1
|
Liu Y, Dong X, Sun L, Cui H, Kang J, Bu N, Zhang Y, Qi Z, Li Z, Zhang Z, Zhao L. Analysis of the Microbial Community Structure of Ixodes persulcatus at Each Developmental Stage. Animals (Basel) 2025; 15:830. [PMID: 40150359 PMCID: PMC11939619 DOI: 10.3390/ani15060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Ticks are the second most significant vector of pathogens worldwide. Ixodes persulcatus is one of the dominant tick species in Inner Mongolia that can carry and transmit various pathogenic microorganisms. However, only one specific pathogen has been detected in a particular developmental stage of I. persulcatus, moreover metagenomic analysis has been conducted only in the adult tick stage. In this study, we used I. persulcatus at different developmental stages (first-generation female adult ticks, eggs, larval ticks, engorged larval ticks, nymphal ticks, engorged nymphal ticks, and second-generation adult ticks) from Inner Mongolia as materials for nucleic acid extraction. Subsequently, we constructed Illumina PE250 and Illumina PE150 libraries and sequenced them on the Illumina NovaSeq 6000 platform. Finally, we used molecular biology software and sequence analysis platform to analyze microbial community structures. Illumina PE250 sequencing revealed that the seven developmental stages of I. persulcatus were annotated to 21 phyla, 43 classes, 104 orders, 188 families, 391 genera, and 556 species of bacteria. Among them, 4 phyla and 14 genera were present at all developmental stages, with Proteobacteria being the dominant phylum and Rickettsia spp. being the dominant genus. In addition, Rickettsia had the highest relative abundance in the seven developmental stages. All developmental stages were annotated to a certain abundance of Brucella spp. Illumina PE150 sequencing revealed that the three samples (X-I-YDCP: first-generation adult ticks; X-I-MIX: mixed samples of eggs, larval ticks, and nymphal ticks; X-I-EDCP: second-generation adult ticks) of I. persulcatus were annotated to six orders, 28 families, 72 genera, and 158 species of viruses, of which 46 genera and 80 species were found in all three sample species. To the best of our knowledge, this is the first study that comprehensively analyzed the microbial community composition of I. persulcatus at different developmental stages. Based on the study outcomes, certain abundance of Rickettsia japonica, bovine viral diarrhea virus, and African swine fever virus were annotated to I. persulcatus.
Collapse
Affiliation(s)
- Yonghong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010010, China
| | - Xiaonan Dong
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Lianyang Sun
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Hao Cui
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Jiamei Kang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Nan Bu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Yishuai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Zehao Qi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Zixuan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Zilong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.D.); (L.S.); (H.C.); (J.K.); (N.B.); (Y.Z.); (Z.Q.); (Z.L.); (Z.Z.)
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010010, China
| |
Collapse
|
2
|
Rasri N, Kornyanee C, Srisanga K, Nutho B, Chanarat S, Kuhaudomlarp S, Tinikul R, Pakotiprapha D. Biochemical characterization and inhibitor potential of African swine fever virus thymidine kinase. Int J Biol Macromol 2025; 293:139391. [PMID: 39743116 DOI: 10.1016/j.ijbiomac.2024.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
African Swine Fever (ASF) is a highly contagious disease affecting both domestic pigs and wild boars. In domestic pigs, ASF is a rapidly-progressing disease with a mortality rate reaching 100 %, causing tremendous economic loss in affected areas. ASFV is caused by African Swine Fever Virus (ASFV), which is a large, enveloped double-stranded DNA virus belonging to the Asfarviridae family. ASFV has a remarkably large genome size that encodes more than 150 open reading frames. Among the virally encoded enzymes, thymidine kinase (ASFV-TK) has been shown to be critical for the efficient replication and virulence of ASFV. Here, we report the bioinformatics analysis and biochemical characterization of ASFV-TK. Amino acid sequence analysis revealed that ASFV-TK can be classified as a type II thymidine kinase. Kinetics characterization revealed a maximum velocity (Vmax) and Michaelis constants (Km) that are within the same range as previously characterized type II enzymes. ASFV-TK is competitively inhibited by the feedback inhibitor thymidine 5'-triphosphate and can use 3'-azido-3'-deoxythymidine (AZT) as a substrate with kinetics parameters comparable to those obtained with natural substrates, suggesting that nucleosides and nucleotide analogs could be explored as anti-ASFV agents.
Collapse
Affiliation(s)
- Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chayakul Kornyanee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kitima Srisanga
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sakonwan Kuhaudomlarp
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
3
|
Liang R, Fu Y, Li G, Shen Z, Guo F, Shi J, Guo Y, Zhang D, Wang Z, Chen C, Shi Y, Peng G. EP152R-mediated endoplasmic reticulum stress contributes to African swine fever virus infection via the PERK-eIF2α pathway. FASEB J 2024; 38:e70187. [PMID: 39560029 DOI: 10.1096/fj.202400931rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
African swine fever virus (ASFV) is a large, icosahedral, double-stranded DNA virus in the Asfarviridae family and the causative agent of African swine fever (ASF). ASFV causes a hemorrhagic fever with high mortality rates in domestic and wild pigs. ASFV contains an open reading frame named EP152R, previous research has shown that EP152R is an essential gene for virus rescue in swine macrophages. However, the detailed functions of ASFV EP152R remain elusive. Herein, we demonstrate that EP152R, a membrane protein located in the endoplasmic reticulum (ER), induces ER stress and swelling, triggering the PERK/eIF2α pathway, and broadly inhibiting host protein synthesis in vitro. Additionally, EP152R strongly promotes immune evasion, reduces cell proliferation, and alters cellular metabolism. These results suggest that ASFV EP152R plays a critical role in the intracellular environment, facilitating viral replication. Furthermore, virus-level experiments have shown that the knockdown of EP152R or PERK inhibitors efficiently affects viral replication by decreasing viral gene expression. In summary, these findings reveal a series of novel functions of ASFV EP152R and have important implications for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guosheng Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fenglin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yilin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zixuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chener Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
4
|
Shi Z, Yang X, Shi X, Zhang D, Zhao D, Hao Y, Yang J, Bie X, Yan W, Chen G, Chen L, Liu X, Zheng H, Zhang K. Identification and verification of the role of key metabolites and metabolic pathways on ASFV replication. iScience 2024; 27:109345. [PMID: 38500823 PMCID: PMC10946325 DOI: 10.1016/j.isci.2024.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
African swine fever virus (ASFV) infection usually causes viremia within a few days. However, the metabolic changes in pig serum after ASFV infection remain unclear. In this study, serum samples collected from ASFV-infected pigs at different times were analyzed using pseudotargeted metabolomics method. Metabolomic analysis revealed the dopaminergic synapse pathway has the highest rich factor in both ASFV5 and ASFV10 groups. By disrupting the dopamine synaptic pathway, dopamine receptor antagonists inhibited ASFV replication and L-dopa promoted ASFV replication. In addition, guanosine, one of the top20 changed metabolites in both ASFV5 and ASFV10 groups suppressed the replication of ASFV. Taken together, this study revealed the changed serum metabolite profiles of ASFV-infected pigs at various times after infection and verified the effect of the changed metabolites and metabolic pathways on ASFV replication. These findings may contribute to understanding the pathogenic mechanisms of ASFV and the development of target drugs to control ASF.
Collapse
Affiliation(s)
- Zunji Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Urquiza J, Cuesta-Geijo MÁ, García-Dorival I, Fernández Ó, del Puerto A, Díaz JF, Alonso C. Identification of a Potential Entry-Fusion Complex Based on Sequence Homology of African Swine Fever and Vaccinia Virus. Viruses 2024; 16:349. [PMID: 38543715 PMCID: PMC10975062 DOI: 10.3390/v16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 05/23/2024] Open
Abstract
African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.
Collapse
Affiliation(s)
- Jesús Urquiza
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Miguel Ángel Cuesta-Geijo
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Isabel García-Dorival
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Óscar Fernández
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Ana del Puerto
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - José Fernando Díaz
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Covadonga Alonso
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| |
Collapse
|
6
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Makovska I, Dhaka P, Chantziaras I, Pessoa J, Dewulf J. The Role of Wildlife and Pests in the Transmission of Pathogenic Agents to Domestic Pigs: A Systematic Review. Animals (Basel) 2023; 13:1830. [PMID: 37889698 PMCID: PMC10251848 DOI: 10.3390/ani13111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 10/29/2023] Open
Abstract
Wild animals and pests are important reservoirs and vectors of pathogenic agents that can affect domestic pigs. Rapid globalization, anthropogenic factors, and increasing trends toward outdoor pig production facilitate the contact between domestic pigs and wildlife. However, knowledge on the transmission pathways between domestic pigs and the aforementioned target groups is limited. The present systematic review aims to collect and analyze information on the roles of different wild animal species and pests in the spread of pathogens to domesticated pigs. Overall, 1250 peer-reviewed manuscripts published in English between 2010 and 2022 were screened through the PRISMA framework using PubMed, Scopus, and Web of Science databases. A total of 84 studies reporting possible transmission routes of different pathogenic agents were included. A majority of the studies (80%) focused on the role of wild boars in the transmission of pathogenic agents to pig farms. Studies involving the role of rodents (7%), and deer (6%) were the next most frequent, whereas the role of insects (5%), wild carnivores (5%), wild birds (4%), cats (2%), and badgers (1%) were less available. Only 3.5% of studies presented evidence-based transmission routes from wildlife to domestic pigs. Approximately 65.5% of the included studies described possible risks/risk factors for pathogens' transmission based on quantitative data, whereas 31% of the articles only presented a hypothesis or qualitative analysis of possible transmission routes or risk factors and/or contact rates. Risk factors identified include outdoor farms or extensive systems and farms with a low level of biosecurity as well as wildlife behavior; environmental conditions; human activities and movements; fomites, feed (swill feeding), water, carcasses, and bedding materials. We recommend the strengthening of farm biosecurity frameworks with special attention to wildlife-associated parameters, especially in extensive rearing systems and high-risk zones as it was repeatedly found to be an important measure to prevent pathogen transmission to domestic pigs. In addition, there is a need to focus on effective risk-based wildlife surveillance mechanisms and to raise awareness among farmers about existing wildlife-associated risk factors for disease transmission.
Collapse
Affiliation(s)
- Iryna Makovska
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.D.); (I.C.); (J.P.); (J.D.)
| | - Pankaj Dhaka
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.D.); (I.C.); (J.P.); (J.D.)
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.D.); (I.C.); (J.P.); (J.D.)
| | - Joana Pessoa
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.D.); (I.C.); (J.P.); (J.D.)
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.D.); (I.C.); (J.P.); (J.D.)
| |
Collapse
|
8
|
Lim JS, Andraud M, Kim E, Vergne T. Three Years of African Swine Fever in South Korea (2019-2021): A Scoping Review of Epidemiological Understanding. Transbound Emerg Dis 2023; 2023:4686980. [PMID: 40303829 PMCID: PMC12016690 DOI: 10.1155/2023/4686980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 05/02/2025]
Abstract
African swine fever (ASF) is a highly contagious viral disease in domestic pigs and wild boar that causes tremendous socioeconomic damage in related industries. In 2019, the virus emerged in South Korea, which has since reported 21 outbreaks in domestic pig farms and over 2,600 cases in wild boar. In this review, we synthesize the epidemiological knowledge generated on ASF in South Korea during the first three years of the epidemic (2019-2021). We searched four international and one domestic Korean database to identify scientific articles published since 2019 and describing ASF epidemiology in South Korea. Fourteen articles met our selection criteria and were used to synthesize the origin of ASF in South Korea, the risk factors of disease occurrence, the effectiveness of the surveillance and intervention measures that were implemented, and the viral transmission dynamics. We found that timely intensive surveillance and interventions on domestic pig farms successfully blocked between-farm transmission. However, in wild boar, the ASF virus has spread massively towards the south primarily along the mountain ranges despite ongoing fence erection and intensive depopulation efforts, endangering domestic pig farms across the country. The current devastating epidemic is suspected to be the consequence of an ASF control strategy unaligned to the epidemiological context, the challenging implementation of control measures hindered by topological complexities, and inappropriate biosecurity by field workers. To improve our understanding of ASF epidemiology in South Korea and enhance disease management, future research studies should specify the ecological drivers of disease distribution and spread and devise effective control strategies, particularly in relation to Korean topography, and the latent spread of the virus in wild boar populations. Additionally, research studies should explore the psychosocial factors for ASF management, and develop tools to support evidence-based decision-making for managing ASFV in wild boar.
Collapse
Affiliation(s)
- Jun-Sik Lim
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31300, France
| | - Mathieu Andraud
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, Ploufragan 22440, France
| | - Eutteum Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Timothée Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31300, France
| |
Collapse
|
9
|
Lv T, Xie X, Song N, Zhang S, Ding Y, Liu K, Diao L, Chen X, Jiang S, Li T, Zhang W, Cao Y. Expounding the role of tick in Africa swine fever virus transmission and seeking effective prevention measures: A review. Front Immunol 2022; 13:1093599. [PMID: 36591310 PMCID: PMC9800779 DOI: 10.3389/fimmu.2022.1093599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF), a highly contagious, deadly infectious disease, has caused huge economic losses to animal husbandry with a 100% mortality rate of the most acute and acute infection, which is listed as a legally reported animal disease by the World Organization for Animal Health (OIE). African swine fever virus (ASFV) is the causative agent of ASF, which is the only member of the Asfarviridae family. Ornithodoros soft ticks play an important role in ASFV transmission by active biological or mechanical transmission or by passive transport or ingestion, particularly in Africa, Europe, and the United States. First, this review summarized recent reports on (1) tick species capable of transmitting ASFV, (2) the importance of ticks in the transmission and epidemiological cycle of ASFV, and (3) the ASFV strains of tick transmission, to provide a detailed description of tick-borne ASFV. Second, the dynamics of tick infection with ASFV and the tick-induced immune suppression were further elaborated to explain how ticks spread ASFV. Third, the development of the anti-tick vaccine was summarized, and the prospect of the anti-tick vaccine was recapitulated. Then, the marked attenuated vaccine, ASFV-G-ΔI177L, was compared with those of the anti-tick vaccine to represent potential therapeutic or strategies to combat ASF.
Collapse
Affiliation(s)
- Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luteng Diao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuang Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiger Li
- Portsmouth Abbey School, Portsmouth, RI, United States
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Markov N, Economov A, Hjeljord O, Rolandsen CM, Bergqvist G, Danilov P, Dolinin V, Kambalin V, Kondratov A, Krasnoshapka N, Kunnasranta M, Mamontov V, Panchenko D, Senchik A. The wild boar
Sus scrofa
in northern Eurasia: a review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mamm Rev 2022. [DOI: 10.1111/mam.12301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niсkolay Markov
- Institute of Plant and Animal Ecology Ural Branch Russian Academy of Sciences 620144 Marta Str. 202 Ekaterinburg Russia
| | - Alexander Economov
- Russian Research Institute of Game Management and Fur Farming 610000 Preobrazhenskaya str. 79 Kirov Russia
| | - Olav Hjeljord
- Norwegian University of Life Sciences Elizabeth Stephansens vei 15 1430 Ås Norway
| | - Christer M. Rolandsen
- Norwegian Institute for Nature Research P.O. Box 5685 Torgarden NO‐7485 Trondheim Norway
| | - Göran Bergqvist
- Swedish Association for Hunting and Wildlife Management Öster Malma SE‐611 91 Nyköping Sweden
- Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences PO Box 49 SE‐230 53 Alnarp Sweden
| | - Pjotr Danilov
- Institute of Biology of Karelian Research Centre Russian Academy of Sciences 185910, 11 Pushkinskaya Street Petrozavodsk Karelia Russia
| | - Vadim Dolinin
- Far Eastern Branch of Russian Research Institute of Game Management and Fur Farming 680000 L. Tolstogo str. 15a Khabarovsk Russia
| | - Victor Kambalin
- Irkutsk State Agrarian University 664038, Irkutsk region, Irkutsk district Molodezhny Russia
| | - Alexander Kondratov
- Irkutsk State Agrarian University 664038, Irkutsk region, Irkutsk district Molodezhny Russia
| | - Nikolay Krasnoshapka
- West‐Siberian Branch of Russian Research Institute of Game Management and Fur Farming 630108, Parkhomenko str., 26 Novosibirsk Russia
| | - Mervi Kunnasranta
- Natural Resources Institute Finland Yliopistokatu 6 80130 Joensuu Finland
| | - Victor Mamontov
- Laboratory for Biological Resources and Ethnography Institute of Biogeography and Genetic Resources, FECIAR Ural Branch RAS 163000 Arkhangelsk Russia
| | - Danila Panchenko
- Institute of Biology of Karelian Research Centre Russian Academy of Sciences 185910, 11 Pushkinskaya Street Petrozavodsk Karelia Russia
| | - Alexander Senchik
- OOO “Amuskaya Promislovaya Kompania” 675000, Gorkogo, 252 Blagoveschensk Amurskaya Oblast Russia
| |
Collapse
|
11
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
12
|
Chen L, Chen L, Chen H, Zhang H, Dong P, Sun L, Huang X, Lin P, Wu L, Jing D, Qian Y, Wu Y. Structural insights into the CP312R protein of the African swine fever virus. Biochem Biophys Res Commun 2022; 624:68-74. [DOI: 10.1016/j.bbrc.2022.07.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/19/2023]
|
13
|
Sun L, Miao Y, Wang Z, Chen H, Dong P, Zhang H, Wu L, Jiang M, Chen L, Yang W, Lin P, Jing D, Luo Z, Zhang Y, Jung Y, Wu X, Qian Y, Wu Y. Structural insight into African Swine Fever Virus I73R protein reveals it as a Z‐DNA binding protein. Transbound Emerg Dis 2022; 69:e1923-e1935. [DOI: 10.1111/tbed.14527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Yurun Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Zhenzhong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
- China Animal Health and Epidemiology Center Qingdao China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Linjiao Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Meiqin Jiang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Dingding Jing
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Zhipu Luo
- Institute of Molecular Enzymology School of Biology and Basic Medical Sciences Soochow University Suzhou Jiangsu China
| | | | - Yong‐Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center Qingdao China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
- Jiangsu Agri‐animal Husbandry Vocational College Veterinary Bio‐pharmaceutical Jiangsu Key Laboratory for High‐Tech Research and Development of Veterinary Biopharmaceuticals Taizhou Jiangsu China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| |
Collapse
|
14
|
Cuesta-Geijo MÁ, García-Dorival I, del Puerto A, Urquiza J, Galindo I, Barrado-Gil L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog 2022; 18:e1009784. [PMID: 35081156 PMCID: PMC8820605 DOI: 10.1371/journal.ppat.1009784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection. African swine fever virus (ASFV) causes a deadly disease of pigs and wild boars that was endemic in Africa but has spread in recent years to Europe, Asia and Oceania with a high socioeconomic impact. ASFV enters the cell by endocytosis and has adapted to the endosomal conditions to acquire infectivity. Fusion of the internal viral membrane with the endosomal membrane is required for the exit of viral DNA into the cytoplasm to start replication. We have found that ASF virion internal membrane proteins E248R and E199L interact with the endosomal proteins Niemann Pick C1 (NPC1) and lysosomal membrane proteins (Lamp)-1 and -2. And, appear to be required for endosomal trafficking of ASF virions endosomal traffic and exit to the cytoplasm in the cell entry process. These molecules act regulating cholesterol flux from the endosome to the endoplasmic reticulum, and appear to be important for the viral infection cycle. In silenced and knockout cells, ASFV infection was affected at early and later stages. In null cells, virion entry and progression through the endosomal pathway at entry was arrested and several viral cores were retained at late endosomes without entering the fusion phase for cytoplasmic exit. These results provide new insights into the role of endosomal proteins for ASFV infection.
Collapse
Affiliation(s)
- Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ana del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
| | - Ana Cayuela
- Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Jori F, Hernandez-Jover M, Magouras I, Dürr S, Brookes VJ. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim Front 2021; 11:8-19. [PMID: 34676135 PMCID: PMC8527523 DOI: 10.1093/af/vfab045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ferran Jori
- UMR ASTRE (Animal, Health, Territories, Risks and Ecosystems), Bios Department, CIRAD, INRAE, Campus International de Baillarguet, University de Montpellier, Montpellier, Cedex 5, France
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
| | - Marta Hernandez-Jover
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ioannis Magouras
- Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Victoria J Brookes
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
16
|
Ward MP, Tian K, Nowotny N. African Swine Fever, the forgotten pandemic. Transbound Emerg Dis 2021; 68:2637-2639. [PMID: 34499823 DOI: 10.1111/tbed.14245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|