1
|
Gastellu T, Le Bizec B, Rivière G. Integrating the lifelong exposure dimension of a chemical mixture into the risk assessment process. Application to trace elements. Food Chem Toxicol 2025; 195:115111. [PMID: 39549998 DOI: 10.1016/j.fct.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Lifelong, the general population is exposed to mixtures of chemicals. Most often, risk assessment is performed to estimate the probability of adverse effects in the population using external exposures to a single chemical and considering one route of exposure. To estimate whole exposure to a chemical, human biomonitoring studies are used to measure chemical concentrations in biological matrices. The limitations of these studies are that it is not possible to distinguish the sources or the routes of exposure. Moreover, only the concentrations of a limited number of chemicals are usually determined due to the associated cost. In this study, a methodology has been developed to estimate the internal exposures of the population to a mixture of trace elements (inorganic As, Cd, Pb and Hg) throughout lifetime. This methodology uses realistic lifetime exposure trajectories coupled to physiological based kinetic modeling, considering several sources of exposure. Then, the estimated biomarkers of exposure were compared to human biomonitoring data to estimate the robustness of the methodology. Finally, risk characterization was performed based on the simulated biomarkers of exposure considering an additive effect of chemicals. This methodology allows to determine the contribution of chemicals to the overall risk of renal effect.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Risk Assessment Department - French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, 94700, France
| | | | - Gilles Rivière
- Risk Assessment Department - French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, 94700, France.
| |
Collapse
|
2
|
Singh D, Bist P, Choudhary S. Co-exposure to multiple heavy metals and metalloid induces dose dependent modulation in antioxidative, inflammatory, DNA damage and apoptic pathways progressing to renal dysfunction in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104537. [PMID: 39214194 DOI: 10.1016/j.etap.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants at the same time in the environment rather than single metal. The kidney is often a site of early damage due to high renal contact to these pollutants. This study was done to examine the cumulative toxic effect of multiple elements prevalent in the environment. To explore the effect of subchronic exposure to heavy metal mixture male and female Swiss albino mice were randomly divided into 14 groups and given varying doses [MPL (maximum permissible limit), 1X, 5X, 10X, 50X, or 100X] of the multiple metals and metalloid mixtures via drinking water for 8 weeks. It was determined that metal treatment caused increased metal load in renal tissue. The kidney function deteriorated in response to 10X, 50X, 100X concentration of the dosing mixture was found associated to oxidative stress, glomerular damage, necrosis, cell death and further exacerbation of the inflammation.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
3
|
Cui K, Li L, Li K, Xiao W, Wang Q. AOP-based framework for predicting the joint action mode of di-(2-ethylhexyl) phthalate and bisphenol A co-exposure on autism spectrum disorder. Neurotoxicology 2024; 104:75-84. [PMID: 39084265 DOI: 10.1016/j.neuro.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.
Collapse
Affiliation(s)
- Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kai Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
4
|
Friedman A, Schildroth S, Fruh V, Krengel MH, Tripodis Y, Placidi D, White RF, Lucchini RG, Smith DR, Wright RO, Horton MK, Claus Henn B. Sex-specific associations of a ferroalloy metal mixture with motor function in Italian adolescents. Environ Epidemiol 2024; 8:e321. [PMID: 39022189 PMCID: PMC11254121 DOI: 10.1097/ee9.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Motor function is critical for children's health, yet remains an understudied neurodevelopmental domain. Exposure to metals has been linked with motor function, but no study has examined the joint effects of metal mixtures. Methods We evaluated cross-sectional associations between a metal mixture and motor function among 569 adolescents (10-14 years old) living near the ferroalloy industry. Concentrations of blood lead, hair manganese, hair copper, and hair chromium were quantified using inductively coupled plasma mass spectrometry. Neuropsychologists administered multiple fine motor function assessments: pursuit aiming, finger tapping, visual reaction time (VRT), and subtests from the Luria Nebraska battery. We estimated associations between motor function and the metal mixture using quantile-based g-computation and multivariable linear regression, adjusting for child age, sex, and socioeconomic status. We explored sex-specific associations in stratified models. Results Associations between the metal mixture and motor function were mostly null but were modified by sex. We observed a beneficial association among females: a quartile increase in all metals in the mixture was associated with a 2.6% faster average response time on the VRT (95% confidence interval [CI] = -4.7%, -0.5%), driven by Cu and Cr. In contrast, this association was adverse among males (ß = 1.5% slower response time [95% CI = -0.7%, 3.9%]), driven by Cu and Mn. Conclusions Results suggest that males may be more susceptible to the adverse effects of metal exposure on motor function during adolescence than females. Future studies, particularly prospective study designs, are warranted to further understand the associations of metal mixtures with motor function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Maxine H. Krengel
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, Florida
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
5
|
Braun G, Schaier M, Werner P, Theiner S, Zanghellini J, Wisgrill L, Fyhrquist N, Koellensperger G. MeXpose-A Modular Imaging Pipeline for the Quantitative Assessment of Cellular Metal Bioaccumulation. JACS AU 2024; 4:2197-2210. [PMID: 38938797 PMCID: PMC11200229 DOI: 10.1021/jacsau.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
MeXpose is an end-to-end image analysis pipeline designed for mechanistic studies of metal exposure, providing spatial single-cell metallomics using laser ablation-inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS). It leverages the high-resolution capabilities of low-dispersion laser ablation setups, a standardized approach to quantitative bioimaging, and the toolbox of immunohistochemistry using metal-labeled antibodies for cellular phenotyping. MeXpose uniquely unravels quantitative metal bioaccumulation (sub-fg range per cell) in phenotypically characterized tissue. Furthermore, the full scope of single-cell metallomics is offered through an extended mass range accessible by ICP-TOFMS instrumentation (covering isotopes from m/z 14-256). As a showcase, an ex vivo human skin model exposed to cobalt chloride (CoCl2) was investigated. For the first time, metal permeation was studied at single-cell resolution, showing high cobalt (Co) accumulation in the epidermis, particularly in mitotic basal cells, which correlated with DNA damage. Significant Co deposits were also observed in vascular cells, with notably lower levels in dermal fibers. MeXpose provides unprecedented insights into metal bioaccumulation with the ability to explore relationships between metal exposure and cellular responses on a single-cell level, paving the way for advanced toxicological and therapeutic studies.
Collapse
Affiliation(s)
- Gabriel Braun
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Martin Schaier
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Paulina Werner
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Zanghellini
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division
of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department
of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| | - Nanna Fyhrquist
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| |
Collapse
|
6
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Thilakaratne R, Lin PID, Rifas-Shiman SL, Landero J, Wright RO, Bellinger D, Oken E, Cardenas A. Cross-sectional and prospective associations of early childhood circulating metals with early and mid-childhood cognition in the Project Viva cohort. ENVIRONMENTAL RESEARCH 2024; 246:118068. [PMID: 38157961 PMCID: PMC10947878 DOI: 10.1016/j.envres.2023.118068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Relatively little is known about the immediate and prospective neurodevelopmental impacts of joint exposure to multiple metals (i.e., metal mixtures) in early childhood. OBJECTIVES To estimate associations of early childhood (∼3 years of age) blood metal concentrations with cognitive test scores at early and mid-childhood (∼8 years of age). METHODS We studied children from the Project Viva cohort. We measured erythrocyte concentrations of seven essential (Co, Cu, Mg, Mn, Mo, Se, and Zn) and eight non-essential metals (As, Ba, Cd, Cs, Hg, Pb, Sn, and Sr) in early childhood blood samples. Trained research assistants administered cognitive tests assessing vocabulary, visual-motor ability, memory, and general intelligence (standard deviations: ∼10 points), in early and mid-childhood. We employed multivariable linear regression to examine associations of individual metals with test scores adjusting for confounders, other concurrently measured metals, and first-trimester maternal blood metals. We also estimated joint associations and explored interaction between metals in mixture analyses. RESULTS We analyzed 349 children (median whole blood Pb ∼1 μg/dL). In cross-sectional analyses, each doubling of Pb was associated with lower visual-motor function (mean difference: -2.43 points, 95% confidence interval (CI): -4.01, -0.86) and receptive vocabulary, i.e., words understood (-1.45 points, 95% CI: -3.26, 0.36). Associations of Pb with mid-childhood cognition were weaker and less precise by comparison. Mg was positively associated with cognition in cross-sectional but not prospective analyses, and cross-sectional associations were attenuated in a sensitivity analysis removing adjustment for concurrent metals. We did not observe joint associations nor interactions. DISCUSSION In this cohort with low blood Pb levels, increased blood Pb was robustly associated with lower cognitive ability in cross-sectional analyses, even after adjustment for prenatal Pb exposure, and regardless of adjustment for metal co-exposures. However, associations with mid-childhood cognition were attenuated and imprecise, suggesting some buffering of Pb neurotoxicity in early life. WHAT THIS STUDY ADDS Relatively few studies have comprehensively separated the effects of neurotoxic metals such as lead (Pb) from pre- and postnatal co-occurring metals, nor examined persistence of associations across childhood. In a cohort of middle-class children, we found higher early childhood (∼3 y) blood Pb was associated with lower scores on cognitive tests, independent of other metals and prenatal blood Pb. However, early childhood Pb was only weakly associated with cognition in mid-childhood (∼8 y). Our results suggest the effects of low-level Pb exposure may attenuate over time in some populations, implying the presence of factors that may buffer Pb neurotoxicity in early life.
Collapse
Affiliation(s)
- Ruwan Thilakaratne
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Julio Landero
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Bellinger
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Settivari RS, Martini A, Wijeyesakere S, Toltin A, LeBaron MJ. Application of Evolving New Approach Methodologies for Chemical Safety Assessment. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN NONCLINICAL DRUG DEVELOPMENT 2024:977-1015. [DOI: 10.1016/b978-0-323-85704-8.00026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Yan X, Zhang J, Li J, Zhang X, Wang Y, Chen X, Luo P, Hu T, Cao X, Zhuang H, Tang X, Yao F, He Z, Ma G, Ran X, Shen L. Effects of arsenic exposure on trace element levels in the hippocampus and cortex of rats and their gender differences. J Trace Elem Med Biol 2023; 80:127289. [PMID: 37660573 DOI: 10.1016/j.jtemb.2023.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Exposure to arsenic (As) is a major public health challenge worldwide. Chronic exposure to As can cause various human health effects, including skin diseases, cardiovascular disease, neurological disorders, and cancer. Studies have shown that As exposure can lead to disturbances in the balance of trace elements in the body. Moreover, As readily crosses the blood-brain barrier and can be enriched in the hippocampus and cortex, causing neurotoxic damage. At present, there are few reports on the effect of As on trace element levels in the central nervous system (CNS). Therefore, we sought to explore As-induced neurotoxicity and the effects of As on CNS trace element levels. METHODS An As-induced neurological injury model in rats was established by feeding As chow for 90 days of continuous exposure, and 19 elements were detected in the hippocampus and cortex of As-exposed rats by inductively coupled plasma mass spectrometry. RESULTS The results showed that the As levels in the hippocampus and cortex of As-exposed rats were significantly higher than those in the control group, The As levels in the cortex were significantly higher than in the hippocampus group. The levels of Cd, Ho, and Rb were increased in the hippocampus and decreased in Au, Ba, Ce, Cs, Pd, Se, Sr, and Tl in the As-exposed group, while the levels of Cd and Rb were increased and Se and Au were decreased in the cortex. Significant gender differences in the effects of As on hippocampal Cd, Ba, Rb, and Sr, and cortical Cd and Mo. CONCLUSION It is suggested that elemental imbalance may be a risk factor for developing As toxicity plays a synergistic or antagonistic role in As-induced toxicity and is closely related to As-induced CNS damage.
Collapse
Affiliation(s)
- Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Junyu Li
- Shenzhen Customs Food Inspection and Quarantine Technology Centre, Shenzhen 518000, PR China
| | - Xinglai Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Yi Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, PR China.
| |
Collapse
|
10
|
Aherrera A, Lin JJ, Chen R, Tehrani M, Schultze A, Borole A, Tanda S, Goessler W, Rule AM. Metal Concentrations in E-Cigarette Aerosol Samples: A Comparison by Device Type and Flavor. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127004. [PMID: 38048100 PMCID: PMC10695266 DOI: 10.1289/ehp11921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The rapid evolution of electronic cigarette (e-cigarette) products warrants surveillance of the differences in exposure across device types-modifiable devices (MODs), cartridge ("pod")-containing devices (PODs), disposable PODs (d-PODs)-and flavors of the products available on the market. OBJECTIVE This study aimed to measure and compare metal aerosol concentrations by device type and common flavors. METHODS We collected aerosol from 104 MODs, 67 PODs (four brands: JUUL, Bo, Suorin, PHIX), and 23 d-PODs (three brands: ZPOD, Bidi, Stig) via droplet deposition in a series of conical pipette tips. Metals and metalloids [aluminum (Al), arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), and zinc (Zn)] were measured using inductively coupled plasma mass spectrometry (ICP-MS), results were log-transformed for statistical analysis, and concentrations are reported in aerosol units (mg / m 3 ). RESULTS Of the 12 elements analyzed, concentrations were statistically significantly higher in MOD devices, except for Co and Ni, which were higher in PODs and d-PODs. Of the POD brands analyzed, PHIX had the highest median concentrations among four metals (Al, Ni, Pb, and Sn) compared to the rest of the POD brands. According to POD flavor, seven metals were three to seven orders of magnitude higher in tobacco-flavored aerosol compared to those in mint and mango flavors. Among the d-POD brands, concentrations of four metals (Al, Cu, Ni, and Pb) were higher in the ZPOD brand than in Bidi Stick and Stig devices. According to d-POD flavor, only Cr concentrations were found to be statistically significantly higher in mint than tobacco-flavored d-PODs. DISCUSSION We observed wide variability in aerosol metal concentrations within and between the different e-cigarette device types, brands, and flavors. Overall, MOD devices generated aerosols with higher metal concentrations than PODs and d-PODs, and tobacco-flavored aerosols contained the highest metal concentrations. Continued research is needed to evaluate additional factors (i.e., nicotine type) that contribute to metal exposure from new and emerging e-cigarette devices in order to inform policy. https://doi.org/10.1289/EHP11921.
Collapse
Affiliation(s)
- Angela Aherrera
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Pediatric Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joyce Jy Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mina Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Schultze
- Department of Biochemistry, Ithaca College School of Humanities and Sciences, Ithaca, New York, USA
| | - Aryan Borole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stefan Tanda
- Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Hirano T, Ikenaka Y, Nomiyama K, Honda M, Suzuki N, Hoshi N, Tabuchi Y. An adverse outcome pathway-based approach to assess the neurotoxicity by combined exposure to current-use pesticides. Toxicology 2023; 500:153687. [PMID: 38040083 DOI: 10.1016/j.tox.2023.153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University,Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
12
|
Lin JJY, Koffman LJ, Tehrani MW, Chen R, Han SG, Sandler DP, Lawrence KG, Jackson WB, Dickerson AS, Ramachandran G, Engel LS, Rule AM. Reliability of low mass toenail samples as biomarkers of chronic metal exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:945-953. [PMID: 37296232 PMCID: PMC10709526 DOI: 10.1038/s41370-023-00560-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toenails are a promising matrix for chronic metal exposure assessment, but there are currently no standard methods for collection and analysis. Questions remain about sample mass requirements and the extent to which metals measured in this matrix are representative of chronic body burden. OBJECTIVE This study proposes a method to maximize sample conservation for toenail metals analysis using inductively coupled plasma mass spectrometry (ICP-MS). We demonstrate the reliability of an ~25 mg toenail sample (typically 1-2 clippings) for metals analysis and evaluate the intra-individual variability of multiple metals in this matrix over time in men from the Gulf Long-term Follow-up (GuLF) Study. METHODS Toenail samples from 123 GuLF Study participants were collected at two visits 3 years apart and analyzed for 18 elements using ICP-MS. Participants with samples exceeding 200 mg at the first visit (n = 29) were selected for triplicate sub-sample analysis. Kendall's coefficient of concordance (W) was used to assess sub-sample reliability and Spearman's correlation coefficients (ρ) were used to evaluate fluctuations in elemental concentrations over time. RESULTS Results were not reported for Cd, Co, Mo, Sb, and V (detected in <60% of the samples). There was strong agreement among triplicate samples (Kendall's W: 0.72 (Cu)-0.90 (Cu)) across all elements evaluated, moderate correlations of elemental concentrations (Spearman's ρ: 0.21-0.42) over 3 years for As, Ca, Cr, Fe, Pb, Mn, and Zn, and strong correlations (>0.50) for Se, Cu, and Hg. IMPACT STATEMENT This toenail reliability study found that a low-mass (~25 mg) toenail sample (1-2 clippings) is suitable for the determination of most elements using ICP-MS and helps to increase the analytical capacity of limited toenail biospecimens collected in cohort studies. The results highlight differences in the suitability of toenails for chronic metal exposure assessment by element and underscore the need to consider intra-person variability, especially when comparing results across studies. We also provide recommendations for analytical standardization and the partitioning of the total collected toenail sample into multiple analytic sub-samples for future studies using toenail biospecimen for multiple assays.
Collapse
Affiliation(s)
- Joyce J Y Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Lily J Koffman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Seok Gyu Han
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Park S, Mupere E, Lund TC, Hodges JS, Moody EC, Colicino E, Georgieff MK, Cusick SE. Blood Levels of Environmental Heavy Metals are Associated with Poorer Iron Status in Ugandan Children: A Cross-Sectional Study. J Nutr 2023; 153:3023-3031. [PMID: 37598752 DOI: 10.1016/j.tjnut.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Iron deficiency (ID) and environmental exposure to metals frequently co-occur among Ugandan children, but little is known about their associations, although iron and other divalent metals share the same intestinal absorption transporter, divalent metal transporter 1 (DMT1). OBJECTIVES We examined associations between iron status and blood concentrations of lead, manganese (Mn), cobalt (Co), and cadmium, both singly and as a mixture. METHODS We used data on sociodemographic status, iron biomarkers, and blood concentrations of heavy metals collected from a cross-sectional survey of 100 children aged 6-59 mo in Kampala, Uganda. We compared blood concentrations of metals in ID with iron-sufficient children. We examined associations between a metal mixture and iron biomarkers using multiple linear regression and weighted quintile sum regression. RESULTS The median (interquartile range) blood Mn (μg/L) was higher in ID children defined by soluble transferrin receptor (sTfR) and ferritin (ID compared with iron-sufficient children): (sTfR [21.3 {15.1, 28.8}, 11.2 {8.6, 18.5}], ferritin [19.5 {15.0, 27.2}, 11.2 {8.8, 19.6}]; P < 0.001 for both). Similarly, the median (interquartile range) blood Co (μg/L) was higher in ID children by ferritin ([0.5 {0.4, 0.9}, 0.4 {0.3, 0.5}], P = 0.05). Based on the multiple linear regression results, higher blood Co and Mn were associated with poorer iron status (defined by all 4 iron indicators for Co and by sTfR for Mn). The weighted quintile sum regression result showed that higher blood concentrations of a metal mixture were associated with poorer iron status represented by sTfR, ferritin, and hepcidin, mainly driven by Co and Mn. CONCLUSIONS Our study findings suggest that poorer iron status is associated with overall heavy metal burden, predominantly Co and Mn, among Ugandan children. Further prospective studies should confirm our primary findings and investigate the combined effects of coexposures to neurotoxicants on the neurodevelopment of young children.
Collapse
Affiliation(s)
- Saeun Park
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Ezekiel Mupere
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Troy C Lund
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| | - James S Hodges
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Emily C Moody
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America.
| |
Collapse
|
14
|
Di D, Tooki T, Zhou H, Cui Z, Zhang R, Zhang JL, Yuan T, Liu Q, Zhou T, Luo X, Ling D, Wang Q. Metal mixture and osteoporosis risk: Insights from plasma metabolite profiling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115256. [PMID: 37454484 DOI: 10.1016/j.ecoenv.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The pathophysiology of osteoporosis (OP) is influenced by exposure to nonessential harmful metals and insufficient or excessive intake of necessary metals. Investigating multiple plasma metals, metabolites, and OP risk among older adults may reveal novel clues of underlying mechanisms for metal toxicity on bone mass. A total of 294 adults ≥ 55 years from Wuhan communities were included. Plasma concentrations of 23 metals and metabolites were measured via inductively coupled plasma-mass spectrometry and global metabolite detection. To investigate the relationships between plasma metals, OP risk, and OP-related metabolites, three different statistical techniques were used: generalized linear regression model, two-way orthogonal partial least-squares analysis (O2PLS), and weighted quantile sum (WQS). The mean ages were 66.82 and 66.21 years in OP (n = 115) and non-OP (n = 179) groups, respectively. Of all 2999 metabolites detected, 111 differential between-group members were observed. The OP risk decreased by 58.5% (OR=0.415, 95% CI: 0.237, 0.727) per quartile increment in the WQS index indicative of metal mixture exposure. Consistency remained for bone mineral density (BMD) measurements. The O2PLS model identified the top five OP-related metabolites, namely, DG(18:2_22:6), 3-phenoxybenzoic acid, TG(16:1_16:1_22:6), TG(16:0_16:0_20:4), and TG(14:1_18:2_18:3), contributing most to the joint covariation between the metal mixture and metabolites. Significant correlations between each of them and the metal mixture were found using WQS regression. Furthermore, the five metabolites mediated the associations of the metal mixtures, BMD, and OP risk. Our findings shed additional light on the mediation functions of plasma metabolites in the connection between multiple metal co-exposure and OP pathogenesis and offer new insights into the probable mechanisms underpinning the bone effects of the metal mixture.
Collapse
Affiliation(s)
- Dongsheng Di
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiaeki Tooki
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Li Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyang Ling
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Thilakaratne R, Lin PID, Rifas-Shiman SL, Wright RO, Hubbard A, Hivert MF, Bellinger D, Oken E, Cardenas A. Mixtures of Metals and Micronutrients in Early Pregnancy and Cognition in Early and Mid-Childhood: Findings from the Project Viva Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87008. [PMID: 37585348 PMCID: PMC10431487 DOI: 10.1289/ehp12016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The developing fetal brain is sensitive to many environmental exposures. However, the independent and joint effects of prenatal exposure to metals and micronutrients on child cognition are not well understood. OBJECTIVES Our aim was to evaluate associations of first-trimester (∼ 10 wk) maternal erythrocyte concentrations of mixtures of nonessential and essential metals and micronutrients with early (∼ 3 y) and mid-childhood (∼ 8 y) cognitive test scores in Project Viva, a prebirth cohort in Boston, Massachusetts, USA. METHODS We measured concentrations of five essential metals (Cu, Mg, Mn, Se, Zn) and two micronutrients (vitamin B12 and folate), together termed the "nutrient mixture," as well as six nonessential metals (As, Ba, Cd, Cs, Hg, Pb), together termed the "neurotoxic mixture," in first-trimester (∼ 10 wk) maternal erythrocytes (metals) or plasma (micronutrients). We assessed visual-motor function and receptive vocabulary in early childhood (∼ 3 y), and visual-motor function, visual memory, and fluid and crystallized intelligence in mid-childhood (∼ 8 y). We employed adjusted quantile g-computation and linear regression to estimate mixture and individual component associations, respectively. RESULTS Analyses included 900 mother-child pairs (74% college graduates; 52% male children). In mixture analyses, a quartile increase in the nutrient mixture was associated with a mean difference in early childhood receptive vocabulary score of 1.58 points [95% confidence interval (CI): 0.06, 3.10], driven by Zn and Se. A quartile increase in the neurotoxic mixture was associated with a mean difference in mid-childhood visual-motor score of - 3.01 points (95% CI: - 5.55 , - 0.47 ), driven by Ba and Cs. Linear regressions supported quantile g-computation findings for mixture component contributions. DISCUSSION Maternal circulating concentrations of several essential (Zn and Se) and nonessential (Ba and Cs) metals were associated with some domains of child cognition. In this folate-replete cohort, first-trimester circulating concentrations of known neurotoxic metals, such as Pb, were not associated with child cognition. https://doi.org/10.1289/EHP12016.
Collapse
Affiliation(s)
- Ruwan Thilakaratne
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - David Bellinger
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
17
|
Sprong C, Te Biesebeek JD, Chatterjee M, Wolterink G, van den Brand A, Blaznik U, Christodoulou D, Crépet A, Hamborg Jensen B, Sokolić D, Rauscher-Gabernig E, Ruprich J, Kortenkamp A, van Klaveren J. A case study of neurodevelopmental risks from combined exposures to lead, methyl-mercury, inorganic arsenic, polychlorinated biphenyls, polybrominated diphenyl ethers and fluoride. Int J Hyg Environ Health 2023; 251:114167. [PMID: 37149958 DOI: 10.1016/j.ijheh.2023.114167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
We performed a mixture risk assessment (MRA) case study of dietary exposure to the food contaminants lead, methylmercury, inorganic arsenic (iAs), fluoride, non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs), all substances associated with declines in cognitive abilities measured as IQ loss. Most of these chemicals are frequently measured in human biomonitoring studies. A component-based, personalised modified reference point index (mRPI) approach, in which we expressed the exposures and potencies of our chosen substances as lead equivalent values, was applied to perform a MRA for dietary exposures. We conducted the assessment for four different age groups (toddlers, children, adolescents, and women aged 18-45 years) in nine European countries. Populations in all countries considered exceeded combined tolerable levels at median exposure levels. NDL-PCBs in fish, other seafood and dairy, lead in grains and fruits, methylmercury in fish and other seafoods, and fluoride in water contributed most to the combined exposure. We identified uncertainties for the likelihood of co-exposure, assessment group membership, endpoint-specific reference values (ESRVs) based on epidemiological (lead, methylmercury, iAs, fluoride and NDL-PCBs) and animal data (PBDE), and exposure data. Those uncertainties lead to a complex pattern of under- and overestimations, which would require probabilistic modelling based on expert knowledge elicitation for integration of the identified uncertainties into an overall uncertainty estimate. In addition, the identified uncertainties could be used to refine future MRA for cognitive decline.
Collapse
Affiliation(s)
- Corinne Sprong
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Jan Dirk Te Biesebeek
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Mousumi Chatterjee
- Brunel University London, Centre for Pollution Research and Policy, Uxbridge, UB8 3PH, United Kingdom
| | - Gerrit Wolterink
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Annick van den Brand
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Urska Blaznik
- National Institute of Public Health, Environmental Health Centre, Trubarjeva 2, Ljubljana, Slovenia
| | | | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Bodil Hamborg Jensen
- Technical University of Denmark, National Food Institute, Research group for Chemical Risk Assessment and GMO, Kemitorvet, Building 201, DK 2800, Lyngby, Denmark
| | - Darja Sokolić
- HAPIH, Croatian Agency for Agriculture and Food, Vinkovačka cesta 63C, 31000, Osijek, Croatia
| | - Elke Rauscher-Gabernig
- AGES, Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, 1220, Vienna, Austria
| | - Jiri Ruprich
- National Institute of Public Health in Prague, Centre for Health, Nutrition and Food, Brno, Czech Republic
| | - Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, Uxbridge, UB8 3PH, United Kingdom
| | - Jacob van Klaveren
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
18
|
Qing Y, Zheng J, Tang T, Li S, Cao S, Luo Y, Chen Y, He W, Wang J, Zhou Y, Xu C, Zhang W, Ping S, Jiang M, Li D, Ji Y, Yang S, Du J, Li Y. Risk assessment of combined exposure to lead, cadmium, and total mercury among the elderly in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114874. [PMID: 37054469 DOI: 10.1016/j.ecoenv.2023.114874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Lead (Pb), cadmium (Cd) and total mercury (THg) are toxic heavy metals (THMs) that are widely present in the environment and can cause substantial health problems. However, previous risk assessment studies have rarely focused on the elderly population and have usually targeted a single heavy metal, which might underestimate the long-term accumulative and synergistic effects of THMs in humans. Based on the food frequency questionnaire and inductively coupled plasma mass spectrometry, this study assessed external and internal exposures to Pb, Cd and THg in 1747 elderly people in Shanghai. Probabilistic risk assessment with the relative potential factor (RPF) model was used to assess the neurotoxicity and nephrotoxicity risks of combined THMs exposures. The mean external exposures of Pb, Cd and THg in Shanghai elderly were 46.8, 27.2 and 4.9 μg/day, respectively. Plant-based foods are the main source of Pb and THg exposure, while Cd is mainly from animal-based foods. The mean concentrations of Pb, Cd and THg were 23.3, 1.1 and 2.3 μg/L in the whole blood, and 6.2, 1.0 and 2.0 μg/L in the morning urine, respectively. Combined exposure to THMs leading to 10.0 % and 7.1 % of Shanghai elderly at risk of neurotoxicity and nephrotoxicity. The results of this study have important implications for understanding the profiles of Pb, Cd and THg exposure in the elderly living in Shanghai and provide data support for risk assessment and control of nephrotoxicity and neurotoxicity from combined THMs exposure in the elderly.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - TianRan Tang
- Guizhou Meteorological Observatory, Guizhou 550081, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shiyu Cao
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yanfeng Chen
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Wenting He
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jutao Wang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yang Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chenchen Xu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Weiwen Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Siyuan Ping
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Meng Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Dan Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yunhe Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
19
|
Wan Z, Wu M, Liu Q, Fan G, Fang Q, Qin X, Zhang X, Lv Y, Wang Y, Bi J, Song L. Association of metal exposure with arterial stiffness in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114921. [PMID: 37080131 DOI: 10.1016/j.ecoenv.2023.114921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arterial stiffness is an important indicator of cardiovascular aging. However, studies assessing the association between metal exposure and arterial stiffness are limited. OBJECTIVE The aim of this study was to investigate the independent and joint associations of metal exposure with arterial stiffness. METHODS This cross-sectional study recruited 2982 Chinese adults from August 2018 to March 2019 in Wuhan, China. The concentrations of 20 urinary metals were determined using inductively coupled plasma mass spectrometer. Arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV). We used generalized linear model (GLM) to estimate the association of single metal exposure with baPWV. We used weighted quantile sum (WQS) regression to estimate the association of metal mixture with baPWV. RESULTS In GLM regression analysis, each doubling of urinary copper (Cu) and chromium (Cr) concentrations were associated with 6.48 (95 % CI: 2.51-10.45) cm/s and 3.78 (95 % CI: 0.42-7.14) cm/s increase in baPWV, respectively. In WQS regression analysis, each unit increase in WQS index of the metal mixture was associated with a 9.10 (95 % CI: 2.39-15.82) cm/s increase in baPWV. Cu, Zn, and Cr were the dominant urinary metals associated with baPWV. CONCLUSION Metal exposure, both individually and in mixture, was associated with an increased risk of arterial stiffness. Our findings may provide a target for preventative strategies against cardiovascular aging.
Collapse
Affiliation(s)
- Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xukuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Associations between Elemental Metabolic Dynamics and Default Mode Network Functional Connectivity Are Altered in Autism. J Clin Med 2023; 12:jcm12031022. [PMID: 36769671 PMCID: PMC9917994 DOI: 10.3390/jcm12031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.
Collapse
|
21
|
Anesti O, Papaioannou N, Gabriel C, Karakoltzidis A, Dzhedzheia V, Petridis I, Stratidakis A, Dickinson M, Horvat M, Snoj Tratnik J, Tsatsakis A, Karakitsios S, Sarigiannis DA. An exposome connectivity paradigm for the mechanistic assessment of the effects of prenatal and early life exposure to metals on neurodevelopment. Front Public Health 2023; 10:871218. [PMID: 36699871 PMCID: PMC9869756 DOI: 10.3389/fpubh.2022.871218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
The exposome paradigm through an integrated approach to investigating the impact of perinatal exposure to metals on child neurodevelopment in two cohorts carried out in Slovenia (PHIME cohort) and Greece (HERACLES cohort) respectively, is presented herein. Heavy metals are well-known neurotoxicants with well-established links to impaired neurodevelopment. The links between in utero and early-life exposure to metals, metabolic pathway dysregulation, and neurodevelopmental disorders were drawn through urinary and plasma untargeted metabolomics analysis, followed by the combined application of in silico and biostatistical methods. Heavy metal prenatal and postnatal exposure was evaluated, including parameters indirectly related to exposure and health adversities, such as sociodemographic and anthropometric parameters and dietary factors. The primary outcome of the study was that the identified perturbations related to the TCA cycle are mainly associated with impaired mitochondrial respiration, which is detrimental to cellular homeostasis and functionality; this is further potentiated by the capacity of heavy metals to induce oxidative stress. Insufficient production of energy from the mitochondria during the perinatal period is associated with developmental disorders in children. The HERACLES cohort included more detailed data regarding diet and sociodemographic status of the studied population, allowing the identification of a broader spectrum of effect modifiers, such as the beneficial role of a diet rich in antioxidants such as lycopene and ω-3 fatty acids, the negative effect the consumption of food items such as pork and chicken meat has or the multiple impacts of fish consumption. Beyond diet, several other factors have been proven influential for child neurodevelopment, such as the proximity to pollution sources (e.g., waste treatment site) and the broader living environment, including socioeconomic and demographic characteristics. Overall, our results demonstrate the utility of exposome-wide association studies (EWAS) toward understanding the relationships among the multiple factors that determine human exposure and the underlying biology, reflected as omics markers of effect on neurodevelopment during childhood.
Collapse
Affiliation(s)
- Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine Gabriel
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilleas Karakoltzidis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vazha Dzhedzheia
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Petridis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Stratidakis
- Science, Technology, and Society Department, Istituto Universitario di Studi Superiori (IUSS), University School for Advanced Study, Pavia, Italy
| | | | - Milena Horvat
- Department of Environmental Sciences, Josef Stefan Institute, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Josef Stefan Institute, Ljubljana, Slovenia
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece
| | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis A. Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece,*Correspondence: Dimosthenis A. Sarigiannis
| |
Collapse
|
22
|
Stein CR, Wu H, Bellinger DC, Smith DR, Wolff MS, Savitz DA. Exposure to metal mixtures and neuropsychological functioning in middle childhood. Neurotoxicology 2022; 93:84-91. [PMID: 36122627 PMCID: PMC10513744 DOI: 10.1016/j.neuro.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/09/2023]
Abstract
Elevated exposure to multiple trace metals can be neurotoxic even at relatively low levels. These findings are primarily evident from adult occupational studies as well as in children exposed prenatally or in early childhood. Less research has focused on the neurodevelopmental impacts of exposure to metals among school-aged children. We examined associations between exposure to a mixture of four metals (arsenic, cadmium, manganese, lead) measured in hair and markers of cognition, attention, and behavior among 222 6-12 year old children who participated in a 2009-2010 neurodevelopmental follow-up to the C8 Health Project. Using quantile-based g-computation we estimated the adjusted overall metal mixture effect ψ (95 % CI) as the change in outcome per decile increase in all metals in the mixture. Hair metal levels varied by metal, with cadmium being lowest (median 0.007, interquartile range (IQR) 0.013 μg/g) and lead the highest concentration (median 0.152, IQR 0.252 μg/g). Children's cognitive skills and development, attention/impulsivity, and behavior were all close to standardized population means. Each decile increase in all metals was associated with a Full Scale IQ reduction of 1.01 points (95 % confidence interval (CI) -1.88, -0.15) and Verbal IQ reduction of 1.11 points (95 % CI -1.97, -0.25), adjusted for child age, sex, secondhand smoke exposure, HOME score, maternal education, maternal IQ, and examiner. Maternal report of ADHD-like behaviors and executive functioning also showed adverse associations with the metal mixture. Our findings suggest that similar to exposure during prenatal and early childhood periods, recent exposure to metals during middle childhood is associated with adverse neurodevelopmental consequences. Middle childhood may also be a developmental window of susceptibility to the negative consequences of exposure to environmental neurotoxicants.
Collapse
Affiliation(s)
- Cheryl R Stein
- Hassenfeld Children's Hospital at NYU Langone, Department of Child and Adolescent Psychiatry, Child Study Center, One Park Avenue, 7th Floor, New York, NY 10016, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032, USA.
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Farley Basement Box 127, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, 442 Physical Sciences Building, Santa Cruz, CA 95064, USA.
| | - Mary S Wolff
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102 Street, New York, NY 10029, USA.
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, 121 S. Main Street, Box G-S-121-2, Providence, RI 02912, USA.
| |
Collapse
|
23
|
Sripada K, Lager AM. Interventions to reduce cadmium exposure in low- and middle-income countries during pregnancy and childhood: A systematic review. J Glob Health 2022; 12:04089. [DOI: 10.7189/jogh.12.04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kam Sripada
- Centre for Digital Life Norway, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Adrian Madsen Lager
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
24
|
Amolegbe SM, Lopez AR, Velasco ML, Carlin DJ, Heacock ML, Henry HF, Trottier BA, Suk WA. Adapting to Climate Change: Leveraging Systems-Focused Multidisciplinary Research to Promote Resilience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14674. [PMID: 36429393 PMCID: PMC9690097 DOI: 10.3390/ijerph192214674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Approximately 2000 official and potential Superfund sites are located within 25 miles of the East or Gulf coasts, many of which will be at risk of flooding as sea levels rise. More than 60 million people across the United States live within 3 miles of a Superfund site. Disentangling multifaceted environmental health problems compounded by climate change requires a multidisciplinary systems approach to inform better strategies to prevent or reduce exposures and protect human health. The purpose of this minireview is to present the National Institute of Environmental Health Sciences Superfund Research Program (SRP) as a useful model of how this systems approach can help overcome the challenges of climate change while providing flexibility to pivot to additional needs as they arise. It also highlights broad-ranging SRP-funded research and tools that can be used to promote health and resilience to climate change in diverse contexts.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | | | | | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Michelle L. Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Heather F. Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Brittany A. Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - William A. Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| |
Collapse
|
25
|
Pavilonis B, Maroko A, Cai B, Shin J, Lahage N, Gupta A, Stein-Albert M, Patil U, Dubov TE, Karbalivand H, McDermott S. Characterization of fetal exposure to multiple metals among an urban population: A case study of New York City. ENVIRONMENTAL RESEARCH 2022; 211:113050. [PMID: 35259408 DOI: 10.1016/j.envres.2022.113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Metals and metalloids are ubiquitous and persistent in urban areas and are generally released into the environment as mixtures. OBJECTIVES The purpose of this study was to establish baseline concentrations of selected elements in meconium samples among a large urban population in the US and understand the spatial variability in concentrations. The association of metal mixtures on birth weight was also assessed. METHODS This cross-sectional study was conducted across five public hospitals located in New York City, NY (NYC) in four boroughs. We collected meconium sample from 116 infants during the first 24 h after delivery and quantified 11 metals using ICP-MS. Principal component analysis was used to determine metal mixtures and their association with birth weight. Spatial hot spots of each metal were calculated using the Getis-Ord (GI*). RESULTS Essential elements were detected in all samples with Zn in the greatest abundance (median = 274.5 μg/g) and Mo in the least (median = 0.1845 μg/g). Pb was detected in all but two samples (median = 0.0222 μg/g), while Cd levels were detected in approximately half of the samples (median = 0.0019 μg/g). Co-located hot spots were detected for Cu, Zn, and Fe in southeast Brooklyn; Cd, Cr, and Ni in eastern Queens; and Al and Mo in south Queens. There was a significant inverse relationship between Pb concentrations (beta = -1935.7; p = 0.006) and the mixture of Cr, Cu, Mo, Zn (beta = -157.7; p = 0.045) and birth weight. CONCLUSIONS Our findings indicate that meconium is an effective biomarker for measuring metal exposures among an urban population. We were able to quantify detectable levels of ten of the eleven metals measured in the study and characterize nutritionally necessary trace elements and metals derived from anthropogenic sources without biologic need in a cohort of NYC newborns. Further research needs to establish the change point from necessary to toxic, for the essential elements.
Collapse
Affiliation(s)
- Brian Pavilonis
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA.
| | - Andrew Maroko
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA
| | - Bo Cai
- University of South Carolina, Columbia, SC, USA
| | - Jin Shin
- Medgar Evers College of The City University of New York, 1650 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Nadine Lahage
- New York City Health and Hospitals, New York City, NY, USA
| | - Arpit Gupta
- New York City Health and Hospitals, New York City, NY, USA
| | | | - Uday Patil
- New York City Health and Hospitals, New York City, NY, USA
| | | | | | - Suzanne McDermott
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA
| |
Collapse
|
26
|
Friedman A, Bauer JA, Austin C, Downs TJ, Tripodis Y, Heiger-Bernays W, White RF, Arora M, Claus Henn B. Multiple metals in children's deciduous teeth: results from a community-initiated pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:408-417. [PMID: 34750512 PMCID: PMC9079191 DOI: 10.1038/s41370-021-00400-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Characterizing retrospective exposure to toxicants during multiple early-life developmental periods is challenging, yet critical for understanding developmental effects. OBJECTIVE To characterize early-life metal exposure using deciduous teeth in a community concerned about past exposures. METHODS Naturally shed teeth were collected from 30 children ages 5-13 years who resided in Holliston, Massachusetts since conception. We estimated weekly prenatal and postnatal (up to 1 year of age) exposure to 12 metals by measuring dentine concentrations using laser ablation-inductively coupled plasma-mass spectrometry. Multivariable linear mixed models were used to explore sociodemographic, dietary, and behavioral correlates of dentine metal concentrations. RESULTS Temporal trends in dentine levels differed by metal. Source of milk during the first year of life was associated with dentine barium (Ba) levels, where being fed predominantly breastmilk was associated with 39% (95% CI: -57%, -13%) lower dentine Ba compared to predominantly formula use. Females had higher prenatal and postnatal dentine Mn and Pb, compared to males (e.g., % difference, postnatal Mn: 122% (17%, 321%); postnatal Pb: 60% (95% CI: -8%, 178%)). SIGNIFICANCE Deciduous teeth provide retrospective information on dose and timing of early-life metals exposure at high resolution. We demonstrate their utility in a community-based study with known past contamination of drinking water. IMPACT STATEMENT We conducted a community-initiated pilot study in a community concerned with historical exposure to multiple metals. Using deciduous teeth, a novel noninvasive biomarker, we characterized early-life exposure to 12 metals in approximately weekly increments during sensitive developmental periods, thus demonstrating the utility of this biomarker in communities concerned with past exposures.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Julia Anglen Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy J Downs
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, Karr CJ, McHenry MS. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One 2022; 17:e0265536. [PMID: 35358213 PMCID: PMC8970501 DOI: 10.1371/journal.pone.0265536] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of harmful environmental exposures, which disproportionately affects low-and-middle income countries (LMICs), contributes to >25% of deaths and diseases worldwide and detrimentally affects child neurodevelopment. Few resources succinctly summarize the existing literature on this topic. Our objective is to systematically review and characterize the evidence regarding the relationship between heavy metals and neurodevelopment of children in LMICs. METHODS We conducted a medical librarian-curated search on multiple online databases to identify articles that included individuals <18 years living in a LMIC, quantitatively measured exposure to a heavy metal (either prenatal or postnatal), and used a standardized measurement of neurodevelopment (i.e. cognitive, language, motor, and behavior). Reviews, editorials, or case studies were excluded. Results were analyzed qualitatively, and quality was assessed. RESULTS Of the 18,043 screened articles, 298 full-text articles were reviewed, and 100 articles met inclusion criteria. The included studies represented data from 19 LMICs, only one of which was classified as a low-income country. Ninety-four percent of postnatal lead and all postnatal manganese studies showed a negative association with metal exposure and neurodevelopment, which were the strongest relationships among the metals studied. Postnatal exposure of mercury was associated with poor neurodevelopment in only half of studies. Limited data on postnatal arsenic and cadmium suggests an association with worse neurodevelopment. Findings were mixed for prenatal arsenic and lead, although some evidence supports that the neurotoxicity of lead was amplified in the presence of manganese. CONCLUSIONS AND POTENTIAL IMPACT We found that lead and manganese appear to consistently have a detrimental effect on the neurodevelopment of children, and more evidence is needed for mercury, arsenic, and cadmium. Better characterization of these effects can motivate and inform prioritization of much needed international policies and programs to reduce heavy metal exposures for young children within LMICs.
Collapse
Affiliation(s)
- Yi Yan Heng
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Iqra Asad
- School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Bailey Coleman
- School of Health and Human Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Laura Menard
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Faridah Hussein Were
- Department of Chemistry, College of Biological and Physical Sciences of the University of Nairobi, Nairobi, Kenya
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Megan S McHenry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
28
|
Nozadi SS, Li L, Luo L, MacKenzie D, Erdei E, Du R, Roman CW, Hoover J, O’Donald E, Burnette C, Lewis J. Prenatal Metal Exposures and Infants' Developmental Outcomes in a Navajo Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:425. [PMID: 35010683 PMCID: PMC8744969 DOI: 10.3390/ijerph19010425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Early-life exposure to environmental toxicants can have detrimental effects on children's neurodevelopment. In the current study, we employed a causal modeling framework to examine the direct effect of specific maternal prenatal exposures on infants' neurodevelopment in the context of co-occurring metals. Maternal metal exposure and select micronutrients' concentrations were assessed using samples collected at the time of delivery from mothers living across Navajo Nation with community exposure to metal mixtures originating from abandoned uranium mines. Infants' development across five domains was measured at ages 10 to 13 months using the Ages and Stages Questionnaire Inventory (ASQ:I), an early developmental screener. After adjusting for effects of other confounding metals and demographic variables, prenatal exposure to lead, arsenic, antimony, barium, copper, and molybdenum predicted deficits in at least one of the ASQ:I domain scores. Strontium, tungsten, and thallium were positively associated with several aspects of infants' development. Mothers with lower socioeconomic status (SES) had higher lead, cesium, and thallium exposures compared to mothers from high SES backgrounds. These mothers also had infants with lower scores across various developmental domains. The current study has many strengths including its focus on neurodevelopmental outcomes during infancy, an understudied developmental period, and the use of a novel analytical method to control for the effects of co-occurring metals while examining the effect of each metal on neurodevelopmental outcomes. Yet, future examination of how the effects of prenatal exposure on neurodevelopmental outcomes unfold over time while considering all potential interactions among metals and micronutrients is warranted.
Collapse
Affiliation(s)
- Sara S. Nozadi
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Li Li
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Li Luo
- Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Esther Erdei
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Ruofei Du
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carolyn W. Roman
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Joseph Hoover
- Social Science and Cultural Studies, Montana State University Billing, Billings, MT 59101, USA;
| | - Elena O’Donald
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| | - Courtney Burnette
- Munroe-Meyer Institute, University of Nebraska Medical Services, Omaha, NE 68106, USA;
| | - Johnnye Lewis
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; (D.M.); (E.E.); (C.W.R.); (E.O.); (J.L.)
| |
Collapse
|
29
|
Yang F, Yun Y, Li G, Sang N. Heavy metals in soil from gangue stacking areas increases children health risk and causes developmental neurotoxicity in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148629. [PMID: 34217090 DOI: 10.1016/j.scitotenv.2021.148629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Coal is the main energy source in China, with 4.5 billion metric tons of coal gangue accumulating near the mining areas in the process of coal mining. The objectives of the present study were to identify the health risks to children from soil pollution caused by coal gangue accumulation and to clarify the possible developmental neurotoxicity caused by this accumulation using zebrafish (Danio rerio) as a model. The results reveal that As and seven other heavy metals in soil samples from the gangue dumping area to the downstream villages exhibited distance-dependent concentration variations and posed substantial potential non-carcinogenic risks to local children. Additionally, soil leachate could affect the key processes of early neurodevelopment in zebrafish at critical windows, mainly including the alterations of cytoskeleton regulation (α1-tubulin), axon growth (gap43), neuronal myelination (mbp) and synapse formation (sypa, sypb, and psd95), eventually leading to hypoactivity in the zebrafish larvae. These findings suggest the possible health risks of soil pollution in the coal gangue stacking areas to children, particularly affecting their early neurodevelopment.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
30
|
Jahan Toma N, Anwar S, Kabir T, Hosen MJ. Lead and lead-arsenic combined exposure induces mortality and developmental impairments in zebrafish embryos: a study using wild-caught zebrafish from Bangladesh. Drug Chem Toxicol 2021; 45:2833-2842. [PMID: 34747291 DOI: 10.1080/01480545.2021.1996594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heavy metal toxicity has become a global health burden, exerting various physiological effects on aquatic animals and humans. Zebrafish (Danio rerio) has emerged as a real-time model system for toxicological study. We previously reported the effects of arsenic on the embryonic development of zebrafish. The current study aimed to get deep insights into the toxic effects of another heavy metal, lead, on the early embryonic development of wild-caught zebrafish. We exposed freshly collected zebrafish embryos to different lead concentrations and studied different developmental and morphological changes using an inverted microscope. In a separate experiment, embryos were exposed to a combination of lead and arsenic to evaluate the combined effects of the elements. Lead concentration of as low as 0.25 mM resulted in developmental and morphological abnormalities in the zebrafish embryos. Exposure to different concentrations (0.25 mM, 0.5 mM, and 0.75 mM) caused a higher mortality rate of the embryos. Besides, an increased rate of arrested hatching, irregularities in size and shape of the yolk sac, deformed otic vesicle, and body curvature were observed in a dose-dependent manner. Lead exposure also resulted in reduced heart rate and severe pericardial edema. The combined effect of minimum concentrations of lead and arsenic that causes toxicity individually (0.25 mM and 1.0 mM, respectively) revealed a more severe effect than the individual treatments. This study's findings explain the association of heavy metal exposure with an increased rate of miscarriage/abortion incidences in highly polluted areas assisting in proper management and creating public awareness.
Collapse
Affiliation(s)
- Nusrat Jahan Toma
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Saeed Anwar
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tamanna Kabir
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
31
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
33
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
34
|
The effects of the exposure to neurotoxic elements on Italian schoolchildren behavior. Sci Rep 2021; 11:9898. [PMID: 33972598 PMCID: PMC8110539 DOI: 10.1038/s41598-021-88969-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodevelopmental disorders are constantly increasing on a global scale. Some elements like heavy metals are known to be neurotoxic. In this cross-sectional study we assessed the neurobehavioral effect of the exposure to trace elements including lead, mercury, cadmium, manganese, arsenic and selenium and their interactions among 299 schoolchildren residing in the heavily polluted Taranto area in Italy. Whole blood, urine and hair were collected for metal analyses, while the Child Behavior Checklist and the Social Responsiveness Scale, administered to the main teacher and the mothers were considered to identify behavioral problems in children. Blood lead mainly influenced social problems, aggressive behavior, externalizing and total problems. Urinary arsenic showed an impact on anxiety and depression, somatic problems, attention problems and rule breaking behavior. A significant interaction between lead and arsenic was observed, with a synergistic effect of the two metals increasing the risk of attention problems, aggressive behavior, externalizing problems and total problems. Overall, we were able to test that higher blood lead, urinary arsenic concentrations and their interaction increase the risk of neurobehavioral problems. This is in line with the U.S. Environmental Protection Agency’s priority list of hazardous substances where arsenic and lead are ranked as first and second respectively.
Collapse
|
35
|
Integration of evidence to evaluate the potential for neurobehavioral effects following exposure to USFDA-approved food colors. Food Chem Toxicol 2021; 151:112097. [DOI: 10.1016/j.fct.2021.112097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
|
36
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|
37
|
von Stackelberg K, Williams PR. Evolving Science and Practice of Risk Assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:571-583. [PMID: 33295028 PMCID: PMC8257268 DOI: 10.1111/risa.13647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Managing public health risks from environmental contaminants has historically relied on a risk assessment process defined by the regulatory context in which these risks are assessed. Risk assessment guidance follows a straightforward, chemical-by-chemical approach to inform regulatory decisions around the question "what is the risk-based concentration protective of human and ecological health outcomes?" Here we briefly summarize regulatory risk assessment in the context of innovative risk assessment approaches based on an evolving understanding of the underlying scientific disciplines that support risk analysis more broadly. We discuss scientific versus regulatory tensions in the application of these approaches for future risk assessments, and challenges in translating our improved understanding of the underlying scientific complexity to the regulatory landscape to better inform decision making that extends beyond conventional regulatory mandates.
Collapse
Affiliation(s)
- Katherine von Stackelberg
- NEK Associates LTD, Allston, MA, 02134, USA
- Harvard Center for Risk Analysis, 401 Park Drive, Boston, MA, 02215, USA
| | | |
Collapse
|
38
|
Trace element profile and incidence of type 2 diabetes, cardiovascular disease and colorectal cancer: results from the EPIC-Potsdam cohort study. Eur J Nutr 2021; 60:3267-3278. [PMID: 33590281 PMCID: PMC8354864 DOI: 10.1007/s00394-021-02494-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE We aimed to examine the prospective association between manganese, iron, copper, zinc, iodine, selenium, selenoprotein P, free zinc, and their interplay, with incident type 2 diabetes (T2D), cardiovascular disease (CVD) and colorectal cancer (CRC). METHODS Serum trace element (TE) concentrations were measured in a case-cohort study embedded within the EPIC-Potsdam cohort, consisting of a random sub-cohort (n = 2500) and incident cases of T2D (n = 705), CVD (n = 414), and CRC (n = 219). TE patterns were investigated using principal component analysis. Cox proportional hazard models were fitted to examine the association between TEs with T2D, CVD and CRC incidence. RESULTS Higher manganese, zinc, iodine and selenium were associated with an increased risk of developing T2D (HR Q5 vs Q1: 1.56, 1.09-2.22; HR per SD, 95% CI 1.18, 1.05-1.33; 1.09, 1.01-1.17; 1.19, 1.06-1.34, respectively). Regarding CVD, manganese, copper and copper-to-zinc ratio were associated with an increased risk (HR per SD, 95% CI 1.13, 1.00-1.29; 1.22, 1.02-1.44; 1.18, 1.02-1.37, respectively). The opposite was observed for higher selenium-to-copper ratio (HR Q5 vs Q1, 95% CI 0.60, 0.39-0.93). Higher copper and zinc were associated with increasing risk of developing CRC (HR per SD, 95% CI 1.29, 1.05-1.59 and 1.14, 1.00-1.30, respectively). Selenium, selenoprotein P and selenium-to-copper-ratio were associated to decreased risk (HR per SD, 95% CI 0.82, 0.69-0.98; 0.81, 0.72-0.93; 0.77, 0.65-0.92, respectively). Two TE patterns were identified: manganese-iron-zinc and copper-iodine-selenium. CONCLUSION Different TEs were associated with the risk of developing T2D, CVD and CRC. The contrasting associations found for selenium with T2D and CRC point towards differential disease-related pathways.
Collapse
|
39
|
Sapounidou M, Ebbrell DJ, Bonnell MA, Campos B, Firman JW, Gutsell S, Hodges G, Roberts J, Cronin MTD. Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1897-1907. [PMID: 33478211 DOI: 10.1021/acs.est.0c06551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study developed a novel classification scheme to assign chemicals to a verifiable mechanism of (eco-)toxicological action to allow for grouping, read-across, and in silico model generation. The new classification scheme unifies and extends existing schemes and has, at its heart, direct reference to molecular initiating events (MIEs) promoting adverse outcomes. The scheme is based on three broad domains of toxic action representing nonspecific toxicity (e.g., narcosis), reactive mechanisms (e.g., electrophilicity and free radical action), and specific mechanisms (e.g., associated with enzyme inhibition). The scheme is organized at three further levels of detail beyond broad domains to separate out the mechanistic group, specific mechanism, and the MIEs responsible. The novelty of this approach comes from the reference to taxonomic diversity within the classification, transparency, quality of supporting evidence relating to MIEs, and that it can be updated readily.
Collapse
Affiliation(s)
- Maria Sapounidou
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - David J Ebbrell
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Mark A Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - James W Firman
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Mark T D Cronin
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
40
|
Levin-Schwartz Y, Claus Henn B, Gennings C, Coull BA, Placidi D, Horton MK, Smith DR, Lucchini RG, Wright RO. Integrated measures of lead and manganese exposure improve estimation of their joint effects on cognition in Italian school-age children. ENVIRONMENT INTERNATIONAL 2021; 146:106312. [PMID: 33395951 PMCID: PMC7785864 DOI: 10.1016/j.envint.2020.106312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 05/22/2023]
Abstract
Every day humans are exposed to mixtures of chemicals, such as lead (Pb) and manganese (Mn). An underappreciated aspect of studying the health effects of mixtures is the role that the exposure biomarker media (blood, hair, etc.) may play in estimating the effects of the mixture. Different biomarker media represent different aspects of each chemical's toxicokinetics, thus no single medium can fully capture the toxicokinetic profile for all the chemicals in a mixture. A potential solution to this problem is to combine exposure data across different media to derive integrated estimates of each chemical's internal concentration. This concept, formalized as a multi-media biomarker (MMB) has proven effective for estimating the health impacts of Pb exposure, but may also be useful to estimate mixture effects, such as the joint effects of metals like Pb and Mn, while factoring in how the association changes based upon the biomarker media. Levels of Pb and Mn were quantified in five media: blood, hair, nails, urine, and saliva in the Public Health Impact of Metals Exposure (PHIME) project, a study of Italian adolescents aged 10-14 years. MMBs were derived for both metals using weighted quantile sum (WQS) regression across the five media. Age-adjusted Wechsler Intelligence Scale for Children (WISC) IQ scores, measured at the same time as the exposure measures, were the primary outcome and models were adjusted for sex and socioeconomic status. The levels Pb and Mn were relatively low, with median blood Pb of 1.27 (IQR: 0.84) μg/dL and median blood Mn of 1.09 (IQR: 0.45) μg/dL. Quartile increases in a Pb-Mn combination predicted decreased Full Scale IQ of 1.9 points (95% CI: 0.3, 3.5) when Pb and Mn exposure levels were estimated using MMBs, while individual regressions for each metal were not associated with Full Scale IQ. Additionally, a quartile increase in the WQS index of Pb and Mn, measured using MMBs, were associated with reductions in Verbal IQ by 2.8 points (1.0, 4.5). Weights that determine the contributions of the metals to the joint effect highlighted that the contribution of the Pb-Mn was 72-28% for Full Scale IQ and 42-58% for Verbal IQ. We found that the joint effects of Pb and Mn are strongly affected by the medium used to measure exposure and that the joint effects of the Pb and Mn MMBs on cognition were the stronger than any individual biomarker. Thus, increase power and accuracy for measuring mixture effects compared to individual biomarkers. As the number of chemicals in mixtures increases, appropriate biomarker selection will become increasingly important and MMBs are a natural way to reduce bias in such analyses.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA.
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Donatella Placidi
- Occupational and Environmental Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA; Occupational and Environmental Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Rechtman E, Curtin P, Papazaharias DM, Renzetti S, Cagna G, Peli M, Levin-Schwartz Y, Placidi D, Smith DR, Lucchini RG, Wright RO, Horton MK. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl Psychiatry 2020; 10:358. [PMID: 33087698 PMCID: PMC7578810 DOI: 10.1038/s41398-020-01041-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10-14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Demetrios M Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- School of Public Health, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. [PMID: 33011216 PMCID: PMC7772889 DOI: 10.1016/j.reprotox.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Human iPSC-derived NSCs undergoing differentiation possess some metabolic competence. CPF entered the cells and was biotrasformed into its two main metabolites (CPFO and TCP). After repeated exposure, very limited bioaccumulation of CPF was observed. Treatment with CPF decreased neurite outgrowth, synapse number and electrical activity. Treatment with CPF increased BDNF levels and the percentage of astrocytes.
For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.
Collapse
Affiliation(s)
- Emma Di Consiglio
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | | | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| |
Collapse
|
43
|
Zhang Y, Ge S, Yang Z, Dong C. Heavy metals analysis in chalk sticks based on ICP-AES and their associated health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37887-37893. [PMID: 32617814 DOI: 10.1007/s11356-020-09884-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to determine the contents of 12 metals in obtainable chalk sticks and assess their associated health risk. Chalk stick samples from 16 factories were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results showed that 12 metals were detectable in white and colored chalks. The contents of Al, Fe, and Mg were in the range of 646.2-3909 μg/g, 408.8-2075.1 μg/g, and 125-6825.7 μg/g, respectively. Additionally, the levels of Cu, Pb, Mn, and Cr were ranked in the order of Cu>Cr>Pb>Mn, while the maximum levels of As, Ni, Cd, and Sn in all samples (9.90, 10.14, 7.27, and 6.08 μg/g, respectively) were relatively lower than those of other metals. Furthermore, the cumulative hazard index (HI) values of all metals and carcinogenic risk (CR) of As (1.12E-4), Ni (1.39E-4), and Cr (1.15E-4) for children were also higher than the threshold value (1.0E-6 to 1.0E-4), suggesting that chalk dust particles may exert adverse effects on children.
Collapse
Affiliation(s)
- Yuexia Zhang
- Institute of Environmental Science, Shanxi University, Wucheng Road 92#, Taiyuan, 030006, Shanxi Province, People's Republic of China
| | - Shanshan Ge
- Institute of Environmental Science, Shanxi University, Wucheng Road 92#, Taiyuan, 030006, Shanxi Province, People's Republic of China
| | - Zhenhua Yang
- Institute of Environmental Science, Shanxi University, Wucheng Road 92#, Taiyuan, 030006, Shanxi Province, People's Republic of China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Wucheng Road 92#, Taiyuan, 030006, Shanxi Province, People's Republic of China.
| |
Collapse
|
44
|
Abstract
BACKGROUND Violence is a leading cause of death and an important public health threat, particularly among adolescents and young adults. However, the environmental causes of violent behavior are not well understood. Emerging evidence suggests exposure to air pollution may be associated with aggressive or impulsive reactions in people. METHODS We applied a two-stage hierarchical time-series model to estimate change in risk of violent and nonviolent criminal behavior associated with short-term air pollution in U.S. counties (2000-2013). We used daily monitoring data for ozone and fine particulate matter (PM2.5) from the Environmental Protection Agency and daily crime counts from the Federal Bureau of Investigation. We evaluated the exposure-response relation and assessed differences in risk by community characteristics of poverty, urbanicity, race, and age. RESULTS Our analysis spans 301 counties in 34 states, representing 86.1 million people and 721,674 days. Each 10 µg/m change in daily PM2.5 was associated with a 1.17% (95% confidence interval [CI] = 0.90, 1.43) and a 10 ppb change in ozone with a 0.59% (95% CI = 0.41, 0.78) relative risk increase (RRI) for violent crime. However, we observed no risk increase for nonviolent property crime due to PM2.5 (RRI: 0.11%; 95% CI = -0.09, 0.31) or ozone (RRI: -0.05%; 95% CI = -0.22, 0.12). Our results were robust across all community types, except rural regions. Exposure-response curves indicated increased violent crime risk at concentrations below regulatory standards. CONCLUSIONS Our results suggest that short-term changes in ambient air pollution may be associated with a greater risk of violent behavior, regardless of community type.
Collapse
|
45
|
Paparella M, Bennekou SH, Bal-Price A. An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod Toxicol 2020; 96:327-336. [PMID: 32781019 DOI: 10.1016/j.reprotox.2020.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Limitations of regulatory in vivo developmental neurotoxicity (DNT) testing and assessment are well known, such as the 3Rs conflict, low throughput, high costs, high specific expertise needed and the lack of deeper mechanistic information. Moreover, the standard in vivo DNT data variability and in the experimental animal to human real life extrapolation is uncertain. Here, knowledge about these limitations and uncertainties is systematically summarized using a tabular OECD format. We also outline a hypothesis how alternative, fit-for-purpose Integrated Approaches to Testing and Assessment (IATAs) for DNT could improve current standard animal testing: Relative gains in 3Rs compliance, reduced costs, higher throughput, improved basic study design, higher standardization of testing and assessment and validation without 3Rs conflict, increasing the availability and reliability of DNT data. This could allow a more reliable comparative toxicity assessment over a larger proportion of chemicals within our global environment. The use of early, mechanistic, sensitive indicators for potential DNT could better support human safety assessment and mixture extrapolation. Using kinetic modelling ideally these could provide - eventually context dependent - at least the same level of human health protection. Such new approaches could also lead to a new mechanistic understanding for chemical safety, permitting determination of a dose that is likely not to trigger defined toxicity traits or pathways, rather than a dose not causing the current apical organism endpoints. The manuscript shall motivate and guide the development of new alternative methods for IATAs with diverse applications and support decision-making for their regulatory acceptance.
Collapse
Affiliation(s)
- Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
46
|
Amedu NO, Omotoso GO. Lead acetate- induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of Vitexin. Environ Anal Health Toxicol 2020; 35:e2020001. [PMID: 32570996 PMCID: PMC7308664 DOI: 10.5620/eaht.e2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study was aimed at investigating the neuroprotective effect of Vitexin against lead (Pb) induced neurodegenerative changes in the dorsolateral prefrontal cortex (DLPFC) and working memory in mice. Thirty-two adolescent male albino mice were divided into four groups (n=8). Control group received 0.2 mL of normal saline; Pb group received 100 mg/kg of Pb acetate for 14 days, Vitexin group received 1mg/kg of Vitexin for 14 days, and Pb+Vitexin group received 100 mg/kg of Pb acetate and 1 mgkg of Vitexin for 14 days. Barnes maze test and novel object recognition test were done to ascertain working memory. Histoarchitectural assessment of DLPFC was done with haematoxylin and eosin (H&E), cresyl fast violet and congo red stains. Furthermore, cell count and other morphometric measurements were done. There was significant decline in working memory in the Pb group, but a combination of Pb+Vitexin improved the working memory. Vitexin significantly reduced neuronal death and chromatolysis caused by Pb. Amyloid aggregation was not observed in any of the groups. This study has shown that concurrent administration of Vitexin and Pb will significantly reduce neurodegeneration and improve working memory. However, Pb treatment or Pb+Vitexin treatment does not have any effect on intercellular distance, neuronal length and the cross-sectional area of neurons in layer III of DLPFC.
Collapse
Affiliation(s)
- Nathaniel Ohiemi Amedu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Nigeria
| | - Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
47
|
Systematic assessment of mechanistic data for FDA-certified food colors and neurodevelopmental processes. Food Chem Toxicol 2020; 140:111310. [DOI: 10.1016/j.fct.2020.111310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
|
48
|
Tanner E, Lee A, Colicino E. Environmental mixtures and children's health: identifying appropriate statistical approaches. Curr Opin Pediatr 2020; 32:315-320. [PMID: 31934891 PMCID: PMC7895326 DOI: 10.1097/mop.0000000000000877] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Biomonitoring studies have shown that children are constantly exposed to complex patterns of chemical and nonchemical exposures. Here, we briefly summarize the rationale for studying multiple exposures, also called mixture, in relation to child health and key statistical approaches that can be used. We discuss advantages over traditional methods, limitations and appropriateness of the context. RECENT FINDINGS New approaches allow pediatric researchers to answer increasingly complex questions related to environmental mixtures. We present methods to identify the most relevant exposures among a high-multitude of variables, via shrinkage and variable selection techniques, and identify the overall mixture effect, via Weighted Quantile Sum and Bayesian Kernel Machine regressions. We then describe novel extensions that handle high-dimensional exposure data and allow identification of critical exposure windows. SUMMARY Recent advances in statistics and machine learning enable researchers to identify important mixture components, estimate joint mixture effects and pinpoint critical windows of exposure. Despite many advantages over single chemical approaches, measurement error and biases may be amplified in mixtures research, requiring careful study planning and design. Future research requires increased collaboration between epidemiologists, statisticians and data scientists, and further integration with causal inference methods.
Collapse
Affiliation(s)
- Eva Tanner
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Lee
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Pistollato F, de Gyves EM, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 2020; 19:23. [PMID: 32093744 PMCID: PMC7038628 DOI: 10.1186/s12940-020-00578-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.
Collapse
Affiliation(s)
| | | | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Carolina Nunes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
50
|
High incidence of brain and other nervous system cancer identified in two mining counties, 2001-2015. Spat Spatiotemporal Epidemiol 2020; 32:100320. [PMID: 32007285 DOI: 10.1016/j.sste.2019.100320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022]
Abstract
Two counties in Montana, Deer Lodge and Silver Bow (DL/SB), have two Superfund sites, as well as an active copper and molybdenum mine in SB. The population living in proximity to these sites are exposed to additional metals and some have been shown to be neurotoxic, especially for children; thus, this study focused on the incidence of brain and other nervous system cancers. The Montana Central Tumor Registry data was used to identify the cases in DL/SB and the remaining 54 counties of Montana (comparison group). After controlling for sex, cancer stage, and year of diagnosis, we found an incidence rate ratio for DL/SB versus comparison group of 6.28 (95% CI: 2.32-17.02) for children ages birth to 4 years, and 3.95 (95% CI: 1.66-9.38) for adults age 30-34 years. The high incidence rate of the brain cancer in the two age groups requires public health action.
Collapse
|