in OKSCs uptake when compared with normal keratinocytes and transit amplifying cells after 24 h of incubation with 5 and 10 µg/mL PLGA/chitosan. The CD117+ SHED subpopulation incorporated more PLGA/chitosan nanoparticles than nonseparated SHED. The uptake for PLGA/chitosan particles was better than for PLGA particles with longer incubation times, yielding better results in both cell types. The present results demonstrate that nanoparticle uptake depends on stem cell type, incubation time, particle concentration, and surface properties.
Collapse
Affiliation(s)
- Maria Tizu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| | - Ion Mărunțelu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| | - Bogdan Mihai Cristea
- Department of Anatomy, Carol Davila University of Medicine and Pharmacy, 8 Blvd Eroii Sanitari, 050474 Bucharest, Romania;
| | - Claudiu Nistor
- Central Military Hospital, Carol Davila University of Medicine and Pharmacy, 134 Stefan Furtuna Street, 010899 Bucharest, Romania;
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria; (N.I.); (M.M.)
| | - Zornitsa Mihaylova
- Department of Oral and Maxillofacial Surgery, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria;
| | - Rozaliya Tsikandelova
- Biosciences Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK;
| | - Marina Miteva
- Department of Medical Chemistry and Biochemistry, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria; (N.I.); (M.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Cristina Sabliov
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, 141 E. B. Doran Bldg, Baton Rouge, LA 70803, USA
- Correspondence: (C.S.); (B.C.); Tel.: +1-225-578-1055 (C.S.); +40-755-044-047 (B.C.)
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
- Correspondence: (C.S.); (B.C.); Tel.: +1-225-578-1055 (C.S.); +40-755-044-047 (B.C.)
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| |
Collapse
|
15
|
Das R, Virlan MJR, Xenaki V, Kulasekara KK, Lukandu O, Neppelberg E, Vintermyr OK, Johannessen AC, Calenic B, Costea DE. Granulocyte macrophage-colony stimulating factor and keratinocyte growth factor control of early stages of differentiation of oral epithelium. Eur J Oral Sci 2022; 130:e12867. [PMID: 35452148 PMCID: PMC9322408 DOI: 10.1111/eos.12867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Oral epithelial differentiation is known to be directed by underlying fibroblasts, but the responsible factor(s) have not been identified. We aimed here to identify fibroblast‐derived factors responsible for oral epithelial differentiation. Primary normal human oral keratinocytes and fibroblasts were isolated from healthy volunteers after informed consent (n = 5) and 3D‐organotypic (3D‐OT) cultures were constructed. Various growth factors were added at a range of 0.1‐100 ng/ml. 3D‐OTs were harvested after ten days and assessed histologically, by immunohistochemistry and the TUNEL method. Epithelium developed in 3D‐OT without fibroblasts showed an undifferentiated phenotype. Addition of granulocyte macrophage‐colony stimulating factor (GM‐CSF) induced expression of cytokeratin 13 in suprabasal cell layers. Admixture of GM‐CSF and keratinocyte growth factor (KGF) induced, in addition, polarization of epidermal growth factor (EGF) receptor and β1‐integrin to basal cell layer and collagen IV deposition. Terminal differentiation with polarization of TUNEL‐positive cells to superficial layers occurred only in the presence of fibroblasts in collagen gels either in direct contact or at distance from normal oral keratinocytes. Taken together, these results show that major aspects of oral epithelial differentiation are regulated by the synergic combination of GM‐CSF and KGF. However, the terminal stage seems to be controlled by other yet unidentified fibroblast‐derived diffusible factor(s).
Collapse
Affiliation(s)
- Ridhima Das
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Maria Justina Roxana Virlan
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral Rehabilitation and Department of Biochemistry, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Victoria Xenaki
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Keerthi K Kulasekara
- Department of Pharmacy & Applied Science, College of Science, Health & Engineering, La Trobe University, Bendigo, Victoria, Australia
| | - Ochiba Lukandu
- Maxillofacial Surgery and Pathology, School of Dentistry, Moi University, Eldoret, Kenya
| | - Evelyn Neppelberg
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | - Olav K Vintermyr
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anne Chr Johannessen
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Bogdan Calenic
- Department of Oral Rehabilitation and Department of Biochemistry, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Elena Costea
- Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Mirastschijski U, Jiang D, Rinkevich Y. Genital Wound Repair and Scarring. Med Sci (Basel) 2022; 10:23. [PMID: 35466231 PMCID: PMC9036227 DOI: 10.3390/medsci10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Skin wound repair has been the central focus of clinicians and scientists for almost a century. Insights into acute and chronic wound healing as well as scarring have influenced and ameliorated wound treatment. Our knowledge of normal skin notwithstanding, little is known of acute and chronic wound repair of genital skin. In contrast to extra-genital skin, hypertrophic scarring is uncommon in genital tissue. Chronic wound healing disorders of the genitals are mostly confined to mucosal tissue diseases. This article will provide insights into the differences between extra-genital and genital skin with regard to anatomy, physiology and aberrant wound repair. In light of fundamental differences between genital and normal skin, it is recommended that reconstructive and esthetic surgery should exclusively be performed by specialists with profound expertise in genital wound repair.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Mira-Beau Gender Esthetics Berlin, 10777 Berlin, Germany
- Wound Repair Unit, CBIB, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 München, Germany
| |
Collapse
|
17
|
Liu X, Mao X, Ye G, Wang M, Xue K, Zhang Y, Zhang H, Ning X, Zhao M, Song J, Zhang YS, Zhang X. Bioinspired Andrias davidianus-Derived wound dressings for localized drug-elution. Bioact Mater 2022; 15:482-494. [PMID: 35386341 PMCID: PMC8965088 DOI: 10.1016/j.bioactmat.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Local drug delivery has received increasing attention in recent years. However, the therapeutic efficacy of local delivery of drugs is still limited under certain scenarios, such as in the oral cavity or in wound beds after resection of tumors. In this study, we introduce a bioinspired adhesive hydrogel derived from the skin secretions of Andrias davidianus (SSAD) as a wound dressing for localized drug elution. The hydrogel was loaded with aminoguanidine or doxorubicin, and its controlled drug release and healing-promoting properties were verified in a diabetic rat palatal mucosal defect model and a C57BL/6 mouse melanoma-bearing model, respectively. The results showed that SSAD hydrogels with different pore sizes could release drugs in a controllable manner and accelerate wound healing. Transcriptome analyses of the palatal mucosa suggested that SSAD could significantly upregulate pathways linked to cell adhesion and extracellular matrix deposition and had the ability to recruit keratinocyte stem cells to defect sites. Taken together, these findings indicate that property-controllable SSAD hydrogels could be a promising biofunctional wound dressing for local drug delivery and promotion of wound healing. The SSAD is a biologically drawable source with facile production, cost-effective, and safe. SSAD increases drug bioavailability with local application. The drug release rate can be controlled by regulating SSAD particle size. The SSAD-based wound dressing is adhesive. SSAD can also promote wound healing.
Collapse
Affiliation(s)
- Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering and Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guo Ye
- Department of Stomatology, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, China
| | - Menghong Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, 200011, China.,Department of Plastic and reconstructive surgery, Hainan Western Central Hospital, HaiNan, 571700, China
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Xiaoqiao Ning
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Man Zhao
- Department of Pharmacy, The 958th Hospital of PLA, Chongqing, 404100, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| |
Collapse
|
18
|
Caruntu A, Moraru L, Surcel M, Munteanu A, Costache DO, Tanase C, Constantin C, Scheau C, Neagu M, Caruntu C. Persistent Changes of Peripheral Blood Lymphocyte Subsets in Patients with Oral Squamous Cell Carcinoma. Healthcare (Basel) 2022; 10:healthcare10020342. [PMID: 35206956 PMCID: PMC8872623 DOI: 10.3390/healthcare10020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a common cancer with high morbidity and mortality. Alterations of antitumor immune responses are involved in the development of this malignancy, and investigation of immune changes in the peripheral blood of OSCC patients has aroused the interest of researchers. Methods: In our study, we assessed the proportions of CD3+ total T lymphocytes, CD3+CD4+ helper T lymphocytes, CD3+CD8+ suppressor/cytotoxic T lymphocytes, CD3−CD19+ total B lymphocytes, and CD3−CD16+CD56+ NK cells in the peripheral blood of OSCC patients. Results: The data obtained both pre- and post-therapy showed a similar level of total CD3+ T lymphocytes in OSCC patients and control subjects, pinpointing the stability of this immune parameter. On the other hand, pre-therapeutic data showed a lower proportion of helper T lymphocytes (CD4+), a significantly higher level of cytotoxic/suppressive T lymphocytes (CD8+), and a much lower CD4+ T lymphocyte/CD8+ T lymphocyte ratio compared to control subjects. Conversely, evaluation of circulating NK (CD16+) cells showed a markedly higher pre-therapeutic level compared to the control group. Conclusions: Our results related to immune changes in the peripheral blood add new information to this complex universe of connections between immuno-inflammatory processes and carcinogenesis.
Collapse
Affiliation(s)
- Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (A.C.); (L.M.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (A.C.); (L.M.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
| | - Adriana Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
| | - Cristiana Tanase
- Biochemistry Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (C.S.); or (M.N.)
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Correspondence: (C.S.); or (M.N.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
19
|
Buhl M, Kloskowski T, Jundzill A, Szeliski K, Rasmus M, Dąbrowski P, Siedlecka N, Drewa T, Pokrywczynska M. Increased Expression of p63 Protein and Sonic Hedgehog Signaling Molecule in Buccal Epithelial Holoclones. Stem Cells Dev 2021; 30:1037-1048. [PMID: 34486385 DOI: 10.1089/scd.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Construction of many tissues and organs de novo requires the use of external epithelial cell sources. In the present study, we optimized the isolation, expansion, and characterization of porcine oral epithelial cells from buccal tissue (Buccal Epithelial Cells, BECs). Additionally, we tested whether key markers [cytokeratin 14 (ck14), p63 protein, and sonic hedgehog molecule (shh)] expression profiles are correlated with three buccal epithelial clone types. Two digestion methods of BECs isolation [Method 1, M1 (collagenase IV/dispase and accutase) and Method 2, M2 (collagenase IV/dispase and trypsin/EDTA)] were compared. Cells obtained by more effective method were further cultured to the third passage and analyzed. Holoclone-, meroclone-, and paraclone-like colonies were identified based on BEC morphology. Immunofluorescent staining was performed to compare selected markers for the indicated buccal clone types. Comparative analysis demonstrated the advantage of isolation using M1 over M2. Cells from the third passage exhibited average 92.73% ± 2.27% presence of ck14. Real-time polymerase chain reaction confirmed expression of tested genes [cytokeratin 8 (ck8), ck14, integrin β1, and p63]. The highest level of ck14, shh and p63, was observed for holoclones. The comparable ck14 expression was observed in the mero- and paraclones. Meroclones expressed significantly lower levels of shh compared with paraclones. The weakest p63 expression was observed in the paraclone-like cells. It was demonstrated that holoclones are the richest in shh (+) and p63 (+) stem cells and these cells should appear to be a promising alternative for obtaining epithelial cells for tissue engineering purposes.
Collapse
Affiliation(s)
- Monika Buhl
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Plastic, Reconstructive, and Esthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Dąbrowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Natalia Siedlecka
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
20
|
Tait A, Proctor T, Hamilton NJI, Birchall MA, Lowdell MW. GMP compliant isolation of mucosal epithelial cells and fibroblasts from biopsy samples for clinical tissue engineering. Sci Rep 2021; 11:12392. [PMID: 34117337 PMCID: PMC8196163 DOI: 10.1038/s41598-021-91939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Engineered epithelial cell sheets for clinical replacement of non-functional upper aerodigestive tract mucosa are regulated as medicinal products and should be manufactured to the standards of good manufacturing practice (GMP). The current gold standard for growth of epithelial cells for research utilises growth arrested murine 3T3 J2 feeder layers, which are not available for use as a GMP compliant raw material. Using porcine mucosal tissue, we demonstrate a new method for obtaining and growing non-keratinised squamous epithelial cells and fibroblast cells from a single biopsy, replacing the 3T3 J2 with a growth arrested primary fibroblast feeder layer and using pooled Human Platelet lysate (HPL) as the media serum supplement to replace foetal bovine serum (FBS). The initial isolation of the cells was semi-automated using an Octodissociator and the resultant cell suspension cryopreservation for future use. When compared to the gold standard of 3T3 J2 and FBS containing medium there was no reduction in growth, viability, stem cell population or ability to differentiate to mature epithelial cells. Furthermore, this method was replicated with Human buccal tissue, providing cells of sufficient quality and number to create a tissue engineered sheet.
Collapse
Affiliation(s)
- Angela Tait
- Cancer Institute, Department of Haematology, University College London, London, UK.
| | - Toby Proctor
- Department of Biochemical Engineering, University College London, London, UK
| | | | | | - Mark W Lowdell
- Cancer Institute, Department of Haematology, University College London, London, UK
| |
Collapse
|
21
|
Scheau C, Caruntu C, Badarau IA, Scheau AE, Docea AO, Calina D, Caruntu A. Cannabinoids and Inflammations of the Gut-Lung-Skin Barrier. J Pers Med 2021; 11:494. [PMID: 34072930 PMCID: PMC8227007 DOI: 10.3390/jpm11060494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified great similarities and interferences between the epithelial layers of the digestive tract, the airways and the cutaneous layer. The relationship between these structures seems to implicate signaling pathways, cellular components and metabolic features, and has led to the definition of a gut-lung-skin barrier. Inflammation seems to involve common features in these tissues; therefore, analyzing the similarities and differences in the modulation of its biomarkers can yield significant data promoting a better understanding of the particularities of specific signaling pathways and cellular effects. Cannabinoids are well known for a wide array of beneficial effects, including anti-inflammatory properties. This paper aims to explore the effects of natural and synthetic cannabinoids, including the components of the endocannabinoid system, in relation to the inflammation of the gut-lung-skin barrier epithelia. Recent advancements in the use of cannabinoids as anti-inflammatory substances in various disorders of the gut, lungs and skin are detailed. Some studies have reported mixed or controversial results, and these have also been addressed in our paper.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
22
|
Caruntu A, Scheau C, Tampa M, Georgescu SR, Caruntu C, Tanase C. Complex Interaction Among Immune, Inflammatory, and Carcinogenic Mechanisms in the Head and Neck Squamous Cell Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1335:11-35. [PMID: 33650087 DOI: 10.1007/5584_2021_626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation is deeply involved in the development of most types of cancer. Many studies focus on the interaction between immune-inflammatory mechanisms and tumorigenesis in the head and neck squamous cell carcinoma (HNSCC). In this chapter, we emphasize the complexity of processes underlying this interaction and discuss the mechanisms of carcinogenesis in HNSCC with a special focus on metabolic changes, inflammation, and the immune landscape. Unveiling complex connections between immuno-inflammatory processes and tumor initiation, promotion, and progression will open new directions in the reliable identification of predictive factors and therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, Bucharest, Romania.,Faculty of Dental Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, "Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania. .,Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Simona Roxana Georgescu
- Department of Dermatology, "Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania.,Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania.
| | - Cristiana Tanase
- Faculty of Dental Medicine, "Titu Maiorescu" University, Bucharest, Romania.,Department of Biochemistry-Proteomics, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
23
|
Martins MD, Silveira FM, Martins MAT, Almeida LO, Bagnato VS, Squarize CH, Castilho RM. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing. JOURNAL OF BIOPHOTONICS 2021; 14:e202000274. [PMID: 33025746 DOI: 10.1002/jbio.202000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Felipe Martins Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana O Almeida
- Laboratory of Tissue Culture, Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, Rio Grande do Sul, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
DiPietro LA, Wilgus TA, Koh TJ. Macrophages in Healing Wounds: Paradoxes and Paradigms. Int J Mol Sci 2021; 22:950. [PMID: 33477945 PMCID: PMC7833402 DOI: 10.3390/ijms22020950] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are prominent cells in normally healing adult skin wounds, yet their exact functions and functional significance to healing outcomes remain enigmatic. Many functional attributes are ascribed to wound macrophages, including host defense and support of the proliferation of new tissue to replace that lost by injury. Indeed, the depletion of macrophages is unmistakably detrimental to normal skin healing in adult mammals. Yet in certain systems, dermal wounds seem to heal well with limited or even no functional macrophages, creating an apparent paradox regarding the function of this cell in wounds. Recent advances in our understanding of wound macrophage phenotypes, along with new information about cellular plasticity in wounds, may provide some explanation for the apparently contradictory findings and suggest new paradigms regarding macrophage function in wounds. Continued study of this remarkable cell is needed to develop effective therapeutic options to improve healing outcomes.
Collapse
Affiliation(s)
- Luisa A. DiPietro
- College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, Chicago, IL 60612, USA
| | - Traci A. Wilgus
- Department of Pathology, The Ohio State University, 129 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, USA;
| | - Timothy J. Koh
- College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor, Chicago, IL 60612, USA;
| |
Collapse
|
25
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
26
|
Type XVIII Collagen Modulates Keratohyalin Granule Formation and Keratinization in Oral Mucosa. Int J Mol Sci 2019; 20:ijms20194739. [PMID: 31554264 PMCID: PMC6801805 DOI: 10.3390/ijms20194739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial keratinization involves complex cellular modifications that provide protection against pathogens and chemical and mechanical injuries. In the oral cavity, keratinized mucosa is also crucial to maintain healthy periodontal or peri-implant tissues. In this study, we investigated the roles of type XVIII collagen, a collagen-glycosaminoglycan featuring an extracellular matrix component present in the basement membrane, in oral mucosal keratinization. Histological analysis of keratinized and non-keratinized oral mucosa showed that type XVIII collagen was highly expressed in keratinized mucosa. Additionally, a 3D culture system using human squamous carcinoma cells (TR146) was used to evaluate and correlate the changes in the expression of type XVIII collagen gene, COL18A1, and epithelial keratinization-related markers, e.g., keratin 1 (KRT1) and 10 (KRT10). The results showed that the increase in COL18A1 expression followed the increase in KRT1 and KRT10 mRNA levels. Additionally, loss-of-function analyses using silencing RNA targeting COL18A1 mRNA and a Col18-knockout (KO) mouse revealed that the absence of type XVIII collagen induces a dramatic decrease in KRT10 expression as well as in the number and size of keratohyalin granules. Together, the results of this study demonstrate the importance of type XVIII collagen in oral mucosal keratinization.
Collapse
|
27
|
Kaufman G, Skrtic D. Morphological and kinetic study of oral keratinocytes assembly on reconstituted basement membrane: Effect of TEGDMA. Arch Oral Biol 2019; 104:103-111. [PMID: 31177012 DOI: 10.1016/j.archoralbio.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Open wounds of oral cavity require rapid healing. The cytotoxic monomer, triethylene glycol dimethacrylate (TEGDMA) can leach out from dental restoratives, reach the oral epithelial barrier and trigger an immune response. It is speculated that low and moderate concentrations of TEGDMA (0.5 and 1.5 mmol/L, respectively) influence the assembly kinetics and morphology of the keratinocyte layers overlying the extracellular matrix (ECM) in vivo. A three-dimensional cell system composed of immortalized oral keratinocytes (iMOK) cultured on reconstituted basement membrane (ECM) was used to investigate the development of epithelial layers upon exposure to TEGDMA. METHODS Adherence and opposing movement of adjacent keratinocytes using actin protrusions (lamellipodia and filopodia) to create spheroids, and their fusion capacity to establish subsequent layers were tested at different time points. Fluorescent, confocal, differential interference contrast microscopy and image processing were employed to quantify the morphological modifications over time. RESULTS Increasing concentrations of TEGDMA decreased the number of viable cells that utilized the actin protrusions and led to a delay in the communication/interaction among cells. Consequently, cells assembly was affected and the formation of more than a single layer prevented. Areas of basal-like proliferating cells were replaced with the increasing areas of non-replicating large cell population and extended gaps. CONCLUSIONS These findings suggest that TEGDMA may prevent rapid sealing of open wounds by keratinocytes and suppress the establishment of a resistant and impermeable barrier against pathogen internalization. The iMOK-ECM-based platform facilitated the validation and quantification of solubilized dental materials impact on the reconstitution of epithelial layer.
Collapse
Affiliation(s)
- Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
28
|
Lin KY, Chung CH, Ciou JS, Su PF, Wang PW, Shieh DB, Wang TC. Molecular damage and responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health 2019; 19:10. [PMID: 30634966 PMCID: PMC6329095 DOI: 10.1186/s12903-018-0694-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2)-based tooth bleaching reagents have recently increased in popularity and controversy. H2O2 gel (3%) is used in a Nightguard for vital bleaching; transient tooth sensitivity and oral mucosa irritation have been reported. Genotoxicity and carcinogenicity have also been significant concerns. METHODS We used primary cultured normal human oral keratinocytes (NHOKs) as an in vitro model to investigate the pathological effects to mitochondria functions on human oral keratinocytes exposed to different doses of H2O2 for different durations. RESULTS An MTT assay showed compromised cell viability at a dose over 5 mM. The treatments induced nuclear DNA damage, measured using a single-cell gel electrophoresis assay. A real-time quantitative polymerase chain reaction showed H2O2 induced significant increase in mitochondrial 4977-bp deletion. Mitochondrial membrane potential and apoptosis assays suggested that oxidative damage defense mechanisms were activated after prolonged exposure to H2O2. Reduced intracellular glutathione was an effective defense against oxidative damage from 5 mM of H2O2. CONCLUSION Our study suggests the importance for keratinocyte damage of the dose and the duration of the exposure to H2O2 in at-home-bleaching. A treatment dose ≥100 mM directly causes severe cytotoxicity with as little as 15 min of exposure.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Harrisburg, PA, 16803, USA
| | - Ching-Hung Chung
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan
| | - Jheng-Sian Ciou
- Graduate Institute of Pharmaceutical Science, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Dar-Bin Shieh
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan. .,Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, Advanced Optronic Technology Center, Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzu-Chueh Wang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| |
Collapse
|
29
|
Voiculescu VM, Lisievici CV, Lupu M, Vajaitu C, Draghici CC, Popa AV, Solomon I, Sebe TI, Constantin MM, Caruntu C. Mediators of Inflammation in Topical Therapy of Skin Cancers. Mediators Inflamm 2019; 2019:8369690. [PMID: 30766448 PMCID: PMC6350587 DOI: 10.1155/2019/8369690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
Taking into consideration that the immune system plays a very important role in the development of melanoma and non-melanoma skin cancers, which have a high prevalence in immunosuppressed patients and after prolonged ultraviolet radiation, the interest in developing novel therapies, in particular targeting the inflammation in cancer, has increased in the past years. The latest data suggest that therapies such as imiquimod (IMQ), ingenol mebutate (IM), 5-fluorouracil (5-FU), retinoids, and nonsteroidal anti-inflammatory drugs (NSAIDs) have been used with success in the topical treatment of some cancers. Herein, we review the topical treatment targeting the inflammation in skin cancer and the mechanisms involved in these processes. Currently, various associations have shown a superior success rate than monotherapy, such as systemic acitretin and topical IMQ, topical 5-FU with tretinoin cream, or IMQ with checkpoint inhibitor cytotoxic T lymphocyte antigen 4. Novel therapies targeting Toll-like receptor-7 (TLR-7) with higher selectivity than IMQ are also of great interest.
Collapse
Affiliation(s)
- Vlad Mihai Voiculescu
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
| | | | - Mihai Lupu
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- Dermatology Clinic, MedAs Medical Center, Bucharest, Romania
| | - Cristina Vajaitu
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
| | | | | | - Iulia Solomon
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
| | - Teona Ioana Sebe
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- The Clinic of Plastic Surgery Reconstructive Microsurgery, Emergency Hospital Bucharest, Romania
| | - Maria Magdalena Constantin
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- 2nd Department of Dermatology, “Colentina” Clinical Hospital, Bucharest, Romania
| | - Constantin Caruntu
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- Department of Dermatology, Prof. “N Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| |
Collapse
|
30
|
Bucur M, Dinca O, Vladan C, Popp C, Nichita L, Cioplea M, Stînga P, Mustatea P, Zurac S, Ionescu E. Variation in Expression of Inflammation-Related Signaling Molecules with Profibrotic and Antifibrotic Effects in Cutaneous and Oral Mucosa Scars. J Immunol Res 2018; 2018:5196023. [PMID: 30622976 PMCID: PMC6304192 DOI: 10.1155/2018/5196023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex biologic process evolving in three phases: inflammation, proliferation, and tissue remodeling controlled by numerous growth factors and cytokines. Oral mucosa wounds heal with significantly less important scars with less numerous macrophages and mast cells and more numerous myofibroblasts than cutaneous counterparts. We analyzed 32 cutaneous and 32 oral mucosa scars for TGFbeta1, TGFbeta2, TGFbeta3, TNFalpha, PDGF BB and FGF1 expression in mesenchymal cells, endothelial cells, macrophages, and multinucleated giant cells. We identified differences in the expression of profibrotic and antifibrotic factors in oral mucosa and skin scars; TGFbeta2 was positive in cutaneous multinucleated giant cells, TNFalpha was positive in cutaneous macrophages, and both were negative in oral mucosa while TGFbeta3 was positive in oral macrophages and mostly negative in cutaneous ones. PDGF BB and FGF1 were positive in oral endothelial cells and oral macrophages and negative in macrophages with opposite positivity pattern in cutaneous scars. Based on these findings, macrophage seems to be the key player in modulating pro- and antifibrotic processes in wound regeneration.
Collapse
Affiliation(s)
- Mihai Bucur
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Octavian Dinca
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristian Vladan
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Luciana Nichita
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Patricia Stînga
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Petronel Mustatea
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Surgery, Clinical Hospital “Dr. Ion Cantacuzino”, 5 Ioan Movila, 020475 Bucharest, Romania
| | - Sabina Zurac
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Ecaterina Ionescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Ambulatory of Orthodontics, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| |
Collapse
|
31
|
Mediators of Inflammation - A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma. J Immunol Res 2018; 2018:1061780. [PMID: 30539028 PMCID: PMC6260538 DOI: 10.1155/2018/1061780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common tumour of the oral cavity, associated with significant morbidity and mortality. It is a multifactorial condition, both genetic and environmental factors being involved in its development and progression. Its pathogenesis is not fully elucidated, but a pivotal role has been attributed to inflammation, strong evidence supporting the association between chronic inflammation and carcinogenesis. Moreover, an increasing number of studies have investigated the role of different mediators of inflammation in the early detection of OSCC. In this review, we have summarized the main markers of inflammation that could be useful in diagnosis and shed some light in OSCC pathogenesis.
Collapse
|
32
|
Solomon I, Voiculescu VM, Caruntu C, Lupu M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C, Neagu M, Boda D. Neuroendocrine Factors and Head and Neck Squamous Cell Carcinoma: An Affair to Remember. DISEASE MARKERS 2018; 2018:9787831. [PMID: 29854027 PMCID: PMC5966665 DOI: 10.1155/2018/9787831] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies. Therefore, the major goal of cancer treatment is inhibition of tumor cell growth and of metastasis development. In order to choose the best management option for HNSCC patients, we need to identify reliable prognostic factors and to develop new molecular techniques in order to obtain a better understanding of therapy resistance. By acting as neurohormones, neurotransmitters, or neuromodulators, the neuroendocrine factors are able to signal the maintenance of physiological homeostasis or progression to malignant disease. Certain neuropeptides possess strong antitumor properties acting as tumor suppressors and immunomodulators, providing additional benefits for future potential therapeutic strategies. In light of the current understanding, cancer starts as a localized disease that can be effectively treated if discovered on proper time. Unfortunately, more than often cancer cells migrate to the surrounding tissues generating distant metastases, thus making the prognosis and survival in this stage much worse. As cellular migration is mandatory for tumor invasion and metastasis development, searching for alternate controllers of these processes, such as the neuroendocrine factors, it is an active tremendous task.
Collapse
Affiliation(s)
- Iulia Solomon
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Vlad Mihai Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Dermatology, “Prof. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Titan Medical Center, Bucharest, Romania
| | - Alexandra Popa
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Radu Albulescu
- Chemical and Pharmaceutical National Institute, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristiana Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Carolina Constantin
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Clinical Hospital, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
33
|
Markers of Oral Lichen Planus Malignant Transformation. DISEASE MARKERS 2018; 2018:1959506. [PMID: 29682099 PMCID: PMC5846459 DOI: 10.1155/2018/1959506] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology with significant impact on patients' quality of life. Malignant transformation into oral squamous cell carcinoma (OSCC) is considered as one of the most serious complications of the disease; nevertheless, controversy still persists. Various factors seem to be involved in the progression of malignant transformation; however, the mechanism of this process is not fully understood yet. Molecular alterations detected in OLP samples might represent useful biomarkers for predicting and monitoring the malignant progression. In this review, we discuss various studies which highlight different molecules as ominous predictors of OLP malignant transformation.
Collapse
|
34
|
Komori T, Ono M, Hara ES, Ueda J, Nguyen HTT, Nguyen HT, Yonezawa T, Maeba T, Kimura-Ono A, Takarada T, Momota R, Maekawa K, Kuboki T, Oohashi T. Type IV collagen α6 chain is a regulator of keratin 10 in keratinization of oral mucosal epithelium. Sci Rep 2018; 8:2612. [PMID: 29422532 PMCID: PMC5805778 DOI: 10.1038/s41598-018-21000-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022] Open
Abstract
Keratinized mucosa is of fundamental importance to maintain healthy gingival tissue, and understanding the mechanisms of oral mucosa keratinization is crucial to successfully manage healthy gingiva. Previous studies have shown a strong involvement of the basement membrane in the proliferation and differentiation of epithelial cells. Therefore, first, to identify the keratinized mucosa-specific basement membrane components, immunohistochemical analysis for the six alpha chains of type IV collagen was performed in 8-week-old mice. No difference in the expression pattern of type IV collagen α1(IV) and α2(IV) chains was observed in the keratinized and non-keratinized mucosa. Interestingly, however, type IV collagen α5(IV) and α6(IV) chains specifically were strongly detected in the keratinized mucosa. To analyze the functional roles of the type IV collagen isoform α6(IV) in oral mucosa keratinization, we analyzed Col4a6-knockout mice. Epithelial developmental delay and low levels of KRT10 were observed in new-born Col4a6-knockout mice. Additionally, in vitro experiments with loss-of function analysis using human gingival epithelial cells confirmed the important role of α6(IV) chain in epithelial keratinization. These findings indicate that α112:α556 (IV) network, which is the only network that includes the α6(IV) chain, is one regulator of KRT10 expression in keratinization of oral mucosal epithelium.
Collapse
Affiliation(s)
- Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan.
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Junji Ueda
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ha Thi Thu Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ha Thi Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takahiro Maeba
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Aya Kimura-Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ryusuke Momota
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Kenji Maekawa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
35
|
Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, Drakoulis N, Mamoulakis C, Tzanakakis G, Neagu M, Spandidos DA, Izotov BN, Tsatsakis AM. Neuroendocrine factors: The missing link in non‑melanoma skin cancer (Review). Oncol Rep 2017; 38:1327-1340. [PMID: 28713981 PMCID: PMC5549028 DOI: 10.3892/or.2017.5817] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Non‑melanoma skin cancer (NMSC) is the most common form of cancer worldwide, comprising 95% of all cutaneous malignancies and approximately 40% of all cancers. In spite of intensive efforts aimed towards awareness campaigns and sun‑protective measures, epidemiological data indicate an increase in the incidence of NMSC. This category of skin cancers has many common environmental triggers. Arising primarily on sun‑exposed skin, it has been shown that ultraviolet radiation is, in the majority of cases, the main trigger involved in the pathogenesis of NMSC. Aside from the well‑known etiopathogenic factors, studies have indicated that several neuroactive factors are involved in the carcinogenesis of two of the most common types of NMSC, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), with the exception of penile SCC, for which a paucity of specific data on their pathogenic role exists. The complex interaction between the peripheral nervous system and target cells in the skin appears to be mediated by locally released neuroendocrine factors, such as catecholamines, substance P, calcitonin gene‑related peptide and somatostatin, as well as neurohormones, such as proopiomelanocortin and its derived peptides, α‑melanocyte‑stimulating hormone and adrenocorticotropin. All these factors have been, at least at some point, a subject of debate regarding their precise role in the pathogenesis of NMSC. There is also a significant body of evidence indicating that psychological stress is a crucial impact factor influencing the course of skin cancers, including SCC and BCC. Numerous studies have suggested that neuroendocrine factor dysregulation, as observed in stress reactions, may be involved in tumorigenesis, accelerating the development and progression, and suppressing the regression of NMSC. Further studies are required in order to elucidate the exact mechanisms through which neuroactive molecules promote or inhibit cutaneous carcinogenesis, as this could lead to the development of more sophisticated and tailored treatment protocols, as well as open new perspectives in skin cancer research.
Collapse
Affiliation(s)
- Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, 030442 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- ‘Titu Maiorescu’ University, Faculty of Medicine, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | | | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Tanase
- ‘Titu Maiorescu’ University, Faculty of Medicine, 031593 Bucharest, Romania
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Maria Sifaki
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Monica Neagu
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Boris N. Izotov
- Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Aristides M. Tsatsakis
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
36
|
Sobral LM, Coletta RD, Alberici LC, Curti C, Leopoldino AM. SET/I2PP2A overexpression induces phenotypic, molecular, and metabolic alterations in an oral keratinocyte cell line. FEBS J 2017. [PMID: 28636114 DOI: 10.1111/febs.14148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multifunctional SET/I2PP2A protein is known to be overexpressed in head and neck squamous cell carcinoma. However, SET has been reported to have apparently conflicting roles in promoting cancer cell survival under oxidative stress conditions and preventing invasion and metastasis, complicating efforts to understand the contribution of SET to carcinogenesis. In the present study, we overexpressed SETin a spontaneously immortalized oral keratinocyte cell line (NOK-SI SET) and demonstrated that SET upregulation alone was sufficient to transform cells. In comparison with NOK-SI cells, NOK-SI SET cells demonstrated increased levels of phosphorylated Akt, c-Myc and inactive/phosphorylated Rb, together with decreased total Rb protein levels. In addition, NOK-SI SET cells presented the following: (a) a spindle-cell shape morphology compared with the polygonal morphology of NOK-SI cells; (b) loss of mesenchymal stem cell markers CD44 and CD73, and epithelial cell markers CD71 and integrin α6/β4; (c) the ability to form xenograft tumors in nude mice; and (d) increased mitochondrial respiration accompanied by decreased ROSlevels. Overall, our results show that SEToverexpression promotes morphological and oncogenic cell transformation of an oral keratinocyte cell.
Collapse
Affiliation(s)
- Lays M Sobral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
37
|
Shin JW, Choi HR, Nam KM, Lee HS, Kim SA, Joe HJ, Kazumi T, Park KC. The Co-Expression Pattern of p63 and HDAC1: A Potential Way to Disclose Stem Cells in Interfollicular Epidermis. Int J Mol Sci 2017; 18:ijms18071360. [PMID: 28672879 PMCID: PMC5535853 DOI: 10.3390/ijms18071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell markers of interfollicular epidermis (IEF) have not been established thus far. The aim of this study is to suggest a new way to disclose IFE-stem cells by combining the expression of histone deacetylases (HDAC) 1 and p63. Immunohistochemical staining of HDAC1 and p63 was performed in six normal human samples. Moreover, a skin equivalent (SE) model was treated with suberoylanilohydroxamic acid (SAHA, an HDAC inhibitor) to elucidate the role of HDAC1. Finally, rapidly adhering (RA) keratinocytes to a type IV collagen, which have been identified to represent epidermal stem cells, were subjected to Western blot analysis with antibodies against HDAC1. In normal samples, there was a minor subpopulation comprised of p63-positive and HDAC1-negative cells in the basal layers. The proportion of this subpopulation was decreased with age. In the SE model, SAHA treatment increased the epidermal thickness and number of p63-positive cells in a dose dependent manner. After SAHA treatment, the expression of differentiation markers was decreased, while that of basement membrane markers was increased. In a Western blot analysis, HDAC1 was not expressed in RA cells. In conclusion, the combination of p63-positive and HDAC1-negative expressions can be a potential new way for distinguishing epidermal stem cells.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Kyung-Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hyun-Sun Lee
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Sung-Ae Kim
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | - Hyun-Jae Joe
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | | | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| |
Collapse
|
38
|
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 2017; 69:7-17. [PMID: 26252398 DOI: 10.1111/prd.12104] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
The past decade of basic research in periodontology has driven radical changes in our understanding and perceptions of the pathogenic processes that drive periodontal tissue destruction. The core elements of the classical model of disease pathogenesis, developed by Page & Kornman in 1997, remain pertinent today; however, our understanding of the dynamic interactions between the various microbial and host factors has changed significantly. The molecular era has unraveled aspects of genetics, epigenetics, lifestyle and environmental factors that, in combination, influence biofilm composition and the host's inflammatory immune response, creating a heterogenic biological phenotype that we label as 'periodontitis'. In this volume of Periodontology 2000, experts in their respective fields discuss these emerging concepts, such as a health-promoting biofilm being essential for periodontal stability, involving a true symbiosis between resident microbial species and each other and also with the host response to that biofilm. Rather like the gut microbiome, changes in the local environment, which may include inflammatory response mediators or viruses, conspire to drive dysbiosis and create a biofilm that supports pathogenic species capable of propagating disease. The host response is now recognized as the major contributor to periodontal tissue damage in what becomes a dysfunctional, poorly targeted and nonresolving inflammation that only serves to nourish and sustain the dysbiosis. The role of epithelial cells in signaling to the immune system is becoming clearer, as is the role of dendritic cells as transporters of periodontal pathogens to distant sites within the body, namely metastatic infection. The involvement of nontraditional immune cells, such as natural killer cells, is being recognized, and the simple balance between T-helper 1- and T-helper 2-type T-cell populations has become less clear with the emergence of T-regulatory cells, T-helper 17 cells and follicular helper cells. The dominance of the neutrophil has emerged, not only as a potential destructor when poorly regulated but as an equally unpredictable effector cell for specific B-cell immunity. The latter has emerged, in part, from the realization that neutrophils live for 5.4 days in the circulation, rather than for 24 h, and are also schizophrenic in nature, being powerful synthesizers of proinflammatory cytokines but also responding to prostaglandin signals to trigger a switch to a pro-resolving phenotype that appears capable of regenerating the structure and function of healthy tissue. Key to these outcomes are the molecular signaling pathways that dominate at any one time, but even these are influenced by microRNAs capable of 'silencing' certain inflammatory genes. This volume of Periodontology 2000 tries to draw these complex new learnings into a contemporary model of disease pathogenesis, in which inflammation and dysbiosis impact upon whether the outcome is driven toward acute resolution and stability, chronic resolution and repair, or failed resolution and ongoing periodontal tissue destruction.
Collapse
|
39
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
40
|
Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma. DISEASE MARKERS 2016; 2016:9831237. [PMID: 27578920 PMCID: PMC4992754 DOI: 10.1155/2016/9831237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC.
Collapse
|
41
|
Rusu D, Calenic B, Greabu M, Kralev A, Boariu M, Bojin F, Anghel S, Paunescu V, Vela O, Calniceanu H, Stratul SI. Evaluation of oral keratinocyte progenitor and T-lymphocite cells response during early healing after augmentation of keratinized gingiva with a 3D collagen matrix - a pilot study. BMC Oral Health 2016; 17:9. [PMID: 27431208 PMCID: PMC4948093 DOI: 10.1186/s12903-016-0240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/11/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The aim of the present study is to analyze the behavior of selected populations of oral keratinocytes and T-lymphocytes, responsible for re-constructing and maintaining the oral epithelial tissue architecture, following augmentation of the keratinized oral mucosa using a 3D-collagen matrix. METHODS Different groups of oral keratinocytes were isolated from biopsies harvested from 3 patients before the surgical procedure, as well as 7 and 14 days after the augmentation procedure. T-lymphocytes were isolated from peripheral blood at same timepoints. Keratinocytes were characterized for stem and differentiation markers, such as p63, cytokeratin 10 and 14, and in vitro parameters, such as cell viability, cell size and colony-forming efficiency. T-lymphocytes were analyzed for viability and the expression of various cluster of differentiation markers. The methods included magnetic separation of cell populations, immunofluorescence, flow cytometry, and histology of oral biopsies. RESULTS Both at 7 and 14 days, the majority of cells that repopulate the matrix were actively proliferating/progenitor oral keratinocytes with the phenotype integrin alfa6beta4 + CD71+. These cells display in vitro characteristics similar to the progenitor cells analyzed before the matrix placement. T-lymphocytes expressed CD8 and CD69 markers, while CD25 was absent. CONCLUSION The study shows that two weeks after the collagen membrane placement, the healing process appeared to be histologically complete, with no abnormal immune response induced by the matrix, however, with a higher than usual content of active proliferating cells, the majority of keratinocytes being characterized as transit amplifying cells.
Collapse
Affiliation(s)
- Darian Rusu
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| | - Bogdan Calenic
- />Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy, Carol Davila, Blvd-ul Eroii Sanitari, No 8, Bucharest, Romania
- />Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Blv. Splaiul Independenţei nr. 99 - 101, Bucharest, Romania
| | - Maria Greabu
- />Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy, Carol Davila, Blvd-ul Eroii Sanitari, No 8, Bucharest, Romania
| | - Alexander Kralev
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| | - Marius Boariu
- />Department of Odontotherapy and Endodontics, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, 9, 300041 Timisoara, Romania
| | - Florina Bojin
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Simona Anghel
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Virgil Paunescu
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Octavia Vela
- />Dental Clinic Dr.Stratul, Str.Emanoil Gojdu, nr.5, 300176 Timisoara, Romania
| | - Horia Calniceanu
- />Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie nr.10, Oradea, Romania
| | - Stefan-Ioan Stratul
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| |
Collapse
|