1
|
Shi H, Li J, Li F, Yu H, Zhang F, Wu T, Yang L, Li Y, Hu R, Chen M, SG N, Zhuang X, Feng S, Zhu L, Duan R. Vitamin C-Dependent Intergenerational Inheritance of Enhanced Endurance Performance Following Maternal Exercise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408912. [PMID: 39921869 PMCID: PMC11967756 DOI: 10.1002/advs.202408912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Declining levels of physical activity and fitness in children and youth are linked to negative health outcomes. This study investigates whether maternal exercise can enhance offspring's physical fitness. Our results demonstrate that maternal exercise improves offspring's endurance by changing muscle fiber composition and promoting mitochondrial biogenesis, with benefits lasting across generations. This improvement is associated with changes in DNA methylation, specifically the demethylation of the Slc23a2 gene, which codes for SVCT2, crucial for vitamin C (VC) transport, in F1 and F2 generations. Importantly, VC administration during pregnancy mimics the transgenerational benefits of exercise on offspring fitness, but these benefits are absent in genetic VC deficiency mice. VC supplementation increases TET2 expression in murine and human myogenic cells, regulating DNA methylation, promoting the development of oxidative fibers, and enhancing mitochondrial biogenesis. This study highlights the VC-TET2-SVCT2 pathway as a key mechanism for the transgenerational endurance benefits of maternal exercise, suggesting potential strategies to enhance maternal and child health.
Collapse
Affiliation(s)
- Haiwang Shi
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Jie Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Fan Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Haoyang Yu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Fulong Zhang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Tao Wu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Luodan Yang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Yuecheng Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Rui Hu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Mengjie Chen
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Nina SG
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Xuhong Zhuang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Shu Feng
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Ling Zhu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Rui Duan
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| |
Collapse
|
2
|
Barranco-Gil D, Hernández-Belmonte A, Rodríguez-Rielves V, Iriberri J, Martínez-Cava A, Buendía-Romero Á, Alejo LB, Franco-Lopez F, Sanchez-Redondo IR, DE Pablos R, Lucia A, Valenzuela PL, Pallares JG. Off- and On-Bike Resistance Training in Cyclists: A Randomized Controlled Trial. Med Sci Sports Exerc 2025; 57:296-304. [PMID: 39231694 DOI: 10.1249/mss.0000000000003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE This study compared the effects of off- and on-bike resistance training (RT) on endurance cycling performance as well as muscle strength, power, and structure. METHODS Well-trained male cyclists were randomly assigned to incorporate two sessions/week of off-bike (full squats, n = 12) or on-bike (all-out efforts performed against very high resistances and thus at very low cadences, n = 12) RT during 10 wk, with all RT-related variables (number of sessions, sets, and repetitions, duration of recovery periods, and relative loads [70% of one-repetition maximum]) matched between the two groups. A third, control group ( n = 13), did not receive any RT stimulus, but all groups completed a cycling training regime of the same volume and intensity. Outcomes included maximum oxygen uptake (V̇O 2max ), off-bike muscle strength (full squat) and on-bike ("pedaling") muscle strength, and peak power capacity (Wingate test), dual-energy X-ray absorptiometry-determined body composition (muscle/fat mass), and muscle structure (cross-sectional area, pennation angle). RESULTS No significant within/between-group effect was found for V̇O 2max . Both the off-bike (mean Δ = 2.6%-5.8%) and on-bike (4.5%-7.3%) RT groups increased squat and pedaling-specific strength parameters after the intervention compared with the control group (-5.8% to -3.9%) ( P < 0.05) with no significant differences between them. The two RT groups also increased Wingate performance (4.1% and 4.3%, respectively, vs -4.9% in the control group, P ≤ 0.018), with similar results for muscle cross-sectional area (2.5% and 2.2%, vs -2.3% in the control group, P ≤ 0.008). No significant within/between-group effect was found for body composition. CONCLUSIONS The new proposed on-bike RT could be an effective alternative to conventional off-bike RT training for improving overall and pedaling-specific muscle strength, power, and muscle mass.
Collapse
Affiliation(s)
| | | | - Víctor Rodríguez-Rielves
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | - Jon Iriberri
- Jumbo Visma Professional Cycling Team, Den Bosch, NETHERLANDS
| | | | - Ángel Buendía-Romero
- GENUD Toledo Research Group, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | | | - Francisco Franco-Lopez
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | | | - Raúl DE Pablos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| | | | | | - Jesús G Pallares
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| |
Collapse
|
3
|
Giancáspero-Inostroza F, Burgos-Jara C, Sepúlveda C, Haichelis D, Meneses-Valdés R, Orizola-Cáceres I, Cerda-Kohler H. Cycling Isokinetic Peak Force Explains Maximal Aerobic Power and Physiological Thresholds but Not Cycling Economy in Trained Triathletes. J Funct Morphol Kinesiol 2024; 9:273. [PMID: 39728257 DOI: 10.3390/jfmk9040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Assessments of muscle strength help prescribe and monitor training loads in cyclists (e.g., triathletes). Some methods include repetition maximum, joint isokinetic tests, and indirect estimates. However, their specificity for cycling's dynamic force application and competitive cadences is lacking. This study aims to determine the influence of the cycling isokinetic peak force (cIPF) at different cadences on aerobic performance-related variables in trained triathletes. Methods: Eleven trained male athletes (33 ± 9.8 years, 173.1 ± 5.0 cm height, 73.9 ± 6.8 kg body mass, and ≥5 years of triathlon experience) were recruited. Maximal oxygen consumption (VO2 max), ventilatory thresholds (i.e., VT1 and VT2), and cIPF were assessed. cIPF testing involved 10 s sprints at varied cadences with 4 min rest intervals. Pedaling cadences were set at low (60 rpm), moderate (80 and 100 rpm), and high (120 and 140 rpm) cadences. A regression model approach identified cIPF related to aerobic performance. Results: IPF at 80 and 120 rpm explained 49% of the variability in power output at VT1, 55% of the variability in power output at VT2, 65% of the variability in power output at maximal aerobic power (MAP), and 39% of the variability in VO2 max. The cycling economy was not explained by cIPF. Conclusions: This study highlights the significance of cIPF, particularly at moderate to high cadences, as a determinant of aerobic-related variables in trained triathletes. Cycling cIPF should be tested to understand an athlete's profile during crank cycling, informing better practice for training specificity and ultimately supporting athletes in achieving optimal performance outcomes in competitive cycling events.
Collapse
Affiliation(s)
- Felipe Giancáspero-Inostroza
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Magister en Ciencias de la Salud y el Deporte, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Carlos Burgos-Jara
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Carlos Sepúlveda
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago 7750332, Chile
| | - Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Ignacio Orizola-Cáceres
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Hugo Cerda-Kohler
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Departamento de Educación Física, Deporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago 7750332, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
4
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
5
|
Hebisz R, Hebisz P. Greater improvement in aerobic capacity after a polarized training program including cycling interval training at low cadence (50-70 RPM) than freely chosen cadence (above 80 RPM). PLoS One 2024; 19:e0311833. [PMID: 39536034 PMCID: PMC11559993 DOI: 10.1371/journal.pone.0311833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study compared the impact of two polarized training programs (POL) on aerobic capacity in well-trained (based on maximal oxygen uptake and training experience) female cyclists. Each 8-week POL program consisted of sprint interval training (SIT) consisting of 8-12 repetitions, each lasting 30 seconds at maximal intensity, high-intensity interval training (HIIT) consisting of 4-6 repetitions, each lasting 4 minutes at an intensity of 90-100% maximal aerobic power, and low-intensity endurance training (LIT) lasting 150-180 minutes with intensity at the first ventilatory threshold. Training sessions were organized into 4-day microcycles (1st day-SIT, 2nd day-HIIT, 3rd day-LIT, and 4th day-active rest), that were repeated throughout the experiment. In the first POL program, exercise repetitions during SIT and HIIT training were performed with freely chosen cadence above 80 RPM (POLFC group, n = 12), while in the second POL program with low cadence 50-70 RPM (POLLC group, n = 12). Immediately before and after the 8-week POL intervention, participants performed an incremental test to measure maximal aerobic power (Pmax), power achieved at the second ventilatory threshold (VT2), maximal oxygen uptake (VO2max), maximal pulmonary ventilation (VEmax), and gross efficiency (GE). Moreover, participants performed VO2max verification test. Analysis of variance showed a repeated measures effect for Pmax (F = 21.62; η2 = 0.5; p = 0.00), VO2max (F = 39.39; η2 = 0.64; p = 0.00) and VEmax (F = 5.99; η2 = 0.21; p = 0.02). A repeated measures x group mixed effect was demonstrated for Pmax (F = 4.99; η2 = 0.18; p = 0.03) and VO2max (F = 6.67; η2 = 0.23; p = 0.02). Post-hoc Scheffe analysis showed that increase in Pmax were statistically significant only in POLLC group. The Friedman test showed that VT2 differed between repeated measures only in the POLLC group (χ2 = 11; p = 0.001; W = 0.917). In conclusion, it was found that POL program where SIT and HIIT were performed at low cadence was more effective in improving aerobic capacity in well-trained female cyclists, than POL with SIT and HIIT performed at freely chosen cadence. This finding is a practical application for athletes and coaches in cycling, to consider not only the intensity and duration but also the cadence used during various interval training sessions.
Collapse
Affiliation(s)
- Rafal Hebisz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Paulina Hebisz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| |
Collapse
|
6
|
Sitko S, López-Laval I, Cirer-Sastre R. Influence of Conventional Resistance Training Compared to Core Exercises on Road Cycling Power Output. Cureus 2024; 16:e59371. [PMID: 38817493 PMCID: PMC11137631 DOI: 10.7759/cureus.59371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Conventional strength training and core exercises are commonly prescribed to improve cycling performance. Although previous studies have explored the utility of strength training in various cycling populations, this intervention has never been compared to core exercises. Thirty-six trained road cyclists were divided into three groups of 12 participants that performed either no strength training, conventional strength training, or core exercises, in all cases together with their regular cycling training during a 12-week period. Peak power outputs (POs) across different durations (five seconds, 60 seconds, five minutes, and 20 minutes) were recorded before and after the intervention. The results of the present study showed higher increases in relative PO with conventional strength training when compared to core training and no strength training for all measured durations: five-second Δ = 1.25 W/kg vs 0.47 W/kg and -0.17 W/kg; 60-second (Δ = 0.51 W/kg vs 0.13 W/kg and 0.02 W/kg; five-minute Δ = 0.22 W/kg vs 0.06 W/kg and 0.05 W/kg; and 20-minute Δ = 0.22 W/kg vs 0.07 W/kg and 0.06 W/kg. According to the data obtained in this study, conventional strength training is superior to core exercises, and no strength training was performed by trained road cyclists. Accordingly, it is recommended that this population incorporates strength training during their regular weekly workouts.
Collapse
Affiliation(s)
- Sebastian Sitko
- Physiatry and Nursing, University of Zaragoza, Zaragoza, ESP
| | | | - Rafel Cirer-Sastre
- National Institute for Physical Education of Catalonia, Universitat de Lleida, Lleida, ESP
| |
Collapse
|
7
|
Ryningen A, Rostad K, Ersvær E, Sjøholt G, Paulsen G, Gundersen H, Kristoffersen M, Bjørkhaug L. Acute response in circulating microRNAs following a single bout of short-sprint and heavy strength training in well-trained cyclists. Front Physiol 2024; 15:1365357. [PMID: 38532845 PMCID: PMC10963392 DOI: 10.3389/fphys.2024.1365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Heavy strength (HS) and short-sprint (SS) are commonly used training methods for competitive road cyclists, with the aim to improve the anaerobic power and short time cycling performance. Knowledge of how such training methods affects biochemical as well as molecular factors, are particularly important for determining individual recovery and long-term adaptations. The primary aim of the current study was to investigate the expression levels of small non-coding RNAs in response to HS and SS training in elite cyclists as potential biomarkers for individual optimal restitution time. Methods: Eleven well trained cyclists performed one session of HS training and one session of SS training on separate days. Blood samples were taken at baseline and 5 min, 1 h and 21 h post training. Along with physiological measurements and biochemical factors (serum creatine kinase, myoglobin, human growth hormone and plasma lactate), real-time quantitative PCR was used to explore whether HS and/or SS training influenced the abundance of 24 circulating miRNAs, in serum, associated with muscle development, angiogenesis, and/or inflammation. Results: Based on complete miRNA profiles from nine cyclists, the miRNAs showing most altered expression after both training sessions included the three striated muscle-specific miRNAs (myomiRs) miR-1-3p, 133a-3p and 133b-3p. While all three miRNAs showed significantly highest expression at 1 h post HS session, the acute effect of the SS session included a significantly higher level of miR-1-3p alone, at 5 min (highest), as well as at 1 h and 21 h post session. Correlation (negative) with biochemical markers was only shown for miR-133a-3p and CK (r = -0.786, p = 0.041) and between miR-133b-3p and [La-] (r = -0.711, p = .032), at 21 h post SS session. Conclusion: Our findings support that unique myomiRs are regulated by HS and SS training. Such knowledge may be important for individually adjusted restitution times.
Collapse
Affiliation(s)
- Anita Ryningen
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Kari Rostad
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Elisabeth Ersvær
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Gøran Paulsen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hilde Gundersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| | - Morten Kristoffersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
8
|
Huiberts RO, Wüst RCI, van der Zwaard S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med 2024; 54:485-503. [PMID: 37847373 PMCID: PMC10933151 DOI: 10.1007/s40279-023-01943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Many sports require maximal strength and endurance performance. Concurrent strength and endurance training can lead to suboptimal training adaptations. However, how adaptations differ between males and females is currently unknown. Additionally, current training status may affect training adaptations. OBJECTIVE We aimed to assess sex-specific differences in adaptations in strength, power, muscle hypertrophy, and maximal oxygen consumption ( V ˙ O2max) to concurrent strength and endurance training in healthy adults. Second, we investigated how training adaptations are influenced by strength and endurance training status. METHODS A systematic review and meta-analysis was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and a Cochrane risk of bias was evaluated. ISI Web of science, PubMed/MEDLINE, and SPORTDiscus databases were searched using the following inclusion criteria: healthy adults aged 18-50 years, intervention period of ≥ 4 weeks, and outcome measures were defined as upper- and lower-body strength, power, hypertrophy, and/or V ˙ O2max. A meta-analysis was performed using a random-effects model and reported in standardized mean differences. RESULTS In total, 59 studies with 1346 participants were included. Concurrent training showed blunted lower-body strength adaptations in males, but not in females (male: - 0.43, 95% confidence interval [- 0.64 to - 0.22], female: 0.08 [- 0.34 to 0.49], group difference: P = 0.03). No sex differences were observed for changes in upper-body strength (P = 0.67), power (P = 0.37), or V ˙ O2max (P = 0.13). Data on muscle hypertrophy were insufficient to draw any conclusions. For training status, untrained but not trained or highly trained endurance athletes displayed lower V ˙ O2max gains with concurrent training (P = 0.04). For other outcomes, no differences were found between untrained and trained individuals, both for strength and endurance training status. CONCLUSIONS Concurrent training results in small interference for lower-body strength adaptations in males, but not in females. Untrained, but not trained or highly trained endurance athletes demonstrated impaired improvements in V ˙ O2max following concurrent training. More studies on females and highly strength-trained and endurance-trained athletes are warranted. CLINICAL TRIAL REGISTRATION PROSPERO: CRD42022370894.
Collapse
Affiliation(s)
- Raven O Huiberts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Forbes SC, Candow DG, Neto JHF, Kennedy MD, Forbes JL, Machado M, Bustillo E, Gomez-Lopez J, Zapata A, Antonio J. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr 2023; 20:2204071. [PMID: 37096381 PMCID: PMC10132248 DOI: 10.1080/15502783.2023.2204071] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Creatine supplementation is an effective ergogenic aid to augment resistance training and improve intense, short duration, intermittent performance. The effects on endurance performance are less known. The purpose of this brief narrative review is to discuss the potential mechanisms of how creatine can affect endurance performance, defined as large muscle mass activities that are cyclical in nature and are >~3 min in duration, and to highlight specific nuances within the literature. Mechanistically, creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine lowers inflammation and oxidative stress and has the potential to increase mitochondrial biogenesis. In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities. Overall, creatine supplementation increases time to exhaustion during high-intensity endurance activities, likely due to increasing anaerobic work capacity. In terms of time trial performances, results are mixed; however, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity and/or during end spurts, which are often key race-defining moments. Given creatines ability to enhance anaerobic work capacity and performance through repeated surges in intensity, creatine supplementation may be beneficial for sports, such as cross-country skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance, such as rowing, kayaking, and track cycling.
Collapse
Affiliation(s)
- Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Michael D Kennedy
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, AB, Canada
| | - Jennifer L Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | | | - Erik Bustillo
- Train 8Nine/CrossFit Coconut Grove, Erik Bustillo Consulting, Miami, FL, USA
| | - Jose Gomez-Lopez
- Rehab & Nutrition Center, Human Performance Laboratory, Motion Training, Lo Barnechea, Chile
| | | | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
10
|
Khazaei L, Parnow A, Amani-Shalamzari S. Comparing the effects of traditional resistance training and functional training on the bio-motor capacities of female elite taekwondo athletes. BMC Sports Sci Med Rehabil 2023; 15:139. [PMID: 37864229 PMCID: PMC10589965 DOI: 10.1186/s13102-023-00754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The capabilities of the biomotors are essential to the success of the taekwondo athlete. This study aimed to compare eight weeks of functional training and traditional resistance on the bio-motor capacities of elite female taekwondo athletes. METHODOLOGY Seventeen elite taekwondo athletes (mean age = 21.7 years, mean height = 167.2 cm and mean weight = 60.8 kg) volunteered to participate in the study. They were randomly divided into two groups: functional training (FT) and traditional resistance training (TRT). Participants trained for 8 weeks, 3 sessions per week, for 75-90 min. Aerobic power, anaerobic power, speed, reaction time, agility, muscle power, dynamic balance, flexibility, upper and lower body muscle strength, core and upper body muscle endurance, and blood lactate level were measured before and after training programs. RESULTS Non-significant differences were observed in all indicators between the FT and TRT groups (P > 0.05). Both groups showed significant improvement in time-related outcomes except for fatigue and flexibility (P > 0.05). There was significant progress in both groups in aerobic power, muscle power, speed, agility, reaction time, lower body strength, upper body strength, dynamic balance of the right leg, and dynamic balance of the left leg indices from pre to post-tests. The FT group displayed significant improvement in peak power (P = 0.006) and mean power (P = 0.015) from pre- to post-test. CONCLUSION Both interventions improved most biomotor abilities in elite female taekwondo athletes. It should be noted that since muscle power is vital for taekwondo, therefore, it is recommended to include FT in the taekwondo workout program.
Collapse
Affiliation(s)
- Leila Khazaei
- Sport-Biosciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, 6414414874, Iran
| | - Abdolhossein Parnow
- Sport-Biosciences Department, Physical Education and Sport Sciences Faculty, Razi University, University Street, Kermanshah, 6414414874, Iran.
| | - Sadegh Amani-Shalamzari
- Exercise Physiology Department, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
11
|
Mathisen TF, Ackland T, Burke LM, Constantini N, Haudum J, Macnaughton LS, Meyer NL, Mountjoy M, Slater G, Sundgot-Borgen J. Best practice recommendations for body composition considerations in sport to reduce health and performance risks: a critical review, original survey and expert opinion by a subgroup of the IOC consensus on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1148-1158. [PMID: 37752006 DOI: 10.1136/bjsports-2023-106812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The assessment of body composition (BC) in sport raises concern for athlete health, especially where an overfocus on being lighter or leaner increases the risk of Relative Energy Deficiency in Sport (REDs) and disordered eating. METHODS We undertook a critical review of the effect of BC on performance (29 longitudinal, prospective or intervention studies) and explored current practice related to BC considerations via a follow-up to a 2013 internationally distributed survey. RESULTS The review found that a higher level of body fat was negatively associated with endurance performance, while a gain in muscle mass resulted in performance benefits across sports. BC did not contribute to early talent identification, and no unique cut-off to signify a performance advantage for BC was identified. BC appears to be one of an array of variables impacting performance, and its influence should not be overstated. The survey (125 practitioners, 61 sports and 26 countries) showed subtle changes in BC considerations over time, such as an increased role for sport dietitian/nutrition practitioners as BC measurers (2013: 54%, 2022: 78%); less emphasis on reporting of body fat percentage (2013: 68%, 2022: 46%) and reduced frequency of BC assessment if ≥every fourth week (2013: 18%, 2022: 5%). Respondents remained concerned about a problematic focus on BC (2013: 69%, 2022: 78%). To address these findings, we provide detailed recommendations for BC considerations, including an overview of preferable BC methodology. CONCLUSIONS The 'best practice' guidelines stress the importance of a multidisciplinary athlete health and performance team, and the treatment of BC data as confidential medical information. The guidelines provide a health focus around BC, aiming to reduce the associated burden of disordered eating, problematic low energy availability and REDs.
Collapse
Affiliation(s)
| | - Timothy Ackland
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Louise M Burke
- Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sport Medicine, Shaare Zedek Medical Center, Hebrew University, Jerusalem, Israel
| | - Judith Haudum
- Department of Sport and Exercise Science, University of Salzburg, Hallein-Rif, Salzburg, Austria
| | | | - Nanna L Meyer
- Department of Human Physiology and Nutrition, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| | - Margo Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
- REDs Consensus Writing Group, International Olympic Committee, Lausanne, Switzerland
| | - Gary Slater
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | |
Collapse
|
12
|
Zouita A, Darragi M, Bousselmi M, Sghaeir Z, Clark CCT, Hackney AC, Granacher U, Zouhal H. The Effects of Resistance Training on Muscular Fitness, Muscle Morphology, and Body Composition in Elite Female Athletes: A Systematic Review. Sports Med 2023; 53:1709-1735. [PMID: 37289331 PMCID: PMC10432341 DOI: 10.1007/s40279-023-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Well programmed strength and conditioning training is an indispensable part of the long-term training process for athletes in individual and team sports to improve performance and prevent injuries. Yet, there is a limited number of studies available that examine the effects of resistance training (RT) on muscular fitness and physiological adaptations in elite female athletes. OBJECTIVES This systematic review aimed to summarize recent evidence on the long-term effects of RT or combinations of RT with other strength-dominated exercise types on muscular fitness, muscle morphology, and body composition in female elite athletes. MATERIALS AND METHODS A systematic literature search was conducted in nine electronic databases (Academic Search Elite, CINAHL, ERIC, Open Access Theses and Dissertations, Open Dissertations, PsycINFO, PubMed/MEDLINE, Scopus, and SPORTDiscus) from inception until March 2022. Key search terms from the MeSH database such as RT and strength training were included and combined using the operators "AND," "OR," and "NOT". The search syntax initially identified 181 records. After screening for titles, abstracts, and full texts, 33 studies remained that examined the long-term effects of RT or combinations of RT with other strength-dominated exercise types on muscular fitness, muscle morphology, and body composition in female elite athletes. RESULTS Twenty-four studies used single-mode RT or plyometric training and nine studies investigated the effects of combined training programs such as resistance with plyometric or agility training, resistance and speed training, and resistance and power training. The training duration lasted at least 4 weeks, but most studies used ~ 12 weeks. Studies were generally classified as 'high-quality' with a mean PEDro score of 6.8 (median 7). Irrespective of the type or combination of RT with other strength-dominated exercise regimens (type of exercise, exercise duration, or intensity), 24 out of 33 studies reported increases in muscle power (e.g., maximal and mean power; effect size [ES]: 0.23 < Cohen's d < 1.83, small to large), strength (e.g., one-repetition-maximum [1RM]; ES: 0.15 < d < 6.80, small to very large), speed (e.g., sprint times; ES: 0.01 < d < 1.26, small to large), and jump performance (e.g., countermovement/squat jump; ES: 0.02 < d < 1.04, small to large). The nine studies that examined the effects of combined training showed significant increases on maximal strength (ES: 0.08 < d < 2.41, small to very large), muscle power (ES: 0.08 < d < 2.41, small to very large), jump and sprint performance (ES: 0.08 < d < 2.41, small to very large). Four out of six studies observed no changes in body mass or percentage of body fat after resistance or plyometric training or combined training (ES: 0.026 < d < 0.492, small to medium). Five out of six studies observed significant changes in muscle morphology (e.g., muscle thickness, muscle fiber cross-sectional area; ES: 0.23 < d < 3.21, small to very large). However, one study did not find any changes in muscle morphology (i.e., muscle thickness, pennation angle; ES: 0.1 < d < 0.19, small). CONCLUSION Findings from this systematic review suggest that RT or combined RT with other strength-dominated exercise types leads to significant increases in measures of muscle power, strength, speed, and jump performance in elite female athletes. However, the optimal dosage of programming parameters such as training intensity and duration necessary to induce large effects in measures of muscular fitness and their physiological adaptations remain to be resolved in female elite athletes.
Collapse
Affiliation(s)
- Amira Zouita
- Higher Institute of Sport and Physical Education of Ksar-Said, Research Unit "Sports Performance, Health & Society" (UR17JS01), University of Manouba, Manouba, Tunisia
| | - Manel Darragi
- Higher Institute of Sport and Physical Education of Ksar-Said, Research Unit "Sports Performance, Health & Society" (UR17JS01), University of Manouba, Manouba, Tunisia
| | - Mariem Bousselmi
- Higher Institute of Sport and Physical Education of Ksar-Said, Research Unit "Sports Performance, Health & Society" (UR17JS01), University of Manouba, Manouba, Tunisia
| | - Zouita Sghaeir
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Manouba, Tunisia
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé), EA 1274, 35000, Rennes, France.
| |
Collapse
|
13
|
Herrero-Molleda A, Álvarez-Álvarez MJ, Floría P, García-López J. Training Characteristics and Competitive Demands in Women Road Cyclists: A Systematic Review. Int J Sports Physiol Perform 2023:1-11. [PMID: 37369364 DOI: 10.1123/ijspp.2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE To identify the main training characteristics and competitive demands in women's road cycling. METHODS A systematic search was conducted on 5 databases according to PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. The articles had to be primary studies, written after 1990 with a sample of competitive women between the ages of 15 and 50. The Quality Assessment Tool for Quantitative Studies and the Oxford Levels of Evidence scales were used. RESULTS The search yielded 1713 articles, of which 20 were included. Studies on training and competitive demands (n = 5) found that both external and internal loads are higher in women than in men. Studies on strength and endurance training (n = 5) showed that both velocity-based and heavy-load strength training programs performed at least 2 days per week and including 3 to 4 lower-body exercises improved performance. Altitude-training studies (n = 3) found that "Live High-Train Low" was effective to increase performance during the first 9 days after the training camp. The 7 remaining studies focused on a range of topics. The methodological quality was strong for 12 studies and moderate for 8. In contrast, the level of evidence was high in 7 and low in the other 13. CONCLUSIONS Endurance training and competitive demands in women's road cycling are higher than those of men. Strength training is effective in women when the frequency, intensity, and number of exercises are appropriate, while altitude training should be completed a few days before competing. Further studies are warranted to better define the participants' competitive level, using a methodological design with a higher level of evidence.
Collapse
Affiliation(s)
- Alba Herrero-Molleda
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León,Spain
| | | | - Pablo Floría
- Physical Performance and Sports Research, Universidad Pablo de Olavide, Sevilla,Spain
| | - Juan García-López
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León,Spain
| |
Collapse
|
14
|
Legge N, Watsford M, Sharp P, O'Meara D, Slattery K. "A feeling for run and rhythm": coaches' perspectives of performance, talent, and progression in rowing. J Sports Sci 2023; 41:927-936. [PMID: 37609886 DOI: 10.1080/02640414.2023.2249752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The understanding of rowing performance has been predominantly gained through quantitative sports science-based research. In combination with this objective information, coaches' experiences may provide important contextual information for how this quantitative evidence is implemented into training programmes. The aims of this study were to (1) explore coaches' perspectives of performance indicators for competitive rowing in junior rowers, and (2) identify coaches' recommendations for developing effective technique and movement competency among junior rowers who have the potential to transition to elite competition. Twenty-seven semi-structured interviews were conducted with experienced rowing coaches through purposive sampling of an accredited coaching network. Participants' coaching experience ranged from 5 to 46 (M = 22, SD = 10) years. Data were analysed using thematic analysis. Three overarching themes were identified including, (1) getting the basics right, (2) targeting types of talent, and (3) complexities of performance. Based on these findings, sequence and boat feel, supported through the movement competency provided by hip flexibility and the trunk musculature, were considered critical for executing correct technique. Developing talent and understanding successful performance are both complex concepts when considering the individual athlete. Coaches' perspectives provided insight into key components of performance to enhance our understanding of how to better develop junior rowers.
Collapse
Affiliation(s)
- Natalie Legge
- School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, Australia
| | - Mark Watsford
- School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, Australia
| | - Paul Sharp
- School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, Australia
| | - Damien O'Meara
- Sport Science Department, NSW Institute of Sport, Sydney, Australia
| | - Katie Slattery
- School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
15
|
Gao J, Yu L. Effects of concurrent training sequence on VO 2max and lower limb strength performance: A systematic review and meta-analysis. Front Physiol 2023; 14:1072679. [PMID: 36776981 PMCID: PMC9908959 DOI: 10.3389/fphys.2023.1072679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The aim of this study is to compare the effects of concurrent strength and endurance training sequences on VO2max and lower limb strength performance to provide scientific guidance for training practice. We searched PubMed, EBSCO, Web of Science (WOS), Wanfang, and China National Knowledge Infrastructure (CNKI) databases up to December 2022. The included articles were randomized controlled trials that allowed us to compare the strength-endurance (S-E) sequence and endurance-strength (E-S) sequence on VO2max, maximum knee extension strength, maximum knee flexion strength, and lower limb power. The Cochrane bias risk tool was used to evaluate the methodological quality of the included literature, and Stata 12.0 was used for the heterogeneity test, subgroup analysis, draw forest map, sensitivity analysis, and publication bias evaluation. The results have been presented as standardized mean differences (SMDs) between treatments with 95% confidence intervals and calculations performed using random effects models. Significance was accepted when p < 0.05. The studies included 19 randomized controlled trials (285 males and 197 females), 242 subjects in S-E sequence, and 240 subjects in E-S sequence in the analyses. No difference changes between S-E and E-S sequences has been observed on VO2max in the overall analysis (SMD = 0.02, 95% CI: -0.21-0.25, p = 0.859). The S-E sequence shows a greater increase in lower limb strength performance than does the E-S sequence (SMD = 0.19, 95% CI: 0.02-0.37, p = 0.032), which was manifested in the elderly (p = 0.039) and women (p = 0.017); in training periods >8 weeks (p = 0.002) and training frequencies twice a week (p = 0.003); and with maximum knee flexion (p = 0.040) and knee extension strength (p = 0.026), while no difference was found in lower limb power (p = 0.523). In conclusion, the effect of VO2max will not change with different concurrent training sequences. The S-E sequence improves lower limb strength more significantly, mainly in the improvement of knee flexion and knee extension. This advantage is more related to factors such as age, gender, training period, and training frequency.
Collapse
Affiliation(s)
- Jiuxiang Gao
- Laboratory of Exercise Physiology, College of Sports Science, Beijing Sport University, Beijing, China
| | - Liang Yu
- Laboratory of Fitness Training, College of Fitness Training, Beijing Sport University, Beijing, China,*Correspondence: Liang Yu,
| |
Collapse
|
16
|
Smith NDW, Scott BR, Girard O, Peiffer JJ. Aerobic Training With Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. J Strength Cond Res 2022; 36:3541-3550. [PMID: 34175880 DOI: 10.1519/jsc.0000000000004079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Smith, NDW, Scott, BR, Girard, O, and Peiffer, JJ. Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res 36(12): 3541-3550, 2022-Low-intensity aerobic training with blood flow restriction (BFR) can improve maximal oxygen uptake, delay the onset of blood lactate accumulation, and may provide marginal benefits to economy of motion in untrained individuals. Such a training modality could also improve these physiological attributes in well-trained athletes. Indeed, aerobic BFR training could be beneficial for those recovering from injury, those who have limited time for training a specific physiological capacity, or as an adjunct training stimulus to provide variation in a program. However, similarly to endurance training without BFR, using aerobic BFR training to elicit physiological adaptations in endurance athletes will require additional considerations compared with nonendurance athletes. The objective of this narrative review is to discuss the acute and chronic aspects of aerobic BFR exercise for well-trained endurance athletes and highlight considerations for its effective implementation. This review first highlights key physiological capacities of endurance performance. The acute and chronic responses to aerobic BFR exercise and their impact on performance are then discussed. Finally, considerations for prescribing and monitoring aerobic BFR exercise in trained endurance populations are addressed to challenge current views on how BFR exercise is implemented.
Collapse
Affiliation(s)
- Nathan D W Smith
- Exercise Science, Murdoch University, Perth, Western Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| |
Collapse
|
17
|
Ji S, Donath L, Wahl P. Effects of Alternating Unilateral vs. Bilateral Resistance Training on Sprint and Endurance Cycling Performance in Trained Endurance Athletes: A 3-Armed, Randomized, Controlled, Pilot Trial. J Strength Cond Res 2022; 36:3280-3289. [PMID: 34319941 DOI: 10.1519/jsc.0000000000004105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Ji, S, Donath, L, and Wahl, P. Effects of alternating unilateral vs. bilateral resistance training on sprint and endurance cycling performance in trained endurance athletes: A 3-armed, randomized, controlled, pilot trial. J Strength Cond Res 36(12): 3280-3289, 2022-Traditional preparatory resistance training for cyclists mainly relies on simultaneous bilateral movement patterns. This lack of movement specificity may impede transfer effects to specific aerobic and anaerobic requirements on the bike. Hence, this study investigated the effects of resistance training in alternating unilateral vs. simultaneous bilateral movement pattern on strength and anaerobic as well as aerobic cycling performance indices. Twenty-four trained triathletes and cyclists (age: 31.1 ± 8.1 years; V̇ o2 max: 57.6 ± 7.1 ml·min -1 ·kg -1 ) were randomly assigned to either an alternating unilateral (AUL), a simultaneous bilateral (BIL) training group or a control group (CON). Ten weeks of resistance training (4 × 4-10 repetition maximum) were completed by both training groups, although CON maintained their usual training regimen without resistance training. Maximal strength was tested during isometric leg extension, leg curl, and leg press in both unilateral and bilateral conditions. To compare the transfer effects of the training groups, determinants of cycling performance and time to exhaustion at 105% of the estimated anaerobic threshold were examined. Maximal leg strength notably increased in both training groups (BIL: ∼28%; AUL: ∼27%; p < 0.01) but not in CON (∼6%; p > 0.54). A significant improvement in cycling time trial performance was also observed in both training groups (AUL: 67%; BIL: 43%; p < 0.05) but not for CON (37%; p = 0.43). Bilateral group exhibited an improved cycling economy at submaximal intensities (∼8%; p < 0.05) but no changes occurred in AUL and CON (∼3%; p > 0.24). While sprint cycling performance decreased in CON (peak power: -6%; acceleration index: -15%; p < 0.05), improvement in favor of AUL was observed for acceleration abilities during maximal sprinting (20%; d = 0.5). Our pilot data underpin the importance of resistance training independent of its specific movement pattern both for improving the endurance cycling performance and maximal leg strength. Further research should corroborate our preliminary findings on whether sprint cycling benefits favorably from AUL resistance training.
Collapse
Affiliation(s)
- Sanghyeon Ji
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Preventative and Rehabilitative Sports and Performance Medicine, Institute of Cardiology and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Patrick Wahl
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany ; and.,Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
LEE M, WADDELL M, BELFRY G. A four-week 30 s weight training intervention improves 2000 m rowing ergometer performance of provincial to national collegiate female rowers during their competitive season. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.21.04734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Grzebisz-Zatońska N, Poprzęcki S, Stanula A, Sadowska-Krępa E, Gerasimuk D. Physiological and Somatic Principal Components Determining VO2max in the Annual Training Cycle of Endurance Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073951. [PMID: 35409636 PMCID: PMC8997756 DOI: 10.3390/ijerph19073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023]
Abstract
The purpose of the study was to assess the impact of training on the physiological variables achieved during the test effort in the macrocycle of road cyclists and their use in the maximal oxygen uptake (VO2max) prediction at individual training stages in the VO2max test. Nine well-trained male cyclists (age 25.6 ± 5.2 years and body weight 72.4 ± 7.35 kg) participated in the study and each phase of the macrocycle was followed by a time to exhaustion test (TTE) on the bicycle ergometer. The research showed that training loads significantly influence the maximum power (PPO), ventilation (VE) in the preparatory period (T1), time of the test (TTmax) at the start of the competition period (T2), percentage of body fat in total body weight (%FAT) and skeletal muscle mass (MMS) during the competition period (T3). Of the 16 variables taken for the analysis of the principal components (PC), the regression model determined one principal variable responsible for VO2max in the training macrocycle of cyclists, the relative value of maximum power (PPORV) and the accompanying variables in individual periods: breathing frequency (BF), delta blood lactate concentration (ΔLA), body fat (FAT) and MMS. Determining PC influencing the exercise capacity can be crucial in achieving the intended goals by athletes. Monitoring these indicators can help protect the health of professional athletes and provide guidelines in the training process, stimulate the body properly while protecting against overtraining.
Collapse
Affiliation(s)
- Natalia Grzebisz-Zatońska
- Faculty of Cosmetology, Warsaw College of Engineering and Health, Bitwy Warszawskiej 1920 Street 18, 02-366 Warsaw, Poland
- Correspondence:
| | - Stanisław Poprzęcki
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (S.P.); (A.S.); (E.S.-K.); (D.G.)
| | - Arkadiusz Stanula
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (S.P.); (A.S.); (E.S.-K.); (D.G.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (S.P.); (A.S.); (E.S.-K.); (D.G.)
| | - Dagmara Gerasimuk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (S.P.); (A.S.); (E.S.-K.); (D.G.)
| |
Collapse
|
20
|
Bláfoss R, Rikardo J, Andersen AØ, Hvid LG, Andersen LL, Jensen K, Christensen PM, Kvorning T, Aagaard P. Effects of Resistance Training Cessation on Cycling Performance in Well-Trained Cyclists: An Exploratory Study. J Strength Cond Res 2022; 36:796-804. [PMID: 35180191 DOI: 10.1519/jsc.0000000000004204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
ABSTRACT Bláfoss, R, Rikardo, J, Andersen, AØ, Hvid, LG, Andersen, LL, Jensen, K, Christensen, PM, Kvorning, T, and Aagaard, P. Effects of resistance training cessation on cycling performance in well-trained cyclists: an exploratory study. J Strength Cond Res 36(3): 796-804, 2022-Supplementary (i.e., concurrent) resistance training can enhance cycling performance among competitive cyclists. However, a lack of knowledge exists about the retention (decay profile) in mechanical muscle function and cycling performance after concurrent resistance and endurance training. The present exploratory intervention study investigated the effect of 6 weeks of resistance training cessation when preceded by 8 weeks of concurrent resistance and endurance training on mechanical muscle function and cycling performance in 9 male well-trained competitive cyclists (V̇o2max = 66 ± 7 ml·min-1·kg-1). Cyclists performed periodized resistance training targeting leg and core muscles for 8 weeks as a supplement to their normal endurance (cycling) training. This was followed by 6 weeks of endurance training only (retention period) leading up to the start of the competitive season. Maximal leg extensor power, isometric leg extensor strength (maximal voluntary contraction [MVC]), rate of force development (RFD), and long-term cycling performance (2-hour submaximal cycling at 55% of Wmax), followed by 5-minute max cycling were evaluated. After 8 weeks of concurrent resistance and endurance training, leg extensor power, MVC, and RFD increased by 12, 15, and 17%, respectively while mean power output (W) during 5-minute max cycling increased by 7% (p < 0.05). Training-induced gains in MVC and 5-minute max cycling power were retained after 6-week cessation of resistance training (p < 0.05). These findings indicate that competitive cyclists can focus on cycling training alone for at least 6 weeks leading up to competition without losing attained gains in maximal muscle strength and cycling performance achieved by preceding periods of concurrent resistance training.
Collapse
Affiliation(s)
- Rúni Bláfoss
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jonas Rikardo
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Asger Ø Andersen
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Lars G Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Lars L Andersen
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Sport Sciences- Performance and Technology, Department of Health Science and Technology, Aalborg, Denmark; and
| | - Kurt Jensen
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
| | | | - Thue Kvorning
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
- Team Danmark (the Danish Elite Sports Institution), Brøndby, Denmark
| | - Per Aagaard
- Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej, Odense, Denmark
| |
Collapse
|
21
|
Are We Able to Match Non Sport-Specific Strength Training with Endurance Sports? A Systematic Review and Meta-Analysis to Plan the Best Training Programs for Endurance Athletes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-sport-specific strength training is a way to increase endurance performance; however, which kind of exercise (maximal, plyometric, explosive or resistance strength training) gives the best results is still under debate. Scientific publications were analyzed according to the PRISMA checklist and statement. The initial search yielded 500 studies, 17 of which were included in this review using the PEDro Scale. Maximal strength training boosted the ability to express strength particularly in cross-country skiing and cycling, increasing endurance performance, measured as a decrease of the endurance performance tests. In running, explosive strength training did not generate advantages, whereas plyometric strength training led to an improvement in the endurance performance tests and work economy. In running it was possible to compare different types of non sport-specific strength training and the plyometric one resulted the best training methodology to enhance performance. However, studies on other sports only investigated the effects of maximal strength training. It resulted more effective in cross-country skiing (although only one study was eligible according to the inclusion criteria) and in the cycling component of the triathlon and, by contrast, induced modest effects on cyclists’ performance, suggesting different type of strength would probably be more effective. In conclusion, each sport might optimize performance by using appropriate non sport-specific strength training, which, however, should be studied individually.
Collapse
|
22
|
Baldwin KM, Badenhorst CE, Cripps AJ, Landers GJ, Merrells RJ, Bulsara MK, Hoyne GF. Strength Training for Long-Distance Triathletes. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Vikmoen O, Rønnestad BR. A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women. J Funct Morphol Kinesiol 2021; 6:jfmk6010029. [PMID: 33803041 PMCID: PMC8006227 DOI: 10.3390/jfmk6010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decade numerous review articles have been published on how concurrent strength and endurance training affect cycling performance. However, none of these have reviewed if there are any sex differences in the effects of concurrent training on cycling performance, and most research in this area has been performed with male cyclists. Thus, the aim of the current paper is to review the scientific literature on the effect of concurrent training on cycling performance in male and female cyclists with a special emphasis on potential sex differences. The results indicate that both male and female cyclists experience a similar beneficial effect from concurrent training on cycling performance and its physiological determinants compared to normal endurance training only. Some data indicate that women have a larger effect on cycling economy, but more studies are needed to explore this further. Furthermore, the adaptations to strength training thought to be responsible for the beneficial effects on cycling performance seem to be very similar between men and women. Interestingly, increased muscle cross-sectional area in the main locomotor muscles seems to be an important adaptation for improved performance, and, contrary to popular belief, cyclists should aim for increased muscle cross-sectional area when adding strength training to their normal training. We conclude that both male and female cyclists can improve their cycling performance by adding strength training to their normal training.
Collapse
Affiliation(s)
- Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Sciences, 0806 Oslo, Norway
- Correspondence:
| | - Bent R. Rønnestad
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, 2418 Elverum, Norway;
| |
Collapse
|
24
|
Montalvo-Pérez A, Alejo LB, Valenzuela PL, Gil-Cabrera J, Talavera E, Luia A, Barranco-Gil D. Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial. Front Physiol 2021; 12:586113. [PMID: 33716761 PMCID: PMC7947617 DOI: 10.3389/fphys.2021.586113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
We assessed the effects of a short-term velocity-based resistance training (VBRT, where exercise intensity is individualized based on the loads and repetitions that maximize power output) program compared with traditional resistance training (TRT, where the same number of repetitions and relative load are used for every individual) on body composition, muscle strength/power, and endurance performance in competitive female cyclists. Seventeen participants were randomly assigned to 6 weeks (two sessions/week) of TRT (n = 8) or VBRT (n = 9), during which they maintained their usual endurance program. Both interventions included squat, hip thrust, and split squat exercises. Training loads were continuously registered, and outcomes were measures of muscle strength/power, body composition, and endurance performance (incremental test and 8-min time trial). No differences between TRT and VBRT groups were found for overall internal training loads during resistance training or cycling sessions (p > 0.05). Both interventions led to significant improvements in all strength/power-related outcomes, but VBRT induced greater improvements than TRT in maximum muscle strength and power as assessed with the hip thrust exercise (p < 0.05 for the group by time interaction effect). However, no significant group by time interaction effect was found for body composition or endurance performance-related outcomes. In conclusion, the addition of a short-term intervention of VBRT or TRT to the usual training regimen of competitive female cyclists improves muscle strength/power, albeit VBRT might induce superior gains on maximum strength/power for the hip thrust exercise.
Collapse
Affiliation(s)
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain.,Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | - Jaime Gil-Cabrera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Eduardo Talavera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alejandro Luia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | | |
Collapse
|
25
|
Strength Training Improves Exercise Economy in Triathletes During a Simulated Triathlon. Int J Sports Physiol Perform 2021; 16:663-673. [PMID: 33571959 DOI: 10.1123/ijspp.2020-0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The completion of concurrent strength and endurance training can improve exercise economy in cyclists and runners; however, the efficacy of strength training (ST) implementation to improve economy in long-distance (LD) triathletes has not yet been investigated. The purpose of this study was to investigate physiological outcomes in LD triathletes when ST was completed concurrently to endurance training. METHODS A total of 25 LD triathletes were randomly assigned to either 26 weeks of concurrent endurance and ST (n = 14) or endurance training only (n = 11). The ST program progressed from moderate (8-12 repetitions, ≤75% of 1-repetition maximum, weeks 0-12) to heavy loads (1-6 repetitions, ≥85% of 1-repetition maximum, weeks 14-26). Physiological and performance indicators (cycling and running economy, swim time, blood lactate, and heart rate) were measured during a simulated triathlon (1500-m swim, 60-min cycle, and 20-min run) at weeks 0, 14, and 26. Maximal strength and anthropometric measures (skinfolds and body mass) were also collected at these points. RESULTS The endurance strength group significantly improved maximal strength measures at weeks 14 and 26 (P < .05), cycling economy from weeks 0 to 14 (P < .05), and running economy from weeks 14 to 26 (P < .05) with no change in body mass (P > .05). The endurance-only group did not significantly improve any economy measures. CONCLUSIONS The addition of progressive load ST to LD triathletes' training programs can significantly improve running and cycling economy without an increase in body mass.
Collapse
|
26
|
Traditional Versus Optimum Power Load Training in Professional Cyclists: A Randomized Controlled Trial. Int J Sports Physiol Perform 2021; 16:496-503. [PMID: 33401239 DOI: 10.1123/ijspp.2020-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effectiveness of optimum power load training (OPT, training with an individualized load and repetitions that maximize power output) and traditional resistance training (TRT, same number of repetitions and relative load for all individuals) in professional cyclists. METHODS Participants (19 [1] y, peak oxygen uptake 75.5 [6] mL/kg/min) were randomly assigned to 8 weeks (2 sessions per week) of TRT (n = 11) or OPT (n = 9), during which they maintained their usual cycle training schedule. Training loads were continuously registered, and measures of muscle strength/power (1-repetition maximum and maximum mean propulsive power on the squat, hip thrust, and lunge exercises), body composition (assessed by dual-energy X-ray absorptiometry), and endurance performance (assessed on both an incremental test and an 8-min time trial) were collected before and at the end of the intervention. RESULTS OPT resulted in a lower average intensity (percentage of 1-repetition maximum) during resistance training sessions for all exercises (P < .01), but no differences were found for overall training loads during resistance or cycling sessions (P > .05). Both programs led to significant improvements in all strength/power-related parameters, muscle mass (with no changes in total body mass but a decreased fat mass), and time-trial performance (all Ps < .05). A trend toward increased power output at the respiratory compensation point was also found (P = .056 and .066 for TRT and OPT, respectively). No between-groups differences were noted for any outcome (P > .05). CONCLUSION The addition of either TRT or OPT to an endurance training regimen of elite cyclists results in similar improvements of body composition, muscle strength/power, and endurance performance.
Collapse
|
27
|
Barreto RV, de Lima LCR, Denadai BS. Moving forward with backward pedaling: a review on eccentric cycling. Eur J Appl Physiol 2020; 121:381-407. [PMID: 33180156 DOI: 10.1007/s00421-020-04548-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE There is a profound gap in the understanding of the eccentric cycling intensity continuum, which prevents accurate exercise prescription based on desired physiological responses. This may underestimate the applicability of eccentric cycling for different training purposes. Thus, we aimed to summarize recent research findings and screen for possible new approaches in the prescription and investigation of eccentric cycling. METHOD A search for the most relevant and state-of-the-art literature on eccentric cycling was conducted on the PubMed database. Literature from reference lists was also included when relevant. RESULTS Transversal studies present comparisons between physiological responses to eccentric and concentric cycling, performed at the same absolute power output or metabolic load. Longitudinal studies evaluate responses to eccentric cycling training by comparing them with concentric cycling and resistance training outcomes. Only one study investigated maximal eccentric cycling capacity and there are no investigations on physiological thresholds and/or exercise intensity domains during eccentric cycling. No study investigated different protocols of eccentric cycling training and the chronic effects of different load configurations. CONCLUSION Describing physiological responses to eccentric cycling based on its maximal exercise capacity may be a better way to understand it. The available evidence indicates that clinical populations may benefit from improvements in aerobic power/capacity, exercise tolerance, strength and muscle mass, while healthy and trained individuals may require different eccentric cycling training approaches to benefit from similar improvements. There is limited evidence regarding the mechanisms of acute physiological and chronic adaptive responses to eccentric cycling.
Collapse
Affiliation(s)
- Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
28
|
Lum D, Haff GG, Barbosa TM. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports (Basel) 2020; 8:sports8050063. [PMID: 32429176 PMCID: PMC7281606 DOI: 10.3390/sports8050063] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this article was to review the data on the relationship between multi-joint isometric strength test (IsoTest) force-time characteristics (peak force, rate of force development and impulse) and dynamic performance that is available in the current literature. Four electronic databases were searched using search terms related to IsoTest. Studies were considered eligible if they were original research studies that investigated the relationships between multi-joint IsoTest and performance of dynamic movements; published in peer-reviewed journals; had participants who were athletes or active individuals who participate in recreational sports or resistance training, with no restriction on sex; and had full text available. A total of 47 studies were selected. These studies showed significant small to large correlations between isometric bench press (IBP) force-time variables and upper body dynamic performances (r2 = 0.221 to 0.608, p < 0.05) and significant small to very large correlation between isometric squat (ISqT) (r2 = 0.085 to 0.746, p < 0.05) and isometric mid-thigh pull (IMTP) (r2 = 0.120 to 0.941, p < 0.05) force-time variables with lower body dynamic performances. IsoTest force-time characteristics were shown to have small to very large correlations with dynamic performances of the upper and lower limbs as well as performance of sporting movements (r2 = 0.118 to 0.700, p < 0.05). These data suggest that IsoTest force-time characteristics provide insights into the force production capability of athletes which give insight into dynamic performance capabilities.
Collapse
Affiliation(s)
- Danny Lum
- Sport Science and Sport Medicine, Singapore Sport Institute, Singapore 397630, Singapore
- Physical Education and Sports Science National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
- Correspondence: ; Tel.: +65-9729-0819
| | - G. Gregory Haff
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia;
- Directorate of Sports, Exercise and Physiotherapy, University of Salford, Greater Manchester M5 4WT, UK
| | - Tiago M. Barbosa
- Physical Education and Sports Science National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
- Department of Sport Sciences, Polytechnic Institute of Bragança, 5300 Bragança, Portugal
- Research Centre in Sports, Health and Human Development (CIDESD), 5001 Vila Real, Portugal
| |
Collapse
|
29
|
Vikmoen O, Raastad T, Ellefsen S, Rønnestad BR. Adaptations to strength training differ between endurance-trained and untrained women. Eur J Appl Physiol 2020; 120:1541-1549. [PMID: 32372216 PMCID: PMC7295735 DOI: 10.1007/s00421-020-04381-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/23/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE The purpose of this study was to investigate if endurance athletes, sustaining their normal endurance training, experience attenuated adaptations to strength training compared to untrained individuals. METHODS Eleven non-strength-trained female endurance athletes (E + S) added 11 weeks of strength training to their normal endurance training (5.1 ± 1.1 h per week), and 10 untrained women (S) performed the same strength training without any endurance training. The strength training consisted of four leg exercises [3 × 4 - 10 repetition maximum (RM)], performed twice a week for 11 weeks. RESULTS E + S and S displayed similar increases in 1RM one-legged leg press (E + S 39 ± 19%, S 42 ± 17%, p < 0.05), maximal isometric torque in knee extension (E + S 12 ± 11%, S 8 ± 10%, p < 0.05) and lean mass in the legs (E + S 3 ± 4%, S 3 ± 3%, p < 0.05). However, S displayed superior increases in peak torque in knee extension at an angular velocity of 240° sec-1 (E + S 8 ± 5%, S 15 ± 7%, p < 0.05) and maximal squat jump height (E + S 8 ± 6%, S 14 ± 7%, p < 0.05). CONCLUSIONS In this study, concurrent training did not impair the adaptations in the ability to develop force at low contraction velocities or muscle hypertrophy. However, concurrent training attenuated strength training-associated changes in the ability to develop force at higher muscular contraction velocities.
Collapse
Affiliation(s)
- Olav Vikmoen
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Elverum, Norway. .,Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.box 4014, 0806, Oslo, Norway.
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.box 4014, 0806, Oslo, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Elverum, Norway.,Innlandet Hospital Trust, Lillehammer, Norway
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
30
|
Almquist NW, Nygaard H, Vegge G, Hammarström D, Ellefsen S, Rønnestad BR. Systemic and muscular responses to effort-matched short intervals and long intervals in elite cyclists. Scand J Med Sci Sports 2020; 30:1140-1150. [PMID: 32267032 DOI: 10.1111/sms.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to compare the acute effects of time- and effort-matched high-intensity intervals on physiological, endocrine, and skeletal muscle molecular variables in elite cyclists. Eight elite cyclists performed short intervals (SI: 30-seconds) and long intervals (LI: 5-minutes) with work:recovery ratio 2:1, using a randomized crossover design. SI was associated with 14% ± 3% higher mean power output (SI; 421 ± 27 vs LI; 371 ± 22 W), and longer working time above 90% of maximal oxygen uptake (VO2max , 54% ± 76%) and 90% peak heart rate (HRpeak , 153% ± 148%) than LI (all P < .05), despite similar degrees of perceived exertion, blood lactate levels and muscle activation measured using EMG root mean square (EMG rms). In blood, SI was associated with more pronounced increases in testosterone and testosterone-to-sex hormone-binding globulin (SHBG) ratios, as well as prolonged cortisol responses (P < .05). In skeletal muscle (m. Vastus lateralis), SI and LI led to similar changes in mRNA abundance for a range of transcripts, with the exception of NHE1 mRNA, which decreased after SI (P < .05). Overall, SI was associated with more pronounced physiological and endocrine responses than LI in elite cyclists, suggesting that such training might lead to superior adaptations in elite cyclists.
Collapse
Affiliation(s)
- Nicki W Almquist
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Håvard Nygaard
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Geir Vegge
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
31
|
Effects of Strength Training on Olympic Time-Based Sport Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Sports Physiol Perform 2019; 14:1318-1330. [PMID: 31672926 DOI: 10.1123/ijspp.2019-0329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the effect of strength training on Olympic time-based sports (OTBS) time-trial performance and provide an estimate of the impact of type of strength training, age, training status, and training duration on OTBS time-trial performance. METHODS A search on 3 electronic databases was conducted. The analysis comprised 32 effects in 28 studies. Posttest time-trial performance of intervention and control group from each study was used to estimate the standardized magnitude of impact of strength training on OTBS time-trial performance. RESULTS Strength training had a moderate positive effect on OTBS time-trial performance (effect size = 0.59, P < .01). Subgroup meta-analysis showed that heavy weight training (effect size = 0.30, P = .01) produced a significant effect, whereas other modes did not induce significant effects. Training status as factorial covariate was significant for well-trained athletes (effect size = 0.62, P = .04), but not for other training levels. Meta-regression analysis yielded nonsignificant relationship with age of the participants recruited (β = -0.04; 95% confidence interval, -0.08 to 0.004; P = .07) and training duration (β = -0.05; 95% confidence interval, -0.11 to 0.02; P = .15) as continuous covariates. CONCLUSION Heavy weight training is an effective method for improving OTBS time-trial performance. Strength training has greatest impact on well-trained athletes regardless of age and training duration.
Collapse
|
32
|
Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol 2019; 10:1132. [PMID: 31555153 PMCID: PMC6724228 DOI: 10.3389/fphys.2019.01132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose To compare the effects of short-sprint training (SST) and heavy-strength training (HST) following a 4-week strength-training period on sprint and endurance capacities in well-trained cyclists. Methods Twenty-eight competitive cyclists (age 29 ± 6 years) with maximal oxygen uptake () of 61.1 ± 5.9 mL⋅min-1⋅kg-1 participated. After a 4-weeks preparation strength-training period, the participants were randomized to add either HST or SST to their usual endurance training for the subsequent 6 weeks. Body composition, and power output at blood lactate concentration ([La-]) of 4 mmol⋅L-1, as well as a 100 min cycling test including 6 and 30-s sprints, 60 min cycling at [La-] of 2 mmol⋅L-1 and 5-min all-out cycling were performed before the 4-week preparation strength-training period, and before and after the 6-week intervention period. In addition, 1 repetition maximum (RM) in half-squat and 55-m maximal sprints on the cyclists' own bikes were measured before and after the 6-week intervention. Results SST was superior to HST in 6-s sprint performance, both in a fresh state (4.7 ± 2.6% vs. 1.1 ± 3.5%) and after prolong cycling (6.1 ± 1.8% vs. 1.8 ± 4.2%), in 30-s sprint (3.7 ± 2.8% vs. 1.3 ± 2.5%) and in 55-m seated sprint on own bike (4.3 ± 2.1% vs. 0.2 ± 1.8%) (all p < 0.002). HST induced a larger 1RM improvement in the half-squat test than SST (9.3 ± 3.6% vs. -3.9 ± 3.8%; p < 0.001). No group differences were revealed in the 5-min all-out test, , power output at 4 mmol⋅L-1 [La-], or in gross efficiency. Conclusion SST led to a greater increase in average and peak power output on all sprint tests compared to HST, whereas HST led to a greater increase in maximal strength. No group differences were found in relative changes in endurance capacities. Altogether, our results show a high degree of specificity in the adaptations of both SST and HST.
Collapse
Affiliation(s)
- Morten Kristoffersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway.,Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R Rønnestad
- Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hilde Gundersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
33
|
Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol 2019. [PMID: 31555153 PMCID: PMC6724228 DOI: 10.3389/fpls.2019.01132,+10.3389/fphys.2019.01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To compare the effects of short-sprint training (SST) and heavy-strength training (HST) following a 4-week strength-training period on sprint and endurance capacities in well-trained cyclists. METHODS Twenty-eight competitive cyclists (age 29 ± 6 years) with maximal oxygen uptake () of 61.1 ± 5.9 mL⋅min-1⋅kg-1 participated. After a 4-weeks preparation strength-training period, the participants were randomized to add either HST or SST to their usual endurance training for the subsequent 6 weeks. Body composition, and power output at blood lactate concentration ([La-]) of 4 mmol⋅L-1, as well as a 100 min cycling test including 6 and 30-s sprints, 60 min cycling at [La-] of 2 mmol⋅L-1 and 5-min all-out cycling were performed before the 4-week preparation strength-training period, and before and after the 6-week intervention period. In addition, 1 repetition maximum (RM) in half-squat and 55-m maximal sprints on the cyclists' own bikes were measured before and after the 6-week intervention. RESULTS SST was superior to HST in 6-s sprint performance, both in a fresh state (4.7 ± 2.6% vs. 1.1 ± 3.5%) and after prolong cycling (6.1 ± 1.8% vs. 1.8 ± 4.2%), in 30-s sprint (3.7 ± 2.8% vs. 1.3 ± 2.5%) and in 55-m seated sprint on own bike (4.3 ± 2.1% vs. 0.2 ± 1.8%) (all p < 0.002). HST induced a larger 1RM improvement in the half-squat test than SST (9.3 ± 3.6% vs. -3.9 ± 3.8%; p < 0.001). No group differences were revealed in the 5-min all-out test, , power output at 4 mmol⋅L-1 [La-], or in gross efficiency. CONCLUSION SST led to a greater increase in average and peak power output on all sprint tests compared to HST, whereas HST led to a greater increase in maximal strength. No group differences were found in relative changes in endurance capacities. Altogether, our results show a high degree of specificity in the adaptations of both SST and HST.
Collapse
Affiliation(s)
- Morten Kristoffersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway,Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway,*Correspondence: Morten Kristoffersen, ;
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R. Rønnestad
- Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hilde Gundersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
34
|
Park JH, Kim JE, Yoo JI, Kim YP, Kim EH, Seo TB. Comparison of maximum muscle strength and isokinetic knee and core muscle functions according to pedaling power difference of racing cyclist candidates. J Exerc Rehabil 2019; 15:401-406. [PMID: 31316932 PMCID: PMC6614766 DOI: 10.12965/jer.1938180.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate differences of maximum muscle strength and isokinetic knee and core muscle functions according to pedaling power of racing cyclist candidate. Subjects for this study were 200 racing cyclist candidates and divided into four groups: top 10% peak power group (TPP, n=20), low 10% peak power group (LPP, n=20), top 10% average power group (TAP, n=20), and low 10% average power group (LAP, n=20). The maximum muscle strength was consisted of grip strength, bench press and squat measured by Ariel device, and isokinetic knee and core muscle functions were analyzed by Humac Norm device. Significant differences between groups were determined with one-way repeated analysis of variance. As the result of this study, TPP and TAP groups showed significantly decreased body-fat mass and increased free fat mass when compared to LPP and LAP groups. The maximum strength of grip and squat was significantly higher in TPP and TAP than in other groups. Isokinetic knee extension and flexion strength was higher in TPP and TAP groups as well as isokinetic trunk extension and flexion functions were highest in TPP group. Thus, our findings suggest new evidence that muscle mass, maximal muscle strength, and isokinetic muscle functions might be important predictors of racing cyclist performance.
Collapse
Affiliation(s)
- Ji-Hee Park
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Ji-Eun Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Joo-In Yoo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Eon-Ho Kim
- Department of Sports Science, Korea Institute of Sport Science, Seoul, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
35
|
Paulsen G, Eidsheim HØ, Helland C, Seynnes O, Solberg PA, Rønnestad BR. Eccentric cycling does not improve cycling performance in amateur cyclists. PLoS One 2019; 14:e0208452. [PMID: 30601819 PMCID: PMC6314583 DOI: 10.1371/journal.pone.0208452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 01/18/2023] Open
Abstract
Eccentric cycling training induces muscle hypertrophy and increases joint power output in non-athletes. Moreover, eccentric cycling can be considered a movement-specific type of strength training for cyclists, but it is hitherto unknown if eccentric cycling training can improve cycling performance in trained cyclists. Twenty-three male amateur cyclists were randomized to an eccentric or a concentric cycling training group. The eccentric cycling was performed at a low cadence (~40 revolution per minute) and the intensity was controlled by perceived effort (12-17 on the Borgs scale) during 2 min intervals (repeated 5-8 times). The cadence and perceived effort of the concentric group matched those of the eccentric group. Additionally, after the eccentric or concentric cycling, both groups performed traditionally aerobic intervals with freely chosen cadence in the same session (4-5 x 4-15 min). The participants trained twice a week for 10 weeks. Maximal oxygen uptake (VO2max), maximal aerobic power output (Wmax), lactate threshold, isokinetic strength, muscle thickness, pedaling characteristics and cycling performance (6- and 30-sec sprints and a 20-min time trial test) were assessed before and after the intervention period. Inferences about the true value of the effects were evaluated using probabilistic magnitude-based inferences. Eccentric cycling induced muscle hypertrophy (2.3 ± 2.5% more than concentric) and augmented eccentric strength (8.8 ± 5.9% more than concentric), but these small magnitude effects seemed not to transfer into improvements in the physiological assessments or cycling performance. On the contrary, the eccentric training appeared to have limiting or detrimental effects on cycling performance, measured as Wmax and a 20-min time trial. In conclusion, eccentric cycling training did not improve cycling performance in amateur cyclists. Further research is required to ascertain whether the present findings reflect an actual lack of efficacy, negative effects or a delayed response to eccentric cycling training.
Collapse
Affiliation(s)
- Gøran Paulsen
- The Norwegian Olympic and Paralympic Committee and Confederation of Sport, Oslo, Norway
- * E-mail:
| | - Hedda Ø. Eidsheim
- Inland Norway University of Applied Sciences, Department of Sport Sciences, Lillehammer, Norway
| | - Christian Helland
- The Norwegian Olympic and Paralympic Committee and Confederation of Sport, Oslo, Norway
| | - Olivier Seynnes
- Norwegian School of Sport Sciences, Department of Physical Performance, Oslo, Norway
| | - Paul A. Solberg
- The Norwegian Olympic and Paralympic Committee and Confederation of Sport, Region East, Fredrikstad, Norway
| | - Bent R. Rønnestad
- Inland Norway University of Applied Sciences, Department of Sport Sciences, Lillehammer, Norway
| |
Collapse
|
36
|
Rosenbaum M, Heaner M, Goldsmith RL, Christian Schulze P, Shukla A, Shen W, Shane EJ, Naor E, Leibel RL, Aronne LJ. Resistance Training Reduces Skeletal Muscle Work Efficiency in Weight-Reduced and Non-Weight-Reduced Subjects. Obesity (Silver Spring) 2018; 26:1576-1583. [PMID: 30260099 PMCID: PMC6905638 DOI: 10.1002/oby.22274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether resistance training is similarly effective in reducing skeletal muscle efficiency and increasing strength in weight-reduced and maximal weight subjects. METHODS This study examined the effects of supervised resistance exercise on skeletal muscle in 14 individuals with overweight and obesity sustaining a 10% or greater weight loss for over 6 months and a phenotypically similar group of 15 subjects who had not reduced weight and were weight stable at their maximal lifetime body weight. We assessed skeletal muscle work efficiency and fuel utilization (bicycle ergometry), strength (dynamometry), body composition (dual energy x-ray absorptiometry), and resting energy expenditure (indirect calorimetry) before and after 12 weeks of thrice-weekly resistance training. RESULTS Non-weight-reduced subjects were significantly (10%-20%) stronger before and after the intervention than reduced-weight subjects and gained significantly more fat-free mass with a greater decline in percentage of body fat than weight-reduced subjects. Resistance training resulted in similar significant decreases (~10%) in skeletal muscle work efficiency at low-level exercise and ~10% to 20% increases in leg strength in both weight-reduced and non-weight-reduced subjects. CONCLUSIONS Resistance training similarly increases muscle strength and decreases efficiency regardless of weight loss history. Increased resistance training could be an effective adjunct to reduced-weight maintenance therapy.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York, USA
| | - Martica Heaner
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York, USA
| | - Rochelle L Goldsmith
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - P Christian Schulze
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Alpana Shukla
- Division of Endocrinology, Diabetes, & Metabolism, New York Weill Cornell Medical Center Comprehensive Weight Control Center, New York, New York, USA
| | - Wei Shen
- Division of Pediatric Gastroenterology and the Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Elizabeth J Shane
- Department of Medicine, Division of Endocrinology and Metabolism, Columbia , University Medical Center, New York, New York, USA
| | - Elinor Naor
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York, USA
| | - Louis J Aronne
- Division of Endocrinology, Diabetes, & Metabolism, New York Weill Cornell Medical Center Comprehensive Weight Control Center, New York, New York, USA
| |
Collapse
|
37
|
Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029769. [PMID: 28490537 DOI: 10.1101/cshperspect.a029769] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The capacity for human exercise performance can be enhanced with prolonged exercise training, whether it is endurance- or strength-based. The ability to adapt through exercise training allows individuals to perform at the height of their sporting event and/or maintain peak physical condition throughout the life span. Our continued drive to understand how to prescribe exercise to maximize health and/or performance outcomes means that our knowledge of the adaptations that occur as a result of exercise continues to evolve. This review will focus on current and new insights into endurance and strength-training adaptations and will highlight important questions that remain as far as how we adapt to training.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| | - Stian Ellefsen
- Section of Sports Sciences, Lillehammer University College, 2604 Lillehammer, Norway.,Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| |
Collapse
|
38
|
Kristoffersen M, Sandbakk Ø, Tønnessen E, Svendsen I, Paulsen G, Ersvær E, Nygård I, Rostad K, Ryningen A, Iversen VV, Skovereng K, Rønnestad BR, Gundersen H. Power Production and Biochemical Markers of Metabolic Stress and Muscle Damage Following a Single Bout of Short-Sprint and Heavy Strength Exercise in Well-Trained Cyclists. Front Physiol 2018; 9:155. [PMID: 29556201 PMCID: PMC5845014 DOI: 10.3389/fphys.2018.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Although strength and sprint training are widely used methods in competitive cycling, no previous studies have compared the acute responses and recovery rates following such sessions among highly trained cyclists. The primary aim of the current study was to compare power production and biochemical markers of metabolic stress and muscle damage following a session of heavy strength (HS) and short-sprint training (SS). Methods: Eleven well-trained male cyclists (18 ± 2 years with maximal oxygen uptake of 67.2 ± 5.0 mL·kg−1·min−1) completed one HS session and one SS session in a randomized order, separated by 48 h. Power production and biochemical variables were measured at baseline and at different time points during the first 45 h post exercise. Results: Lactate and human growth hormone were higher 5 min, 30 min and 1 h post the SS compared to the HS session (all p ≤ 0.019). Myoglobin was higher following the HS than the SS session 5 min, 30 min and 1 h post exercise (all p ≤ 0.005), while creatine kinase (CK) was higher following the HS session 21 and 45 h post exercise (p ≤ 0.038). Counter movement jump and power production during 4 sec sprint returned to baseline levels at 23 and 47 h with no difference between the HS and SS session, whereas the delayed muscle soreness score was higher 45 h following the HS compared to the SS session (p = 0.010). Conclusion: Our findings indicate that SS training provides greater metabolic stress than HS training, whereas HS training leads to more muscle damage compared to that caused by SS training. The ability to produce power remained back to baseline already 23 h after both training sessions, indicating maintained performance levels although higher CK level and muscle soreness were present 45 h post the HS training session.
Collapse
Affiliation(s)
- Morten Kristoffersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway.,Department of Neuroscience and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Department of Neuroscience and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Elisabeth Ersvær
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Irene Nygård
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Kari Rostad
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Anita Ryningen
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Vegard V Iversen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| | - Knut Skovereng
- Department of Neuroscience and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R Rønnestad
- Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hilde Gundersen
- Department of Sport and Physical Activity, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
39
|
A Scientific Approach to Improve Physiological Capacity of an Elite Cyclist. Int J Sports Physiol Perform 2018; 13:390-393. [PMID: 28657821 DOI: 10.1123/ijspp.2017-0228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies in endurance athletes have indicated that block periodization (BP) can be a good alternative to the more traditional organization of training despite the fact that the total volume and intensity of the training are similar. However, these studies usually last only 4-12 wk. The aim of the present single-case study was to investigate the consequences of 58 wk with systematic BP of low-intensity training (LIT), moderate-intensity training (MIT), and high-intensity interval training (HIT) including incorporation of heavy strength training. It is important that a maintenance stimulus on the nonprioritized training modalities was added in the different training blocks. Performance-related variables were tested regularly during the intervention. The studied cyclist started with a maximal oxygen uptake (VO2max) of 73.8 mL · kg-1 · min-1, peak aerobic power (Wmax) of 6.14 W/kg, and a power output at 3 mmol/L blood lactate concentration (Power3la-) of 3.6 W/kg. Total training volume during the 58-wk intervention was 678 h, of which 452 h were LIT (67%), 124 h were MIT (18%), 69 h were HIT (10%), and 34 h were heavy strength training (5%). The weekly training volume had a large range depending on the focus of the training block. After the intervention the cyclist's VO2max was 87 mL · kg-1 · min-1, Wmax was 7.35 W/kg, and Power3la- was 4.9 W/kg. This single case indicates that the present training program can be a good alternative to the more traditional organization of long-term training of endurance athletes. However, a general recommendation cannot be given based on this single-case study.
Collapse
|
40
|
Vikmoen O, Rønnestad BR, Ellefsen S, Raastad T. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes. Physiol Rep 2017; 5:5/5/e13149. [PMID: 28292885 PMCID: PMC5350167 DOI: 10.14814/phy2.13149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to investigate the effects of adding heavy strength training to female duathletes' normal endurance training on both cycling and running performance. Nineteen well‐trained female duathletes (VO2max cycling: 54 ± 3 ml∙kg−1∙min−1, VO2max running: 53 ± 3 ml∙kg−1∙min−1) were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four lower body exercises [3 × 4‐10 repetition maximum (RM)] twice a week for 11 weeks. Running and cycling performance were assessed using 5‐min all‐out tests, performed immediately after prolonged periods of submaximal work (3 h cycling or 1.5 h running). E+S increased 1RM in half squat (45 ± 22%) and lean mass in the legs (3.1 ± 4.0%) more than E. Performance during the 5‐min all‐out test increased in both cycling (7.0 ± 4.5%) and running (4.7 ± 6.0%) in E+S, whereas no changes occurred in E. The changes in running performance were different between groups. E+S reduced oxygen consumption and heart rate during the final 2 h of prolonged cycling, whereas no changes occurred in E. No changes occurred during the prolonged running in any group. Adding strength training to normal endurance training in well‐trained female duathletes improved both running and cycling performance when tested immediately after prolonged submaximal work.
Collapse
Affiliation(s)
- Olav Vikmoen
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway
| | - Bent R Rønnestad
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway
| | - Truls Raastad
- Deparment of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
41
|
Fernández-Lezaun E, Schumann M, Mäkinen T, Kyröläinen H, Walker S. Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Exp Gerontol 2017; 95:44-53. [PMID: 28526625 DOI: 10.1016/j.exger.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
This study investigated the effects of resistance training (RT) performed with different frequencies, including a follow-up period, on cardiorespiratory fitness in healthy older individuals. Eighty-eight men and women (69±3years, 167±9cm and 78±14kg) were randomly placed into four groups: training one- (M1=11, W1=12), two- (M2=7, W2=14), or three- (M3=11, W3=13) times-per-week or a non-training control group (MCon=11, WCon=9). During months 1-3, all subjects trained two-times-per-week while during the subsequent 6months, training frequency was set according to the group. Oxygen consumption (cycling economy: CE), gross efficiency (GE), blood lactate concentrations (La) and heart rate (HR) were evaluated during a submaximal cycle ergometer test. Hemoglobin (Hb), hematocrit (Hct), heart rate (HRrest) and body composition by DXA were also measured at rest. Maximal strength was measured by a 1-RM leg press test. Most improvements in CE, GE, La and HR occurred in all groups during months 1-3. No additional statistically significant improvements were observed during months 4-9, although effect sizes for the change in CE and GE at higher workloads indicated a dose-response pattern in men (CE at 75W: M1 g=0.13, M2 g=-0.58, M3 g=-0.89; 100W: M1 g=0.43, M2 g=-0.59, M3 g=-0.68) i.e. higher training frequency (two- and three-times-per-week versus one-time-per-week) led to greater improvements once the typical plateau in performance had occurred. Hb increased in W1 and W2, while no changes were observed in Hct or HRrest. 1-RM increased from months 1-3 in all intervention groups (except M2) and from month 4-9 only in M3 and in all women intervention groups. During follow-up, maximal strength was maintained but cycling economy returned to the baseline values in all training groups. These data indicate that RT led to significant improvements in cardiorespiratory fitness during the initial 3months of training. This was partly explained by the RT protocol performed but further improvements may require higher training frequency. These changes are likely to be originated by the improved cardiorespiratory functions rather than neuromuscular adaptations evidenced by a lack of significant relationship during the intervention as well as the divergent results during follow-up.
Collapse
Affiliation(s)
- Elena Fernández-Lezaun
- Faculty of Sport and Health Sciences and Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany
| | - Tuomas Mäkinen
- LIKES-Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences and Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Simon Walker
- Faculty of Sport and Health Sciences and Neuromuscular Research Center, University of Jyväskylä, Finland.
| |
Collapse
|
42
|
Jones N, Kiely J, Suraci B, Collins DJ, de Lorenzo D, Pickering C, Grimaldi KA. A genetic-based algorithm for personalized resistance training. Biol Sport 2016; 33:117-26. [PMID: 27274104 PMCID: PMC4885623 DOI: 10.5604/20831862.1198210] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective resistance training. The developed algorithm may be used to guide individualised resistance-training interventions.
Collapse
Affiliation(s)
- N Jones
- DNA Sports Performance Ltd, Manchester, UK
| | - J Kiely
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK
| | - B Suraci
- Suraci Consultancy, Portsmouth, UK
| | - D J Collins
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK
| | - D de Lorenzo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain; Centro de Estudios en Genómica y Nutrición-CESGEN, Parc Científic i Tecnològic Agroalimentari de Lleida-PCiTAL, Lleida, Catalonia, Spain
| | - C Pickering
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK
| | - K A Grimaldi
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK
| |
Collapse
|
43
|
Vikmoen O, Raastad T, Seynnes O, Bergstrøm K, Ellefsen S, Rønnestad BR. Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes. PLoS One 2016; 11:e0150799. [PMID: 26953893 PMCID: PMC4783109 DOI: 10.1371/journal.pone.0150799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of the current study was to investigate the effects of adding strength training to normal endurance training on running performance and running economy in well-trained female athletes. We hypothesized that the added strength training would improve performance and running economy through altered stiffness of the muscle-tendon complex of leg extensors. Methods Nineteen female endurance athletes [maximal oxygen consumption (VO2max): 53±3 ml∙kg-1∙min-1, 5.8 h weekly endurance training] were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four leg exercises [3 x 4–10 repetition maximum (RM)], twice a week for 11 weeks. Muscle strength, 40 min all-out running distance, running performance determinants and patellar tendon stiffness were measured before and after the intervention. Results E+S increased 1RM in leg exercises (40 ± 15%) and maximal jumping height in counter movement jump (6 ± 6%) and squat jump (9 ± 7%, p < 0.05). This was accompanied by increased muscle fiber cross sectional area of both fiber type I (13 ± 7%) and fiber type II (31 ± 20%) in m. vastus lateralis (p < 0.05), with no change in capillary density in m. vastus lateralis or the stiffness of the patellar tendon. Neither E+S nor E changed running economy, fractional utilization of VO2max or VO2max. There were also no change in running distance during a 40 min all-out running test in neither of the groups. Conclusion Adding heavy strength training to endurance training did not affect 40 min all-out running performance or running economy compared to endurance training only.
Collapse
Affiliation(s)
- Olav Vikmoen
- Section for Sport Science, Lillehammer University College, Lillehammer, Norway
- * E-mail:
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kristoffer Bergstrøm
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Stian Ellefsen
- Section for Sport Science, Lillehammer University College, Lillehammer, Norway
| | - Bent R. Rønnestad
- Section for Sport Science, Lillehammer University College, Lillehammer, Norway
| |
Collapse
|
44
|
Ellefsen S, Hammarström D, Strand TA, Zacharoff E, Whist JE, Rauk I, Nygaard H, Vegge G, Hanestadhaugen M, Wernbom M, Cumming KT, Rønning R, Raastad T, Rønnestad BR. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol 2015; 309:R767-79. [PMID: 26202071 PMCID: PMC4666930 DOI: 10.1152/ajpregu.00497.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
Limited data exist on the efficacy of low-load blood flow-restricted strength training (BFR), as compared directly to heavy-load strength training (HST). Here, we show that 12 wk of twice-a-week unilateral BFR [30% of one repetition maximum (1RM) to exhaustion] and HST (6-10RM) of knee extensors provide similar increases in 1RM knee extension and cross-sectional area of distal parts of musculus quadriceps femoris in nine untrained women (age 22 ± 1 yr). The two protocols resulted in similar acute increases in serum levels of human growth hormone. On the cellular level, 12 wk of BFR and HST resulted in similar shifts in muscle fiber composition in musculus vastus lateralis, evident as increased MyHC2A proportions and decreased MyHC2X proportions. They also resulted in similar changes of the expression of 29 genes involved in skeletal muscle function, measured both in a rested state following 12 wk of training and subsequent to singular training sessions. Training had no effect on myonuclei proportions. Of particular interest, 1) gross adaptations to BFR and HST were greater in individuals with higher proportions of type 2 fibers, 2) both BFR and HST resulted in approximately four-fold increases in the expression of the novel exercise-responsive gene Syndecan-4, and 3) BFR provided lesser hypertrophy than HST in the proximal half of musculus quadriceps femoris and also in CSApeak, potentially being a consequence of pressure from the tourniquet utilized to achieve blood flow restriction. In conclusion, BFR and HST of knee extensors resulted in similar adaptations in functional, physiological, and cell biological parameters in untrained women.
Collapse
Affiliation(s)
| | | | | | | | - Jon E Whist
- Innlandet Hospital Trust, Lillehammer, Norway
| | - Irene Rauk
- Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Geir Vegge
- Lillehammer University College, Lillehammer, Norway
| | | | - Mathias Wernbom
- Lundberg Laboratory for Orthopaedic Research, Department of Orthopedics, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; and Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|