1
|
Hu J, Shi Q, Xue C, Wang Q. Berberine Protects against Hepatocellular Carcinoma Progression by Regulating Intrahepatic T Cell Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405182. [PMID: 39135526 PMCID: PMC11497054 DOI: 10.1002/advs.202405182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Indexed: 10/25/2024]
Abstract
Accumulating evidence suggests that berberine (BBR) exhibits anti-cancer effects in hepatocellular carcinoma (HCC). However, the mechanisms by which BBR regulates the immunological microenvironment in HCC has not been fully elucidated. In this study, a mouse model of orthotopic HCC is established and treated with varying doses of BBR. BBR showed effectiveness in reducing tumor burden in mice with HCC. Cytometry by time-of-flight depicted the alterations in the tumor immune landscape following BBR treatment, revealing the enhancement in the T lymphocytes effector function. In particular, BBR decreased the proportion of TCRbhiPD-1hiCD69+CD27+ effector CD8+ T lymphocytes and increased the proportion of Ly6ChiTCRb+CD69+CD27+CD62L+ central memory CD8+ T lymphocytes. Single-cell RNA sequencing further elucidates the effects of BBR on transcriptional profiles of liver immune cells and confirms the phenotypical heterogeneity of T lymphocytes in HCC immune microenvironment. Additionally, it is found that BBR potentially regulated the antitumor immunity in HCC by modulating the receptor-ligand interaction among immune cells mediated by cytokines. In summary, the findings improve the understanding of BBR's impact on protecting against HCC, emphasizing BBR's role in regulating intrahepatic T cell heterogeneity. BBR has the potential to be a promising therapeutic strategy to hinder the advancement of HCC.
Collapse
Affiliation(s)
- Jiaxiang Hu
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Qingqing Wang
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| |
Collapse
|
2
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
3
|
Novikov YO, Akopyan AP, Gerasimova LP, Letzkus P. [Restorative capability of traditional Chinese medicine in autoimmune diseases of nervous system: a literature review]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:64-70. [PMID: 38639153 DOI: 10.17116/kurort202410102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Autoimmune diseases of the nervous system are characterized by the formation of pronounced neurological deficiency and often lead to disability. Complementary medicine as an adjuvant or preventive therapy of various diseases, including autoimmune ones, is increasingly attracting the attention of doctors and researchers. Traditional Chinese medicine (TCM) has a complex of treatment methods, including acupuncture, phytotherapy, nutrition, physical exercises and other methods that are often used in common with the recognized approaches of the official medical science. The article describes the TCM methods application in autoimmune diseases of nervous system, presents the practical experience of using acupuncture, phytotherapy, diet, physical exercises. It was concluded that TCM is important and frequently underestimated health care resource, especially in prevention and treatment of autoimmune diseases of nervous system.
Collapse
Affiliation(s)
| | - A P Akopyan
- Bashkir State Medical University, Ufa, Russia
| | | | - P Letzkus
- College of Integrated Chinese Medicine, Vinon-sur-Verdon, France
| |
Collapse
|
4
|
Zhu C, Li K, Peng XX, Yao TJ, Wang ZY, Hu P, Cai D, Liu HY. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front Immunol 2022; 13:1083788. [PMID: 36561763 PMCID: PMC9763584 DOI: 10.3389/fimmu.2022.1083788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has a long history of treating dysentery in the clinic. Over the past two decades, the polytrophic, pharmacological, and biochemical properties of BBR have been intensively studied. The key functions of BBR, including anti-inflammation, antibacterial, antioxidant, anti-obesity, and even antitumor, have been discovered. However, the underlying mechanisms of BBR-mediated regulation still need to be explored. Given that BBR is also a natural nutrition supplement, the modulatory effects of BBR on nutritional immune responses have attracted more attention from investigators. In this mini-review, we summarized the latest achievements of BBR on inflammation, gut microbes, macrophage polarization, and immune responses associated with their possible tools in the pathogenesis and therapy of ulcerative colitis and cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-inflammatory actions of BBR to benefit future clinical applications.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| |
Collapse
|
5
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GES. The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 2022; 30:2003-2016. [PMID: 36183284 PMCID: PMC9526677 DOI: 10.1007/s10787-022-01080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a global diastrophic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 leads to inflammatory, immunological, and oxidative changes, by which SARS-CoV-2 leads to endothelial dysfunction (ED), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and multi-organ failure (MOF). Despite evidence illustrating that some drugs and vaccines effectively manage and prevent Covid-19, complementary herbal medicines are urgently needed to control this pandemic disease. One of the most used herbal medicines is berberine (BBR), which has anti-inflammatory, antioxidant, antiviral, and immune-regulatory effects; thus, BBR may be a prospective candidate against SARS-CoV-2 infection. This review found that BBR has anti-SARS-CoV-2 effects with mitigation of associated inflammatory changes. BBR also reduces the risk of ALI/ARDS in Covid-19 patients by inhibiting the release of pro-inflammatory cytokines and inflammatory signaling pathways. In conclusion, BBR has potent anti-inflammatory, antioxidant, and antiviral effects. Therefore, it can be utilized as a possible anti-SARS-CoV-2 agent. BBR inhibits the proliferation of SARS-CoV-2 and attenuates the associated inflammatory disorders linked by the activation of inflammatory signaling pathways. Indeed, BBR can alleviate ALI/ARDS in patients with severe Covid-19. In this sense, clinical trials and prospective studies are suggested to illustrate the potential role of BBR in treating Covid-19.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx « Ion Channels, Science and Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Sadiq Mohammed Al-Hamash
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Sabatier Jean-Marc
- Faculté des sciences médicales et paramédicales, Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR, 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| |
Collapse
|
6
|
Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T. A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba ( Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells. Int J Mol Sci 2022; 23:13141. [PMID: 36361930 PMCID: PMC9655357 DOI: 10.3390/ijms232113141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Okayama, Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Chie Sakai
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Shuta Watanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Wakana Ishikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Takashi Kikuchi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
- Faculty of Pharmacy, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Reiko Tanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
7
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
8
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
9
|
Ozturk M, Chia JE, Hazra R, Saqib M, Maine R, Guler R, Suzuki H, Mishra BB, Brombacher F, Parihar SP. Evaluation of Berberine as an Adjunct to TB Treatment. Front Immunol 2021; 12:656419. [PMID: 34745081 PMCID: PMC8563784 DOI: 10.3389/fimmu.2021.656419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.
Collapse
Affiliation(s)
- Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudranil Hazra
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Rebeng A. Maine
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Akter R, Najda A, Rahman MH, Shah M, Wesołowska S, Hassan SSU, Mubin S, Bibi P, Saeeda S. Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives. Molecules 2021; 26:5997. [PMID: 34641542 PMCID: PMC8512367 DOI: 10.3390/molecules26195997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cells' response to RT. Therefore, radiobiological research is emphasizing chemical compounds 'radiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani Street, Dhaka 1213, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sylwia Wesołowska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego Street, 20-069 Lublin, Poland;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Parveen Bibi
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| | - Saeeda Saeeda
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| |
Collapse
|
11
|
C. T. S, M. D, P. R. R, K. M, E. M. A, Balachandran I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:2. [PMID: 33457430 PMCID: PMC7799399 DOI: 10.1186/s43088-020-00089-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is the global health concern since December 2019. It has become a big challenge for the researchers to find a solution for this newly evolved pandemic. In Ayurveda point of view, COVID-19 is a Janapadodhwamsa vikara (epidemic disease), a situation where the environment-air, water, land, and seasons-is vitiated, causing a simultaneous manifestation of a disease among large populations. The aim of this study is to identify the active compounds of selected Ayurveda medicines recommended for COVID-19. RESULTS The selected preparations are traditionally recommended for the management of various kinds of fever including the infectious ones and to enhance the immunity. HPTLC analysis of the same showed presence of many active molecules like umbelliferone, scopoletin, caffeic acid, ferulic acid, gallic acid, piperine, curcumin, berberine, and palmatine. CONCLUSION The study provided valuable scientific data regarding the active ingredients of the selected medicines with proven therapeutic potentials like anti-viral, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sulaiman C. T.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Deepak M.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Ramesh P. R.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Mahesh K.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Anandan E. M.
- Product Development Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Indira Balachandran
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| |
Collapse
|
12
|
Khan H, Ullah H, Khattak S, Aschner M, Aguilar CN, Halimi SMA, Cauli O, Shah SMM. Therapeutic potential of alkaloids in autoimmune diseases: Promising candidates for clinical trials. Phytother Res 2021; 35:50-62. [PMID: 32667693 DOI: 10.1002/ptr.6763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Clinical investigations have characterized numerous disorders like autoimmune diseases, affecting the population at a rate of approximately 8-10%. These disorders are characterized by T-cell and auto-antibodies responses to self-molecules by immune system reactivity. Several therapeutic options have been adopted in clinics to combat such diseases, however, most of them are recurring. Thus, the discovery of new effective agents for the treatment of autoimmune diseases is paramount. In this context, natural products might be a useful alternative to the current therapies. Plant alkaloids with their substantial therapeutic history can be particularly interesting candidates for the alleviation of autoimmune ailments. This review encompasses various alkaloids with significant effects against autoimmune diseases in preclinical trials. These results suggest further clinical assessment with respect to autoimmune illnesses. Furthermore, the application of modern technologies such as nanoformulation could be also helpful in the design of more effective therapies and thus further studies are needed to decipher their therapeutic efficacy as well as potential limitations.
Collapse
Affiliation(s)
- Haroon Khan
- Abdul Wali khan university Mardan, Abdul Wali khan university Mardan, Department of Pharmacy, Abdul Wali Khan university Mardan, Pakistan, Mardan, Pakistan, 23200, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sumaira Khattak
- Abdul Wali khan university Mardan, Abdul Wali khan university Mardan, Department of Pharmacy, Abdul Wali Khan university Mardan, Pakistan, Mardan, Pakistan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Cristobal N Aguilar
- School of Chemistry, Universidad Autónoma de Coahuila Saltillo, Saltillo, Mexico
| | - Syed M A Halimi
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain
| | - Syed M M Shah
- Department of Pharmacy, University of Swabi Pakistan, Swabi, Pakistan
| |
Collapse
|
13
|
Ehteshamfar S, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri‐Moghaddam A, Ghanbarzadeh E, Momtazi‐Borojeni AA. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24:13573-13588. [PMID: 33135395 PMCID: PMC7754052 DOI: 10.1111/jcmm.16049] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T-cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti-inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti-inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti-inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro-inflammatory Th1 and Th17 cells, and indirectly decrease Th cell-mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.
Collapse
Affiliation(s)
- Seyed‐Morteza Ehteshamfar
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Masoume Akhbari
- Department of Molecular MedicineSchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Jalil Tavakol Afshari
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research CenterPars HospitalIran University of Medical SciencesTehranIran
| | - Abbas Shapouri‐Moghaddam
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | | |
Collapse
|
14
|
Xu X, Zhang L, Zhao Y, Xu B, Qin W, Yan Y, Yin B, Xi C, Ma L. Anti‑inflammatory mechanism of berberine on lipopolysaccharide‑induced IEC‑18 models based on comparative transcriptomics. Mol Med Rep 2020; 22:5163-5180. [PMID: 33174609 PMCID: PMC7646980 DOI: 10.3892/mmr.2020.11602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal surface epithelial cells (IECs) have long been considered as an effective barrier for maintaining water and electrolyte balance, and are involved in the mechanism of nutrient absorption. When intestinal inflammation occurs, it is often accompanied by IEC malfunction. Berberine (BBR) is an isoquinoline alkaloid found in numerous types of medicinal plants, which has been clinically used in China to treat symptoms of gastrointestinal pathogenic bacterial infection, especially bacteria‑induced diarrhea and inflammation. In the present study, IEC‑18 rat intestinal epithelial cells were treated with lipopolysaccharide (LPS) to establish an in vitro model of epithelial cell inflammation, and the cells were subsequently treated with BBR in order to elucidate the anti‑inflammatory mechanism. Transcriptome data were then searched to find the differentially expressed genes (DEGs) compared between two of the treatment groups (namely, the LPS and LPS+BBR groups), and DEGs were analyzed using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Weighted Gene Correlation Network Analysis and Interactive Pathways Explorer to identify the functions and pathways enriched with DEGs. Finally, reverse transcription‑quantitative PCR was used to verify the transcriptome data. These experiments revealed that, comparing between the LPS and LPS+BBR groups, the functions and pathways enriched in DEGs were 'DNA replication', 'cell cycle', 'apoptosis', 'leukocyte migration' and the 'NF‑κB and AP‑1 pathways'. The results revealed that BBR is able to restrict DNA replication, inhibit the cell cycle and promote apoptosis. It can also inhibit the classic inflammatory pathways, such as those mediated by NF‑κB and AP‑1, and the expression of various chemokines to prevent the migration of leukocytes. According to transcriptomic data, BBR can exert its anti‑inflammatory effects by regulating a variety of cellular physiological activities, including cell cycle, apoptosis, inflammatory pathways and leukocyte migration.
Collapse
Affiliation(s)
- Xiaofan Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Le Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ya Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Baoyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Wenxia Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yiqin Yan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Boqi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Chuyu Xi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Libao Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
15
|
Samadi P, Sarvarian P, Gholipour E, Asenjan KS, Aghebati-Maleki L, Motavalli R, Hojjat-Farsangi M, Yousefi M. Berberine: A novel therapeutic strategy for cancer. IUBMB Life 2020; 72:2065-2079. [PMID: 32735398 DOI: 10.1002/iub.2350] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cancer, even currently, is one of the main reasons for mortality and morbidity, worldwide. In recent years, a great deal of effort has been made to find efficient therapeutic strategies for cancer, however, particularly with regards to side effects and the possibility of complete remission. Berberine (BBR) is a nature-driven phytochemical component originated from different plant groups such as Berberis vulgaris, Berberis aquifolium, and Berberis aristata. BBR is a well-known nutraceutical because of its wide range of pharmacological activities including anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide. In addition, it exhibits inhibitory effects on multiple types of cancers. In this review, we have elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Collapse
Affiliation(s)
- Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shams Asenjan
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Du T, Yang CL, Ge MR, Liu Y, Zhang P, Li H, Li XL, Li T, Liu YD, Dou YC, Yang B, Duan RS. M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 Response. Front Immunol 2020; 11:1603. [PMID: 32793234 PMCID: PMC7390899 DOI: 10.3389/fimmu.2020.01603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Guillain–Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need. Macrophages have been implicated in both initiation and resolution of experimental autoimmune neuritis (EAN), the animal model of GBS, but the exact mechanisms remain to be elucidated. It has been increasingly appreciated that exosomes, a type of extracellular vesicles (EVs), are of importance for functions of macrophages. Nevertheless, the roles of macrophage derived exosomes in EAN/GBS remain unclear. Here we determined the effects of macrophage derived exosomes on the development of EAN in Lewis rats. M1 macrophage derived exosomes (M1 exosomes) were found to aggravate EAN via boosting Th1 and Th17 response, while M2 macrophage derived exosomes (M2 exosomes) showed potentials to mitigate disease severity via a mechanism bypassing Th1 and Th17 response. Besides, both M1 and M2 exosomes increased germinal center reactions in EAN. Further in vitro studies confirmed that M1 exosomes could directly promote IFN-γ production in T cells and M2 exosomes were not capable of inhibiting IFN-γ expression. Thus, our data identify a previously undescribed means that M1 macrophages amplify Th1 response via exosomes and provide novel insights into the crosstalk between macrophages and T cells as well.
Collapse
Affiliation(s)
- Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu-Dong Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
18
|
Hui W, Dai Y. Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2020. [DOI: 10.1111/bcpt.13372
expr 834489098 + 843621703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wenyu Hui
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
19
|
Du Z, Wang Q, Huang X, Yi S, Mei S, Yuan G, Su G, Cao Q, Zhou C, Wang Y, Kijlstra A, Yang P. Effect of berberine on spleen transcriptome and gut microbiota composition in experimental autoimmune uveitis. Int Immunopharmacol 2020; 81:106270. [PMID: 32044663 DOI: 10.1016/j.intimp.2020.106270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Berberine (BBR) was reported to have immunoregulatory and anti-inflammatory properties. In this study, we investigated whether BBR could exert its effects on the development of experimental autoimmune uveitis (EAU), and if so, what was the underlying mechanism? METHODS EAU was induced in B10R.III mice by immunization with IRBP 161-180, followed by 100 mg/kg/d BBR intragastric administration. Disease severity was assessed by evaluation of clinical and histopathological scores. Blood-retinal barrier (BRB) breakdown was tested by Evans blue. Effector and regulatory T (Treg) cell balance was evaluated by quantitative real-time PCR and flow cytometry. Spleen transcriptome was characterized by RNA sequencing (RNA-seq). Gut microbiota composition was investigated by 16S rRNA analysis. RESULTS BBR treatment significantly blocked EAU as shown by the decrease of the clinical and histological scores, as well as the inhibition of BRB breakdown. The frequency of splenic Th1 and Th17 cells was decreased, whereas Treg cells were increased in the BBR-treated group. RNA-seq of the spleen revealed 476 differentially expressed genes (DEGs) between the EAU and EAU-BBR group. GO functional classification, as well as KEGG analysis demonstrated that BBR treatment markedly influences genes belonging to chromatin remodeling and immune-related pathways. Intervention with BBR modified the gut microbiome in EAU mice, increasing the number of bacteria with immunomodulatory capacity. Depletion of gut microbiota affected the efficacy of BBR on EAU. Moreover, the altered bacterial strains showed a significant correlation with the expression of histones. CONCLUSIONS BBR inhibited IRBP induced EAU, which was associated with a significant change in the spleen transcriptome and intestinal microbial composition.
Collapse
Affiliation(s)
- Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Suyin Mei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, PR China.
| |
Collapse
|
20
|
Wang Y, Liu Y, Du X, Ma H, Yao J. The Anti-Cancer Mechanisms of Berberine: A Review. Cancer Manag Res 2020; 12:695-702. [PMID: 32099466 PMCID: PMC6996556 DOI: 10.2147/cmar.s242329] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR) has been extensively studied in vivo and vitro experiments. BBR inhibits cell proliferation by regulating cell cycle and cell autophagy, and promoting cell apoptosis. BBR also inhibits cell invasion and metastasis by suppressing EMT and down-regulating the expression of metastasis-related proteins and signaling pathways. In addition, BBR inhibits cell proliferation by interacting with microRNAs and suppressing telomerase activity. BBR exerts its anti-inflammation and antioxidant properties, and also regulates tumor microenvironment. This review emphasized that BBR as a potential anti-inflammation and antioxidant agent, also as an effective immunomodulator, is expected to be widely used in clinic for cancer therapy.
Collapse
Affiliation(s)
- Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
21
|
Hui W, Dai Y. Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2019; 126:469-474. [DOI: 10.1111/bcpt.13372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Wenyu Hui
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
22
|
Anti-Inflammatory and Immunomodulatory Effects of Barberry ( Berberis vulgaris) and Its Main Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6183965. [PMID: 31827685 PMCID: PMC6885761 DOI: 10.1155/2019/6183965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022]
Abstract
Berberis vulgaris is a well-known herb in Iran that is widely used as a medicinal plant and a food additive. The aim of this study was to investigate the anti-inflammatory and immunomodulatory effects of Barberry and its main compounds. This narrative review was conducted by searching keywords such as B. vulgaris, Barberry, immunomodulatory, anti-inflammatory, medicinal herbs, plants, and extract, separately or combined in various databases, such as Web of Sciences, PubMed, and Scopus. According to the inclusion and exclusion criteria, just English language articles, which reported effective whole plants or herbal compounds, were included. 21 articles were reviewed in this study. In the in vivo models (mice, rats, and human cells) and in the in vitro models (some organ cells such as the spleen, kidney, blood, and brain), B. vulgaris and its main components showed anti-inflammatory effects in both models. The main mechanisms were the shift of cell immune response to Th2, T reg induction, inhibition of inflammatory cytokines (IL-1, TNF, and IFN-γ), and stimulation of IL-4 and IL-10. The induction of apoptosis in APCs and other effector cells was another important mechanism.
Collapse
|
23
|
Tan J, Wang J, Yang C, Zhu C, Guo G, Tang J, Shen H. Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:218. [PMID: 31419978 PMCID: PMC6697971 DOI: 10.1186/s12906-019-2558-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Staphylococcal aureus (S. aureus) has become the leading causative pathogen of Prosthetic Joint Infection (PJI), which is the most devastating complication after arthroplasty surgeries. Due to the biofilm formation ability and emergence of multiple-drugs resistance strains of S. aureus, it has become an urgency to find new anti-staphylococcal agents to establish effective prophylaxis and treatment strategy for PJI. Extracted from a traditional Chinese herb, berberine is proved active in inhibiting S. aureus, while whether it exerts the same effect on PJI-related S. aureus remains unknown. This study aims to investigate the antimicrobial activity of berbrine against clinical derived PJI-related S. aureus and whether its inhibiting efficacy is associated with subtypes of S. aureus. METHODS Eighteen PJI-associated S. aureus were collected and their Multi-locus Sequence Types (MLST) and susceptibility to berberine both in planktonic and biofilm form were investigated. Additionally, one S. aureus strain (ST1792) was selected from the group and its transcriptomic profiling in berberine incubation was performed. The statistical analyses were conducted using Student's t-test with SPSS 24.0(SPSS, IBM, USA). The data were expressed as the means ± standard deviation. Values of p < 0.05 were considered statistically significant. RESULTS It was found out that the Minimum Inhibitory Concentration values of PJI-related S. aureus varied in a broad range (from 64 to 512 μg/ml) among different MLST subtypes and the bacteria were able to regain growth after 24 h in berberine of MIC value or higher concentrations. In addition, sub-inhibitory concentrations of berberine surprisingly enhanced biofilm formation in some S. aureus strains. CONCLUSION Traditional medicine is utilised by a large number of individuals, which provides abundant resources for modern medical science. In our study, berberine was found bactericidal against PJI related S. aureus, however, its antibacterial property was impacted by the MLST subtypes of the bacteria, both in planktonic and biofilm growth forms.
Collapse
|
24
|
Yang L, Liu G, Liang X, Wang M, Zhu X, Luo Y, Shang Y, Yang JQ, Zhou P, Gu XL. Effects of berberine on the growth performance, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Anim Sci J 2019; 90:1229-1238. [PMID: 31264347 DOI: 10.1111/asj.13255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response-related genes in lipopolysaccharide (LPS)-challenged broilers. We assigned 120 one-day-old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T-SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS-induced decreases in the mRNA expression of nuclear factor-kappa B (NF-κB), TNF-α, IL-1β, inducible nitrite synthase and cyclooxygenase-2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF-κB signalling and the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaorui Liang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Jing-Quan Yang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ping Zhou
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
25
|
Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front Pharmacol 2018; 9:557. [PMID: 30186157 PMCID: PMC6111450 DOI: 10.3389/fphar.2018.00557] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Berberine-containing plants have been traditionally used in different parts of the world for the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial pathologies. The physico-chemical properties of berberine contribute to the high diversity of extraction and detection methods. Considering its particularities this review describes various methods mentioned in the literature so far with reference to the most important factors influencing berberine extraction. Further, the common separation and detection methods like thin layer chromatography, high performance liquid chromatography, and mass spectrometry are discussed in order to give a complex overview of the existing methods. Additionally, many clinical and experimental studies suggest that berberine has several pharmacological properties, such as immunomodulatory, antioxidative, cardioprotective, hepatoprotective, and renoprotective effects. This review summarizes the main information about botanical occurrence, traditional uses, extraction methods, and pharmacological effects of berberine and berberine-containing plants.
Collapse
Affiliation(s)
- Maria A. Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Javier Echeverría
- Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Raluca M. Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina I. Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca D. Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, Hou Y, Wang B. The Effects of Berberine on Concanavalin A-Induced Autoimmune Hepatitis (AIH) in Mice and the Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase (AMPK) Pathway. Med Sci Monit 2017; 23:6150-6161. [PMID: 29283990 PMCID: PMC5753750 DOI: 10.12659/msm.907377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Berberine, a herbal extract, has been reported to protect against inflammatory disorders. The adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway can be activated by berberine and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C. The aim of this study was to investigate the effects of berberine on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice via the AMPK pathway. Material/Methods BALB/c mice were treated with berberine, with or without Compound C, followed by treatment with Con A. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue histology was performed to evaluate hepatic injury and AIH. Cytokine levels in serum and hepatic tissue were measured by enzyme-linked immunoassay (ELISA) and used quantitative polymerase chain reaction (qPCR). Levels of phosphorylated acetyl coenzyme-A carboxylase (ACC), representing AMPK activation, were detected by Western blotting. Results Serum ALT and AST levels were significantly reduced by berberine (100 and 200 mg/kg/day) in mice with Con A-induced hepatitis. Berberine also reduced Con A-induced hepatocyte swelling, cell death, and infiltration of leukocytes. Serum levels of tumor necrosis factor (TNF)-alpha, interferon (IF)-gamma, interleukin (IL)-2, and IL-1beta were reduced by berberine pre-treatment; levels of serum IL-10, an anti-inflammatory cytokine, was elevated. These protective effects of berberine on Con-A-induced AIH were reversed by treatment with Compound C. Conclusions In a murine model of Con A-induced AIH, berberine treatment reduced hepatic injury via activation of the AMPK pathway. Further studies are recommended to determine the potential therapeutic role for berberine in AIH.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Lu Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yanni Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Liping Guo
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhe Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Haoran Xie
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Yingjian Hou
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
27
|
Fernandez CP, Afrin F, Flores RA, Kim WH, Jeong J, Kim S, Chang HH, Lillehoj HS, Min W. Downregulation of inflammatory cytokines by berberine attenuates Riemerella anatipestifer infection in ducks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:121-127. [PMID: 28780326 DOI: 10.1016/j.dci.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Riemerella anatipestifer, an important infectious bacterium affecting the duck industry, has 5-75% mortality, depending on strain virulence. We previously demonstrated that proinflammatory cytokines are involved in inflammation during, and regulating susceptibility to, R. anatipestifer infection. We investigated the effects of the anti-inflammatory compound berberine in duck splenic lymphocytes stimulated with killed R. anatipestifer, and in R. anatipestifer-infected ducks. IL-17A, IL-17F, and IL-1β transcripts were downregulated, and IFN-γ and IL-10 transcripts enhanced, in berberine-treated stimulated splenic lymphocytes, compared to stimulated untreated splenic lymphocytes. Similarly, IL-17A, IL-17F, IL-6, and IL-1β expressions were significantly reduced, and IFN-γ and IL-10 expressions significantly upregulated, in spleens and livers of R. anatipestifer-infected berberine-treated ducks, compared to infected untreated birds. Moreover, infected and treated birds showed increased survival rates and significantly decreased bacterial burdens compared to infected untreated birds, confirming that inflammatory cytokines are strongly associated with R. anatipestifer infection in ducks.
Collapse
Affiliation(s)
- Cherry P Fernandez
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Woo H Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea; Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, USA
| | - Jipseol Jeong
- National Institute of Environmental Research, Environmental Research Complex, Incheon 22689, South Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Hong H Chang
- Department of Animal Science, College of Agriculture, Gyeongsang National University, Jinju 52828, South Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
28
|
Karimi G, Mahmoudi M, Balali-Mood M, Rahnama M, Zamani Taghizadeh Rabe S, Tabasi N, Riahi-Zanjani B. Decreased Levels of Spleen Tissue CD4 + CD25 + Foxp3 + Regulatory T Lymphocytes in Mice Exposed to Berberine. J Acupunct Meridian Stud 2017; 10:109-113. [DOI: 10.1016/j.jams.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
|
29
|
Wang Y, Zhang J, Luo P, Zhu J, Feng J, Zhang HL. Tumor necrosis factor-α in Guillain-Barré syndrome, friend or foe? Expert Opin Ther Targets 2016; 21:103-112. [PMID: 27817222 DOI: 10.1080/14728222.2017.1258402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Wang
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Peijuan Luo
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Jiachun Feng
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 2016; 113:592-599. [PMID: 27697643 DOI: 10.1016/j.phrs.2016.09.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
|
31
|
Zhang E, Li M, Zhao J, Dong Y, Yang X, Huang J. Traditional Chinese medicine Yisui Tongjing relieved neural severity in experimental autoimmune neuritis rat model. Neuropsychiatr Dis Treat 2016; 12:2481-2487. [PMID: 27729792 PMCID: PMC5047740 DOI: 10.2147/ndt.s110813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To study the effect of Yisui Tongjing (YSTJ) prescription on motor nerve conduction velocity (MNCV) and microstructure of the sciatic nerve in experimental autoimmune neuritis (EAN) rats, the Guillain-Barré syndrome classic animal models. MATERIALS AND METHODS In this study, we established an EAN model in Lewis rats by immunization. We evaluated the potential clinical application of a traditional Chinese medicine YSTJ by intragastric administration and compared its effect with immunoglobulin. The sciatic MNCV was measured by electrophysiology experiment. Hematoxylin-eosin staining and transmission electron microscope analysis were used to determine the pathologically morphological changes before and after YSTJ application. RESULTS We found that application of YSTJ could significantly alleviate the clinical signs in EAN rats. The treatment also increased MNCV in the sciatic nerve compared to that in the untreated nerve. Demyelination in the sciatic nerve in EAN rats was significantly ameliorated, and newly generated myelinated nerve fibers were observed with treatment of high dose of YSTJ. CONCLUSION This study showed that the traditional Chinese medicine YSTJ was likely to serve as a therapeutic medicine in autoimmune neuropathies, providing an effective and economic means to the treatment of Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Erli Zhang
- Department of Traditional Chinese Medicine, The First Bethune Hospital of Jilin University
| | - Mingquan Li
- Department of Encephalopathy, The First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, People's Republic of China
| | - Jianjun Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, People's Republic of China
| | - Yuxiang Dong
- Department of Traditional Chinese Medicine, The First Bethune Hospital of Jilin University
| | - Xueqin Yang
- Department of Traditional Chinese Medicine, The First Bethune Hospital of Jilin University
| | - Jingbo Huang
- Department of Traditional Chinese Medicine, The First Bethune Hospital of Jilin University
| |
Collapse
|
32
|
Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J Neuroimmunol 2015; 289:43-55. [DOI: 10.1016/j.jneuroim.2015.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
|
33
|
Abdel Moneim AE. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 2015; 30:935-942. [PMID: 25600690 DOI: 10.1007/s11011-015-9652-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023]
Abstract
The central nervous system is one of the most vulnerable organs affected by mercury toxicity. Both acute and chronic exposure to mercury is also known to cause a variety of neurological or psychiatric disorders. Here, the neuroprotective effect of berberine (BN; 100 mg/kg bwt) on mercuric chloride (HgCl2; 0.4 mg/kg bwt) induced neurotoxicity and oxidative stress was examined in rats. Adult male albino Wistar rats were injected with HgCl2 for 7 days. HgCl2 treatment induced oxidative stress by increasing lipid peroxidation (LPO) and nitrite/nitrate (nitric oxide; NO) production along with a concomitant decrease in glutathione (GSH) and various antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Pre-treatment of rats with BN inhibited LPO and NO production, whereas it increased GSH content. Activities of antioxidant enzymes were also restored concomitantly when compared to the control rats after BN administration. Berberine also caused decrease in TNF-α level and caspase-3 activity which was higher with HgCl2. Furthermore, treatment with BN inhibited apoptosis, as indicated by the reduction of Bax/Bcl-2 ratio in brain tissue. These data indicated that BN augments antioxidant defense with anti-inflammatory and anti-apoptotic activities against HgCl2-induced neurotoxicity and provides evidence that it has a therapeutic potential as neuroprotective agent.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt,
| |
Collapse
|
34
|
Chen CC, Hung TH, Lee CY, Wang LF, Wu CH, Ke CH, Chen SF. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS One 2014; 9:e115694. [PMID: 25546475 PMCID: PMC4278716 DOI: 10.1371/journal.pone.0115694] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Taipei and College of Medicine, Chang Gung University, Taipei, Taiwan, Republic of China
| | - Chao Yu Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Liang-Fei Wang
- Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chun-Hu Wu
- Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Hua Ke
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
35
|
Kuntzer T. [2013: what's new in inflammatory neuropathies]. Rev Neurol (Paris) 2014; 170:850-3. [PMID: 25459118 DOI: 10.1016/j.neurol.2014.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/27/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022]
Abstract
Several high-quality publications were published in 2013 and some major trials studies were started. In Guillain-Barré syndrome, events included the launch of IGOS and a better understanding of diagnostic limits, the effect of influenza vaccination, and better care, but uncertainty remains about analgesics. A new mouse model was also described. In chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), diagnostic pitfalls can be recalled. Our knowledge of underlying pathophysiological processes has improved, and the value of monitoring with function and deficit scores has been demonstrated. IVIG can sometimes be effective longer than expected, but CIDP remains sensitive to corticosteroids, particularly with the long-term beneficial effects of megadose dexamethasone. The impact of fingolimod remains to be demonstrated in an ongoing trial. Advances concerning multifocal motor neuropathy, inflammatory plexopathy, and neuropathy with anti -MAG activity are discussed but treatments already recognized as effective should not be changed. Imaging of peripheral nerve progresses.
Collapse
Affiliation(s)
- T Kuntzer
- Département des neurosciences cliniques, université de Lausanne, CHU Vaudois (CHUV), BH07/413, rue du Bugnon 46, 1011 Lausanne, Suisse.
| |
Collapse
|
36
|
Comparison of Two Old Phytochemicals versus Two Newly Researched Plant-Derived Compounds: Potential for Brain and Other Relevant Ailments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682717. [PMID: 24949079 PMCID: PMC4034649 DOI: 10.1155/2014/682717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Abstract
Among hundreds of formulae of Chinese herbal prescriptions and recently extracted active components from the herbs, some of which had demonstrated their functions on nervous system. For the last decade or more, Gingko biloba and Polygala tenuifolia were widely studied for their beneficial effects against damage to the brain. Two compounds extracted from Apium graveolens and Rhizoma coptidis, butylphthalide and berberine, respectively, received much attention recently as potential neuroprotective agents. In this review, the two traditionally used herbs and the two relatively new compounds will be discussed with regard to their potential advantages in alleviating brain and other relevant ailments.
Collapse
|