1
|
Cui T, Sun Y, Ye W, Liu Y, Korivi M. Efficacy of time restricted eating and resistance training on body composition and mood profiles among young adults with overweight/obesity: a randomized controlled trial. J Int Soc Sports Nutr 2025; 22:2481127. [PMID: 40108888 PMCID: PMC11926902 DOI: 10.1080/15502783.2025.2481127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND/OBJECTIVE Dietary restriction or exercise regimens can promote weight loss or physical fitness among patients with obesity. However, intervention-associated adverse effects may impede patients' motivation to participate in dietary/exercise interventions. We examined the effects of time restricted eating (TRE) with or without resistance training (RT) on body composition, mood profile, and sleep quality in young college adults with overweight or obesity. METHODS Fifty-four young college students with overweight/obesity were randomized into control (CON), TRE, RT, and TRE plus RT (TRE+RT) trials. The TRE trials restricted to an eating window of 10-hour/day for 8-week. The RT trials performed supervised resistance exercise, while the control trial maintained a regular lifestyle. Changes in body composition variables, blood pressure, mood status, and sleep quality were measured before and after the intervention. RESULTS TRE intervention alone or in combination with RT significantly (p < 0.01) decreased body weight (>2 kg) and BMI (~1 kg/m2) in adults with overweight/obesity. Both RT alone and combined with TRE substantially decreased fat mass by 1.1 ± 0.5 and 3.2 ± 0.4 kg, respectively. The decreased fat mass was greater in the combination trial than in the RT trial, whereas TRE alone had no effect. In contrast, fat-free mass was significantly (p < 0.01) decreased with TRE (-2.3 ± 06 kg), increased with RT (1.6 ± 0.3 kg), and was stably maintained with combination interventions. The reduced waist and hip circumferences in the TRE (p < 0.01) were similar to those in the TRE+RT trials, however, RT alone had no effect. Time and group interaction showed a large effect size (partial eta squared) for all body composition variables. In addition, RT with or without TRE notably decreased diastolic blood pressure (RT: -5.5 ± 1.9 mmHg, TRE+RT: -4.1 ± 1.5 mmHg, p < 0.05). Mild anxiety levels at baseline in RT (4.8 ± 2.6) and TRE+RT (4.1 ± 3) trials were found to be normal at postintervention in TRE+RT (3.6 ± 1.7) but not in RT (5.6 ± 3.5). No depression or stress was recorded among the participants during the intervention. The reported poor sleep quality among participants at baseline was significantly improved with RT (4.8 ± 2.9; p < 0.05), and tended to improve with TRE+RT interventions (4.5 ± 1.9). CONCLUSIONS 10-hour TRE is beneficial for weight/fat loss without affecting mood status. However, TRE combined with RT might be more effective for weight/fat loss, maintaining muscle mass, and good quality of sleep among young adults with overweight or obesity.
Collapse
Affiliation(s)
- Tingting Cui
- Zhejiang Normal University, Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Jinhua, Zhejiang, China
| | - Yichao Sun
- Zhejiang Normal University, Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Jinhua, Zhejiang, China
| | - Weibing Ye
- Zhejiang Normal University, Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Jinhua, Zhejiang, China
| | - Yubo Liu
- Zhejiang Normal University, Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Jinhua, Zhejiang, China
| | - Mallikarjuna Korivi
- Zhejiang Normal University, Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Vieira AF, Blanco-Rambo E, Bandeira-Guimarães M, Silva RT, Fergutz A, Paz IDA, Munhoz SV, Colombelli R, Vaz MA, Macedo RCO, Cadore EL. Impact of Overnight Fasted State Versus Fed State on Adaptations to Resistance Training: A Randomized Clinical Trial. Int J Sport Nutr Exerc Metab 2025:1-12. [PMID: 40335157 DOI: 10.1123/ijsnem.2024-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 05/09/2025]
Abstract
The aim was to verify the effects of 12 weeks of resistance training (RT) performed in the fasted state compared with the fed state on body composition and physical performance in young adults. Participants were randomly assigned into fasting RT group (Fast-RT, n = 15) and fed RT group (Fed-RT, n = 13). Both groups trained two weekly resistance exercise sessions after an overnight fast or between 1 and 2 hr after consumption of a carbohydrate-rich meal, associated with isocaloric nutritional guidance. Assessments of body composition (dual-energy X-ray absorption), quadriceps muscle thickness (ultrasonography), maximum dynamic strength (one repetition maximum test), and muscle power in bench press and knee-extension exercises were performed before and after 12 weeks of intervention. Both Fast-RT and Fed-RT groups showed increases (p time ≤ .01) in quadriceps muscle thickness (1.21 and 1.18 cm, respectively; p group = .371; p Group × Time = .871), maximum dynamic strength (bench press: 10.53 and 4.89 kg, respectively; p group = .251; p Group × Time = .268; knee extension: 28.53 and 29.31 kg, respectively; p group = .919; p Group × Time = .846), and muscle power (knee extension mean power 70% one repetition maximum: 59.28 and 46.21 W, respectively; p group = .833; p Group × Time = .616; knee extension maximal power 70% one repetition maximum: 100.65 and 54.76 W, respectively; p group = .812; p Group × Time = .409). Regardless of food consumption prior to the sessions (fasted state and fed state), RT performed twice weekly across 12 weeks was associated with improvements in muscle hypertrophy and neuromuscular performance in young adults.
Collapse
Affiliation(s)
| | | | | | | | - Andressa Fergutz
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | | | | | - Renato Colombelli
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Marco Aurélio Vaz
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | | | | |
Collapse
|
3
|
Kazeminasab F, Rafiee P, Miraghajani M, Santos HO, Symonds ME, Rosenkranz SK. The effects of acute bouts of exercise in fasted vs. fed states on glucose and lipid metabolism in healthy adults: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr ESPEN 2025; 66:320-331. [PMID: 39921164 DOI: 10.1016/j.clnesp.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
AIMS Exercise while fasted is often promoted as beneficial for lipid metabolism, as it may confer superior metabolic adaptations compared with exercise performed in the fed state. The aim of this systematic review and meta-analysis was to determine the effects of acute exercise in fasted versus fed states on glucose and lipid metabolism in healthy adults. DATA EXTRACTION A systematic review and meta-analysis was performed by searching PubMed, Scopus, and Web of Science databases up to July 2023, for randomized clinical trials that determined the effects of exercise in fasted vs. fed states on glucose and lipid metabolism (serum glucose, insulin, triacylglycerol, free fatty acid (FFA) concentrations, and respiratory exchange ratio (RER)) in healthy adults. Meta-analyses were conducted to determine weighted mean differences (WMD) and 95 % confidence intervals. ANALYSIS The current meta-analysis included 28 studies with a total sample of 302 healthy adults, with exercise durations ranging from 36 to 150 min. Acute exercise performed while fasted was associated with significant increases from pre- to post-exercise in fasted serum glucose [WMD = 0.263 mmol/L, p = 0.009] and insulin [WMD = 8.84 mU/mL, p = 0.001], and significantly decreases in FFA [WMD = -0.121 mmol/L, p = 0.019] when compared with exercise in the fed state. However, no significant differences were reported for changes in triacylglycerol or RER from pre- to post-exercise when comparing fasted vs. fed states. CONCLUSION When compared with exercise in the fed state, exercise performed while fasted was associated with larger increases in glucose and insulin levels, along with larger decreases in FFA levels. Thus, our results do not suggest that acute fasted exercise is necessarily better for glucose or lipid metabolism when compared with exercise performed in the fed state. It is possible, albeit unlikely, that acute bouts of exercise performed while fasted may result in some degree of metabolic impairment.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Pegah Rafiee
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Miraghajani
- Department of Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlândia (UFU), Minas Gerais, Brazil
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
4
|
Witard OC, Hearris M, Morgan PT. Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation. Sports Med 2025:10.1007/s40279-025-02203-8. [PMID: 40117058 DOI: 10.1007/s40279-025-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
The purpose of this narrative review is to provide an evidence-based update on the protein needs of endurance athletes with a focus on high-quality metabolic studies conducted on the topics of recovery and training adaptation over the past decade. We use the term 'protein needs' to delineate between the concepts of a daily protein requirement and per meal protein recommendations when devising scientific evidence-based protein guidelines for the endurance athlete to promote post-exercise recovery, enhance the adaptive response to endurance training and improve endurance performance. A habitual protein intake of 1.5 g/kg of body mass (BM)-1·day-1 is typical in male and female endurance athletes. Based on findings from a series of contemporary protein requirement studies, the evidence suggests a daily protein intake of ~ 1.8 g·kgBM-1·day-1 should be advocated for endurance athletes, with the caveat that the protein requirement may be further elevated in excess of 2.0 g·kgBM-1·day-1 during periods of carbohydrate-restricted training and on rest days. Regarding protein recommendations, the current lack of metabolic studies that determine the dose response of muscle protein synthesis to protein ingestion in relation to endurance exercise makes it difficult to present definitive guidelines on optimal per meal protein intakes for endurance athletes. Moreover, there remains no compelling evidence that co-ingesting protein with carbohydrate before or during endurance exercise confers any performance advantage, nor facilitates the resynthesis of liver or muscle glycogen stores during recovery, at least when carbohydrate recommendations are met. However, recent evidence suggests a role for protein nutrition in optimising the adaptive metabolic response to endurance training under conditions of low carbohydrate and/or energy availability that represent increasingly popular periodised strategies for endurance athletes.
Collapse
Affiliation(s)
- Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, Strand Campus, Strand, London, WC2R 2LS, UK.
| | - Mark Hearris
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul T Morgan
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
5
|
Lewis C, Rafi E, Dobbs B, Barton T, Hatipoglu B, Malin SK. Tailoring Exercise Prescription for Effective Diabetes Glucose Management. J Clin Endocrinol Metab 2025; 110:S118-S130. [PMID: 39836084 PMCID: PMC12054731 DOI: 10.1210/clinem/dgae908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Physical activity, exercise, or both are a staple of lifestyle management approaches both for type 1 diabetes mellitus (T1DM) and type 2 diabetes (T2DM). While the current literature supports both physical activity and exercise for improving glycemic control, reducing cardiovascular risk, maintaining proper weight, and enhancing overall well-being, the optimal prescription regimen remains debated. EVIDENCE ACQUISITION We searched PubMed and Google Scholar databases for relevant studies on exercise, insulin sensitivity, and glycemic control in people with T1DM and T2DM. EVIDENCE SYNTHESIS In patients with T1DM, exercise generally improves cardiovascular fitness, muscle strength, and glucose levels. However, limited work has evaluated the effect of aerobic plus resistance exercise compared to either exercise type alone on glycemic outcomes. Moreover, less research has evaluated breaks in sedentary behavior with physical activity. When considering the factors that may cause hypoglycemic effects during exercise in T1DM, we found that insulin therapy, meal timing, and neuroendocrine regulation of glucose homeostasis are all important. In T2DM, physical activity is a recommended therapy independent of weight loss. Contemporary consideration of timing of exercise relative to meals and time of day, potential medication interactions, and breaks in sedentary behavior have gained recognition as potentially novel approaches that enhance glucose management. CONCLUSION Physical activity or exercise is, overall, an effective treatment for glycemia in people with diabetes independent of weight loss. However, additional research surrounding exercise is needed to maximize the health benefit, particularly in "free-living" settings.
Collapse
Affiliation(s)
- Claudia Lewis
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Ebne Rafi
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Brandi Dobbs
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Tanner Barton
- Department of Athletics, John Carroll University, University Heights, OH 44118, USA
| | - Betul Hatipoglu
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Peeters WM, Barrett M, Podlogar T. What is a cycling race simulation anyway: a review on protocols to assess durability in cycling. Eur J Appl Physiol 2025:10.1007/s00421-025-05725-1. [PMID: 39953333 DOI: 10.1007/s00421-025-05725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
Physiological resilience or durability is now recognised as a determinant of endurance performance such as road cycling. Reliable, ecologically valid and standardised performance tests in laboratory-based cycling protocols have to be established to investigate mechanisms underpinning, and interventions improving durability. This review aims to provide an overview of available race simulation protocols in the literature and examines its rigour around themes that influence durability including (i) exercise intensity anchoring and (ii) carbohydrate intake whilst also (iii) inspecting reliability and justification of the developed protocols. Using a systematic search approach, 48 articles were identified that met our criteria as a cycling race simulation. Most protocols presented limitations to be recommended as exercise test to investigate durability, such as not appropriately addressing the influence of exercise intensity domains by anchoring exercise intensity as % peak power or % V ˙ O2max. Ten articles provided reliability data, but only one articles under the appropriate conditions. Most studies sufficiently controlled nutrition during trials but not in the days leading to the trials or just before the trials. Thus, there is a paucity in protocols that combine justification and reliability with optimal nutritional support and mimic the true demands of a road-cycling race. This review lists an overview of protocols that researchers could use with caution to select a protocol for future experiments, but encourages further development of improved protocols, including utilisation of virtual software applications.
Collapse
Affiliation(s)
- W M Peeters
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - M Barrett
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - T Podlogar
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Mendes GL, Oliveira HA, Santana Dos Reis A, Nakamoto FP, Staibano A, Alvares LA, Simões Ferreira RE, Thomatieli-Santos RV, Quaresma MVLDS. Effect of caffeine supplementation on physical performance in a 5 km cycling time trial of healthy young adult women in different phases of the menstrual cycle: A parallel, randomized, double-blind, placebo-controlled clinical trial. Nutr Health 2025:2601060241307981. [PMID: 39894953 DOI: 10.1177/02601060241307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND Although caffeine is the most studied ergogenic aid, few studies have been conducted to evaluate the effect of caffeine supplementation among women in different phases of the menstrual cycle (MC). AIM To verify the effect of caffeine supplementation and the MC phase on the performance of a 5 km cycling time trial of female exercise practitioners (FEP). METHODS This was a parallel, double-blind, randomized, placebo-controlled clinical trial with a sample of women aged 18-35 years, all with regular MC. The caffeine (CAFG) and placebo (PLAG) groups performed the exercise test during the late follicular phase and mid-luteal phase. These time points were individually assessed according to each woman's MC. On the test day, they were instructed to intake a standardized meal. Subsequently, 30 min following the meal, volunteers consumed caffeine (6 mg·kg-1) or placebo. One hour following caffeine intake, the exercise protocol started. The participants were instructed to perform an all-out 5-km cycling time trial. RESULTS Twenty-one women with a mean age of 26.6 years (PLAG, n = 10; 26.7 y; CAFG, n = 11; 26.5 y) were evaluated. The mean test duration was approximately 10-min, with no effect of the MC phase (F = 0.410; p = 0.532), caffeine supplementation (F = 2.23; p = 0.156), or interaction (F = 0.298; p = 0.593). Likewise, we did not verify the effect of the MC phase (F = 0.249; p = 0.625), caffeine supplementation (F = 2.35; p = 0.146), or interaction (F = 0.585; p = 0.456) on the mean power. CONCLUSION Neither caffeine supplementation nor the different MC phases had an impact on the 5-km cycling TT performance of FEP.
Collapse
Affiliation(s)
| | | | | | - Fernanda Patti Nakamoto
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo, Brazil
- Curso de Medicina, Centro Universitário São Camilo, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Aline Staibano
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo, Brazil
| | | | | | | | - Marcus V L Dos Santos Quaresma
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo, Brazil
- Curso de Medicina, Centro Universitário São Camilo, São Paulo, Brazil
| |
Collapse
|
8
|
Stratton MT, Holden SL, Davis R, Massengale AT. The Impact of Breakfast Consumption or Omission on Exercise Performance and Adaptations: A Narrative Review. Nutrients 2025; 17:300. [PMID: 39861430 PMCID: PMC11767684 DOI: 10.3390/nu17020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Breakfast is often termed the most important meal of the day. However, its importance to acute and chronic adaptations to exercise is currently not well summarized throughout the literature. METHODS A narrative review of the experimental literature regarding breakfast consumption's impact on acute and chronic exercise performance and alterations in body composition prior to November 2024 was conducted. To be included in this review, the selected investigations needed to include some aspect of either endurance or resistance training performance and be conducted in humans. RESULTS These findings suggest that breakfast consumption may benefit acute long-duration (>60 min) but not short-duration (<60 min) morning endurance exercise. Evening time trial performance was consistently inhibited following breakfast omission despite the resumption of eating midday. No or minimal impact of breakfast consumption was found when examining acute morning or afternoon resistance training or the longitudinal adaptations to either resistance or endurance training. Favorable changes in body composition were often noted following the omission of breakfast. However, this was primarily driven by the concomitant reduced kilocalorie intake. CONCLUSIONS Consuming breakfast may aid endurance athletes regularly performing exercise lasting >60 min in length. However, the morning meal's impact on resistance training and changes in body composition appears to be minimal. Although, as the body of literature is limited, future investigations are needed to truly ascertain the dietary practice's impact.
Collapse
Affiliation(s)
- Matthew T. Stratton
- Basic and Applied Laboratory for Dietary Interventions in Exercise and Sport, Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL 36688, USA; (S.L.H.); (R.D.); (A.T.M.)
| | | | | | | |
Collapse
|
9
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
10
|
Raleigh C, Madigan S, Sinnott‐O’Connor C, Sale C, Norton C, Carson BP. Prevalence of reducing carbohydrate intake and fasted training in elite endurance athletes and association with bone injury. Eur J Sport Sci 2024; 24:1341-1349. [PMID: 39030803 PMCID: PMC11369321 DOI: 10.1002/ejsc.12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
There are conflicting reports both within the lay media and scientific literature regarding the use and benefit of dietary practices that aim to reduce CHO intake in endurance athletes. This study aimed to determine the prevalence of intentional reduction of CHO intake and fasted training in elite endurance-based athletes using a semi-quantitative questionnaire. Bone is a nutritionally modulated tissue; therefore, this study also aimed to explore if these dietary practices are potentially associated with bone injury incidence. The reported reduction of CHO intake was prevalent (28%) with the primary motivation being maintenance or manipulation of body composition. However, discrepancies in athletes' awareness of CHO intake were identified providing a potential avenue of intervention especially within applied practice. The use of fasted training was more prevalent (38%) with athletes using this practice for both body composition manipulation and promoting a desired adaptive response. Forty-four per cent of participants had suffered a radiographically confirmed bone injury at some point in their career. There was no association between reduction in CHO intake and bone injury incidence; however, the incidence of bone injury was 1.61 times higher in those who currently use fasted training compared to those who have never used it or who have used it in the past. Although a direct causal link between these dietary practices and the incidence of bone injury cannot be drawn, it provides robust justification for future investigations of the potential mechanisms that could explain this finding.
Collapse
Affiliation(s)
- Conor Raleigh
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Sport Ireland InstituteSport Ireland CampusAbbottstownDublin
| | - Sharon Madigan
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Sport Ireland InstituteSport Ireland CampusAbbottstownDublin
| | | | - Craig Sale
- Institute of SportManchester Metropolitan UniversityManchesterUK
| | - Catherine Norton
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| | - Brian P. Carson
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
11
|
Wheelock CE, Lavoie EM, Stooks J, Schwob J, Hess HW, Pryor RR, Hostler D. Carbohydrate or Electrolyte Rehydration Recovers Plasma Volume but Not Post-immersion Performance Compared to Water After Immersion Diuresis. Mil Med 2024; 189:1612-1620. [PMID: 37776545 DOI: 10.1093/milmed/usad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. METHODS Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. RESULTS After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). CONCLUSIONS Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
Collapse
Affiliation(s)
- Courtney E Wheelock
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Elizabeth M Lavoie
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Jocelyn Stooks
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Jacqueline Schwob
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Hayden W Hess
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - David Hostler
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
12
|
Ameur R, Maaloul R, Tagougui S, Neffati F, Hadj Kacem F, Najjar MF, Ammar A, Hammouda O. Unlocking the power of synergy: High-intensity functional training and early time-restricted eating for transformative changes in body composition and cardiometabolic health in inactive women with obesity. PLoS One 2024; 19:e0301369. [PMID: 38691521 PMCID: PMC11062533 DOI: 10.1371/journal.pone.0301369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE The purpose of this study was to examine the long-term effects of time-restricted eating (TRE), with or without high intensity functional training (HIFT), on body composition and cardiometabolic biomarkers among inactive women with obesity. METHODS Sixty-four women (BMI = 35.03 ± 3.8 kg/m2; age = 32.1 ± 10 years) were randomly allocated to either: (1) TRE (≤8-h daily eating window, with ad libitum energy intake) group; (2) HIFT (3 sessions/week) group; or (3) TRE combined with HIFT (TRE-HIFT) group. The interventions lasted 12 weeks with a pre-post measurement design. A HIFT session consists of 8 sets of multiple functional exercises with self-selected intensity (20 or 30s work/10s rest). RESULTS TRE-HIFT showed a greater decrease of waist and hip circumferences and fat mass compared to TRE (p = 0.02, p = 0.02 and p<0.01; respectively) and HIFT (p = 0.012, p = 0.028 and p<0.001; respectively). Weight and BMI decreased in TRE-HIFT compared to HIFT group (p<0.001; for both). Fat-free mass was lower in TRE compared to both HIFT and TRE-HIFT groups (p<0.01 and p<0.001; respectively). Total cholesterol, triglyceride, insulin, and HOMA-IR decreased in TRE-HIFT compared to both TRE (p<0.001, p<0.01, p = 0.015 and p<0.01; respectively) and HIFT (p<0.001, p = 0.02, p<0.01 and p<0.001; respectively) groups. Glucose level decreased in TRE-HIFT compared to HIFT (p<0.01). Systolic blood pressure decreased significantly in both TRE-HIFT and HIFT groups compared to TRE group (p = 0.04 and p = 0.02; respectively). CONCLUSION In inactive women with obesity, combining TRE with HIFT can be a good strategy to induce superior effects on body composition, lipid profile and glucose regulation compared with either diet or exercise intervention alone. TRIAL REGISTRATION Clinical Trials Number: PACTR202301674821174.
Collapse
Affiliation(s)
- Ranya Ameur
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, University of Sfax, Sfax, Tunisia
| | - Rami Maaloul
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sémah Tagougui
- Montreal Clinical Research Institute, Montreal, Canada
- University of Lille, University of Artois, University of Littoral Côte, d’Opale, ULR 7369-URePSSS-Multidisciplinary Research Unit, “Sport, Health and Society”, Lille, France
| | - Fadoua Neffati
- Biochemistry Laboratory, University Hospital of Monastir, Monastir, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - Achraf Ammar
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre, Nanterre, France
| |
Collapse
|
13
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
14
|
Slebe R, Wenker E, Schoonmade LJ, Bouman EJ, Blondin DP, Campbell DJT, Carpentier AC, Hoeks J, Raina P, Schrauwen P, Serlie MJ, Stenvers DJ, de Mutsert R, Beulens JWJ, Rutters F. The effect of preprandial versus postprandial physical activity on glycaemia: Meta-analysis of human intervention studies. Diabetes Res Clin Pract 2024; 210:111638. [PMID: 38548105 DOI: 10.1016/j.diabres.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
This meta-analysis aims to investigate the effect of preprandial physical activity (PA) versus postprandial PA on glycaemia in human intervention studies. Medline and Embase.com were searched until February 2023 for intervention studies in adults, directly comparing preprandial PA versus postprandial PA on glycaemia. Studies were screened using ASReview (34,837) and full texts were read by two independent reviewers (42 full text, 28 included). Results were analysed using pooled mean differences in random-effects models. Studies were either acute response studies (n = 21) or Randomized Controlled Trials (RCTs) over multiple weeks (n = 7). In acute response studies, postprandial outcomes followed the expected physiological patterns, and outcomes measured over 24 h showed no significant differences. For the RCTs, glucose area under the curve during a glucose tolerance test was slightly, but not significantly lower in preprandial PA vs postprandial PA (-0.29 [95 %CI:-0.66, 0.08] mmol/L, I2 = 64.36 %). Subgroup analyses (quality, health status, etc.) did not significantly change the outcomes. In conclusion, we found no differences between preprandial PA versus postprandial PA on glycaemia both after one PA bout as well as after multiple weeks of PA. The studies were of low to moderate quality of evidence as assessed by GRADE, showed contradictive results, included no long-term studies and used various designs and populations. We therefore need better RCTs, with more similar designs, in larger populations and longer follow-up periods (≥12 weeks) to have a final answer on the questions eat first, then exercise, or the reverse?
Collapse
Affiliation(s)
- Romy Slebe
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands.
| | - Eva Wenker
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- University Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Emma J Bouman
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - David J T Campbell
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada; Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Parminder Raina
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, the Netherlands
| | - Femke Rutters
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Espinosa A, Rubio-Blancas A, Camacho-Zamora A, Salcedo-Grajales I, Bravo-García AP, Rodríguez-Vega S, Barrera-Flores R, Molina-Segui F, May-Hau A, Ferreyro-Bravo F, Martínez Vázquez SE, Nava-González EJ, Laviada Molina HA. [Intermittent fasting: effects in diverse clinical settings]. NUTR HOSP 2024; 41:230-243. [PMID: 38047415 DOI: 10.20960/nh.04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Introduction Introduction: intermittent fasting plans propose to limit food intake during specific periods as nutritional therapeutic strategies to treat different metabolic conditions in various clinical entities. However, the heterogeneity between each context of intermittent fasting could generate different results in metabolic parameters. Objective: to evaluate the clinical application of intermittent fasting and to discern whether it offers advantages over other traditional strategies. Methods: structured questions were formulated (PICO), and the methodology followed the guidelines established by the PRISMA 2020 statement. The search was conducted in different databases (PubMed, Cochrane Library and Google Scholar). Results: we found 3,962 articles, of which 56 were finally included; 3,906 articles that did not directly or indirectly answer the structured questions were excluded. Conclusions: compared to conventional diets, the various AI schemes do not generate advantages or disadvantages in terms of weight loss and lipid profile, although in the alternate-day variant there are greater insulin reductions than those observed in the continuous energy restriction. The heterogeneity of the interventions, the populations studied, the comparators, the results, and the type of design make it impossible to extrapolate the effects found in all clinical scenarios and generalize the recommendations.
Collapse
Affiliation(s)
- Alan Espinosa
- Departamento de Nutrición. Escuela de Salud Pública. Universidad de Harvard
| | | | | | | | | | | | | | | | - Abraham May-Hau
- Escuela de Ciencias de la Salud. Universidad Marista de Mérida
| | | | - Sophia E Martínez Vázquez
- Departamento de Gastroenterología. Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán"
| | | | | |
Collapse
|
16
|
McGuire B, Dadah H, Oliver D. The effects of acute hyperglycaemia on sports and exercise performance in type 1 diabetes: A systematic review and meta-analysis. J Sci Med Sport 2024; 27:78-85. [PMID: 38030440 DOI: 10.1016/j.jsams.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES People with type 1 diabetes (T1D) are advised by health care professionals to target mild hyperglycaemia before and during exercise, to reduce the risk of hypoglycaemia. This review aimed to summarise the available evidence on the effects of acute hyperglycaemia on sports and exercise performance in T1D. DESIGN Systematic review and meta-analysis. METHODS Medline, EMBASE, CENTRAL, and Web of Science were searched until 29th May 2023 for studies investigating the effects of acute hyperglycaemia on any sports or exercise performance outcome in T1D. Random-effects meta-analysis was performed using standardised mean differences (SMD) when more than one study reported data for similar outcomes. Certainty of evidence for each outcome was assessed using GRADE. RESULTS Seven studies were included in the review, comprising data from 119 people with T1D. Meta-analysis provided moderate-certainty evidence that acute hyperglycaemia does not significantly affect aerobic exercise performance (SMD -0.17; 95 % CI -0.59, 0.26; p = 0.44). There is low- or very-low certainty evidence that acute hyperglycaemia has no effect on anaerobic (two outcomes), neuromuscular (seven outcomes) or neurocognitive performance (three outcomes), except impaired isometric knee extension strength. One study provided low-certainty evidence that the performance effects of hyperglycaemia may depend on circulating insulin levels. CONCLUSIONS Acute hyperglycaemia before or during exercise appears unlikely to affect aerobic performance to an extent that is relevant to most people with T1D, based on limited evidence. Future research in this field should focus on anaerobic, neuromuscular and neurocognitive performance, and examine the relevance of circulating insulin levels.
Collapse
Affiliation(s)
| | - Hashim Dadah
- St George's University Hospitals NHS Foundation Trust, UK
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, UK; NIHR Oxford Health Biomedical Research Centre, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
17
|
Conde-Pipó J, Mora-Fernandez A, Martinez-Bebia M, Gimenez-Blasi N, Lopez-Moro A, Latorre JA, Almendros-Ruiz A, Requena B, Mariscal-Arcas M. Intermittent Fasting: Does It Affect Sports Performance? A Systematic Review. Nutrients 2024; 16:168. [PMID: 38201996 PMCID: PMC10780856 DOI: 10.3390/nu16010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting is one of the most popular types of diet at the moment because it is an effective nutritional strategy in terms of weight loss. The main objective of this review is to analyze the effects that intermittent fasting has on sports performance. We analyzed physical capacities: aerobic capacity, anaerobic capacity, strength, and power, as well as their effect on body composition. For this, a bibliographic search was carried out in several databases where 25 research articles were analyzed to clarify these objectives. Inclusion criteria: dates between 2013 and present, free full texts, studies conducted in adult human athletes, English and/or Spanish languages, and if it has been considered that intermittent fasting is mainly linked to sports practice and that this obtains a result in terms of performance or physical capacities. This review was registered in PROSPERO with code ref. 407024, and an evaluation of the quality or risk of bias was performed. After this analysis, results were obtained regarding the improvement of body composition and the maintenance of muscle mass. An influence of intermittent fasting on sports performance and body composition is observed. It can be concluded that intermittent fasting provides benefits in terms of body composition without reducing physical performance, maintenance of lean mass, and improvements in maximum power. But despite this, it is necessary to carry out new studies focusing on the sports field since the samples have been very varied. Additionally, the difference in hours of intermittent fasting should be studied, especially in the case of overnight fasting.
Collapse
Affiliation(s)
- Javier Conde-Pipó
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Agustín Mora-Fernandez
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Manuel Martinez-Bebia
- Department Food Technology, Nutrition and Food Science, Campus of Lorca, University of Murcia, 30100 Murcia, Spain; (M.M.-B.); (J.A.L.)
| | - Nuria Gimenez-Blasi
- Nutrition Area, Faculty of Health Sciences, Catholic University of Avila, 05005 Ávila, Spain;
| | - Alejandro Lopez-Moro
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - José Antonio Latorre
- Department Food Technology, Nutrition and Food Science, Campus of Lorca, University of Murcia, 30100 Murcia, Spain; (M.M.-B.); (J.A.L.)
| | - Antonio Almendros-Ruiz
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Bernardo Requena
- Research and Development Department, Football Science Institute, 18016 Granada, Spain;
| | - Miguel Mariscal-Arcas
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
18
|
Aron V, Strul D, Vaegter HB, Pitance L, Armijo-Olivo S. Reliability and measurement error of exercise-induced hypoalgesia in pain-free adults and adults with musculoskeletal pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0104. [PMID: 38619552 DOI: 10.1515/sjpain-2023-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES We systematically reviewed the reliability and measurement error of exercise-induced hypoalgesia (EIH) in pain-free adults and in adults with musculoskeletal (MSK) pain. METHODS We searched EMBASE, PUBMED, SCOPUS, CINAHL, and PSYCINFO from inception to November 2021 (updated in February 2024). In addition, manual searches of the grey literature were conducted in March 2022, September 2023, and February 2024. The inclusion criteria were as follows: adults - pain-free and with MSK pain - a single bout of exercise (any type) combined with experimental pre-post pain tests, and assessment of the reliability and/or measurement error of EIH. Two independent reviewers selected the studies, assessed their Risk of Bias (RoB) with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) RoB tool, and graded the individual results (COSMIN modified Grading of Recommendations Assessment, Development, and Evaluation). RESULTS We included five studies involving pain-free individuals (n = 168), which were deemed to have an overall "doubtful" RoB. No study including adults with MSK pain was found. The following ranges of parameters of reliability and measurement error of EIH were reported: intraclass correlation coefficients: 0-0.61; kappa: 0.01-0.46; standard error of measurement: 30.1-105 kPa and 10.4-21%; smallest detectable changes: 83.54-291.1 kPa and 28.83-58.21%. CONCLUSIONS We concluded, with a very low level of certainty, that the reliability and measurement error of EIH is, in pain-free adults, respectively, "insufficient" and "indeterminate." Future studies should focus on people with MSK pain and could consider using tailored exercises, other test modalities than pressure pain threshold, rater/assessor blinding, and strict control of the sources of variations (e.g., participants' expectations).
Collapse
Affiliation(s)
- Vladimir Aron
- Faculty of Medicine, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels B-1200, Belgium
| | | | - Henrik Bjarke Vaegter
- Pain Research Group, Pain Center, Department of Anesthesiology and Intensive Care Medicine, University Hospital Odense, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Laurent Pitance
- Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Oral and Maxillofacial Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Susan Armijo-Olivo
- Faculty of Economics and Social Sciences, Osnabrück University of Applied Sciences, Osnabrück, Germany
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Treebak JT. Sleep-time eating boosts exercise endurance. LIFE METABOLISM 2023; 2:load029. [PMID: 39872626 PMCID: PMC11749696 DOI: 10.1093/lifemeta/load029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 01/30/2025]
Abstract
Light phase-restricted feeding in mice enhances exercise endurance in sedentary mice through a mechanism involving BMAL1-induced inhibition of Plin5 expression (created with BioRender.com).
Collapse
Affiliation(s)
- Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Hamed Hamed D, Struyf F, Pruimboom L, Navarro-Ledesma S. Efficacy of combined strategies of physical activity, diet and sleep disorders as treatment in patients with chronic shoulder pain. A systematic review. Front Physiol 2023; 14:1221807. [PMID: 37731546 PMCID: PMC10507353 DOI: 10.3389/fphys.2023.1221807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: The objective of this systematic review was to analyze the existing scientific evidence on the influence of dietary strategies, exercise, and sleep disorders on the symptomatology of patients with chronic shoulder pain, as well as to assess the methodological quality of the literature collected. Methods: The selection criteria were as follows: we included randomized controlled clinical trials written in English that investigated the effects of such interventions in patients with chronic shoulder pain and excluded studies where pre-operative rehabilitation or rehabilitation combined with corticosteroid injections was performed. We searched six databases Pubmed, Cochrane Library, Web of Science, CINAHL, Sportdiscus and Scopus, using the keywords "shoulder pain," "fasting," "physical therapy modalities," "rehabilitation," "exercise," "circadian clocks," and "chronic pain" to select randomized controlled clinical trials conducted in humans and written in English. The last search was conducted on 24/01/2023. (PROSPERO:CRD42023379925). Results: We used the tool proposed by the Cochrane Handbook to assess the risk of bias in the included studies of the 17 studies included, nine had a high risk of bias, two studies had an unclear risk of bias, and the remaining six studies had a low risk of bias. A total of 17 articles were selected, including 10 studies that showed a positive influences of exercise on chronic shoulder pain and five studies that showed a negative influence of sleep disorders on this patient profile. The remaining two articles analyzed the influence of nutritional strategies and metabolic problems in patients with chronic shoulder pain. The total sample size of the 17 included articles amounted to 9,991 individuals. Discussion: Studies confirm that exercise generates a hypoalgesic effect that improves chronic shoulder pain, functionality, and quality of life. Although dietary strategies and sleep disorders are known to influence chronic shoulder pain, there is a lack of studies that conduct interventions on these problems to assess how chronic shoulder pain varies.
Collapse
Affiliation(s)
- Dina Hamed Hamed
- Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Melilla, Spain
| | - Filip Struyf
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Health Sciences, University of Antwerp, Melilla, Spain
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Melilla, Spain
- PNI Europe, The Hague, Netherlands
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Melilla, Spain
| |
Collapse
|
21
|
Kaufman M, Nguyen C, Shetty M, Oppezzo M, Barrack M, Fredericson M. Popular Dietary Trends' Impact on Athletic Performance: A Critical Analysis Review. Nutrients 2023; 15:3511. [PMID: 37630702 PMCID: PMC10460072 DOI: 10.3390/nu15163511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Nutrition fuels optimal performance for athletes. With increased research developments, numerous diets available, and publicity from professional athletes, a review of dietary patterns impact on athletic performance is warranted. RESULTS The Mediterranean diet is a low inflammatory diet linked to improved power and muscle endurance and body composition. Ketogenic diets are restrictive of carbohydrates and proteins. Though both show no decrements in weight loss, ketogenic diets, which is a more restrictive form of low-carbohydrate diets, can be more difficult to follow. High-protein and protein-paced versions of low-carbohydrate diets have also shown to benefit athletic performance. Plant-based diets have many variations. Vegans are at risk of micronutrient deficiencies and decreased leucine content, and therefore, decreased muscle protein synthesis. However, the literature has not shown decreases in performance compared to omnivores. Intermittent fasting has many different versions, which may not suit those with comorbidities or specific needs as well as lead to decreases in sprint speed and worsening time to exhaustion. CONCLUSIONS This paper critically evaluates the research on diets in relation to athletic performance and details some of the potential risks that should be monitored. No one diet is universally recommend for athletes; however, this article provides the information for athletes to analyze, in conjunction with medical professional counsel, their own diet and consider sustainable changes that can help achieve performance and body habitus goals.
Collapse
Affiliation(s)
- Matthew Kaufman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Chantal Nguyen
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Maya Shetty
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Marily Oppezzo
- Prevention Research Center, Stanford University, Redwood City, CA 94063, USA
| | - Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| |
Collapse
|
22
|
Hinkley JM, Yu G, Standley RA, Distefano G, Tolstikov V, Narain NR, Greenwood BP, Karmacharya S, Kiebish MA, Carnero EA, Yi F, Vega RB, Goodpaster BH, Gardell SJ, Coen PM. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol 2023; 601:2165-2188. [PMID: 36814134 PMCID: PMC10278663 DOI: 10.1113/jp284142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.
Collapse
Affiliation(s)
- J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - GongXin Yu
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Robert A. Standley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Giovanna Distefano
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | | | | | | | | | | | - Elvis Alvarez Carnero
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Rick B. Vega
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Stephen J. Gardell
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| |
Collapse
|
23
|
Carnevale RF, Muro BBD, Pierozan CR, Monteiro MS, Leal DF, Poor AP, Alves LKS, Gomes NAC, Silva CA, Maes D, Janssens GPJ, Almond GW, Garbossa CAP. Peripheral glycemia and farrowing traits in pigs: An observational study. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
24
|
Vogt ÉL, Von Dentz MC, Rocha DS, Model JFA, Kowalewski LS, Silveira D, de Amaral M, de Bittencourt Júnior PIH, Kucharski LC, Krause M, Vinagre AS. Acute effects of a single moderate-intensity exercise bout performed in fast or fed states on cell metabolism and signaling: Comparison between lean and obese rats. Life Sci 2023; 315:121357. [PMID: 36634864 DOI: 10.1016/j.lfs.2022.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
AIMS Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maiza Cristina Von Dentz
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jorge Felipe Argenta Model
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diane Silveira
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Carlos Kucharski
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anapaula Sommer Vinagre
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Fasting Before Evening Exercise Reduces Net Energy Intake and Increases Fat Oxidation, but Impairs Performance in Healthy Males and Females. Int J Sport Nutr Exerc Metab 2023; 33:11-22. [PMID: 36170970 DOI: 10.1123/ijsnem.2022-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
Acute morning fasted exercise may create a greater negative 24-hr energy balance than the same exercise performed after a meal, but research exploring fasted evening exercise is limited. This study assessed the effects of 7-hr fasting before evening exercise on energy intake, metabolism, and performance. Sixteen healthy males and females (n = 8 each) completed two randomized, counterbalanced trials. Participants consumed a standardized breakfast (08:30) and lunch (11:30). Two hours before exercise (16:30), participants consumed a meal (543 ± 86 kcal; FED) or remained fasted (FAST). Exercise involved 30-min cycling (∼60% VO2peak) and a 15-min performance test (∼85% VO2peak; 18:30). Ad libitum energy intake was assessed 15 min postexercise. Subjective appetite was measured throughout. Energy intake was 99 ± 162 kcal greater postexercise (p < .05), but 443 ± 128 kcal lower over the day (p < .001) in FAST. Appetite was elevated between the preexercise meal and ad libitum meal in FAST (p < .001), with no further differences (p ≥ .458). Fat oxidation was greater (+3.25 ± 1.99 g), and carbohydrate oxidation was lower (-9.16 ± 5.80 g) during exercise in FAST (p < .001). Exercise performance was 3.8% lower in FAST (153 ± 57 kJ vs. 159 ± 58 kJ, p < .05), with preexercise motivation, energy, readiness, and postexercise enjoyment also lower in FAST (p < .01). Fasted evening exercise reduced net energy intake and increased fat oxidation compared to exercise performed 2 hr after a meal. However, fasting also reduced voluntary performance, motivation, and exercise enjoyment. Future studies are needed to examine the long-term effects of this intervention as a weight management strategy.
Collapse
|
26
|
Yardley JE. Reassessing the evidence: prandial state dictates glycaemic responses to exercise in individuals with type 1 diabetes to a greater extent than intensity. Diabetologia 2022; 65:1994-1999. [PMID: 35978179 DOI: 10.1007/s00125-022-05781-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent guidelines suggest that adding anaerobic (high intensity or resistance) activity to an exercise session can prevent blood glucose declines that occur during aerobic exercise in individuals with type 1 diabetes. This theory evolved from earlier study data showing that sustained, anaerobic activity (high intensity cycling) increases blood glucose levels in these participants. However, studies involving protocols where anaerobic (high intensity interval) and aerobic exercise are combined have extremely variable glycaemic outcomes, as do resistance exercise studies. Scrutinising earlier studies will reveal that, in addition to high intensity activity (intervals or weight lifting), these protocols had another common feature: participants were performing exercise after an overnight fast. Based on these findings, and data from recent exercise studies, it can be argued that participant prandial state may be a more dominant factor than exercise intensity where glycaemic changes in individuals with type 1 diabetes are concerned. As such, a reassessment of study outcomes and an update to exercise recommendations for those with type 1 diabetes may be warranted.
Collapse
Affiliation(s)
- Jane E Yardley
- Augustana Faculty, University of Alberta, Camrose, AB, Canada.
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Liu MY, Chen SQ. Effects of Low/Medium-Intensity Exercise on Fat Metabolism after a 6-h Fast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15502. [PMID: 36497577 PMCID: PMC9736603 DOI: 10.3390/ijerph192315502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The effects of fasting and different exercise intensities on lipid metabolism were investigated in 12 male students aged 19.9 ± 1.4 years, with maximal oxygen consumption (VO2max) of 50.33 ± 4.0 mL/kg/min, using a counterbalanced design. Each participant ran on a treadmill at 45% and 65% VO2max continuously for 20 min, followed by running at 85% VO2max for 20 min (or until exhaustion) under a fed or fasted state (6 h). The respiratory exchange ratio (RER), blood glucose (BGLU), blood lactate (BLA), and blood triglyceride (TG) were analyzed during exercise. The results showed that the intensity of exercise did not significantly affect the BGLU and TG in the fed state. The levels of both RER and BLA increased as the intensity of exercise increased from low to high (45, 65, and 85% VO2max), and more energy was converted from fat into glucose at a high intensity of exercise. In the fasted state of 6 h, the BGLU level increased parallel to the intensity of exercise. The RER was close to 1.0 at a high intensity of exercise, indicating that more energy was converted from glycogen. At the intensities of 45 and 65% VO2max, the RER and concentration of TG were both lower in the fasted than in the fed state, showing that a higher percentage of energy comes from fat than in the fed state at 45 and 65% VO2max. When running at 85% VO2max, the BGLU concentration was higher in the fasted than in the fed state, indicating that the liver tissues release more BGLU for energy in the fasted state. Therefore, in the fasted state, running at 45% and 65% of VO2max significantly affects lipid metabolism. On the contrary, the higher RER and BGLU concentrations when running at 85% VO2max revealed no significant difference between the two probes. This study suggests that medium- and low-intensity exercise (45 and 65% VO2max) in the fasted state enhances lipid metabolism.
Collapse
Affiliation(s)
- Ming-Yi Liu
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang District, Tainan 710301, Taiwan
| | - Shung-Quan Chen
- Office of Student Affairs, Tainan City Siaying Elementary School, No. 72, Sect. 2, Jhongshan Rd., Siaying District, Tainan 73541, Taiwan
| |
Collapse
|
28
|
Posture economy: the importance of metabolic state on metabolic phenotype assessment and the energy cost of sitting and standing. A whole body calorimetry trial. Eur J Clin Nutr 2022; 76:1178-1185. [PMID: 35105942 DOI: 10.1038/s41430-022-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Metabolic state (fed vs fasted) can result in marked differences in exercise metabolism, fat, and carbohydrate oxidation. In addition, a large inter-individual range in metabolic response to sitting and standing when fasted has been observed. Here, we examined the effect of metabolic state on the energy cost of posture allocation. METHODS Thirty male participants were recruited and followed a 1 h sit-stand protocol in a fasted and fed state inside a whole body calorimeter to measure energy expenditure (EE) and respiratory quotient (RQ). Body composition and resting metabolic rate were measured before the start. Fasted EE response was used to phenotype participants as energy savers (≤5% ΔEE from sitting to standing) or energy spenders (>5% ΔEE). RESULTS In a fasted state, ΔEE from sitting to standing in energy spenders was 10.2 ± 2.7% compared to 2.6 ± 1.9% in energy savers (p < 0.001). Postprandial, there was no difference in ΔEE between energy spenders and energy savers (10.8 ± 5.1% vs 9.4 ± 5.7%). In a fasted state, significant correlations were observed between body fat (%) and ΔEE (%) (R2 = 0.55, p < 0.001), body fat (%) and ΔRQ (R2 = 0.28, p < 0.001) and ΔEE (%) and ΔRQ (R2 = 0.43, p < 0.001); these correlations were not present after the meal. CONCLUSIONS The current study showed for the first time, that the observed difference between energy spenders and energy savers in a fasted state, disappeared after the consumption of a meal. Therefore, metabolic state may be important to consider when assessing metabolic phenotypes. Differences in body composition were observed between the energy spender and energy saver phenotype. The current findings may have implications on health and weight management recommendations on posture to increase non-exercise activity thermogenesis. This trial was retrospectively registered on 19 December 2017 as NCT03378115 on Clinicaltrials.gov .
Collapse
|
29
|
Exercise: A Possibly Effective Way to Improve Vitamin D Nutritional Status. Nutrients 2022; 14:nu14132652. [PMID: 35807833 PMCID: PMC9268447 DOI: 10.3390/nu14132652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency has become a widespread public health problem owing to its potential adverse health effects. Generally, the nutritional status of vitamin D depends on sunlight exposure and dietary or supplementary intake. However, recent studies have found that exercise can influence circulating 25(OH)D levels; although, the results have been inconclusive. In this review, we focused on the effect of exercise on circulating vitamin D metabolites and their possible mechanisms. We found that endurance exercise can significantly increase serum 25(OH)D levels in vitamin D-deficient people but has no significant effect on vitamin D-sufficient people. This benefit has not been observed with resistance training. Only chronic endurance exercise training can significantly increase serum 1,25(OH)2D, and the effect may be sex-dependent. Exercise may influence 25(OH)D levels in the circulation by regulating either the vitamin D metabolites stored in tissues or the utilization by target tissues. The effects of exercise on 25(OH)D levels in the circulation may be dependent on many factors, such as the vitamin D nutritional status, exercise type and intensity, and sex. Therefore, further research on the effects and mechanisms of exercise on vitamin D metabolites is required.
Collapse
|
30
|
Schroeder N. Evidence-Based Nutritional Strategies to Enhance Athletic Performance. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Frampton J, Edinburgh RM, Ogden HB, Gonzalez JT, Chambers ES. The acute effect of fasted exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release compared to fed exercise in healthy individuals: a systematic review and network meta-analysis. Int J Obes (Lond) 2022; 46:255-268. [PMID: 34732837 PMCID: PMC8794783 DOI: 10.1038/s41366-021-00993-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the acute effect of fasted and fed exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release. METHODS CENTRAL, Embase, MEDLINE, PsycInfo, PubMed, Scopus and Web of Science databases were searched to identify randomised, crossover studies in healthy individuals that compared the following interventions: (i) fasted exercise with a standardised post-exercise meal [FastEx + Meal], (ii) fasted exercise without a standardised post-exercise meal [FastEx + NoMeal], (iii) fed exercise with a standardised post-exercise meal [FedEx + Meal], (iv) fed exercise without a standardised post-exercise meal [FedEx + NoMeal]. Studies must have measured ad libitum meal energy intake, within-lab energy intake, 24-h energy intake, energy expenditure, subjective hunger, acyl-ghrelin, peptide YY, and/or glucagon-like peptide 1. Random-effect network meta-analyses were performed for outcomes containing ≥5 studies. RESULTS 17 published articles (23 studies) were identified. Ad libitum meal energy intake was significantly lower during FedEx + Meal compared to FedEx + NoMeal (MD: -489 kJ; 95% CI, -898 to -80 kJ; P = 0.019). Within-lab energy intake was significantly lower during FastEx + NoMeal compared to FedEx + NoMeal (MD: -1326 kJ; 95% CI, -2102 to -550 kJ; P = 0.001). Similarly, 24-h energy intake following FastEx + NoMeal was significantly lower than FedEx + NoMeal (MD: -2095 kJ; 95% CI, -3910 kJ to -280 kJ; P = 0.024). Energy expenditure was however significantly lower during FastEx + NoMeal compared to FedEx+NoMeal (MD: -0.67 kJ/min; 95% CI, -1.10 to -0.23 kJ/min; P = 0.003). Subjective hunger was significantly higher during FastEx + Meal (MD: 13 mm; 95% CI, 5-21 mm; P = 0.001) and FastEx + NoMeal (MD: 23 mm; 95% CI, 16-30 mm; P < 0.001) compared to FedEx + NoMeal. CONCLUSION FastEx + NoMeal appears to be the most effective strategy to produce a short-term decrease in energy intake, but also results in increased hunger and lowered energy expenditure. Concerns regarding experimental design however lower the confidence in these findings, necessitating future research to rectify these issues when investigating exercise meal timing and energy balance. PROSPERO REGISTRATION NUMBER CRD42020208041. KEY POINTS Fed exercise with a standardised post-exercise meal resulted in the lowest energy intake at the ad libitum meal served following exercise completion. Fasted exercise without a standardised post-exercise meal resulted in the lowest within-lab and 24-h energy intake, but also produced the lowest energy expenditure and highest hunger. Methodological issues lower the confidence in these findings and necessitate future work to address identified problems.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| | | | - Henry B Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth Marjon University, Plymouth, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
32
|
El-Outa A, Ghandour L, Hamade H, Borgi C, Fares EJ, Gherbal T, Mufarrij A. Intermittent fasting & performance: The iFast clinical trial protocol. Contemp Clin Trials Commun 2022; 25:100766. [PMID: 35024492 PMCID: PMC8728049 DOI: 10.1016/j.conctc.2021.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
There is increasing evidence from animal and human studies suggesting that fasting can play a role in disease prevention, weight control and longevity. However, few studies have compared exercise performances in individuals adhering to an intermittent fasting (IF) in comparison to individuals who are not. Given the rising popularity of IF we aim to investigate whether this type eating pattern will improve cardiovascular performance over a period of 12 weeks through VO2 max measurements in participants from a Lebanese community. Additionally, we will study the variation of different health parameters, physical performance and biomarkers potentially affected by IF. Participants will be recruited from a large university community and randomized into 4 arms. Baseline information will be collected from all participants, which includes biological, physical, nutritional, medical and psychological data. Two arms will follow a time-restricted fasting diet with and without physical exercise, one arm will exercise without fasting, and one will act as a control group. Throughout the study, measurements will be repeated, and data analysis will follow to evaluate results.
Collapse
Affiliation(s)
- Abbass El-Outa
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lara Ghandour
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hani Hamade
- Department of Internal Medicine, The MetroHealth System, Cleveland, USA
| | - Cecile Borgi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Elie-Jacques Fares
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Tarek Gherbal
- University Sports, Office of Student Affairs, American University of Beirut, Beirut, Lebanon
| | - Afif Mufarrij
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
33
|
Fitzpatrick R, Davison G, Wilson JJ, McMahon G, McClean C. Exercise, type 1 diabetes mellitus and blood glucose: The implications of exercise timing. Front Endocrinol (Lausanne) 2022; 13:1021800. [PMID: 36246914 PMCID: PMC9555792 DOI: 10.3389/fendo.2022.1021800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The scientific literature shows that exercise has many benefits for individuals with type 1 diabetes. Yet, several barriers to exercise in this population exist, such as post-exercise hypoglycaemia or hyperglycaemia. Several studies suggest that the timing of exercise may be an important factor in preventing exercise-induced hypoglycaemia or hyperglycaemia. However, there is a paucity of evidence solely focused on summarising findings regarding exercise timing and the impact it has on glucose metabolism in type 1 diabetes. This report suggests that resistance or high-intensity interval exercise/training (often known as HIIT) may be best commenced at the time of day when an individual is most likely to experience a hypoglycaemic event (i.e., afternoon/evening) due to the superior blood glucose stability resistance and HIIT exercise provides. Continuous aerobic-based exercise is advised to be performed in the morning due to circadian elevations in blood glucose at this time, thereby providing added protection against a hypoglycaemic episode. Ultimately, the evidence concerning exercise timing and glycaemic control remains at an embryonic stage. Carefully designed investigations of this nexus are required, which could be harnessed to determine the most effective, and possibly safest, time to exercise for those with type 1 diabetes.
Collapse
|
34
|
Alvero-Cruz JR, García Romero JC, Ordonez FJ, Mongin D, Correas-Gómez L, Nikolaidis PT, Knechtle B. Age and Training-Related Changes on Body Composition and Fitness in Male Amateur Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:93. [PMID: 35010354 PMCID: PMC8751188 DOI: 10.3390/ijerph19010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Master athletes are considered as a model of healthy aging because they can limit the age-related decline of physiological abilities compared to sedentary individuals. The main objective of this study is to analyze age-related changes and annual training on body composition (BC) and cardiorespiratory fitness (CRF) parameters. The participants in this retrospective cross-sectional study were 176 male cyclists, aged 40-60 years. BC was evaluated through anthropometric measurements and CRF was determined by an incremental cycle ergometer test to exhaustion. A comparative study between age groups was carried out through a one-way ANOVA test and the associations between the variables were assessed by Spearman's correlation coefficients and multiple regression analysis to estimate the performance. Training was generally associated with a decrease in both body weight and body fat (p < 0.05). A decrease in resting heart rate was observed as a vagal effect of kilometers cycled per year (p < 0.05). Kilometers cycled per year were associated with an increase in peak power output, which was larger in the master 40 group (p < 0.05) with a non-significant upward in VO2max (p > 0.05). In the performance prediction model, the included variables explained 52% of the variance. In summary, the changes induced by age were minimal in BC and negligible in CRF, whereas HR decreased with age. Training load was generally associated with a decrease in body weight, BMI and body fat percentage that was particularly notable in the abdominal skin folds. A decrease in HRrest was observed as a vagal effect due to kilometers cycled per year, and age did not seem to have a significant effect. The annual cycling kilometers were associated with to high PPO that is greater in the M40 group and a non-significant upward trend in VO2max.
Collapse
Affiliation(s)
- José Ramón Alvero-Cruz
- Sports Medicine and Cycling Training Center, 29004 Malaga, Spain; (J.R.A.-C.); (J.C.G.R.)
- Exercise Physiology Laboratory, Faculty of Medicine, University of Málaga, 29016 Malaga, Spain
| | - Jerónimo C. García Romero
- Sports Medicine and Cycling Training Center, 29004 Malaga, Spain; (J.R.A.-C.); (J.C.G.R.)
- Exercise Physiology Laboratory, Faculty of Medicine, University of Málaga, 29016 Malaga, Spain
| | | | - Denis Mongin
- Quality of Care Unit, University Hospitals of Geneva, 1205 Geneva, Switzerland;
| | | | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8006 Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| |
Collapse
|
35
|
Comparison of physiological and clinical markers for chronic sprint-interval training exercise performed either in the fasted or fed states among healthy adults. Curr Res Physiol 2021; 4:192-201. [PMID: 34746838 PMCID: PMC8562244 DOI: 10.1016/j.crphys.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sprint-interval training (SIT) and intermittent fasting are effective independent methods in achieving clinical health outcomes. However, the impact of both modalities when performed concurrently is unclear. The aim of this study was to compare the effects of 6 weeks of SIT performed in the fasted versus fed state on physiological and clinical health markers in healthy adults. Methods. Thirty recreationally-active participants were equally randomised into either the fasted (FAS; 4 males, 11 females) or the fed (FED; 6 males, 9 females) group. For all exercise sessions, FAS participants had to fast ≥10 h prior to exercising while FED participants had to consume food within 3 h to exercise. All participants underwent three sessions of SIT per week for 6 weeks. Each session consists of repeated bouts of 30-s Wingate Anaerobic cycle exercise. Pre- and post-training peak oxygen uptake (VO2peak), isokinetic leg strength, insulin sensitivity, blood pressure and serum lipid levels were assessed. Results. There were no differences in baseline physiological and clinical measures between both groups (all p > 0.05). VO2peak improved by 6.0 ± 8.8% in the FAS group and 5.3 ± 10.6% in the FED group (both p < 0.05), however the difference in improvement between groups was not statistically significant (p > 0.05). A similar pattern of results was seen for knee flexion maximum voluntary contraction at 300°·s−1. SIT training in either fasted or fed state had no impact on insulin sensitivity (both p > 0.05). There was significant reduction in diastolic blood pressure (8.2 ± 4.2%) and mean arterial pressure (7.0 ± 3.2%) in the FAS group (both p < 0.05) but not FED group (both p > 0.05). Conclusion. VO2peak and leg strength improved with SIT regardless of whether participants trained in the fasted or fed state. Chronic SIT in the fasted state may potentially reduce blood pressure to a greater extent than the same chronic SIT in the fed state. SIT in the fasted state leads to a significant decrease in blood pressure. VO2peak and leg strength improves with SIT, regardless of nutrition status. SIT, performed in fasted or fed state, does not improve insulin sensitivity, body fat percentage or lipid profile.
Collapse
|
36
|
Akberdin IR, Kiselev IN, Pintus SS, Sharipov RN, Vertyshev AY, Vinogradova OL, Popov DV, Kolpakov FA. A Modular Mathematical Model of Exercise-Induced Changes in Metabolism, Signaling, and Gene Expression in Human Skeletal Muscle. Int J Mol Sci 2021; 22:10353. [PMID: 34638694 PMCID: PMC8508736 DOI: 10.3390/ijms221910353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Sergey S. Pintus
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | | | - Olga L. Vinogradova
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Fedor A. Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| |
Collapse
|
37
|
Vogt ÉL, Von Dentz MC, Rocha DS, Argenta Model JF, Kowalewski LS, de Souza SK, Girelli VDO, de Bittencourt PIH, Friedman R, Krause M, Vinagre AS. Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147543. [PMID: 34299993 PMCID: PMC8307452 DOI: 10.3390/ijerph18147543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Introduction and objectives: Obesity represents a major global public health problem. Its etiology is multifactorial and includes poor dietary habits, such as hypercaloric and hyperlipidic diets (HFDs), physical inactivity, and genetic factors. Regular exercise is, per se, a tool for the treatment and prevention of obesity, and recent studies suggest that the beneficial effects of exercise can be potentiated by the fasting state, thus potentially promoting additional effects. Despite the significant number of studies showing results that corroborate such hypothesis, very few have evaluated the effects of fasted-state exercise in overweight/obese populations. Therefore, the aim of this study was to evaluate the subacute effects (12 h after conclusion) of a single moderate-intensity exercise bout, performed in either a fed or an 8 h fasted state, on serum profile, substrate-content and heat shock pathway–related muscle protein immunocontent in obese male rats. Methods: Male Wistar rats received a modified high-fat diet for 12 weeks to induce obesity and insulin resistance. The animals were allocated to four groups: fed rest (FER), fed exercise (FEE), fasted rest (FAR) and fasted exercise (FAE). The exercise protocol was a 30 min session on a treadmill, with an intensity of 60% of VO2max. The duration of the fasting period was 8 h prior to the exercise session. After a 12 h recovery, the animals were killed and metabolic parameters of blood, liver, heart, gastrocnemius and soleus muscles were evaluated, as well as SIRT1 and HSP70 immunocontent in the muscles. Results: HFD induced obesity and insulin resistance. Soleus glycogen concentration decreased in the fasted groups and hepatic glycogen decreased in the fed exercise group. The combination of exercise and fasting promoted a decreased concentration of serum total cholesterol and triglycerides. In the heart, combination fasting plus exercise was able to decrease triglycerides to control levels. In the soleus muscle, both fasting and fasting plus exercise were able to decrease triglyceride concentrations. In addition, heat shock protein 70 and sirtuin 1 immunocontent increased after exercise in the gastrocnemius and soleus muscles. Conclusions: An acute bout of moderate intensity aerobic exercise, when realized in fasting, may induce, in obese rats with metabolic dysfunctions, beneficial adaptations to their health, such as better biochemical and molecular adaptations that last for at least 12 h. Considering the fact that overweight/obese populations present an increased risk of cardiovascular events/diseases, significant reductions in such plasma markers of lipid metabolism are an important achievement for these populations.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Maiza Cristina Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Jorge Felipe Argenta Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Samir Khal de Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Vitória de Oliveira Girelli
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil;
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
- Correspondence: ; Tel.: +55-51-33083623
| | - Anapaula Sommer Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| |
Collapse
|
38
|
Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids 2021; 53:1135-1151. [PMID: 34152488 DOI: 10.1007/s00726-021-03021-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic effect of l-leucine has been attributed to its modulatory effect on glucose uptake and lipid metabolism in muscles. However, there is a dearth on its effect on glucose metabolism in muscles. Thus, the present study investigated the effect of l-leucine - stimulated glucose uptake on glucose metabolism, dysregulated lipid metabolic pathways, redox and bioenergetic homeostasis, and proteolysis in isolated psoas muscle from Sprague Dawley male rats. Isolated psoas muscles were incubated with l-leucine (30-240 μg/mL) in the presence of 11.1 mMol glucose at 37 ˚C for 2 h. Muscles incubated in only glucose served as the control, while muscles not incubated in l-leucine and/or glucose served as the normal control. Metformin (6.04 mM) was used as the standard antidiabetic drug. Incubation with l-leucine caused a significant increase in muscle glucose uptake, with an elevation of glutathione levels, superoxide dismutase, catalase, E-NTPDase and 5'nucleotidase activities. It also led to the depletion of malondialdehyde and nitric oxide levels, ATPase, chymotrypsin, acetylcholinesterase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and lipase activities. There was an alteration in lipid metabolites, with concomitant activation of glycerolipid metabolism, fatty acid metabolism, and fatty acid elongation in mitochondria in the glucose-incubated muscle (negative control). Incubation with l-leucine reversed these alterations, and concomitantly deactivated the pathways. These results indicate that l-leucine-enhanced muscle glucose uptake involves improved redox and bioenergetic homeostasis, with concomitant suppressed proteolytic, glycogenolytic and gluconeogenetic activities, while modulating glucose - lipid metabolic switch.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | | | - Rahul Ravichandran
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Priyanka Banerjee
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
39
|
Effects of Feeding Time on Markers of Muscle Metabolic Flexibility Following Acute Aerobic Exercise in Trained Mice Undergoing Time Restricted Feeding. Nutrients 2021; 13:nu13051717. [PMID: 34069449 PMCID: PMC8159095 DOI: 10.3390/nu13051717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Time-restricted feeding (TRF) is becoming a popular way of eating in physically active populations, despite a lack of research on metabolic and performance outcomes as they relate to the timing of food consumption in relation to the time of exercise. The purpose of this study was to determine if the timing of feeding/fasting after exercise training differently affects muscle metabolic flexibility and response to an acute bout of exercise. Male C57BL/6 mice were randomized to one of three groups for 8 weeks. The control had ad libitum access to food before and after exercise training. TRF-immediate had immediate access to food for 6 h following exercise training and the TRF-delayed group had access to food 5-h post exercise for 6 h. The timing of fasting did not impact performance in a run to fatigue despite TRF groups having lower hindlimb muscle mass. TRF-delayed had lower levels of muscle HSL mRNA expression and lower levels of PGC-1α expression but displayed no changes in electron transport chain enzymes. These results suggest that in young populations consuming a healthy diet and exercising, the timing of fasting may not substantially impact metabolic flexibility and running performance.
Collapse
|
40
|
Kotarsky CJ, Johnson NR, Mahoney SJ, Mitchell SL, Schimek RL, Stastny SN, Hackney KJ. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol Rep 2021; 9:e14868. [PMID: 34042299 PMCID: PMC8157764 DOI: 10.14814/phy2.14868] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to determine whether time-restricted eating (TRE), also known as time-restricted feeding, was an effective dietary strategy for reducing fat mass and preserving fat-free mass while evaluating changes in cardiometabolic biomarkers, hormones, muscle performance, energy intake, and macronutrient intake after aerobic and resistance exercise training in physically inactive and overweight or obese adults. This study was a randomized, controlled trial. Overweight and obese adults (mean ± SD; age: 44 ± 7 years; body mass index [BMI]: 29.6 ± 2.6 kg/m2 ; female: 85.7%) were randomly assigned to a TRE or normal eating (NE) dietary strategy group. The TRE participants consumed all calories between 12:00 p.m. and 8:00 p.m., whereas NE participants maintained their dietary habits. Both groups completed 8 weeks of aerobic exercise and supervised resistance training. Body composition, muscle performance, energy intake, macronutrient intake, physical activity, and physiological variables were assessed. A total of 21 participants completed the study (NE: n = 10; TRE: n = 11). A mild energy restriction was observed for TRE (~300 kcal/day, 14.5%) and NE (~250 kcal/day, 11.4%). Losses of total body mass were significantly greater for TRE (3.3%) relative to NE (0.2%) pre- to post-intervention, of which TRE had significantly greater losses of fat mass (9.0%) compared to NE (3.3%). Lean mass increased during the intervention for both TRE (0.6%) and NE (1.9%), with no group differences. These data support the use of TRE and concurrent exercise training as a short-term dietary strategy for reducing fat mass and increasing lean mass in overweight and obese adults.
Collapse
Affiliation(s)
- Christopher J. Kotarsky
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Nathaniel R. Johnson
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
| | - Sean J. Mahoney
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
| | - Steven L. Mitchell
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
- Department of RadiologySanford HealthFargoNDUSA
| | - Regina L. Schimek
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
| | - Sherri N. Stastny
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
| | - Kyle J. Hackney
- Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoNDUSA
| |
Collapse
|
41
|
Rothschild JA, Kilding AE, Broome SC, Stewart T, Cronin JB, Plews DJ. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021; 13:nu13041291. [PMID: 33919779 PMCID: PMC8070691 DOI: 10.3390/nu13041291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Jeffrey A. Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Correspondence:
| | - Andrew E. Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland 1010, New Zealand
| | - John B. Cronin
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| |
Collapse
|
42
|
Papadakis Z, Forsse JS, Stamatis A. High-Intensity Interval Exercise Performance and Short-Term Metabolic Responses to Overnight-Fasted Acute-Partial Sleep Deprivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3655. [PMID: 33915744 PMCID: PMC8037712 DOI: 10.3390/ijerph18073655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
People practicing high-intensity interval exercise (HIIE) fasted during the morning hours under a lack of sleep. Such a habit may jeopardize the health benefits related to HIIE and adequate sleep. Fifteen habitually good sleeper males (age 31.1 ± 5.3 SD year) completed on a treadmill two isocaloric (500 kcal) HIIE sessions (3:2 min work:rest) averaged at 70% VO2reserve after 9-9.5 h of reference sleep exercise (RSE) and after 3-3.5 h of acute-partial sleep deprivation exercise (SSE). Diet and sleep patterns were controlled both 1 week prior and 2 days leading up to RSE and SSE. HIIE related performance and substrate utilization data were obtained from the continuous analysis of respiratory gases. Data were analyzed using repeated measures ANOVA with the baseline maximum oxygen uptake (VO2max) and body fat percentage (BF%) as covariates at p < 0.05. No difference was observed in VO2max, time to complete the HIIE, VE, RER, CHO%, and FAT% utilization during the experimental conditions. Whether attaining an adequate amount of sleep or not, the fasted HIIE performance and metabolism were not affected. We propose to practice the fasted HIIE under adequate sleep to receive the pleiotropic beneficial effects of sleep to the human body.
Collapse
Affiliation(s)
| | - Jeffrey S. Forsse
- Baylor Laboratories for Exercise Science and Technologies, Baylor University, Waco, TX 40385, USA;
| | | |
Collapse
|
43
|
Kiss A, Temesi Á, Tompa O, Lakner Z, Soós S. Structure and trends of international sport nutrition research between 2000 and 2018: bibliometric mapping of sport nutrition science. J Int Soc Sports Nutr 2021; 18:12. [PMID: 33546728 PMCID: PMC7866438 DOI: 10.1186/s12970-021-00409-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tool kits of bibliometrics and science mapping provide a standard methodology to map the knowledge base of specific fields of science. The aim of the present research is the analysis of the recent international trends of sport nutrition science, as well as the primary identification of the research topics and results of sport nutrition science via enhanced bibliometric methods for the 2000-2018 time period. METHODS Altogether, 3889 publications were included in this study. We identified the most relevant sport nutrition topics by running a community detection algorithm on the proximity network constructed via network text analysis. The key issues and key concepts of sport nutrition topics as well as their relations were evaluated via network analysis. Besides, we carried a chronological analysis of topics out and a scientometric evaluative analysis was also created. RESULTS We identified the four main basic groups from which the 18 most characteristics topics were analyzed. The 18 topics are the following: 'soccer and physiology', 'carbohydrate metabolism', 'muscle physiology: alkalosis and acidosis', 'muscle mass gain and dietary supplementation', 'fluid balance and hydration', 'dietary intake and nutrition knowledge', 'determination of energy need of athletes', 'bone health and female athlete triad', 'hydration strategy', 'body weight management', 'nutritional strategies and human skeletal muscle', 'dietary supplementation of nitrates', 'oxidative stress and dietary supplement use', 'dietary supplement use and doping', 'oxidative stress and inflammation and dietary antioxidants', 'exercise adaptation and nutritional strategies', 'gut microbiota', 'celiac disease'. Regarding the size of the topic, researches on sport nutrition science have put the focus on the following three groups: 'muscle mass gain and dietary supplementation', 'carbohydrate metabolism', 'oxidative stress and dietary supplement use'. The greatest scientific impact can be ascribed to the following topics: 'nutritional strategies and human skeletal muscle', 'dietary supplementation of nitrates', 'body weight management', and 'gut microbiota'. CONCLUSIONS Scientific output on sport nutrition has continuously been rising between 2000 and 2018. The ratio of topics related to sport nutrition but predominantly connected to basic research has decreased significantly within all publications. The results of this study confirm the role of science mapping in the identification of specific research topics and primary research directions in the field of sport nutrition science.
Collapse
Affiliation(s)
- Anna Kiss
- Department of Science Policy and Scientometrics, Library and Information Centre of the Hungarian Academy of Sciences (MTA), Arany János street 1, Budapest, 1050, Hungary. .,Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary.
| | - Ágoston Temesi
- Institute of Agribusiness, Department of Food Chain Management, Faculty of Economics and Social Sciences, Szent István University, Gödöllő, Hungary
| | - Orsolya Tompa
- Institute of Agribusiness, Department of Food Chain Management, Faculty of Economics and Social Sciences, Szent István University, Gödöllő, Hungary
| | - Zoltán Lakner
- Institute of Agribusiness, Department of Food Chain Management, Faculty of Economics and Social Sciences, Szent István University, Gödöllő, Hungary
| | - Sándor Soós
- Department of Science Policy and Scientometrics, Library and Information Centre of the Hungarian Academy of Sciences (MTA), Arany János street 1, Budapest, 1050, Hungary.,Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
44
|
Hsu YJ, Jhang WL, Lee MC, Bat-Otgon B, Narantungalag E, Huang CC. Lactose-riched Mongolian mare's milk improves physical fatigue and exercise performance in mice. Int J Med Sci 2021; 18:564-574. [PMID: 33390826 PMCID: PMC7757156 DOI: 10.7150/ijms.53098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Fatigue may cause the efficiency of the organ in human body to decrease, which may affect the daily life and exercise performance of the general people and athletes. Mare's milk powder (MMP) is a lactose rich supplement. The research of the study is to evaluate the whether MMP has anti-fatigue effect. Forty male ICR mice were randomly divided into four group to receive vehicle or MMP by oral gavage at 0 (Vehicle), 0.27 (MMP-1X), 0.54 (MMP-2X), 1.35 (MMP-5X) g/kg/day for 14 days. The forelimb grip of the MMP-2X, and MMP-5X group were significantly higher than the vehicle group. The swim-to-exhaustion times of the MMP-1X, MMP-2X, and MMP-5X group were significantly greater than the vehicle group. Glycogen levels in liver and muscle were significantly larger in the MMP-1X, MMP-2X, and MMP-5X groups than the vehicle group. Receive MMP supplement for 14 days can promoting exercise performance and amelioration of exercise-induced fatigue.
Collapse
Affiliation(s)
- Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| | - Wei-Lun Jhang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| | - Batsuren Bat-Otgon
- School of Physical Education, Mongolian National University of Education, Ulaanbaatar, Mongolia
| | | | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| |
Collapse
|
45
|
Schofield KL, Thorpe H, Sims ST. Where are all the men? Low energy availability in male cyclists: A review. Eur J Sport Sci 2020; 21:1567-1578. [PMID: 33108971 DOI: 10.1080/17461391.2020.1842510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Most of the low energy availability (LEA) research has been conducted in female populations. The occurrence of LEA in male athletes is not well known, even with an understanding of the components involved in and contributing to LEA. Cycling is a major risk factor for LEA due to inherent sports characteristics: low impact, high energy demands, and a common perception that leanness is a performance advantage. The purpose of this review is to discuss the cycling-specific studies that have documented components of RED-S. The review demonstrates male cyclists (1) experience energy deficits daily, weekly and throughout a season; (2) exhibit lower bone mineral density at the spine compared to the hip, and low bone mineral density correlating with LEA and; (3) demonstrate downregulation of the endocrine system with elevated cortisol, reduced testosterone and insulin-like growth factor 1. The complexity of LEA is further explored by the socio-psychological contribution that may impact eating behaviours, and therefore increase the risk of developing LEA. Future research directions include applying multifaceted research methods to gain a greater understanding of this syndrome and the effect of LEA on male cyclists.Highlights Competitive male cyclists tend to train and compete in low energy availability states, increasing the risk of developing low bone mineral density.The metabolic and hormonal changes in competitive male cyclists demonstrate a multifaceted downregulation of the endocrine system.The socio-psychological contributions may impact eating behaviours, therefore increase the risk of developing low energy availability in competitive male cyclists.Future research using mixed-method approaches will contribute to more multidimensional understandings of the risks and effects of LEA on male cyclists.
Collapse
Affiliation(s)
| | - Holly Thorpe
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy T Sims
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
46
|
Macedo RCO, Santos HO, Tinsley GM, Reischak-Oliveira A. Low-carbohydrate diets: Effects on metabolism and exercise - A comprehensive literature review. Clin Nutr ESPEN 2020; 40:17-26. [PMID: 33183532 DOI: 10.1016/j.clnesp.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Low-carbohydrate diets (LCD) have gained substantial attention in recent years for their potential in health promotion and treatment of diseases, but they remain controversial in nutrition guidelines and exercise performance. Herein, through a literature review, we discuss the current evidence base by considering management of LCD and potential coupling of these dietary regiments with physical exercise. METHODS We performed a comprehensive literature review with no date limits as a means of including seminal to current studies. RESULTS Reduction of CHO intake decreases muscle glycogen, yielding greater fat oxidation and associated metabolic benefits. LCD may promote fat mass loss and regulation of biochemical parameters, such as lipid and glycemic biomarkers. The therapeutic potential of LCD towards noncommunicable diseases, particularly obesity and its comorbidities, is therefore reasonable as a dietary candidate in this context. Potential benefits to this approach are linked to enhancement of mitochondrial gene expression and mitochondrial biogenesis. As such, LCD may be a feasible tool in a 'periodized nutrition' for athletes and within clinical scenarios. Long-term observational follow-up studies have demonstrated increased mortality and cardiovascular implications of LCD. However, harmful associations may depend on the food source (e.g., animal-based vs. plant-based foods). CONCLUSION LCD may decrease body mass, waist circumference, and improve fat and carbohydrate metabolism. When combined with exercise, LCD seems to be an effective strategy in regulating metabolic factors of cardiovascular diseases. Conversely, LCD may be associated with higher mortality and metabolic dysregulations if it contains large amounts of animal-based foods, particularly saturated fat.
Collapse
Affiliation(s)
- Rodrigo C O Macedo
- University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil; Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
47
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
48
|
Santos HO, Genario R, Macedo RCO, Pareek M, Tinsley GM. Association of breakfast skipping with cardiovascular outcomes and cardiometabolic risk factors: an updated review of clinical evidence. Crit Rev Food Sci Nutr 2020; 62:466-474. [PMID: 32935557 DOI: 10.1080/10408398.2020.1819768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
"Eat breakfast like a king, lunch like a prince and dinner like a pauper" (Adelle Davis, 1904-1974) is a concept that appears to align with some contemporary evidence concerning the appropriate proportioning of daily meals. At the same time, with the popular and scientific dissemination of the concepts of intermittent fasting and time-restricted feeding, well-controlled clinical trials have emerged showing the safety or even possible benefits of skipping breakfast. In this comprehensive literature review, we discuss recent evidence regarding breakfast intake, cardiovascular outcomes and cardiovascular risk markers. Overall, breakfast omission appears to be associated with a higher risk for atherosclerotic and adverse cardiovascular outcomes. However, caution should be employed when deciphering these data as many complex, unmeasured confounders may have contributed. Unfortunately, long-term randomized, clinical trials with detailed dietary control that have assessed clinical outcomes are sparse. Notwithstanding the observational findings, current trials conducted so far-albeit apparently smaller number-have shown that breakfast addition in subjects who do not habitually consume this meal may increase body weight, particularly fat mass, through caloric excess, whereas skipping breakfast may be a feasible strategy for some people aiming for calorie restriction. To date, definitive benefits of breakfast omission or consumption are not supported by the best evidence-based research, and the question of whether skipping breakfast per se is causally associated with cardiovascular outcomes remains unresolved.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | | | | | - Manan Pareek
- Department of Cardiology, North Zealand Hospital, Hilleroed, Denmark.,Department of Internal Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
49
|
Rothschild JA, Kilding AE, Plews DJ. Pre-Exercise Nutrition Habits and Beliefs of Endurance Athletes Vary by Sex, Competitive Level, and Diet. J Am Coll Nutr 2020; 40:517-528. [PMID: 32926647 DOI: 10.1080/07315724.2020.1795950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the self-reported beliefs and practices relating to pre-exercise nutrition intake among endurance athletes of varying ages and competitive levels and examine differences based on sex, competitive level, and habitual dietary pattern. METHOD An anonymous online survey was circulated internationally in English and completed by 1950 athletes of varying competitive levels (51.0% female, mean age 40.9 years [range 18:78]). Survey questions included training background, determinants of pre-exercise nutrition intake and composition, and timing relative to exercise. RESULTS Prior to morning exercise, 36.4%, 36.0%, and 27.6% of athletes consumed carbohydrate-containing food/drinks before almost every workout, some of the time, and never/rarely, respectively, with significant effects of sex (p < 0.001, Cramer's V (ϕc) = 0.15) and competitive level (p < 0.001, ϕc = 0.09). Nutritional intake before exercise varied based on workout duration for 47.6% of athletes, with significant effects of sex (ϕc = 0.15) and habitual diet (ϕc = 0.19), and based on workout intensity for 39.1% of athletes, with significant effects of sex (ϕc = 0.13) and habitual diet (ϕc = 0.17, all p < 0.001). Additionally, 89.0% of athletes reported using at least some type of dietary supplement (including caffeine from coffee/tea) within 1 hour before exercise. CONCLUSIONS Overall, nearly all factors measured relating to pre-exercise nutrition intake varied by sex, competitive level, habitual dietary pattern, and/or intensity/duration of the training session and suggest a large number of athletes may not be following current recommendations for optimizing endurance training adaptations.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
50
|
Prevalence and Determinants of Fasted Training in Endurance Athletes: A Survey Analysis. Int J Sport Nutr Exerc Metab 2020; 30:345-356. [DOI: 10.1123/ijsnem.2020-0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022]
Abstract
Athletes may choose to perform exercise in the overnight-fasted state for a variety of reasons related to convenience, gut comfort, or augmenting the training response, but it is unclear how many endurance athletes use this strategy. We investigated the prevalence and determinants of exercise performed in the overnight-fasted state among endurance athletes using an online survey and examined differences based on sex, competitive level, and habitual dietary pattern. The survey was completed by 1,950 endurance athletes (51.0% female, mean age 40.9 ± 11.1 years). The use of fasted training was reported by 62.9% of athletes, with significant effects of sex (p < .001, Cramer’s V [φc] = 0.18, 90% CI [0.14, 0.22]), competitive level (p < .001, φc = 0.09, 90% CI [0.5, 0.13]), and habitual dietary pattern noted (p < .001, φc = 0.26, 90% CI [0.22, 0.29]). Males, nonprofessional athletes, and athletes following a low-carbohydrate, high-fat diet were most likely to perform fasted training. The most common reasons for doing so were related to utilizing fat as a fuel source (42.9%), gut comfort (35.5%), and time constraints/convenience (31.4%), whereas the most common reasons athletes avoided fasted training were that it does not help their training (47.0%), performance was worse during fasted training (34.7%), or greater hunger (34.6%). Overall, some athletes perform fasted training because they think it helps their training, whereas others avoid it because they think it is detrimental to their training goals, highlighting a need for future research. These findings offer insights into the beliefs and practices related to fasted-state endurance training.
Collapse
|