1
|
Maitre A, Mateos-Hernandez L, Kratou M, Egri N, Maye J, Juan M, Hodžić A, Obregón D, Abuin-Denis L, Piloto-Sardinas E, Fogaça AC, Cabezas-Cruz A. Effects of Live and Peptide-Based Antimicrobiota Vaccines on Ixodes ricinus Fitness, Microbiota, and Acquisition of Tick-Borne Pathogens. Pathogens 2025; 14:206. [PMID: 40137691 PMCID: PMC11945021 DOI: 10.3390/pathogens14030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
This study explored the effects of antimicrobiota vaccines on the acquisition of Borrelia and Rickettsia, and on the microbiota composition of Ixodes ricinus ticks. Using a murine model, we investigated the immunological responses to live Staphylococcus epidermidis and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either Borrelia afzelii or Rickettsia helvetica, and subsequently infested with pathogen-free I. ricinus nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live S. epidermidis and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against S. epidermidis. The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on Borrelia acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. Staphylococcus-based vaccines altered the microbiota composition but had no effect on B. afzelii infection, and yielded inconclusive results for R. helvetica. In contrast, previous studies suggest that E. coli-based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.
Collapse
Affiliation(s)
- Apolline Maitre
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), INRAE, 20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250 Corte, France
| | - Lourdes Mateos-Hernandez
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia;
| | - Natalia Egri
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France;
| | - Manel Juan
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1H 2W1, Canada;
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Elianne Piloto-Sardinas
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| |
Collapse
|
2
|
Yessinou RE, Koumassou A, Galadima HB, Nanoukon-Ahigan H, Farougou S, Pfeffer M. Tick Diversity and Distribution of Pathogen in Ticks Collected from Wild Animals and Vegetation in Africa. Pathogens 2025; 14:116. [PMID: 40005493 PMCID: PMC11858156 DOI: 10.3390/pathogens14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Ticks are important vectors of a wide range of pathogens with significant medical and veterinary importance. Different tick species occupy different habitats with an overall widespread geographical distribution. In addition to their role as reservoirs or vectors, ticks are involved in maintaining pathogens in the environment and among wild and domestic animals. In this study, tick species infesting wild animals, as well as collected from the environment and their pathogens reported in 17 countries in Africa between 2003 and 2023, were collected according to the PRISMA guidelines. Data on ticks resulted in a total of 40 different tick species from 35 different wild animal species. Among the ticks, 34 infectious agents were noted including parasitic (Babesia, Theileria, Hepatozoon, Eimeria), bacterial (Anaplasma, Bartonella, Borrelia, Candidatus Midichloria mitochondrii, Candidatus Allocryptoplasma spp., Coxiella, Ehrlichia, Francisella, and Rickettsia), and a surprisingly high diversity of viral pathogens (Bunyamwera virus, Crimean-Congo Haemorhagic Fever virus, Ndumu virus, Semliki Forest virus, Thogoto virus, West Nile virus). These results highlight the public health and veterinary importance of the information on tick-borne infections. This knowledge is essential to strive to implement programs for sustainable control of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Roland Eric Yessinou
- Communicable Diseases Research Unit, Department of Production and Animal Health, University of Abomey-Calavi, P.O. Box 01, Cotonou 2009, Benin; (A.K.); (H.N.-A.); (S.F.)
| | - Aldric Koumassou
- Communicable Diseases Research Unit, Department of Production and Animal Health, University of Abomey-Calavi, P.O. Box 01, Cotonou 2009, Benin; (A.K.); (H.N.-A.); (S.F.)
| | - Haruna Baba Galadima
- Department of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Nigeria;
| | - Hospice Nanoukon-Ahigan
- Communicable Diseases Research Unit, Department of Production and Animal Health, University of Abomey-Calavi, P.O. Box 01, Cotonou 2009, Benin; (A.K.); (H.N.-A.); (S.F.)
| | - Souaïbou Farougou
- Communicable Diseases Research Unit, Department of Production and Animal Health, University of Abomey-Calavi, P.O. Box 01, Cotonou 2009, Benin; (A.K.); (H.N.-A.); (S.F.)
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany;
| |
Collapse
|
3
|
Banović P, Jakimovski D, Mijatović D, Bogdan I, Simin V, Grujić J, Vojvodić S, Vučković N, Lis K, Meletis E, Kostoulas P, Cvetkova Mladenovska M, Foucault-Simonin A, Moutailler S, Mateos-Hernández L, Cabezas-Cruz A. Genetic and Immunological Insights into Tick-Bite Hypersensitivity and Alpha-Gal Syndrome: A Case Study Approach. Int J Mol Sci 2025; 26:680. [PMID: 39859393 PMCID: PMC11765669 DOI: 10.3390/ijms26020680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Tick-bite hypersensitivity encompasses a range of clinical manifestations, from localized allergic reactions to systemic conditions like alpha-gal syndrome (AGS), an IgE-mediated allergy to galactose-α-1,3-galactose (α-Gal). This study investigated the clinical, molecular, immunological, and genetic features of two hypersensitivity cases. Two cases were analyzed: a 30-year-old woman with fixed drug reaction (FDR)-like hypersensitivity and a 10-year-old girl with AGS exhibiting borderline α-Gal-specific IgE. Diagnostic methods included allergen-specific IgE quantification, HLA genotyping, histopathological examination, and the molecular detection of tick-borne pathogens using microfluidic PCR. Case I demonstrated histopathological features of chronic lymphocytic inflammation and eosinophilic infiltrates, with HLA-B13 and DRB113 alleles indicating genetic susceptibility to hypersensitivity, while histological findings suggested a localized FDR-like reaction. Case II exhibited borderline α-Gal-specific IgE, resolving completely with a mammalian-free diet. The presence of HLA-DRB101 and DQB1*05 in the second patient indicated a genetic predisposition to AGS and other atopic conditions. No infectious etiology was identified in either case. These findings emphasize the heterogeneity of tick-related hypersensitivity and the importance of HLA genotypes in susceptibility. Comprehensive molecular, immunological, and genetic profiling offers valuable insights into the mechanisms of hypersensitivity, supporting personalized approaches for the diagnosis and management of tick-induced allergic conditions.
Collapse
Affiliation(s)
- Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia; (D.M.); (I.B.); (V.S.); (J.G.)
| | - Dejan Jakimovski
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
- University Clinic for Infectious Diseases and Febrile Conditions, 1000 Skopje, North Macedonia
- Clinical medicine Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia
| | - Dragana Mijatović
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia; (D.M.); (I.B.); (V.S.); (J.G.)
- Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Bogdan
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia; (D.M.); (I.B.); (V.S.); (J.G.)
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Verica Simin
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia; (D.M.); (I.B.); (V.S.); (J.G.)
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Jasmina Grujić
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia; (D.M.); (I.B.); (V.S.); (J.G.)
- Department of Transfusiology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
- Blood Transfusion Institute of Vojvodina, 21000 Novi Sad, Serbia
| | - Svetlana Vojvodić
- Department of Transfusiology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
- Blood Transfusion Institute of Vojvodina, 21000 Novi Sad, Serbia
| | - Nada Vučković
- Pathology and Histology Centre, Clinical Centre of Vojvodina, Novi Sad, Department of Pathology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland;
| | - Eleftherios Meletis
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
- Epidemiology and Biostatistics Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia
| | - Polychronis Kostoulas
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
- Epidemiology and Biostatistics Research Task Force, Balkan Association for Vector-Borne Diseases, 21000 Novi Sad, Serbia
| | - Marija Cvetkova Mladenovska
- Orthopedic Surgery, Anesthesiology and Intensive Care and Emergency Center, University Clinic for Traumatology, 1000 Skopje, North Macedonia;
| | - Angélique Foucault-Simonin
- Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, l’Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, Ecole Nationale Vétérinaire d’Alfort, UMR Biologie Moléculaire et Immunologie Parasitaires, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.F.-S.); (S.M.); (L.M.-H.)
| | - Sara Moutailler
- Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, l’Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, Ecole Nationale Vétérinaire d’Alfort, UMR Biologie Moléculaire et Immunologie Parasitaires, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.F.-S.); (S.M.); (L.M.-H.)
| | - Lourdes Mateos-Hernández
- Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, l’Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, Ecole Nationale Vétérinaire d’Alfort, UMR Biologie Moléculaire et Immunologie Parasitaires, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.F.-S.); (S.M.); (L.M.-H.)
| | - Alejandro Cabezas-Cruz
- Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, l’Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, Ecole Nationale Vétérinaire d’Alfort, UMR Biologie Moléculaire et Immunologie Parasitaires, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.F.-S.); (S.M.); (L.M.-H.)
| |
Collapse
|
4
|
Jouglin M, Bonsergent C, de la Cotte N, Mège M, Bizon C, Couroucé A, Lallemand ÉA, Leblond A, Lemonnier LC, Leroux A, Marano I, Muzard A, Quéré É, Toussaint M, Agoulon A, Malandrin L. Equine piroplasmosis in different geographical areas in France: Prevalence heterogeneity of asymptomatic carriers and low genetic diversity of Theileria equi and Babesia caballi. Ticks Tick Borne Dis 2025; 16:102434. [PMID: 39754868 DOI: 10.1016/j.ttbdis.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Equine piroplasmosis is a worldwide tick-borne disease caused by the parasites Theileria equi sensu lato and Babesia caballi, with significant economic and sanitary consequences. These two parasites are genetically variable, with a potential impact on diagnostic accuracy. Our study aimed to evaluate the frequency of asymptomatic carriers of these parasites in France and describe the circulating genotypes. We developed a species-specific nested PCR protocol targeting the 18S small sub-unit (SSU) rRNA gene and used it on blood samples collected from 566 asymptomatic horses across four National Veterinary Schools. The carrier frequency varied from 18.7 % around Paris (central-north) to 56.1 % around Lyon (southeast), with an overall prevalence of 38.3 %. Theileria equi carriers were ten times more frequent (91.7 %; 209/228 isolates) compared to B. caballi carriers (8.3 %; 19/228 isolates). Notably, T. equi carrier frequency was significantly lower in the northern region (Ile de France) compared to the southeastern regions. A positive relationship was observed between the frequencies of asymptomatic carriers and the frequency of previous acute piroplasmosis reported from the owner across all four geographic areas. Neither horse gender nor age showed a significant effect on the frequency of asymptomatic carriers. In some areas, a substantial proportion of horses (22.2 % to 37.5 %) carried T. equi before the age of three years, indicating high infection pressure. Genotyping of 201 T. equi isolates revealed a predominance of genotype E (98 %) and few isolates belonging to genotype A (2 %). Notably, two of the four T. equi genotype A isolates were detected in horses originating from Spain. All 19 B. caballi isolates belonged to the genotype A. The discussion section explores the link between these results, the tick distribution and abundance, and the frequency of detection of T. equi and B. caballi in febrile cases attributed to piroplasmosis.
Collapse
Affiliation(s)
| | | | | | | | - Céline Bizon
- ONIRIS CISCO, University Veterinary Teaching Hospital, Nantes, , France
| | - Anne Couroucé
- ONIRIS CISCO, University Veterinary Teaching Hospital, Nantes, , France
| | - Élodie-Anne Lallemand
- INTHERES, Université de Toulouse, INRAE, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | | | - Aurélia Leroux
- ONIRIS CISCO, University Veterinary Teaching Hospital, Nantes, , France
| | - Ilaria Marano
- École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Alexandre Muzard
- INRAE, Oniris, BIOEPAR, 44300 Nantes, France; ONIRIS CISCO, University Veterinary Teaching Hospital, Nantes, , France
| | - Émilie Quéré
- École Nationale Vétérinaire d'Alfort, CHUV-Équidés, Maisons-Alfort, France
| | | | | | | |
Collapse
|
5
|
Elsawy BSM, Abdel-Ghany HSM, Alzan HF, Abdel-Shafy S, Shahein YE. Molecular screening of piroplasms and Anaplasmataceae agents in Hyalomma dromedarii ticks from camels over different seasons in Egypt. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:849-868. [PMID: 39320534 PMCID: PMC11534840 DOI: 10.1007/s10493-024-00957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Piroplasmosis, a disease of domestic and wild animals, is caused by tick-borne protozoa of the genera Babesia and Theileria, while anaplasmosis is caused by tick-borne bacteria of genera Anaplasma. Hyalomma dromedarii is the most dominant tick species infesting camels in Egypt and act as a vector of piroplasms, Anaplasma, Rickettsia and Ehrlichia spp. The available information concerning the detection of these pathogens in H. dromedarii infesting camels is limited. The present study aimed to evaluate the status of these pathogens in H. dromedarii ticks over four seasons of a year, in addition to investigate the infections of piroplasms and Anaplasmataceae besides their genetic diversity starting from June 2021 till April 2022. A total of 275 semi-engorged females of H. dromedarii were collected from different slaughtered camels, Toukh city slaughterhouse then investigated by Polymerase Chain Reaction (PCR) to detect piroplasms (Babesia spp., Theileria spp.) and Anaplasmataceae DNA targeting 18 S rRNA and 16 S rRNA genes, respectively followed by sequencing and phylogenetic analyses. Overall, piroplasms were detected in 38 ticks (13.8%), Babesia spp. was detected in 35 ticks (12.7%), while Theileria spp. was detected in one tick (0.4%). Anaplasmataceae was detected in 57 ticks (20.7%). Mixed infections of piroplasms and Anaplasmataceae were detected in 13 ticks (5%). Single infection either with piroplasms or Anaplasmataceae was detected in 25 (9%) and 44 (16%) ticks, respectively. The highest monthly rate of piroplasms was in April (spring) and Anaplasmataceae was in July (summer). Sequence analysis revealed that Babesia bigemina, Wolbachia spp. and Anaplasma marginale are the most dominant species in the examined tick samples. To the best of our knowledge, this study confirms the presence of B. bigemina, Wolbachia spp. and A. marginale in H. dromedarii in Egypt by sequencing.
Collapse
Affiliation(s)
- Bassma S M Elsawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Hoda S M Abdel-Ghany
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Heba F Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, 12622, Dokki, Egypt.
| |
Collapse
|
6
|
Bertin A, Bonnet T, Lambert M, Ludemann E, Corbière F, Boucraut C, Lucas MN, Trumel C. What is your diagnosis: Acute hemolysis in a Limousin bull. Vet Clin Pathol 2024. [PMID: 39443292 DOI: 10.1111/vcp.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Affiliation(s)
| | | | | | | | - Fabien Corbière
- ENVT, Toulouse, France
- INRAE, ENVT, UMR 1225 IHAP, Toulouse, France
| | | | | | - Catherine Trumel
- ENVT, Toulouse, France
- CREFRE, INSERM, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Maitre A, Mateos-Hernandez L, Azagi T, Foucault-Simonin A, Rakotobe S, Zając Z, Banović P, Porcelli S, Heckmann A, Galon C, Sprong H, Moutailler S, Cabezas-Cruz A, Fogaça AC. Rickettsia helvetica in C3H/HeN mice: A model for studying pathogen-host interactions. Heliyon 2024; 10:e37931. [PMID: 39323843 PMCID: PMC11422568 DOI: 10.1016/j.heliyon.2024.e37931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
An infection with the tick-borne Rickettsia helvetica has been associated with a broad spectrum of clinical manifestations in humans, but patients are only seldomly reported. Understanding its disease etiology necessitates well-stablished infection models, improving to recognize and diagnose patients with R. helvetica infection and facilitating the development of effective control strategies. In this study, we used C3H/HeN mice as a model to establish R. helvetica infection, achieving a high infection prevalence (89-100 %). While the liver and the spleen DNA consistently tested positive for infection in all challenged mice, additional infected organs included the kidneys, heart, and the lungs. Notably, a low prevalence of infection was observed in I. ricinus nymphs fed on R. helvetica-challenged mice. In addition, larvae were refractory to infection, suggesting that ticks exhibit low susceptibility to the pathogen. To the best of our knowledge, this is the first study of an animal model for R. helvetica infection. It serves as a valuable tool for advancing research on the interactions among the bacterium and its vertebrate host.
Collapse
Affiliation(s)
- Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Tal Azagi
- National Institute for Public Health and the Environment, Netherlands
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sabine Rakotobe
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080, Lublin, Poland
| | - Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Stefania Porcelli
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aurélie Heckmann
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clémence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Hein Sprong
- National Institute for Public Health and the Environment, Netherlands
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Andrea C Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Joly-Kukla C, Stachurski F, Duhayon M, Galon C, Moutailler S, Pollet T. Temporal dynamics of the Hyalomma marginatum-borne pathogens in southern France. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100213. [PMID: 39399650 PMCID: PMC11470478 DOI: 10.1016/j.crpvbd.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Spatio-temporal scales have a clear influence on microbial community distribution and diversity and should thus be applied to study the dynamics of microorganisms. The invasive tick species Hyalomma marginatum has recently become established in southern France. It may carry pathogens of medical and veterinary interest including the Crimean-Congo haemorrhagic fever virus, Rickettsia aeschlimannii, Theileria equi and Anaplasma phagocytophilum. Pathogenic communities of H. marginatum have been identified and their spatial distribution characterized, but their temporal dynamics remain unknown. Hyalomma marginatum ticks were collected from hosts at monthly intervals from February to September 2022 in a site in southern France to study their presence and temporal dynamics. Of the 281 ticks analysed, we detected pathogens including R. aeschlimannii, Anaplasma spp. and T. equi with infection rates reaching 47.0%, 4.6% and 11.0%, respectively. A total of 14.6% of ticks were infected with at least Theileria or Anaplasma, with monthly fluctuations ranging from 2.9% to 28.6%. Strong temporal patterns were observed for each pathogen detected, particularly for R. aeschlimannii, whose infection rates increased dramatically at the beginning of summer, correlated with monthly mean temperatures at the site. Based on these results, we hypothesise that R. aeschlimannii may be a secondary symbiont of H. marginatum and could be involved in the stress response to temperature increase and mediate thermal tolerance of H. marginatum. Analysis of monthly and seasonal fluctuations in pathogens transmitted by H. marginatum led us to conclude that the risk of infection is low but persists throughout the period of H. marginatum activity, with a notable increase in summer.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Frédéric Stachurski
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Maxime Duhayon
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Thomas Pollet
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
9
|
Banović P, Jakimovski D, Bogdan I, Simin V, Mijatović D, Bosilkovski M, Mateska S, Díaz-Sánchez AA, Foucault-Simonin A, Zając Z, Kulisz J, Moutailler S, Cabezas-Cruz A. Tick-borne diseases at the crossroads of the Middle East and central Europe. Infect Dis Now 2024; 54:104959. [PMID: 39079570 DOI: 10.1016/j.idnow.2024.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES The Balkan Peninsula, acting as a crossroad between central Europe and the Middle East, presents diverse ecosystems supporting various tick species capable of transmitting TBDs. This study focuses on Serbia and North Macedonia, both endemic for TBDs, aiming to investigate human-biting ticks' prevalence, TBD prevalence, and major TBPs in blood samples. PATIENTS AND METHODS This prospective observational study was conducted in 2022 at two medical centers, involving 45 patients from Novi Sad, Serbia, and 17 patients from Skopje, North Macedonia. All participants had either a tick still attached or had had one removed within the preceding 48 h. The study consisted in clinical evaluations of patients and testing of patient samples and ticks for tick-borne pathogens using a High-Throughput pathogen detection system based on microfluidic real-time PCR. In addition, the study assessed the genetic diversity of the identified pathogens. RESULTS Ixodes ricinus was the most prevalent tick species, with varying infestation rates across various body parts. Tick species and feeding times differed between Novi Sad and Skopje. TBPs were prevalent, with Rickettsia spp. dominant in Skopje and a mix including Rickettsia aeschlimannii, Rickettsia monacensis, Anaplasma phagocytophilum, and Borrelia afzelii in Novi Sad. Subclinical bacteremia occurred in 8.06% of cases, mostly involving Anaplasma spp. Clinical manifestations, primarily local hypersensitivity reactions, were observed in six patients. Phylogenetic analysis confirmed R. aeschlimannii and R. monacensis identity, highlighting genetic differences in gltA gene sequences. CONCLUSIONS This study sheds light on the prevalence and diversity of TBPs in tick-infested individuals from Serbia and North Macedonia, contributing valuable insights into the epidemiology of TBDs in the Balkan region.
Collapse
Affiliation(s)
- Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia; Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia; Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Dejan Jakimovski
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; University Clinic for Infectious Diseases and Febrile Conditions, 1000 Skopje, North Macedonia; Clinical medicine Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Ivana Bogdan
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia; Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Verica Simin
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia; Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Mijatović
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia; Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Mile Bosilkovski
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; University Clinic for Infectious Diseases and Febrile Conditions, 1000 Skopje, North Macedonia
| | - Sofija Mateska
- University Clinic for Infectious Diseases and Febrile Conditions, 1000 Skopje, North Macedonia; Clinical medicine Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Adrian A Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Angelique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Jaonna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France.
| |
Collapse
|
10
|
Joly-Kukla C, Bernard C, Bru D, Galon C, Giupponi C, Huber K, Jourdan-Pineau H, Malandrin L, Rakotoarivony I, Riggi C, Vial L, Moutailler S, Pollet T. Spatial patterns of Hyalomma marginatum-borne pathogens in the Occitanie region (France), a focus on the intriguing dynamics of Rickettsia aeschlimannii. Microbiol Spectr 2024; 12:e0125624. [PMID: 39012114 DOI: 10.1128/spectrum.01256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Hyalomma marginatum is an invasive tick species recently established in mainland southern France. This tick is known to host a diverse range of human and animal pathogens. While information about the dynamics of these pathogens is crucial to assess disease risk and develop effective monitoring strategies, few data on the spatial dynamics of these pathogens are currently available. We collected ticks in 27 sites in the Occitanie region to characterize spatial patterns of H. marginatum-borne pathogens. Several pathogens have been detected: Theileria equi (9.2%), Theileria orientalis (0.2%), Anaplasma phagocytophilum (1.6%), Anaplasma marginale (0.8%), and Rickettsia aeschlimannii (87.3%). Interestingly, we found a spatial clustered distribution for the pathogen R. aeschlimannii between two geographically isolated areas with infection rates and bacterial loads significantly lower in Hérault/Gard departments (infection rate 78.6% in average) compared to Aude/Pyrénées-Orientales departments (infection rate 92.3% in average). At a smaller scale, R. aeschlimannii infection rates varied from one site to another, ranging from 29% to 100%. Overall, such high infection rates (87.3% on average) and the effective maternal transmission of R. aeschlimannii might suggest a role as a tick symbiont in H. marginatum. Further studies are thus needed to understand both the status and the role of R. aeschlimannii in H. marginatum ticks.IMPORTANCETicks are obligatory hematophagous arthropods that transmit pathogens of medical and veterinary importance. Pathogen infections cause serious health issues in humans and considerable economic loss in domestic animals. Information about the presence of pathogens in ticks and their dynamics is crucial to assess disease risk for public and animal health. Analyzing tick-borne pathogens in ticks collected in 27 sites in the Occitanie region, our results highlight clear spatial patterns in the Hyalomma marginatum-borne pathogen distribution and strengthen the postulate that it is essential to develop effective monitoring strategies and consider the spatial scale to better characterize the circulation of tick-borne pathogens.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Célia Bernard
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
- French Establishment for Fighting Zoonoses (ELIZ), Malzéville, France
| | - David Bru
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Carla Giupponi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hélène Jourdan-Pineau
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | | | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Camille Riggi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laurence Vial
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Thomas Pollet
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
11
|
Koutantou M, Drancourt M, Angelakis E. Prevalence of Lyme Disease and Relapsing Fever Borrelia spp. in Vectors, Animals, and Humans within a One Health Approach in Mediterranean Countries. Pathogens 2024; 13:512. [PMID: 38921809 PMCID: PMC11206712 DOI: 10.3390/pathogens13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Borrelia has been divided into Borreliella spp., which can cause Lyme Disease (LD), and Borrelia spp., which can cause Relapsing Fever (RF). The distribution of genus Borrelia has broadened due to factors such as climate change, alterations in land use, and enhanced human and animal mobility. Consequently, there is an increasing necessity for a One Health strategy to identify the key components in the Borrelia transmission cycle by monitoring the human-animal-environment interactions. The aim of this study is to summarize all accessible data to increase our understanding and provide a comprehensive overview of Borrelia distribution in the Mediterranean region. Databases including PubMed, Google Scholar, and Google were searched to determine the presence of Borreliella and Borrelia spp. in vectors, animals, and humans in countries around the Mediterranean Sea. A total of 3026 were identified and screened and after exclusion of papers that did not fulfill the including criteria, 429 were used. After examination of the available literature, it was revealed that various species associated with LD and RF are prevalent in vectors, animals, and humans in Mediterranean countries and should be monitored in order to effectively manage and prevent potential infections.
Collapse
Affiliation(s)
- Myrto Koutantou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
12
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Mongruel ACB, das Neves LF, Lee DAB, Machado RZ, André MR. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024; 12:962. [PMID: 38792791 PMCID: PMC11124045 DOI: 10.3390/microorganisms12050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian β-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA;
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| |
Collapse
|
13
|
Habib J, Zenner L, Garel M, Mercier A, Poirel MT, Itty C, Appolinaire J, Amblard T, Benedetti P, Sanchis F, Benabed S, Abi Rizk G, Gibert P, Bourgoin G. Prevalence of tick-borne pathogens in ticks collected from the wild mountain ungulates mouflon and chamois in 4 regions of France. Parasite 2024; 31:21. [PMID: 38602373 PMCID: PMC11008225 DOI: 10.1051/parasite/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.
Collapse
Affiliation(s)
- Jad Habib
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Mathieu Garel
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Antoine Mercier
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Christian Itty
- Office Français de la Biodiversité, Service Appui aux Acteurs et Mobilisation des Territoires, Direction Régionale Occitanie 7 rue du Four, Fagairolles 34610 Castanet-le-Haut France
| | - Joël Appolinaire
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Thibaut Amblard
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Pierre Benedetti
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Frédéric Sanchis
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Philippe Gibert
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
14
|
Piloto‐Sardiñas E, Abuin‐Denis L, Maitre A, Foucault‐Simonin A, Corona‐González B, Díaz‐Corona C, Roblejo‐Arias L, Mateos‐Hernández L, Marrero‐Perera R, Obregon D, Svobodová K, Wu‐Chuang A, Cabezas‐Cruz A. Dynamic nesting of Anaplasma marginale in the microbial communities of Rhipicephalus microplus. Ecol Evol 2024; 14:e11228. [PMID: 38571811 PMCID: PMC10985379 DOI: 10.1002/ece3.11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.
Collapse
Affiliation(s)
- Elianne Piloto‐Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lianet Abuin‐Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- Animal Biotechnology DepartmentCenter for Genetic Engineering and BiotechnologyHavanaCuba
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET‐LRDE)CorteFrance
- EA 7310, Laboratoire de Virologie, Université de CorseCorteFrance
| | - Angélique Foucault‐Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Belkis Corona‐González
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Cristian Díaz‐Corona
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lisset Roblejo‐Arias
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lourdes Mateos‐Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Roxana Marrero‐Perera
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Dasiel Obregon
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Karolína Svobodová
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Alejandra Wu‐Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Alejandro Cabezas‐Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
15
|
Díaz-Corona C, Roblejo-Arias L, Piloto-Sardiñas E, Díaz-Sánchez AA, Foucault-Simonin A, Galon C, Wu-Chuang A, Mateos-Hernández L, Zając Z, Kulisz J, Wozniak A, Castro-Montes de Oca MK, Lobo-Rivero E, Obregón D, Moutailler S, Corona-González B, Cabezas-Cruz A. Microfluidic PCR and network analysis reveals complex tick-borne pathogen interactions in the tropics. Parasit Vectors 2024; 17:5. [PMID: 38178247 PMCID: PMC10765916 DOI: 10.1186/s13071-023-06098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.
Collapse
Affiliation(s)
- Cristian Díaz-Corona
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lisset Roblejo-Arias
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adrian A Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Angélique Foucault-Simonin
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Clemence Galon
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - María Karla Castro-Montes de Oca
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Evelyn Lobo-Rivero
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
16
|
Moutailler S, Galon C. Real-Time Microfluidic PCRs: A High-Throughput Method to Detect 48 or 96 Tick-borne Pathogens in 48 or 96 Samples. Methods Mol Biol 2024; 2742:1-17. [PMID: 38165611 DOI: 10.1007/978-1-0716-3561-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Tick-borne pathogens (TBPs) are often detected through classical molecular tools (PCR, nested PCR, real-time PCR), but these are limited in terms of the number of targeted pathogens due to the volume of DNA available for analysis. To solve this problem, in 2014 we developed a new high-throughput method based on real-time microfluidic PCRs that can detect 48 or 96 pathogens in 48 or 96 samples in a single run, such as ten species from the Borrelia burgdorferi sensu lato group. We then used this technique for large-scale epidemiological studies of TBPs in tick and animal samples on an international scale through numerous collaborative projects.
Collapse
Affiliation(s)
- Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France.
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
17
|
Majid A, Almutairi MM, Alouffi A, Tanaka T, Yen TY, Tsai KH, Ali A. First report of spotted fever group Rickettsia aeschlimannii in Hyalomma turanicum, Haemaphysalis bispinosa, and Haemaphysalis montgomeryi infesting domestic animals: updates on the epidemiology of tick-borne Rickettsia aeschlimannii. Front Microbiol 2023; 14:1283814. [PMID: 38163073 PMCID: PMC10756324 DOI: 10.3389/fmicb.2023.1283814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Tick-borne Rickettsia spp. have long been known as causative agents for zoonotic diseases. We have previously characterized Rickettsia spp. in different ticks infesting a broad range of hosts in Pakistan; however, knowledge regarding Rickettsia aeschlimannii in Haemaphysalis and Hyalomma ticks is missing. This study aimed to obtain a better understanding about R. aeschlimannii in Pakistan and update the knowledge about its worldwide epidemiology. Among 369 examined domestic animals, 247 (66%) were infested by 872 ticks. Collected ticks were morphologically delineated into three genera, namely, Rhipicephalus, Hyalomma, and Haemaphysalis. Adult females were the most prevalent (number ₌ 376, 43.1%), followed by nymphs (303, 34.74%) and males (193, 22.13%). Overall, genomic DNA samples of 223 tick were isolated and screened for Rickettsia spp. by the amplification of rickettsial gltA, ompA, and ompB partial genes using conventional PCR. Rickettsial DNA was detected in 8 of 223 (3.58%) ticks including nymphs (5 of 122, 4.0%) and adult females (3 of 86, 3.48%). The rickettsial gltA, ompA, and ompB sequences were detected in Hyalomma turanicum (2 nymphs and 1 adult female), Haemaphysalis bispinosa (1 nymph and 1 adult female), and Haemaphysalis montgomeryi (2 nymphs and 1 adult female). These rickettsial sequences showed 99.71-100% identity with R. aeschlimannii and phylogenetically clustered with the same species. None of the tested Rhipicephalus microplus, Hyalomma isaaci, Hyalomma scupense, Rhipicephalus turanicus, Hyalomma anatolicum, Rhipicephalus haemaphysaloides, Rhipicephalus sanguineus, Haemaphysalis cornupunctata, and Haemaphysalis sulcata ticks were found positive for rickettsial DNA. Comprehensive surveillance studies should be adopted to update the knowledge regarding tick-borne zoonotic Rickettsia species, evaluate their risks to humans and livestock, and investigate the unexamined cases of illness after tick bite among livestock holders in the country.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tsai-Ying Yen
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
18
|
Piloto-Sardiñas E, Foucault-Simonin A, Wu-Chuang A, Mateos-Hernández L, Marrero-Perera R, Abuin-Denis L, Roblejo-Arias L, Díaz-Corona C, Zając Z, Kulisz J, Woźniak A, Moutailler S, Corona-González B, Cabezas-Cruz A. Dynamics of Infections in Cattle and Rhipicephalus microplus: A Preliminary Study. Pathogens 2023; 12:998. [PMID: 37623958 PMCID: PMC10458817 DOI: 10.3390/pathogens12080998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Tick-borne pathogens (TBPs) pose a significant threat to livestock, including bovine species. This study aimed to investigate TBPs in cattle and ticks across four sampling points, utilizing real-time microfluidic PCR. The results revealed that Rhipicephalus microplus ticks were found infesting all animals. Among the detected TBPs in cattle, Anaplasma marginale was the most frequently identified, often as a single infection, although mixed infections involving Rickettsia felis, uncharacterized Rickettsia sp., and Anaplasma sp. were also observed. In ticks, A. marginale was predominant, along with R. felis, Rickettsia sp., and Ehrlichia sp. It is noteworthy that although A. marginale consistently infected all cattle during various sampling times, this pathogen was not detected in all ticks. This suggests a complex dynamic of pathogen acquisition by ticks. A phylogenetic analysis focused on the identification of Anaplasma species using amplified 16S rDNA gene fragments revealed the presence of A. marginale and Anaplasma platys strains in bovines. These findings underscore the presence of multiple TBPs in both cattle and ticks, with A. marginale being the most prevalent. Understanding the dynamics and phylogenetics of TBPs is crucial for developing effective control strategies to mitigate tick-borne diseases in livestock.
Collapse
Affiliation(s)
- Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Roxana Marrero-Perera
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Lisset Roblejo-Arias
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Cristian Díaz-Corona
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (Z.Z.); (J.K.); (A.W.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba; (R.M.-P.); (L.R.-A.); (C.D.-C.)
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94700, France; (E.P.-S.); (A.F.-S.); (A.W.-C.); (L.M.-H.); (L.A.-D.)
| |
Collapse
|
19
|
Defaye B, Moutailler S, Vollot B, Galon C, Gonzalez G, Moraes RA, Leoncini AS, Rataud A, Le Guillou G, Pasqualini V, Quilichini Y. Detection of Pathogens and Ticks on Sedentary and Migratory Birds in Two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023; 11:microorganisms11040869. [PMID: 37110292 PMCID: PMC10141976 DOI: 10.3390/microorganisms11040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Birds are one of the most species-diverse vertebrate groups and are susceptible to numerous hematophagous ectoparasites. Migratory birds likely contribute to the circulation of these ectoparasites and their associated pathogens. One of the many migration paths crosses the Mediterranean islands including Corsica and its wetlands, which are migration stopovers. In our study, we collected blood samples and hematophagous ectoparasites in migratory and sedentary bird populations in two coastal lagoons: Biguglia and Gradugine. A total of 1377 birds were captured from which 762 blood samples, 37 louse flies, and 44 ticks were collected. All the louse flies were identified as Ornithomya biloba and all the ticks were from the Ixodes genus: Ixodes sp. (8.5%), I. accuminatus/ventalloi (2.9%), I. arboricola/lividus (14.3%), I. frontalis (5.7%) and I. ricinus (68.6%). Five pathogens were detected: Anaplasma phagocytophilum, Erhlichia chaffeensis, and Rickettsia helvetica in ticks, and Trypanosoma sp. in louse flies. Ehrlichia chaffeensis and the West Nile virus were both detected in bird blood samples in Corsica. This is the first report of these tick, louse fly and pathogen species isolated on the bird population in Corsica. Our finding highlights the importance of bird populations in the presence of arthropod-borne pathogens in Corsican wetlands.
Collapse
|
20
|
Bonnet SI, Bertagnoli S, Falchi A, Figoni J, Fite J, Hoch T, Quillery E, Moutailler S, Raffetin A, René-Martellet M, Vourc’h G, Vial L. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens 2023; 12:pathogens12040513. [PMID: 37111399 PMCID: PMC10146795 DOI: 10.3390/pathogens12040513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Current and likely future changes in the geographic distribution of ticks belonging to the genus Hyalomma are of concern, as these ticks are believed to be vectors of many pathogens responsible for human and animal diseases. However, we have observed that for many pathogens there are no vector competence experiments, and that the level of evidence provided by the scientific literature is often not sufficient to validate the transmission of a specific pathogen by a specific Hyalomma species. We therefore carried out a bibliographical study to collate the validation evidence for the transmission of parasitic, viral, or bacterial pathogens by Hyalomma spp. ticks. Our results show that there are very few validated cases of pathogen transmission by Hyalomma tick species.
Collapse
|
21
|
Banović P, Piloto-Sardiñas E, Mijatović D, Foucault-Simonin A, Simin V, Bogdan I, Obregón D, Mateos-Hernández L, Moutailler S, Cabezas-Cruz A. Differential detection of tick-borne pathogens in human platelets and whole blood using microfluidic PCR. Acta Trop 2023; 238:106756. [PMID: 36435213 DOI: 10.1016/j.actatropica.2022.106756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
The tick-borne pathogens (TBPs) with adhesive phenotype can use platelets for dissemination and colonization of distant tissues and organs, and it has been shown that they can be found concentrated in the platelet fraction of blood. This study shows the differential presence of TBPs in samples of human platelet fraction (n = 68), whole blood samples (n = 68) and ticks collected (n = 76) from the same individuals, using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. Tick species infesting humans were identified as Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis punctata. Eight patients developed local skin lesions at the site of the tick bite including non-specific lesions, itching sensation at the lesion site, and eschar. Most common TBPs detected in platelet fraction were Borrelia spielmanii and Rickettsia sp., followed by Borrelia afzelii and Anaplasma phagocytophilum. Multiple infections with three TBPs were detected in platelet fraction. In whole blood, most common TBPs detected were Anaplasma spp. and A. phagocytophilum, followed by Rickettsia spp. and B. afzelii. In ticks, the most common TBP detected was Rickettsia spp., followed by Borrelia spp. and Anaplasma spp. Overall, nine different pathogens with variable prevalence were identified using species-specific primers, and the most common was Rickettsia helvetica. In three patients, there were no coincidences between the TBPs detected in whole blood and tick samples. Only in one patient was detected A. phagocytophilum in both, whole blood and tick samples. These results suggest the unequal detection of TBPs in whole blood, platelet fraction and ticks collected, from the same individual. The results justify the use of both whole blood and platelet fraction for molecular diagnosis of TBPs in patients.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia; Department of Microbiology With Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia.
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Ivana Bogdan
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Dasiel Obregón
- School of Environmental Science, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| |
Collapse
|
22
|
Emerging tick-borne spotted fever group rickettsioses in the Balkans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105400. [PMID: 36586459 DOI: 10.1016/j.meegid.2022.105400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The impact of tick-borne pathogens (TBPs) on human health has increased in the last decades, since the incidence of emerging and re-emerging infectious and zoonotic tick-borne diseases has increased worldwide. Tick-borne rickettsiae of the Spotted Fever group (SFGR) are considered as emerging pathogens that can infect humans and cause a variety of non-specific clinical symptoms. Here, we report nine cases of atypical tick-borne diseases (9/460; 1.95%) that occurred over a period of four months (from 15 April 2021 to 16 August 2021) in Serbia, from which five cases were classified as confirmed SFGR infection, two cases as probable SFGR infection and two cases as suspected SFGR infection. Within cases of confirmed SFGR infection, R. helvetica was detected as the causative agent in two cases. The most common clinical finding was non-expanding persistent circular redness, followed by eschar and enlargement of regional lymph nodes, and pain at lesion site. Rickettsia outer membrane protein B (ompB) and citrate synthase (gltA) gene fragments were amplified from clinical samples and ticks attached to patients and IgG reacting with Rickettsia conorii antigen were detected in sera samples of patients, which are highly suggestive of exposure to SFGR. Surveillance and monitoring of rickettsial diseases in Serbia should continue and extended to new areas due to the increasing trend of clinical infections caused by SFGR in the country.
Collapse
|
23
|
Defaye B, Moutailler S, Grech‐Angelini S, Galon C, Ferrandi S, Pasqualini V, Quilichini Y. Detecting zoonotic and non-zoonotic pathogens in livestock and their ticks in Corsican wetlands. Vet Med Sci 2022; 8:2662-2677. [PMID: 36207820 PMCID: PMC9677362 DOI: 10.1002/vms3.956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Corsica is a large French island in the Mediterranean Sea with high human and animal migration rates, especially near wetlands where these migrations are particularly frequent. Among the livestock populations, cattle and sheep are widely present all across the entire Mediterranean region. Trade can be responsible for the circulation of numerous pathogens and their vectors, thereby representing a health and economic threat for the livestock industry. OBJECTIVES The objective of our study was to investigate the presence of pathogens in cattle and sheep farms in the wetlands of Corsica using a high-throughput screening technique. METHODS In our study, blood samples and ticks were collected from cattle and sheep in 20 municipalities near Corsican wetlands to screen for the presence of various types of pathogens. The samples were processed using a high-throughput screening technique based on real-time microfluidic PCR: 45 pathogens were screened in 47 samples simultaneously. RESULTS A total of 372 cattle and 74 sheep were sampled, and 444 ticks were collected from cattle. Out of the eight tick species detected, the main one was Rhipicephalus bursa (38.7% of the ticks collected). From cattle blood samples, one species and two genera were found: Anaplasma marginale, Trypanosoma sp. and Babesia sp. in respectively 61.5%, 58.3% and 12.2% of the cattle blood samples. From sheep blood samples, 74.3% were positive for Anaplasma sp, 2.7% for Anaplasma ovis and 1.4% for Anaplasma capra. This is the first report of A. ovis DNA in blood samples from sheep in Corsica. Out of 444 the tick samples, 114 were positive: 77.2% for Rickettsia aeschlimannii, 20.2% for Rickettsia sp., 3.5% for Babesia sp. and 1.8% for Anaplasma sp. Among them, 2.7% were co-infected with R. aeschlimannii and Babesia sp. CONCLUSIONS Our results confirm the extent of possible circulation of different pathogens near Corsican wetlands, not only in ticks collected from livestock but also directly in cattle and sheep, with two (Trypanosoma sp. and Babesia sp.) being detected for the first time in cattle, one for the first time in sheep (A. ovis) and one for the first time in Corsica (A. capra).
Collapse
Affiliation(s)
- Baptiste Defaye
- UMR CNRS SPE 6134 – Université de Corse Pascal PaoliCorteFrance
| | - Sara Moutailler
- ANSESINRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | | | - Clémence Galon
- ANSESINRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | | | | | - Yann Quilichini
- UMR CNRS SPE 6134 – Université de Corse Pascal PaoliCorteFrance
| |
Collapse
|
24
|
Distribution of Tick-Borne Pathogens in Domestic Animals and Their Ticks in the Countries of the Mediterranean Basin between 2000 and 2021: A Systematic Review. Microorganisms 2022; 10:microorganisms10061236. [PMID: 35744755 PMCID: PMC9228937 DOI: 10.3390/microorganisms10061236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne pathogens (TBPs) include a wide range of bacteria, parasites and viruses that cause a large spectrum of animal, human and zoonotic tick-borne diseases (TBDs). The object of this review was to establish an inventory and an analysis of TBPs found in domestic animals in the countries of the Mediterranean Basin. This geographic area occupies a central position between several continents and is an area of movement for animals, humans and pathogens of interest and their vectors, which is important in terms of animal and human health. In this systematic review, we included a total of 271 publications produced between 2000–2021 concerning TBPs in domestic animals. Among this literature, we found a total of 90 pathogen species (known as TBPs) reported in the 20 countries of the area; these were detected in tick species from domestic animals and were also directly detected in domestic animals. In all, 31 tick species were recorded and 12 domestic animal species, the latter comprising nine livestock and three pet species. More than 50% of the publications were from Western Europe. Island data were extracted and assessed, as islands of the Mediterranean Basin were represented in 16% of the publications and 77.8% of the TBPs reported. Our results show the importance of islands in the monitoring of TBPs, despite the low percentage of publications.
Collapse
|
25
|
Jouglin M, Rispe C, Grech-Angelini S, Gallois M, Malandrin L. Anaplasma capra in sheep and goats on Corsica Island, France: A European lineage within A. capra clade II? Ticks Tick Borne Dis 2022; 13:101934. [DOI: 10.1016/j.ttbdis.2022.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
|
26
|
Bord S, Dernat S, Ouillon L, René-Martellet M, Vourc'h G, Lesens O, Forestier C, Lebert I. Tick ecology and Lyme borreliosis prevention: A regional survey of pharmacists’ knowledge in Auvergne-Rhône-Alpes, France. Ticks Tick Borne Dis 2022; 13:101932. [DOI: 10.1016/j.ttbdis.2022.101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
27
|
Cicculli V, Maitre A, Ayhan N, Mondoloni S, Paoli JC, Vial L, de Lamballerie XN, Charrel R, Falchi A. Lack of Evidence for Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Animals, Corsica, France. Emerg Infect Dis 2022; 28:1035-1038. [PMID: 35447051 PMCID: PMC9045455 DOI: 10.3201/eid2805.211996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Corsica, France, 9.1% of livestock serum samples collected during 2014–2016 were found to have antibodies against Crimean–Congo hemorrhagic fever virus (CCHFV), an emerging tickborne zoonotic disease. We tested 8,051 ticks for CCHFV RNA and Nairovirus RNA. The results indicate that Corsica is not a hotspot for CCHFV.
Collapse
|
28
|
Karshima SN, Ahmed MI, Kogi CA, Iliya PS. Anaplasma phagocytophilum infection rates in questing and host-attached ticks: a global systematic review and meta-analysis. Acta Trop 2022; 228:106299. [PMID: 34998998 DOI: 10.1016/j.actatropica.2021.106299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Anaplasma phagocytophilum causes a multi-organ non-specific febrile illness referred to as human granulocytic anaplasmosis. The epidemiologic risk of the pathogen is underestimated despite human encroachment into the natural habitats of ticks. In this study, we performed a systematic review and meta-analysis to determine the global infection rates and distribution of A. phagocytophilum in tick vectors. We pooled data using the random-effects model, assessed individual study quality using the Joanna Briggs Institute critical appraisal instrument for prevalence studies and determined heterogeneity and across study bias using Cochran's Q-test and Egger's regression test respectively. A total of 126 studies from 33 countries across 4 continents reported A. phagocytophilum estimated infection rate of 4.76% (9453/174,967; 95% CI: 3.96, 5.71). Estimated IRs across sub-groups varied significantly (p <0.05) with a range of 1.95 (95% CI: 0.63, 5.86) to 7.15% (95% CI: 5.31, 9.56). Country-based IRs ranged between 0.42 (95% CI: 0.22, 0.80) in Belgium and 37.54% (95% CI: 0.72, 98.03) in Norway. The highest number of studies on A. phagocytophilum were in Europe (82/126) by continent and the USA (33/126) by country. The risk of transmitting this pathogens from ticks to animals and humans exist and therefore, we recommend the use of chemical and biological control measures as well as repellents and protective clothing by occupationally exposed individuals to curtail further transmission of the pathogen to humans and animals.
Collapse
|
29
|
Banović P, Díaz-Sánchez AA, Simin V, Foucault-Simonin A, Galon C, Wu-Chuang A, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A "One Health" Approach Study in Serbia, 2020. Front Microbiol 2022; 12:797399. [PMID: 35154030 PMCID: PMC8825779 DOI: 10.3389/fmicb.2021.797399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023] Open
Abstract
Ticks carry numerous pathogens that, if transmitted, can cause disease in susceptible humans and animals. The present study describes our approach on how to investigate clinical presentations following tick bites in humans. To this aim, the occurrence of major tick-borne pathogens (TBPs) in human blood samples (n = 85) and the ticks collected (n = 93) from the same individuals were tested using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. A field study based on One Health tenets was further designed to identify components of a potential chain of infection resulting in Rickettsia felis infection in one of the patients. Ticks species infesting humans were identified as Ixodes ricinus, Rhipicephalus sanguineus sensu lato (s.l.), Dermacentor reticulatus, and Haemaphysalis punctata. Five patients developed local skin lesions at the site of the tick bite including erythema migrans, local non-specific reactions, and cutaneous hypersensitivity reaction. Although Borrelia burgdorferi s.l., Babesia microti, Anaplasma phagocytophilum, and Candidatus Cryptoplasma sp. DNAs were detected in tick samples, different Rickettsia species were the most common TBPs identified in the ticks. The presence of TBPs such as Rickettsia helvetica, Rickettsia monacensis, Borrelia lusitaniae, Borrelia burgdorferi, Borrelia afzelii, A. phagocytophilum, and B. microti in ticks was further confirmed by DNA sequencing. Two of the patients with local skin lesions had IgG reactive against spotted fever group rickettsiae, while IgM specific to B. afzelii, Borrelia garinii, and Borrelia spielmanii were detected in the patient with erythema migrans. Although R. felis infection was detected in one human blood sample, none of the components of the potential chain of infection considered in this study tested positive to this pathogen either using direct pathogen detection in domestic dogs or xenodiagnosis in ticks collected from domestic cats. The combination of high-throughput screening of TBPs and One Health approaches might help characterize chains of infection leading to human infection by TBPs, as well as prevalence of emerging rickettsial pathogens in the Balkan region.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia.,Department of Microbiology With Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
30
|
Jia W, Chen S, Chi S, He Y, Ren L, Wang X. Recent Progress on Tick-Borne Animal Diseases of Veterinary and Public Health Significance in China. Viruses 2022; 14:v14020355. [PMID: 35215952 PMCID: PMC8875255 DOI: 10.3390/v14020355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Ticks and tick-borne diseases pose a growing threat to human and animal health, which has brought great losses to livestock production. With the continuous expansion of human activities and the development of natural resources, there are more and more opportunities for humans to contract ticks and tick-borne pathogens. Therefore, research on ticks and tick-borne diseases is of great significance. This paper reviews recent progress on tick-borne bacterial diseases, viral diseases, and parasitic diseases in China, which provides a theoretical foundation for the research of tick-borne diseases.
Collapse
Affiliation(s)
- Weijuan Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
| | - Shanshan Chi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Yunjiang He
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| |
Collapse
|
31
|
Rocafort-Ferrer G, Leblond A, Joulié A, René-Martellet M, Sandoz A, Poux V, Pradier S, Barry S, Vial L, Legrand L. Molecular assessment of Theileria equi and Babesia caballi prevalence in horses and ticks on horses in southeastern France. Parasitol Res 2022; 121:999-1008. [PMID: 35128585 PMCID: PMC8858311 DOI: 10.1007/s00436-022-07441-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Equine piroplasmosis (EP) is a tick-borne disease caused by Babesia caballi and Theileria equi that is potentially emerging in non-endemic countries. We conducted a descriptive study to investigate EP prevalence and spatial distribution in an endemic region: the Camargue and the Plain of La Crau in France. In spring 2015 and 2016, we carried out sampling at stables (total n = 46) with a history of horses presenting chronic fever or weight loss. Overall, we collected blood from 632 horses, which were also inspected for ticks; these horses had been housed in the target stables for at least 1 year. We obtained 585 ticks from these horses and described land use around the stables. Real-time PCR was employed to assess T. equi and B. caballi prevalence in the horses and in the ticks found on the horses. For the horses, T. equi and B. caballi prevalence was 68.6% and 6.3%, respectively. For the ticks found on the horses, prevalence was 28.8% for T. equi and 0.85% for B. caballi. The most common tick species were, in order of frequency, Rhipicephalus bursa, R. sanguineus sl., Hyalomma marginatum, Haemaphysalis punctata, and Dermacentor sp. Horses bearing Rhipicephalus ticks occurred in wetter zones, closer to agricultural areas, permanent crops, and ditches, as well as in drier zones, in the more northern countryside. Compared to horses bearing R. bursa, horses bearing R. sanguineus sl. more frequently occurred near the Rhone River. Prevalence of T. equi in the ticks was as follows: Hyalomma marginatum (43%), Dermacentor sp. (40%), R. bursa (33%), R. sanguineus sl. (19%), and Haemaphysalis punctata (17%). In contrast, B. caballi only occurred in Dermacentor sp. (20%) and R. bursa (1%).
Collapse
Affiliation(s)
- Gloria Rocafort-Ferrer
- Equine Department, Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 69280, Marcy l'Etoile, France.
- La Clinique du Cheval, Centre Hospitalier Vétérinaire Équin, 3910 Route de Launac, 31330, Grenade, France.
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 69280, Marcy l'Etoile, France
| | - Aurélien Joulié
- École Nationale Vétérinaire de Toulouse - Université de Toulouse, 31300, Toulouse, France
| | - Magalie René-Martellet
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 69280, Marcy l'Etoile, France
| | - Alain Sandoz
- Laboratoire Chimie de L'Environnement, CNRS, UMR 7376, Aix Marseille Université, 13003, Marseille, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 63122, Saint-Genès-Champanelle, France
| | | | - Séverine Barry
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, 63122, Saint-Genès-Champanelle, France
| | - Laurence Vial
- BIOS Department, CIRAD-INRAE Joint Research Unit ASTRE (Animals, Health, Territories, Risks, and Ecosystems), Campus International de Baillarguet, 34398Cedex 5, Montpellier, France
| | - Loïc Legrand
- LABÉO Frank Duncombe, 14280, Saint-Contest, France
- UNICAEN, BIOTARGEN, Normandie University, 14000, Caen, France
- UNICAEN ImpedanCEL, Normandie University, 14280, Saint-Contest, France
| |
Collapse
|
32
|
Jakab Á, Kahlig P, Kuenzli E, Neumayr A. Tick borne relapsing fever - a systematic review and analysis of the literature. PLoS Negl Trop Dis 2022; 16:e0010212. [PMID: 35171908 PMCID: PMC8887751 DOI: 10.1371/journal.pntd.0010212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Tick borne relapsing fever (TBRF) is a zoonosis caused by various Borrelia species transmitted to humans by both soft-bodied and (more recently recognized) hard-bodied ticks. In recent years, molecular diagnostic techniques have allowed to extend our knowledge on the global epidemiological picture of this neglected disease. Nevertheless, due to the patchy occurrence of the disease and the lack of large clinical studies, the knowledge on several clinical aspects of the disease remains limited. In order to shed light on some of these aspects, we have systematically reviewed the literature on TBRF and summarized the existing data on epidemiology and clinical aspects of the disease. Publications were identified by using a predefined search strategy on electronic databases and a subsequent review of the reference lists of the obtained publications. All publications reporting patients with a confirmed diagnosis of TBRF published in English, French, Italian, German, and Hungarian were included. Maps showing the epidemiogeographic mosaic of the different TBRF Borrelia species were compiled and data on clinical aspects of TBRF were analysed. The epidemiogeographic mosaic of TBRF is complex and still continues to evolve. Ticks harbouring TBRF Borrelia have been reported worldwide, with the exception of Antarctica and Australia. Although only molecular diagnostic methods allow for species identification, microscopy remains the diagnostic gold standard in most clinical settings. The most suggestive symptom in TBRF is the eponymous relapsing fever (present in 100% of the cases). Thrombocytopenia is the most suggestive laboratory finding in TBRF. Neurological complications are frequent in TBRF. Treatment is with beta-lactams, tetracyclines or macrolids. The risk of Jarisch-Herxheimer reaction (JHR) appears to be lower in TBRF (19.3%) compared to louse-borne relapsing fever (LBRF) (55.8%). The overall case fatality rate of TBRF (6.5%) and LBRF (4-10.2%) appears to not differ. Unlike LBRF, where perinatal fatalities are primarily attributable to abortion, TBRF-related perinatal fatalities appear to primarily affect newborns.
Collapse
Affiliation(s)
- Ákos Jakab
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Kahlig
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Esther Kuenzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andreas Neumayr
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| |
Collapse
|
33
|
Cicculli V, Ayhan N, Luciani L, Pezzi L, Maitre A, Decarreaux D, de Lamballerie X, Paoli JC, Vial L, Charrel R, Falchi A. Molecular detection of parapoxvirus in Ixodidae ticks collected from cattle in Corsica, France. Vet Med Sci 2022; 8:907-916. [PMID: 35092189 PMCID: PMC8959304 DOI: 10.1002/vms3.700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Several viruses belonging to the family Poxviridae can cause infections in humans and animals. In Corsica, livestock farming (sheep, goats, pigs, and cattle) is mainly mixed, leading to important interactions between livestock, wildlife, and human populations. This could facilitate the circulation of zoonotic diseases, and makes Corsica a good example for studies of tick-borne diseases. OBJECTIVES To gain understanding on the circulation of poxviruses in Corsica, we investigated their presence in tick species collected from cattle, sheep, horses, and wild boar, and characterized them through molecular techniques. METHODS Ticks were tested using specific primers targeting conserved regions of sequences corresponding to two genera: parapoxvirus and orthopoxvirus. RESULTS A total of 3555 ticks were collected from 1549 different animals (687 cattle, 538 horses, 106 sheep, and 218 wild boars). They were tested for the presence of parapoxvirus DNA on one hand and orthopoxvirus DNA on the other hand using Pangeneric real-time TaqMan assays. Orthopoxvirus DNA was detected in none of the 3555 ticks. Parapoxvirus DNA was detected in 6.6% (36/544) of ticks collected from 23 cows from 20 farms. The remaining 3011 ticks collected from horses, wild boars, and sheep were negative. The infection rate in cow ticks was 8.0% (12/148) in 2018 and 6.0% (24/396) in 2019 (p = 0.57). Parapoxvirus DNA was detected in 8.5% (5/59) of Hyalomma scupense pools, 8.2% (15/183) of Hyalomma marginatum pools, and 6.7% (16/240) of Rhipicephalus bursa pools (p = 0.73). We successfully amplified and sequenced 19.4% (7/36) of the positive samples which all corresponded to pseudocowpox virus. CONCLUSIONS Obviously, further studies are needed to investigate the zoonotic potential of pseudocowpox virus and its importance for animals and public health.
Collapse
Affiliation(s)
- Vincent Cicculli
- Laboratoire de Virologie, Université de Corse-Inserm, Corte, France.,Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Nazli Ayhan
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Léa Luciani
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Laura Pezzi
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Apolline Maitre
- Laboratoire de Virologie, Université de Corse-Inserm, Corte, France
| | | | - Xavier de Lamballerie
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Jean-Christophe Paoli
- UR045 Laboratoire de Recherches sur le Développement de l'Élevage, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Corte, France
| | - Laurence Vial
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, Montpellier, France
| | - Remi Charrel
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | | |
Collapse
|
34
|
The basis of molecular diagnostics for piroplasmids: Do the sequences lie? Ticks Tick Borne Dis 2022; 13:101907. [DOI: 10.1016/j.ttbdis.2022.101907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
|
35
|
Risso A, Campos G, Garcia H, Zerpa H. Insights into equine piroplasmosis in Venezuelan sport horses: Molecular diagnosis, clinical, and cardiovascular findings. Vet Parasitol Reg Stud Reports 2022; 27:100666. [PMID: 35012720 DOI: 10.1016/j.vprsr.2021.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Equine piroplasmosis (EP) is a tick-borne infectious disease highly prevalent in tropical and subtropical regions, such as Venezuela. EP affects wild and domestic equids leading to several clinical presentations, from asymptomatic to severely affected animals. In this study, thirty-three (33) sport horses under regular training activities and from endemic regions of north-central Venezuela were submitted to an observational survey, case-control, to describe the presence of clinical signs and natural EP infections. A conventional PCR assay targeting the SSU rRNA gene revealed EP etiologic agents in 13 out of 33 sampled horses (~ 39.4% infections). Nine (9) of these EP-positive samples were confirmed as infected with Babesia caballi (6/9 = 66.7%) or Theileria equi (3/9 = 33.3%) by DNA sequencing and BLASTN analyses. A phylogeny of SSU rRNA gene sequences revealed that these new B. caballi and T. equi sequences clustered within the worldwide distributed phylogenetic genotype A, respectively. No acute EP cases were observed in this study; however, six (6) PCR-positive animals displayed mild clinical signs compatible with EP, including a mild leukocytosis (P < 0.05). The heart rate variability frequency domain analysis in four (4) of these EP-positive infected animals revealed a significant (P < 0.05) higher low-frequency/high-frequency ratio suggesting a sympathovagal imbalance in these chronically infected animals. Other clinical and cardiovascular parameters were similar between the different groups. Sport horses are routinely submitted to intense training programs and sport-related activities that could lead to loss of the host-parasite equilibrium that characterizes enzootic regions, increasing the likelihood of infection reactivation and the risk of transmission. Heart rate variability analysis contributes to evaluate the sympathovagal balance and detecting homeostasis disturbances in sport horses. Molecular diagnostic tests for EP based on the detection of parasite DNA in equine blood samples should be included in the health programs of sport horses in endemic areas.
Collapse
Affiliation(s)
- Arnaldo Risso
- Department of Biomedical Sciences, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Aragua, Venezuela; Department of Veterinary Pathology, Faculty of Veterinary Sciences, Romulo Gallegos University, Zaraza, Guarico, Venezuela
| | - Gerardo Campos
- Department of Medicine and Surgery, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Aragua, Venezuela
| | - Herakles Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Aragua, Venezuela
| | - Héctor Zerpa
- Anatomy, Physiology, and Pharmacology Department, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies.
| |
Collapse
|
36
|
Molecular Detection of Zoonotic and Non-Zoonotic Pathogens from Wild Boars and Their Ticks in the Corsican Wetlands. Pathogens 2021; 10:pathogens10121643. [PMID: 34959598 PMCID: PMC8707423 DOI: 10.3390/pathogens10121643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Corsica is the main French island in the Mediterranean Sea and has high levels of human and animal population movement. Among the local animal species, the wild boar is highly prevalent in the Corsican landscape and in the island’s traditions. Wild boars are the most commonly hunted animals on this island, and can be responsible for the transmission and circulation of pathogens and their vectors. In this study, wild boar samples and ticks were collected in 17 municipalities near wetlands on the Corsican coast. A total of 158 hunted wild boars were sampled (523 samples). Of these samples, 113 were ticks: 96.4% were Dermacentor marginatus, and the remainder were Hyalomma marginatum, Hyalomma scupense and Rhipicephalus sanguineus s.l. Of the wild boar samples, only three blood samples were found to be positive for Babesia spp. Of the tick samples, 90 were found to be positive for tick-borne pathogens (rickettsial species). These results confirm the importance of the wild boar as a host for ticks carrying diseases such as rickettsiosis near wetlands and recreational sites. Our findings also show that the wild boar is a potential carrier of babesiosis in Corsica, a pathogen detected for the first time in wild boars on the island.
Collapse
|
37
|
Nadal C, Bonnet SI, Marsot M. Eco-epidemiology of equine piroplasmosis and its associated tick vectors in Europe: A systematic literature review and a meta-analysis of prevalence. Transbound Emerg Dis 2021; 69:2474-2498. [PMID: 34333863 DOI: 10.1111/tbed.14261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/04/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022]
Abstract
When studying a vector-borne disease, an eco-epidemiological approach is vital for a comprehensive understanding of how the pathogen circulates amongst populations. Equine piroplasmosis (EP), a tick-borne disease caused by the protozoans Babesia caballi and Theileria equi, is endemic in the Mediterranean basin of Europe and causes both animal health and economic issues for the equine sector. With no vaccine available, defining the episystem of the disease can help to identify which components of the host-pathogen-vector-environment system to target to improve preventive measures. In this systematic literature review, we collected relevant data on the eco-epidemiology of EP in Europe. The 62 studies remaining after the selection procedure explored potential vectors, indicators of parasite circulation and putative risk factors of EP. Eight hard tick species were identified as potential vectors of one or both piroplasm species. Meta-analyses were then conducted on prevalence and seroprevalence data in equids in European countries, demonstrating an estimated seroprevalence of 30% and 8% and prevalence of 25% and 2% for T. equi and B. caballi, respectively. Finally, herd management practices and environmental risk factors analysed in studies showed no real consensus between studies, but revealed a general trend highlighting age and exposure to ticks as risk factors, and vaccination as a protective factor. Through this study, we point out that only a few studies have focused on disease management practices and even fewer have studied the effect of environmental parameters on equid infections. Further investigation in these areas is required to better characterize the eco-epidemiology of EP and risk factors associated with this disease.
Collapse
Affiliation(s)
- Clémence Nadal
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France.,ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Sarah I Bonnet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Maud Marsot
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France
| |
Collapse
|
38
|
Alafaci A, Crépin A, Beaubert S, Berjeaud JM, Delafont V, Verdon J. Exploring the Individual Bacterial Microbiota of Questing Ixodes ricinus Nymphs. Microorganisms 2021; 9:microorganisms9071526. [PMID: 34361961 PMCID: PMC8303981 DOI: 10.3390/microorganisms9071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Ixodes ricinus is the most common hard tick species in Europe and an important vector of pathogens of human and animal health concerns. The rise of high-throughput sequencing has facilitated the identification of many tick-borne pathogens and, more globally, of various microbiota members depending on the scale of concern. In this study, we aimed to assess the bacterial diversity of individual I. ricinus questing nymphs collected in France using high-throughput 16S gene metabarcoding. From 180 dragging-collected nymphs, we identified more than 700 bacterial genera, of which about 20 are abundantly represented (>1% of total reads). Together with 136 other genera assigned, they constitute a core internal microbiota in this study. We also identified 20 individuals carrying Borreliella. The most abundant species is B. afzelii, known to be one of the bacteria responsible for Lyme disease in Europe. Co-detection of up to four Borreliella genospecies within the same individual has also been retrieved. The detection and co-detection rate of Borreliella in I. ricinus nymphs is high and raises the question of interactions between these bacteria and the communities constituting the internal microbiota.
Collapse
|
39
|
Grech-Angelini S, Lancelot R, Ferraris O, Peyrefitte CN, Vachiery N, Pédarrieu A, Peyraud A, Rodrigues V, Bastron D, Libeau G, Fernandez B, Holzmuller P, Servan de Almeida R, Michaud V, Tordo N, Comtet L, Métras R, Casabianca F, Vial L. Crimean-Congo Hemorrhagic Fever Virus Antibodies among Livestock on Corsica, France, 2014-2016. Emerg Infect Dis 2021; 26:1041-1044. [PMID: 32310061 DOI: 10.3201/10.3201/eid2605.191465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We conducted a serologic survey for Crimean-Congo hemorrhagic fever virus antibodies in livestock (cattle, sheep, and goats; N = 3,890) on Corsica (island of France) during 2014-2016. Overall, 9.1% of animals were seropositive, suggesting this virus circulates on Corsica. However, virus identification is needed to confirm these results.
Collapse
|
40
|
Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front Vet Sci 2021; 8:655715. [PMID: 33981744 PMCID: PMC8109271 DOI: 10.3389/fvets.2021.655715] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.
Collapse
Affiliation(s)
- Sophia Körner
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| | - Gustavo R. Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
41
|
Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future? Microorganisms 2021; 9:microorganisms9030649. [PMID: 33801015 PMCID: PMC8003855 DOI: 10.3390/microorganisms9030649] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne virus (arbovirus), mainly transmitted by ticks, belonging to the genus Orthonairovirus (family Nairoviridae, order Bunyavirales). CCHFV causes a potentially severe, or even fatal, human disease, and it is widely distributed in Africa, Asia, eastern Europe and, more recently, in South-western Europe. Until a few years ago, no cases of Crimean-Congo hemorrhagic fever (CCHF) had been reported in western Europe, with the exception of several travel-associated cases. In 2010, the CCHFV was reported for the first time in South-western Europe when viral RNA was obtained from Hyalomma lusitanicum ticks collected from deer in Cáceres (Spain). Migratory birds from Africa harboring CCHFV-infected ticks and flying to Spain appear to have contributed to the establishment of the virus (genotype III, Africa-3) in this country. In addition, the recent findings in a patient and in ticks from deer and wild boar of viral sequences similar to those from eastern Europe (genotype V, Europe-1), raise the possibility of the introduction of CCHFV into Spain through the animal trade, although the arrival by bird routes cannot be ruled out (Africa-4 has been also recently detected). The seropositive rates of animals detected in regions of South-western Spain suggest an established cycle of tick-host-tick in certain areas, and the segment reassortment detected in the sequenced virus from one patient evidences a high ability to adaptation of the virus. Different ixodid tick genera can be vectors and reservoirs of the virus, although Hyalomma spp. are particularly relevant for its maintenance. This tick genus is common in Mediterranean region but it is currently spreading to new areas, partly due to the climate change and movement of livestock or wild animals. Although to a lesser extent, travels with our pets (and their ticks) may be also a factor to be considered. As a consequence, the virus is expanding from the Balkan region to Central Europe and, more recently, to Western Europe where different genotypes are circulating. Thus, seven human cases confirmed by molecular methods have been reported in Spain from 2016 to August 2020, three of them with a fatal outcome. A One Health approach is essential for the surveillance of fauna and vector populations to assess the risk for humans and animals. We discuss the risk of CCHFV causing epidemic outbreaks in Western Europe.
Collapse
|
42
|
High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021; 10:pathogens10030362. [PMID: 33803682 PMCID: PMC8002991 DOI: 10.3390/pathogens10030362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Ixodid ticks are hematophagous arthropods considered to be prominent ectoparasite vectors that have a negative impact on cattle, either through direct injury or via the transmission of several pathogens. In this study, we investigated the molecular infection rates of numerous tick-borne pathogens in ticks sampled on cattle from the Kabylia region, northeastern Algeria, using a high-throughput microfluidic real-time PCR system. A total of 235 ticks belonging to seven species of the genera Rhipicephalus, Hyalomma, and Ixodes were sampled on cattle and then screened for the presence of 36 different species of bacteria and protozoans. The most prevalent tick-borne microorganisms were Rickettsia spp. at 79.1%, followed by Francisella-like endosymbionts (62.9%), Theileria spp. (17.8%), Anaplasma spp. (14.4%), Bartonella spp. (6.8%), Borrelia spp. (6.8%), and Babesia spp. (2.5%). Among the 80.4% of ticks bearing microorganisms, 20%, 36.6%, 21.7%, and 2.1% were positive for one, two, three, and four different microorganisms, respectively. Rickettsia aeschlimannii was detected in Hyalomma marginatum, Hyalomma detritum, and Rhipicephalus bursa ticks. Rickettsia massiliae was found in Rhipicephalus sanguineus, and Rickettsiamonacensis and Rickettsia helvetica were detected in Ixodesricinus. Anaplasma marginale was found in all identified tick genera, but Anaplasma centrale was detected exclusively in Rhipicephalus spp. ticks. The DNA of Borrelia spp. and Bartonella spp. was identified in several tick species. Theileria orientalis was found in R. bursa, R. sanguineus, H. detritum, H. marginatum, and I. ricinus and Babesia bigemina was found in Rhipicephalus annulatus and R. sanguineus. Our study highlights the importance of tick-borne pathogens in cattle in Algeria.
Collapse
|
43
|
Reynard O, Ritter M, Martin B, Volchkov V. [Crimean-Congo hemorrhagic fever, a future health problem in France?]. Med Sci (Paris) 2021; 37:135-140. [PMID: 33591256 DOI: 10.1051/medsci/2020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is the etiological agent of a severe hemorrhagic fever affecting Africa, Asia and southern Europe. Climate changes of recent decades have recently led to a rise in the distribution of this virus. Still few scientific data are available on the biology of its vector, the tick, or its own biology, but the proven presence of human infections observed in Spain and animals with positive serology in Corsica should focus our attention on this pathogen. This review takes stock of the epidemiologic evolution of CCHF in Europe, notably in France.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Maureen Ritter
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Baptiste Martin
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Viktor Volchkov
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| |
Collapse
|
44
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
45
|
Ecotyping of Anaplasma phagocytophilum from Wild Ungulates and Ticks Shows Circulation of Zoonotic Strains in Northeastern Italy. Animals (Basel) 2021; 11:ani11020310. [PMID: 33530571 PMCID: PMC7911980 DOI: 10.3390/ani11020310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tick-borne infectious diseases represent a rising threat both for human and animal health, since they are emerging worldwide. Among the bacterial infections, Anaplasma phagocytophilum has been largely neglected in Europe. Despite its diffusion in ticks and animals, the ecoepidemiology of its genetic variants is not well understood. The latest studies identify four ecotypes of Anaplasma phagocytophilum in Europe, and only ecotype I has shown zoonotic potential. The aim of the present study was to investigate the genetic variants of Anaplasma phagocytophilum in wild ungulates, the leading reservoir species, and in feeding ticks, the main vector of infection. The analyzed samples were collected in northeastern Italy, the same area where the first Italian human cases of anaplasmosis in the country were reported. Using biomolecular tools and phylogenetic analysis, ecotypes I and II were detected in both ticks (Ixodes ricinus species) and wild ungulates. Specifically, ecotype II was mainly detected in roe deer and related ticks; and ecotype I, the potentially zoonotic variant, was detected in Ixodes ricinus ticks and also in roe deer, red deer, chamois, mouflon, and wild boar. These findings reveal not only the wide diffusion of Anaplasma phagocytophilum, but also the presence of zoonotic variants. Abstract Anaplasma phagocytophilum (A. phagocytophilum) is a tick-borne pathogen causing disease in both humans and animals. Human granulocytic anaplasmosis (HGA) is an emerging disease, but despite the remarkable prevalence in European ticks and wild animals, human infection appears underdiagnosed. Several genetic variants are circulating in Europe, including the zoonotic ecotype I. This study investigated A. phagocytophilum occurrence in wild ungulates and their ectoparasites in an area where HGA has been reported. Blood samples from wild ungulates and ectoparasites were screened by biomolecular methods targeting the mps2 gene. The groEL gene was amplified and sequenced to perform genetic characterization and phylogenetic analysis. A total of 188 blood samples were collected from different wild ungulates species showing an overall prevalence of 63.8% (88.7% in wild ruminants and 3.6% in wild boars). The prevalence of A. phagocytophilum DNA in ticks (manly Ixodes ricinus), and keds collected from wild ruminants was high, reflecting the high infection rates obtained in their hosts. Among ticks collected from wild boars (Hyalomma marginatum and Dermacentor marginatus) no DNA was detected. Phylogenetic analysis demonstrated the presence of ecotype I and II. To date, this is the first Italian report of ecotype I in alpine chamois, mouflon, and wild boar species. These findings suggest their role in HGA epidemiology, and the high prevalence detected in this study highlights that this human tick-borne disease deserves further attention.
Collapse
|
46
|
Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021; 10:pathogens10020092. [PMID: 33498304 PMCID: PMC7909277 DOI: 10.3390/pathogens10020092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/03/2023] Open
Abstract
The causative agents of Babesiosis are intraerythrocytic protozoa of the genus Babesia. Babesia parasites are present around the world, affecting several mammals including humans, pets and livestock, hence its medical and veterinary relevance. Babesia spp. detection in its invertebrate host is a main point in understanding the biology of the parasite to acquire more knowledge on the host–Babesia–vector interactions, as increasing knowledge of the Babesia lifecycle and babesiosis epidemiology can help prevent babesiosis outbreaks in susceptible mammals. The aim of the present review is to highlight the newest findings in this field, based on a bibliographic compilation of research studies recently carried out for the detection of the main Babesia species found in tick vectors affecting mammalian hosts, including the different tick stages such as adult ticks, larvae, nymphs and eggs, as well as the detection method implemented: microscopic tools for parasite identification and molecular tools for parasite DNA detection by conventional PCR, nested-PCR, PCR-RFLP, PCR-RLB hybridization, real time-PCR, LAMP and RAP assays. Although molecular identification of Babesia parasites has been achieved in several tick species and tissue samples, it is still necessary to carry out transmission experiments through biological models to confirm the vectorial capacity of various tick species.
Collapse
|
47
|
Fuehrer HP, Alho AM, Kayikci FN, Shahi Barogh B, Rosa H, Tomás J, Rocha H, Harl J, Madeira de Carvalho L. Survey of Zoonotic and Non-zoonotic Vector-Borne Pathogens in Military Horses in Lisbon, Portugal. Front Vet Sci 2020; 7:591943. [PMID: 33195629 PMCID: PMC7593411 DOI: 10.3389/fvets.2020.591943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Vector-borne diseases of zoonotic and/or veterinary relevance have been increasingly reported in horses globally, although data regarding working and military horses is lacking. Portuguese military horses may constitute a risk group for these pathogens, as they frequently work outdoors in various regions of the country. This study included 101 apparently healthy horses belonging to the Portuguese National Republican Guard. Blood samples were analyzed to determine the presence and prevalence of piroplasms, Anaplasmataceae, Rickettsia spp., and filarioid helminths. Overall 32.7% of the horses gave positive results for Theileria equi. Two genotypes of T. equi were verified. No positive results were recorded for Anaplasma spp., Rickettsia spp., filarioid helminthes, and Babesia caballi. As equine piroplasmosis is a severe infectious tick-borne disease responsible for significant losses in equine production and with numerous impacts in the international movement of horses, adequate treatment, and preventive measures are needed to reduce exposure to vectors and future infections.
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Ana Margarida Alho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisbon, Lisbon, Portugal
| | - Feodora Natalie Kayikci
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Bita Shahi Barogh
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Hugo Rosa
- Guarda Nacional Republicana, Lisbon, Portugal
| | - José Tomás
- Guarda Nacional Republicana, Lisbon, Portugal
| | - Hugo Rocha
- Guarda Nacional Republicana, Lisbon, Portugal
| | - Josef Harl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Luís Madeira de Carvalho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisbon, Lisbon, Portugal
| |
Collapse
|
48
|
Ghafar A, Khan A, Cabezas-Cruz A, Gauci CG, Niaz S, Ayaz S, Mateos-Hernández L, Galon C, Nasreen N, Moutailler S, Gasser RB, Jabbar A. An Assessment of the Molecular Diversity of Ticks and Tick-Borne Microorganisms of Small Ruminants in Pakistan. Microorganisms 2020; 8:microorganisms8091428. [PMID: 32957540 PMCID: PMC7563897 DOI: 10.3390/microorganisms8091428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 01/02/2023] Open
Abstract
This study investigated ticks and tick-borne microorganisms of small ruminants from five districts of the Federally Administered Tribal Area (FATA) of Pakistan. Morphological (n = 104) and molecular (n = 54) characterization of the ticks revealed the presence of six ixodid ticks: Rhipicephalus (Rh.) haemaphysaloides, Rh. microplus, Rh. turanicus, Haemaphysalis (Hs.) punctata, Hs. sulcata and Hyalomma anatolicum. Phylogenetic analyses of nucleotide sequence data for two mitochondrial (16S and cytochrome c oxidase 1) and one nuclear (second internal transcribed spacer) DNA regions provided strong support for the grouping of the six tick species identified in this study. Microfluidic real-time PCR, employing multiple pre-validated nuclear and mitochondrial genetic markers, detected 11 potential pathogens and endosymbionts in 72.2% of the ticks (n = 54) tested. Rickettsia (R.) massiliae was the most common pathogen found (42.6% of ticks) followed by Theileria spp. (33.3%), Anaplasma (A.) ovis and R. slovaca (25.9% each). Anaplasma centrale, A. marginale, Ehrlichia spp., R. aeschlimannii, R. conorii and endosymbionts (Francisella- and Coxiella-like) were detected at much lower rates (1.9–22.2%) in ticks. Ticks from goats (83.9%) carried significantly higher microorganisms than those from sheep (56.5%). This study demonstrates that ticks of small ruminants from the FATA are carrying multiple microorganisms of veterinary and medical health significance and provides the basis for future investigations of ticks and tick-borne diseases of animals and humans in this and neighboring regions.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Adil Khan
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Charles G. Gauci
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Sadaf Niaz
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Sultan Ayaz
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Clemence Galon
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Nasreen Nasreen
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Sara Moutailler
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
- Correspondence:
| |
Collapse
|
49
|
Cicculli V, DeCarreaux D, Ayhan N, Casabianca F, de Lamballerie X, Charrel R, Falchi A. Molecular screening of Anaplasmataceae in ticks collected from cattle in Corsica, France. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:561-574. [PMID: 32728778 DOI: 10.1007/s10493-020-00527-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Bacteria belonging to the family Anaplasmataceae cause infections in humans and domestic animals. The consequences of infection can be significant economic losses for farmers. To better understand the epidemiology of tick-borne Anaplasmataceae in Corsica, we used molecular methods to detect and characterize Anaplasmataceae in ixodid ticks collected from cattle. Anaplasmataceae were detected by using a real-time polymerase chain reaction (PCR) targeting the 23S rRNA gene. Partial sequencing of rpoB and groEL allowed identifying species and conducting phylogenetic analyses. Infection rates were calculated using maximum likelihood estimation (MLE) with 95% confidence intervals (CIs). In total, 597 Rhipicephalus bursa, 216 Hyalomma marginatum, and seven Ixodes ricinus were collected from cattle during July-August 2017 and July-December 2018. Overall, Anaplasmataceae DNA was detected in 15 of 255 tick pools (MLE = 1.7%; 95% CI 0.9-2.7%). The molecular analysis revealed two species within the genus Anaplasma: A. marginale and A. phagocytophilum. We also detected bacteria within the genus Ehrlichia: we confirmed the detection of E. minasensis DNA in H. marginatum and R. bursa tick pools collected from cattle in Corsica and detected, for the first time to our knowledge, Candidatus E. urmitei in Corsican R. bursa ticks and a potential new species, Candidatus E. corsicanum. Further studies are needed to ascertain the pathogenesis and zoonotic potential of the strains and their importance for animals and public health.
Collapse
Affiliation(s)
- Vincent Cicculli
- Laboratoire de Virologie, EA7310, Université de Corse-Inserm, 20250, Corte, France
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13000, Marseille, France
| | - Dorine DeCarreaux
- Laboratoire de Virologie, EA7310, Université de Corse-Inserm, 20250, Corte, France
| | - Nazli Ayhan
- Laboratoire de Virologie, EA7310, Université de Corse-Inserm, 20250, Corte, France
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13000, Marseille, France
| | - François Casabianca
- UR045 Laboratoire de Recherches sur le Développement de l'Élevage, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Corte, France
| | - Xavier de Lamballerie
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13000, Marseille, France
| | - Remi Charrel
- Unité Des Virus Emergents (UVE: Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13000, Marseille, France
| | - Alessandra Falchi
- Laboratoire de Virologie, EA7310, Université de Corse-Inserm, 20250, Corte, France.
- Laboratoire de Virologie, EA7310 BIOSCOPE, Campus Grimaldi, Bat PPDB RDC, Université de Corse, 20250, Corte, France.
| |
Collapse
|
50
|
Grech-Angelini S, Lancelot R, Ferraris O, Peyrefitte CN, Vachiery N, Pédarrieu A, Peyraud A, Rodrigues V, Bastron D, Libeau G, Fernandez B, Holzmuller P, Servan de Almeida R, Michaud V, Tordo N, Comtet L, Métras R, Casabianca F, Vial L. Crimean-Congo Hemorrhagic Fever Virus Antibodies among Livestock on Corsica, France, 2014-2016. Emerg Infect Dis 2020; 26. [PMID: 32310061 PMCID: PMC7181912 DOI: 10.3201/eid2605.191465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We conducted a serologic survey for Crimean-Congo hemorrhagic fever virus antibodies in livestock (cattle, sheep, and goats; N = 3,890) on Corsica (island of France) during 2014-2016. Overall, 9.1% of animals were seropositive, suggesting this virus circulates on Corsica. However, virus identification is needed to confirm these results.
Collapse
|