1
|
Shirke HA, Darshetkar AM, Naikawadi VB, Kavi Kishor PB, Nikam TD, Barvkar VT. Genomics of sterols biosynthesis in plants: Current status and future prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112426. [PMID: 39956365 DOI: 10.1016/j.plantsci.2025.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Sterols produced by bacteria and all eukaryotic organisms are essential for membrane functionality and stability. They play a vital role in growth, development and in abiotic stress tolerance. They are involved in diverse responses to biotic and abiotic stresses that lead to providing resistance against multiple diseases. Additionally, sterols serve as defensive compounds against herbivorous insects and animals. Phytosterols derived from plants, improve human nutrition and health and cure different ailments. The biosynthetic pathways for sterols and triterpenes exhibit similarities until the synthesis of 2,3-oxidosqualene. The complexity of sterol pathways increases during the advanced stages of polycyclic structure synthesis, and remain poorly comprehended in plants. This review explores the various omics techniques used to unveil the functions of genes associated with the phytosterol pathways. The study investigates the biosynthetic gene clusters to clarify the structural arrangements of genes linked to metabolic pathways. Both the upstream and downstream genes associated with these pathways, as well as their evolutionary connections and interrelations within the pathways were brought to the forefront. Moreover, developing strategies to unravel the biosynthesis completely and their multi-layered regulation are crucial to comprehend the global roles that sterols play in plant growth, development, stress tolerance and in imparting defence against pathogens.
Collapse
Affiliation(s)
- Harshad A Shirke
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vikas B Naikawadi
- Department of Botany, Chandmal Tarachand Bora College, Shirur, Pune 412210, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Akiyama R, Terami D, Noda A, Watanabe B, Umemoto N, Muranaka T, Saito K, Sugimoto Y, Mizutani M. Two reductases complete steroidal glycoalkaloids biosynthesis in potato. THE NEW PHYTOLOGIST 2025; 245:2632-2644. [PMID: 39821169 PMCID: PMC11840414 DOI: 10.1111/nph.20411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites primarily produced by Solanaceae plants such as potatoes and tomatoes. Notably, α-solanine and α-chaconine are recognized as toxic substances in potatoes. While the biosynthetic pathways of SGAs are largely understood, the final steps of α-solanine and α-chaconine biosynthesis remained elusive. In this study, we discovered that two reductase-encoding genes, reductase for potato glycoalkaloid biosynthesis 1 (RPG1) and RPG2, complete SGA biosynthesis in potato. Knockout of both RPG1 and RPG2 in potato hairy roots halted α-solanine production, leading to the accumulation of zwittersolanine. We analyzed the catalytic function of recombinant enzymes and conducted structural determination of the reaction products by nuclear magnetic resonance. As a result, RPG1 converted zwittersolanine to 16-iminiumsolanine, and RPG2 further converted it to α-solanine. RPG2 also transformed zwittersolanine to 22-iminiumsolanine, which RPG1 then converted to α-solanine. Similar processes were observed for α-chaconine synthesis from zwitterchaconine. Due to differences in enzymatic reaction efficiency, the biosynthetic pathway via 16-iminiumsolanine/16-iminiumchaconine was suggested to be predominant in potato. Our results could pave the way for tailoring SGA structures within Solanum plants, enabling the development of Solanum crop varieties with reduced toxicity or enhanced resistance to diseases and pests.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Daiki Terami
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Aozora Noda
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Bunta Watanabe
- The Jikei University School of Medicine8‐3‐1 KokuryoChohuTokyo182‐8570Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource ScienceSuehiro‐cho 1‐7‐22, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversityYamadaoka 2‐1, SuitaOsaka565‐0871Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceSuehiro‐cho 1‐7‐22, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| |
Collapse
|
3
|
Zott MD, Zuschlag DW, Trauner DH. Concise Synthesis of (-)-Veratramine and (-)-20- iso-Veratramine via Aromative Diels-Alder Reaction. J Am Chem Soc 2025; 147:3010-3016. [PMID: 39811914 DOI: 10.1021/jacs.4c16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A concise and convergent synthesis of the isosteroidal alkaloids veratramine and 20-iso-veratramine has been accomplished. A Horner-Wadsworth-Emmons olefination joins two chiral building blocks of approximately equal complexity and a transition-metal catalyzed intramolecular Diels-Alder cycloaddition-aromatization cascade constructs the tetrasubstituted arene. Other key steps include a highly diastereoselective crotylation of an N-sulfonyl iminium ion and an Eschenmoser fragmentation. The chiral building blocks developed for this synthesis could be used to access a range of additional isosteroidal alkaloids using our diversifiable strategy. Our work shows that 20-iso-veratramine is not identical with a natural product proposed to have that structure. The single crystal X-ray structures of veratramine and 20-iso-veratramine are reported.
Collapse
Affiliation(s)
- Michael D Zott
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel W Zuschlag
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dirk H Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2025; 21:131-142. [PMID: 39271954 PMCID: PMC11666457 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
5
|
Jozwiak A, Panda S, Akiyama R, Yoneda A, Umemoto N, Saito K, Yasumoto S, Muranaka T, Gharat SA, Kazachkova Y, Dong Y, Arava S, Goliand I, Nevo R, Rogachev I, Meir S, Mizutani M, Aharoni A. A cellulose synthase-like protein governs the biosynthesis of Solanum alkaloids. Science 2024; 386:eadq5721. [PMID: 39700293 DOI: 10.1126/science.adq5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/01/2024] [Indexed: 12/21/2024]
Abstract
Decades of research on the infamous antinutritional steroidal glycoalkaloids (SGAs) in Solanaceae plants have provided deep insights into their metabolism and roles. However, engineering SGAs in heterologous hosts has remained a challenge. We discovered that a protein evolved from the machinery involved in building plant cell walls is the crucial link in the biosynthesis of SGAs. We show that cellulose synthase-like M [GLYCOALKALOID METABOLISM15 (GAME15)] functions both as a cholesterol glucuronosyltransferase and a scaffold protein. Silencing GAME15 depletes SGAs, which makes plants more vulnerable to pests. Our findings illuminate plant evolutionary adaptations that balance chemical defense and self-toxicity and open possibilities for producing steroidal compounds in heterologous systems for food, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano Yoneda
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomy Arava
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Goliand
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Zuo A, He D, Sun C, Wen Y, Li H, Kou C, Shao G, Xue Z, Ma R, Wei J, Liu J, Ma P. Integration of induction, system optimization and genetic transformation in Veratrum californicum var. vitro cultures to enhance the production of cyclopamine and veratramine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109087. [PMID: 39241631 DOI: 10.1016/j.plaphy.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Cyclopamine, a compound found in wild Veratrum has shown promising potential as a lead anti-cancer drug by effectively blocking cancer signaling pathways. However, its complex chemical structure poses challenges for artificial synthesis, thus limiting its supply and downstream drug production. This study comprehensively utilizes induction, system optimization, and transgenic technologies to establish an efficient suspension culture system for the high-yield production of cyclopamine and its precursor, veratramine. Experimental results demonstrate that methyl jasmonate (MeJA) effectively promotes the content of veratramine and cyclopamine in Veratrum californicum var. callus tissue, while yeast extract (YE) addition significantly increases cell biomass. The total content of veratramine and cyclopamine reached 0.0638 mg after synergistic treatment of suspension system with these two elicitors. And the content of the two substances was further increased to 0.0827 mg after the optimization by response surface methodology. Subsequently, a genetic transformation system for V. californicum callus was established and a crucial enzyme gene VnOSC1, involved in the steroidal alkaloid biosynthesis pathway, was screened and identified for genetic transformation. Combined suspension culture and synergistic induction system, the total content of the two substances in transgenic suspension system was further increased to 0.1228 mg, representing a 276.69% improvement compared to the initial culture system. This study proposes a complete and effective genetic transformation and cultivation scheme for V. californicum tissue cells, achieving milligram-level production of the anticancer agent cyclopamine and its direct precursor veratramine for the first time. It provides a theoretical basis for the industrial-scale production of these substances.
Collapse
Affiliation(s)
- Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Di He
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Chongrui Sun
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yashi Wen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - He Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chengxi Kou
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Gaige Shao
- Xian Agricultural Technology Extension Center, Xian, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. Cell 2024; 187:5620-5637.e10. [PMID: 39276773 PMCID: PMC11893076 DOI: 10.1016/j.cell.2024.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 01/23/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A notable example is the >150 Amaryllidaceae alkaloids (AmAs), including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many daffodil tissues, biosynthesis is localized to nascent, growing tissue at the leaf base. A similar trend is found in the production of steroidal alkaloids (e.g., cyclopamine) in corn lily. This model of active biosynthesis enabled the elucidation of a complete set of biosynthetic genes that can be used to produce AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodils. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes, where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as above-ground tissue develops.
Collapse
Affiliation(s)
- Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Huang L, Liang S, Luo L, Wu M, Fu H, Zhong Z. Transcriptomic analysis reveals effects of fertilization towards growth and quality of Fritillariae thunbergii bulbus. PLoS One 2024; 19:e0309978. [PMID: 39302908 DOI: 10.1371/journal.pone.0309978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024] Open
Abstract
Fritillariae thunbergii Bulbus (FTB) is a traditional Chinese medicine that has been widely cultivated for its expectorant, antitussive, antiasthmatic, antiviral, and anticancer properties. The yield and quality of F. thunbergii are influenced by cultivation conditions, such as the use of fertilizers. However, the optimal type of fertilizers for maximum quality and yield and underlying mechanisms are not clear. We collected F. thunbergii using raw chicken manure (RC), organic fertilizer (OF), and plant ash (PA) as the base fertilizer in Pan'an County, Jinhua City, Zhejiang Province as experimental materials. The combined results of HPLC-ELSD detection and yield statistics showed that the F. thunbergii with OF application was the best, with the content of peimine and peiminine reaching 0.0603% and 0.0502%, respectively. In addition, the yield was 2.70 kg/m2. Transcriptome analysis indicated that up-regulation of the ABA signaling pathway might promote bulb yield. Furthermore, putative key genes responsible for steroidal alkaloid accumulation were identified. These results provided guiding significance for the rational fertilization conditions of F. thunbergii as well as the basis for the exploration of functional genes related to the alkaloid biosynthesis pathway.
Collapse
Affiliation(s)
- Luman Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shuang Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Lei Luo
- Zhejiang Institute for Food and Drug Control, Hangzhou, P.R. China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
9
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
10
|
Wei W, Guo T, Fan W, Ji M, Fu Y, Lian C, Chen S, Ma W, Ma W, Feng S. Integrative analysis of metabolome and transcriptome provides new insights into functional components of Lilii Bulbus. CHINESE HERBAL MEDICINES 2024; 16:435-448. [PMID: 39072198 PMCID: PMC11283230 DOI: 10.1016/j.chmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 07/30/2024] Open
Abstract
Objective Lilium brownii var. viridulum (LB) and L. lancifolium (LL) are the main sources of medicinal lily (Lilii Bulbus, Baihe in Chinese) in China. However, the functional components of these two species responsible for the treatment efficacy are yet not clear. In order to explore the therapeutic material basis of Lilii Bulbus, we selected L. davidii var. willmottiae (LD) only used for food as the control group to analyze the differences between LD and the other two (LB and LL). Methods Metabolome and transcriptome were carried out to investigate the differences of active components in LD vs LB and LD vs LL. Data of metabolome and transcriptome was analysed using various analysis methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and so on. Differentially expressed genes (DEGs) were enriched through KEGG and GO enrichment analysis. Results The PCA and HCA of the metabolome indicated the metabolites were clearly separated and varied greatly in LL and LB contrasted with LD. There were 318 significantly differential metabolites (SDMs) in LD vs LB group and 298 SDMs in LD vs LL group. Compared with LD group, the significant up-regulation of steroidal saponins and steroidal alkaloids were detected both in LB and LL groups, especially in LB group. The HCA of transcriptome indicated that there was significant difference in LB vs LD group, while the difference between LL and LD varied slightly. Additionally, 47 540 DEGs in LD vs LB group and 18 958 DEGs in LD vs LL group were identified. Notably, CYP450s involving in the biosynthesis of steroidal saponins and steroidal alkaloids were detected, and comparing with LD, CYP724, CYP710A, and CYP734A1 in LB and CYP90B in LL were all up-regulated. Conclusion This study suggested that steroidal saponins and steroidal alkaloids maybe the representative functional components of Lilii Bulbus, which can provide new insights for Lilii Bulbus used in the research and development of classic famous formula.
Collapse
Affiliation(s)
- Wenjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mengshan Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenjing Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenfang Ma
- Lanzhou Shibai Agricultural Biotechnology Co., Ltd., Lanzhou 730050, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
11
|
Pang Y, Cheng X, Ban Y, Li Y, Lv B, Li C. Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2400286. [PMID: 39014927 DOI: 10.1002/biot.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
22(R)-hydroxycholesterol (22(R)-HCHO) is a crucial precursor of steroids biosynthesis with various biological functions. However, the production of 22(R)-HCHO is expensive and unsustainable due to chemical synthesis and extraction from plants or animals. This study aimed to construct a microbial cell factory to efficiently produce 22(R)-HCHO through systems metabolic engineering. First, we tested 7-dehydrocholesterol reductase (Dhcr7s) and cholesterol C22-hydroxylases from different sources in Saccharomyces cerevisiae, and the titer of 22(R)-HCHO reached 128.30 mg L-1 in the engineered strain expressing Dhcr7 from Columba livia (ClDhcr7) and cholesterol 22-hydroxylase from Veratrum californicum (VcCyp90b27). Subsequently, the 22(R)-HCHO titer was significantly increased to 427.78 mg L-1 by optimizing the critical genes involved in 22(R)-HCHO biosynthesis. Furthermore, hybrid diploids were constructed to balance cell growth and 22(R)-HCHO production and to improve stress tolerance. Finally, the engineered strain produced 2.03 g L-1 of 22(R)-HCHO in a 5-L fermenter, representing the highest 22(R)-HCHO titer reported to date in engineered microbial cell factories. The results of this study provide a foundation for further applications of 22(R)-HCHO in various industrially valuable steroids.
Collapse
Affiliation(s)
- Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yali Ban
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yue Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Eljounaidi K, Radzikowska BA, Whitehead CB, Taylor DJ, Conde S, Davis W, Dowle AA, Langer S, James S, Unsworth WP, Ezer D, Larson TR, Lichman BR. Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues. THE NEW PHYTOLOGIST 2024; 243:299-313. [PMID: 38757546 DOI: 10.1111/nph.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Daphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Caragh B Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Danielle J Taylor
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Susana Conde
- Department of Biology, University of York, York, YO10 5DD, UK
| | - William Davis
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Adam A Dowle
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Swen Langer
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Daphne Ezer
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Tony R Larson
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
13
|
Kou C, Liu J, Yin X, He D, Liu J, Hua X, Ma R, Sun W, Xue Z, Ma P. Efficient heterologous biosynthesis of verazine, a metabolic precursor of the anti-cancer drug cyclopamine, in Nicotiana benthamiana. PLANT COMMUNICATIONS 2024; 5:100831. [PMID: 38308438 PMCID: PMC11211220 DOI: 10.1016/j.xplc.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Chengxi Kou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jingling Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Di He
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Ibrahim ARS, Mansour MK, Ahmed MMA, Ulber R, Zayed A. Metabolism of natural and synthetic bioactive compounds in Cunninghamella fungi and their applications in drug discovery. Bioorg Chem 2023; 140:106801. [PMID: 37643568 DOI: 10.1016/j.bioorg.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Investigation of xenobiotic metabolism is a key step for drug discovery. Since the in vivo investigations may be associated with harmful effects attributed to production of toxic metabolites, it is deemed necessary to predict their structure especially at the preliminary clinical studies. Furthermore, the application of microorganisms that are capable of metabolizing drugs mimic human metabolism and consequently may predict possible metabolites. The genus Cunninghamella has been proven to be a potential candidate, which mimics xenobiotic metabolism occurring inside the human body, including phase I and II metabolic reactions. Moreover, biotransformation with Cunninghamella showed chemical diversity, where a lot of products were detected in relation to the initial substrates after being modified by oxidation, hydroxylation, and conjugation reactions. Some of these products are more bioactive than the parent compounds. The current review presents a comprehensive literature overview regarding the Cunninghamella organisms as biocatalysts, which simulate mammalian metabolism of natural secondary and synthetic compounds.
Collapse
Affiliation(s)
- Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, Egyptian Drug Authority, Giza 11553, Egypt
| | - Mohammed M A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt; Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany.
| |
Collapse
|
15
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
16
|
Wang D, Yu Z, Guan M, Cai Q, Wei J, Ma P, Xue Z, Ma R, Oksman-Caldentey KM, Rischer H. Comparative transcriptome analysis of Veratrum maackii and Veratrum nigrum reveals multiple candidate genes involved in steroidal alkaloid biosynthesis. Sci Rep 2023; 13:8198. [PMID: 37211560 DOI: 10.1038/s41598-023-35429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Veratrum (Melanthiaceae; Liliales) is a genus of perennial herbs known for the production of unique bioactive steroidal alkaloids. However, the biosynthesis of these compounds is incompletely understood because many of the downstream enzymatic steps have yet to be resolved. RNA-Seq is a powerful method that can be used to identify candidate genes involved in metabolic pathways by comparing the transcriptomes of metabolically active tissues to controls lacking the pathway of interest. The root and leaf transcriptomes of wild Veratrum maackii and Veratrum nigrum plants were sequenced and 437,820 clean reads were assembled into 203,912 unigenes, 47.67% of which were annotated. We identified 235 differentially expressed unigenes potentially involved in the synthesis of steroidal alkaloids. Twenty unigenes, including new candidate cytochrome P450 monooxygenases and transcription factors, were selected for validation by quantitative real-time PCR. Most candidate genes were expressed at higher levels in roots than leaves but showed a consistent profile across both species. Among the 20 unigenes putatively involved in the synthesis of steroidal alkaloids, 14 were already known. We identified three new CYP450 candidates (CYP76A2, CYP76B6 and CYP76AH1) and three new transcription factor candidates (ERF1A, bHLH13 and bHLH66). We propose that ERF1A, CYP90G1-1 and CYP76AH1 are specifically involved in the key steps of steroidal alkaloid biosynthesis in V. maackii roots. Our data represent the first cross-species analysis of steroidal alkaloid biosynthesis in the genus Veratrum and indicate that the metabolic properties of V. maackii and V. nigrum are broadly conserved despite their distinct alkaloid profiles.
Collapse
Affiliation(s)
- Dan Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, Jilin Province, People's Republic of China
| | - Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, People's Republic of China
| | - Meng Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin, People's Republic of China
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, People's Republic of China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, People's Republic of China
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Zheyong Xue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin, People's Republic of China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, People's Republic of China.
| | | | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., P. O. Box 1000, 02044 VTT, Espoo, Finland.
| |
Collapse
|
17
|
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540595. [PMID: 37214939 PMCID: PMC10197729 DOI: 10.1101/2023.05.12.540595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A lead example is the >150 Amaryllidaceae alkaloids (AmAs) including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many tissues in daffodils, biosynthesis is localized to nascent, growing tissue at the base of leaves. A similar trend is found for the production of steroidal alkaloids (e.g. cyclopamine) in corn lily. This model of active biosynthesis enabled elucidation of a complete set of biosynthetic genes for the production of AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodil. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as aboveground tissue develops.
Collapse
Affiliation(s)
- Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
18
|
Cheng Q, Zeng L, Wen H, Brown SE, Wu H, Li X, Lin C, Liu Z, Mao Z. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC PLANT BIOLOGY 2023; 23:207. [PMID: 37081391 PMCID: PMC10116787 DOI: 10.1186/s12870-023-04222-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Asparagus officinalis L. is a worldwide cultivated vegetable enrichened in both nutrient and steroidal saponins with multiple pharmacological activities. The upstream biosynthetic pathway of steroidal saponins (USSP) for cholesterol (CHOL) synthesis has been studied, while the downstream pathway of steroidal saponins (DSSP) starting from cholesterol and its regulation in asparagus remains unknown. RESULTS Metabolomics, Illumina RNAseq, and PacBio IsoSeq strategies were applied to different organs of both cultivated green and purple asparagus to detect the steroidal metabolite profiles & contents and to screen their key genes for biosynthesis and regulation. The results showed that there is a total of 427 compounds, among which 18 steroids were detected with fluctuated concentrations in roots, spears and flowering twigs of two garden asparagus cultivars. The key genes of DSSP include; steroid-16-hydroxylase (S16H), steroid-22-hydroxylase (S22H) and steroid-22-oxidase-16-hydroxylase (S22O-16H), steroid-26-hydroxylase (S26H), steroid-3-β-glycosyltransferase (S3βGT) and furostanol glycoside 26-O-beta-glucosidases (F26GHs) which were correlated with the contents of major steroidal saponins were screened, and the transcriptional factors (TFs) co-expressing with the resulted from synthetic key genes, including zinc fingers (ZFs), MYBs and WRKYs family genes were also screened. CONCLUSIONS Based on the detected steroidal chemical structures, profiles and contents which correlated to the expressions of screened synthetic and TFs genes, the full steroidal saponin synthetic pathway (SSP) of asparagus, including its key regulation networks was proposed for the first time.
Collapse
Affiliation(s)
- Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Liangqin Zeng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Hao Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
19
|
Liu J, Han L, Li G, Zhang A, Liu X, Zhao M. Transcriptome and metabolome profiling of the medicinal plant Veratrum mengtzeanum reveal key components of the alkaloid biosynthesis. Front Genet 2023; 14:1023433. [PMID: 36741317 PMCID: PMC9895797 DOI: 10.3389/fgene.2023.1023433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Veratrum mengtzeanum is the main ingredient for Chinese folk medicine known as "Pimacao" due to its unique alkaloids. A diverse class of plant-specific metabolites having key pharmacological activities. There are limited studies on alkaloid synthesis and its metabolic pathways in plants. To elucidate the alkaloid pathway and identify novel biosynthetic enzymes and compounds in V. mengtzeanum, transcriptome and metabolome profiling has been conducted in leaves and roots. The transcriptome of V. mengtzeanum leaves and roots yielded 190,161 unigenes, of which 33,942 genes expressed differentially (DEGs) in both tissues. Three enriched regulatory pathways (isoquinoline alkaloid biosynthesis, indole alkaloid biosynthesis and tropane, piperidine and pyridine alkaloid biosynthesis) and a considerable number of genes such as AED3-like, A4U43, 21 kDa protein-like, 3-O-glycotransferase 2-like, AtDIR19, MST4, CASP-like protein 1D1 were discovered in association with the biosynthesis of alkaloids in leaves and roots. Some transcription factor families, i.e., AP2/ERF, GRAS, NAC, bHLH, MYB-related, C3H, FARI, WRKY, HB-HD-ZIP, C2H2, and bZIP were also found to have a prominent role in regulating the synthesis of alkaloids and steroidal alkaloids in the leaves and roots of V. mengtzeanum. The metabolome analysis revealed 74 significantly accumulated metabolites, with 55 differentially accumulated in leaves compared to root tissues. Out of 74 metabolites, 18 alkaloids were highly accumulated in the roots. A novel alkaloid compound viz; 3-Vanilloylygadenine was discovered in root samples. Conjoint analysis of transcriptome and metabolome studies has also highlighted potential genes involved in regulation and transport of alkaloid compounds. Here, we have presented a comprehensive metabolic and transcriptome profiling of V. mengtzeanum tissues. In earlier reports, only the roots were reported as a rich source of alkaloid biosynthesis, but the current findings revealed both leaves and roots as significant manufacturing factories for alkaloid biosynthesis.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lijun Han
- Yunnan Key Laboratory for Dai and Yi Medicines, University of Chinese Medicine Kunming, Kunming, China
| | - Guodong Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Aili Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoli Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingzhi Zhao
- Kunming Medical University Haiyuan College, Kunming, China,*Correspondence: Mingzhi Zhao,
| |
Collapse
|
20
|
Li R, Xiao M, Li J, Zhao Q, Wang M, Zhu Z. Transcriptome Analysis of CYP450 Family Members in Fritillaria cirrhosa D. Don and Profiling of Key CYP450s Related to Isosteroidal Alkaloid Biosynthesis. Genes (Basel) 2023; 14:219. [PMID: 36672960 PMCID: PMC9859280 DOI: 10.3390/genes14010219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fritillaria cirrhosa D. Don (known as Chuan-Bei-Mu in Chinese) can synthesize isosteroidal alkaloids (ISA) with excellent medicinal value, and its bulb has become an indispensable ingredient in many patented drugs. Members of the cytochrome P450 (CYP450) gene superfamily have been shown to play essential roles in regulating steroidal alkaloids biosynthesis. However, little information is available on the P450s in F. cirrhosa. Here, we performed full-length transcriptome analysis and discovered 48 CYP450 genes belonging to 10 clans, 25 families, and 46 subfamilies. By combining phylogenetic trees, gene expression, and key F. cirrhosa ISA content analysis, we presumably identify seven FcCYP candidate genes, which may be hydroxylases active at the C-22, C-23, or C-26 positions in the late stages of ISA biosynthesis. The transcript expression levels of seven FcCYP candidate genes were positively correlated with the accumulation of three major alkaloids in bulbs of different ages. These data suggest that the candidate genes are most likely to be associated with ISA biosynthesis. Finally, the subcellular localization prediction of FcCYPs and transient expression analysis within Nicotiana benthamiana showed that the FcCYPs were mainly localized in the chloroplast. This study presents a systematic analysis of the CYP450 gene family in F. cirrhosa and provides a foundation for further functional characterization of the CYPs involved in ISA biosynthesis.
Collapse
Affiliation(s)
- Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Maotao Xiao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Mingcheng Wang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
21
|
Malhotra K, Franke J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J Org Chem 2022; 18:1289-1310. [PMID: 36225725 PMCID: PMC9520826 DOI: 10.3762/bjoc.18.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.
Collapse
Affiliation(s)
- Karan Malhotra
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
22
|
Veratrum parviflorum: An Underexplored Source for Bioactive Steroidal Alkaloids. Molecules 2022; 27:molecules27165349. [PMID: 36014585 PMCID: PMC9412450 DOI: 10.3390/molecules27165349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the Veratrum genus have been used throughout history for their emetic properties, rheumatism, and for the treatment of high blood pressure. However, inadvertent consumption of these plants, which resemble wild ramps, induces life-threatening side effects attributable to an abundance of steroidal alkaloids. Several of the steroidal alkaloids from Veratrum spp. have been investigated for their ability to antagonize the Hedgehog (Hh) signaling pathway, a key pathway for embryonic development and cell proliferation. Uncontrolled activation of this pathway is linked to the development of various cancers; most notably, basal cell carcinoma and acute myeloid leukemia. Additional investigation of Veratrum spp. may lead to the identification of novel alkaloids with the potential to serve as chemotherapeutics. V. parviflorum is a relatively uncommon species of Veratrum that resides in the southeastern regions of North America. The phytochemical profile of this plant remains largely unexplored; however, bioactive steroidal alkaloids, including cyclopamine, veratramine, veratridine, and verazine were identified in its extract. The structural elucidation and bioactivity assessment of steroidal alkaloids in lesser abundance within the extract of V. parviflorum may yield potent Hh pathway inhibitors. This review seeks to consolidate the botanical and phytochemical information regarding V. parviflorum.
Collapse
|
23
|
Lu Q, Li R, Liao J, Hu Y, Gao Y, Wang M, Li J, Zhao Q. Integrative analysis of the steroidal alkaloids distribution and biosynthesis of bulbs Fritillariae Cirrhosae through metabolome and transcriptome analyses. BMC Genomics 2022; 23:511. [PMID: 35836113 PMCID: PMC9284883 DOI: 10.1186/s12864-022-08724-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of the steroidal alkaloid biosynthesis in Fritillaria species is still very limited. Results To promote our understanding of these pathways, we performed non-target metabolomics and transcriptome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids biosynthesis of BFC. Conclusion These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritillaria species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08724-0.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Jiaqing Liao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.,College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yuqin Hu
- Aba County Shenhe Agricultural Development Co. LTD, Aba County, 624600, China
| | - Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mingcheng Wang
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Road, Chengdu, 610106, China
| | - Jian Li
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 610106, China. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China. .,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.
| |
Collapse
|
24
|
Tian F, Han C, Chen X, Wu X, Mi J, Wan X, Liu Q, He F, Chen L, Yang H, Zhong Y, Qian Z, Zhang F. PscCYP716A1-Mediated Brassinolide Biosynthesis Increases Cadmium Tolerance and Enrichment in Poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:919682. [PMID: 35865284 PMCID: PMC9294640 DOI: 10.3389/fpls.2022.919682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd), as one of the heavy metals with biological poisonousness, seriously suppresses plant growth and does harm to human health. Hence, phytoremediation was proposed to mitigate the negative effects from Cd and restore contaminated soil. However, the internal mechanisms of detoxification of Cd used in phytoremediation are not completely revealed. In this study, we cloned the cytochrome P450 gene PscCYP716A1 from hybrid poplar "Chuanxiang No. 1" and found that the PscCYP716A1 was transcriptionally upregulated by Cd stress and downregulated by the exogenous brassinolide (BR). Meanwhile, PscCYP716A1 significantly promoted the poplar growth and enhanced the Cd accumulation in poplar. Compared to wild-type poplars, overexpressed PscCYP716A1 lines produced higher levels of endogenous BR and showed a stronger tolerance to Cd, which revealed that PscCYP716A1 may reduce the oxidative stress damage induced by Cd stress through accelerating BR synthesis. In general, PscCYP716A1 has a potential superiority in regulating the plant's tolerance to Cd stress, which will provide a scientific basis and a new type of gene-modified poplar for Cd-pollution remediation.
Collapse
Affiliation(s)
- Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiaxuan Mi
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zongliang Qian
- Forestry and Grassland Bureau of Ganzi Prefecture, Kangding, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Men WX, Song YY, Bian C, Xue HF, Xing YP, Xu L, Xie M, Kang TG. The complete chloroplast genome sequence of Veratrum nigrum L. Mitochondrial DNA B Resour 2022; 7:476-477. [PMID: 35295907 PMCID: PMC8920380 DOI: 10.1080/23802359.2022.2050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The complete chloroplast genome of an important medicinal plant, Veratrum nigrum Linnaeus, was sequenced. The entire circular genome is 151,580 bp in length, with 37.7% GC contents. The genome has a large single-copy (LSC) region with a length of 81,806 bp, a small single-copy (SSC) region with a length of 17,472 bp, and two inverted repeat regions (IRs) with a length of 26,151 bp. It harbored 131 genes, including 85 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis suggested V. nigrum formed a monophyletic clade with relatively short genetic distance to Veratrum oxysepalum and Veratrum taliense. This study will provide theoretical basis for further study on plant genetics phylogenetic research.
Collapse
Affiliation(s)
- Wen-Xiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yue-Yue Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Che Bian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - He-Fei Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yan-Ping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Xie
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ting-Guo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
26
|
Zhou C, Yang Y, Tian J, Wu Y, An F, Li C, Zhang Y. 22R- but not 22S-hydroxycholesterol is recruited for diosgenin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:940-951. [PMID: 34816537 DOI: 10.1111/tpj.15604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/05/2023]
Abstract
Diosgenin is an important compound in the pharmaceutical industry and it is biosynthesized in several eudicot and monocot species, herein represented by fenugreek (a eudicot), and Dioscorea zingiberensis (a monocot). Formation of diosgenin can be achieved by the early C22,16-oxidations of cholesterol followed by a late C26-oxidation. This study reveals that, in both fenugreek and D. zingiberensis, the early C22,16-oxygenase(s) shows strict 22R-stereospecificity for hydroxylation of the substrates. Evidence against the recently proposed intermediacy of 16S,22S-dihydroxycholesterol in diosgenin biosynthesis was also found. Moreover, in contrast to the eudicot fenugreek, which utilizes a single multifunctional cytochrome P450 (TfCYP90B50) to perform the early C22,16-oxidations, the monocot D. zingiberensis has evolved two separate cytochrome P450 enzymes, with DzCYP90B71 being specific for the 22R-oxidation and DzCYP90G6 for the C16-oxidation. We suggest that the DzCYP90B71/DzCYP90G6 pair represent more broadly conserved catalysts for diosgenin biosynthesis in monocots.
Collapse
Affiliation(s)
- Chen Zhou
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 368 Youyi Road, Wuhan, 430062, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 201 Jiufeng Road, Wuhan, 430074, China
| | - Yuhui Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jingyi Tian
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 201 Jiufeng Road, Wuhan, 430074, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 201 Jiufeng Road, Wuhan, 430074, China
| |
Collapse
|
27
|
Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng 2022; 70:115-128. [DOI: 10.1016/j.ymben.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
|
28
|
Nakayasu M, Umemoto N, Akiyama R, Ohyama K, Lee HJ, Miyachi H, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. Characterization of C-26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:81-92. [PMID: 34273198 DOI: 10.1111/tpj.15426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
- Central Laboratories for Key Technologies, Kirin Co., Ltd. Fukuura 1-13-5, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo, 152-8551, Japan
| | - Hyoung J Lee
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Haruka Miyachi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
29
|
Dirks ML, Seale JT, Collins JM, McDougal OM. Review: Veratrum californicum Alkaloids. Molecules 2021; 26:5934. [PMID: 34641477 PMCID: PMC8513088 DOI: 10.3390/molecules26195934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/02/2022] Open
Abstract
Veratrum spp. grow throughout the world and are especially prevalent in high mountain meadows of North America. All parts of Veratrum plants have been used for the treatment of ailments including injuries, hypertension, and rheumatic pain since as far back as the 1600s. Of the 17-45 Veratrum spp., Veratrum californicum alkaloids have been proven to possess favorable medicinal properties associated with inhibition of hedgehog (Hh) pathway signaling. Aberrant Hh signaling leads to proliferation of over 20 cancers, including basal cell carcinoma, prostate and colon among others. Six of the most well-studied V. californicum alkaloids are cyclopamine (1), veratramine (2), isorubijervine (3), muldamine (4), cycloposine (5), and veratrosine (6). Recent inspection of the ethanolic extract from V. californicum root and rhizome via liquid chromatography-mass spectrometry has detected up to five additional alkaloids that are proposed to be verazine (7), etioline (8), tetrahydrojervine (9), dihydrojervine (10), 22-keto-26-aminocholesterol (11). For each alkaloid identified or proposed in V. californicum, this review surveys literature precedents for extraction methods, isolation, identification, characterization and bioactivity to guide natural product drug discovery associated with this medicinal plant.
Collapse
Affiliation(s)
- Madison L. Dirks
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (M.L.D.); (J.T.S.)
| | - Jared T. Seale
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (M.L.D.); (J.T.S.)
| | - Joseph M. Collins
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (M.L.D.); (J.T.S.)
| |
Collapse
|
30
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
31
|
Su X, Liu Y, Han L, Wang Z, Cao M, Wu L, Jiang W, Meng F, Guo X, Yu N, Gui S, Xing S, Peng D. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Sci Rep 2021; 11:9810. [PMID: 33963244 PMCID: PMC8105318 DOI: 10.1038/s41598-021-89294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lu Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
32
|
Kaunda JS, Qin XJ, Zhu HT, Wang D, Yang CR, Zhang YJ. Previously undescribed pyridyl-steroidal glycoalkaloids and 23S,26R-hydroxylated spirostanoid saponin from the fruits of Solanum violaceum ortega and their bioactivities. PHYTOCHEMISTRY 2021; 184:112656. [PMID: 33524854 DOI: 10.1016/j.phytochem.2021.112656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Three previously undescribed pyridyl-steroidal glycoalkaloids, solanindiosides A‒C, one rare 23S,26R-hydroxylated spirostanoid saponin, and two steroidal alkaloid aglycones, solanindins A and B, derived from the acid hydrolysis of solanindiosides A‒C, were isolated from the fruits of Solanum violaceum, together with five known analogues, including two rare steroidal glycosides, two lignans and a diterpene. Structurally, they comprise a 16β-methoxy-23-deoxy-22,26-epimino-cholest-type skeleton moiety, and a 16β-methoxy-3,23-dideoxy-22,26-epimino-cholest-3,5-dien derivative. The hitherto undescribed structures were established on the basis of extensive spectroscopic analyses. Configurations of sugar moieties were resolved by chemical derivations. Solanindiosides A‒C, (22R,23S,25R,26R)-spirost-5-ene-3β,23,26-triol3-O-β-d-xylopyranosyl-(1→3)-β-d-glucopyranoside, solanindins A and B, and (1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-[(2S,3R,4R)-tetrahydro-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)-2-furanyl]phenoxy]-1,3-propanediol were evaluated for their cytotoxic and antibacterial activities. (1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-[(2S,3R,4R)-tetrahydro-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)-2-furanyl]phenoxy]-1,3-propanediol showed the most potent cytotoxic activity against MCF-7 cells (IC50 = 4.386 ± 0.098 μM), while solanindin B displayed some inhibitory effects against Staphylococcus aureus Rosenbach with MIC50 value of 37.32 ± 0.793 μM. In addition, (1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-[(2S,3R,4R)-tetrahydro-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)-2-furanyl]phenoxy]-1,3-propanediol induced dose dependent apoptosis effect in MCF-7 cells.
Collapse
Affiliation(s)
- Joseph Sakah Kaunda
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, PR China.
| |
Collapse
|
33
|
Szeliga M, Ciura J, Tyrka M. Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis. Life (Basel) 2020; 10:life10060088. [PMID: 32575579 PMCID: PMC7344996 DOI: 10.3390/life10060088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Correspondence:
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
| |
Collapse
|
34
|
Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020; 10:metabo10050210. [PMID: 32443694 PMCID: PMC7281251 DOI: 10.3390/metabo10050210] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Plant growth–promoting rhizobacteria (PGPR) are beneficial microbes in the rhizosphere that can directly or indirectly stimulate plant growth. In addition, some can prime plants for enhanced defense against a broad range of pathogens and insect herbivores. In this study, four PGPR strains (Pseudomonas fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and Lysinibacillus sphaericus T22) were used to induce priming in Solanum lycopersicum (cv. Moneymaker) plants. Plants were inoculated with each of the four PGPRs, and plant tissues (roots, stems, and leaves) were harvested at 24 h and 48 h post-inoculation. Methanol-extracted metabolites were analyzed by ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). Chemometric methods were applied to mine the data and characterize the differential metabolic profiles induced by the PGPR. The results revealed that all four strains induced defense-related metabolic reprogramming in the plants, characterized by dynamic changes to the metabolomes involving hydroxycinnamates, benzoates, flavonoids, and glycoalkaloids. In addition, targeted analysis of aromatic amino acids indicated differential quantitative increases or decreases over a two-day period in response to the four PGPR strains. The metabolic alterations point to an altered or preconditioned state that renders the plants primed for enhanced defense responses. The results contribute to ongoing efforts in investigating and unraveling the biochemical processes that define the PGPR priming phenomenon.
Collapse
|
35
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, Van de Peer Y, Graham SW, Melkonian M. Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:741-765. [PMID: 31851546 DOI: 10.1146/annurev-arplant-042916-041040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E9, Canada;
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael Melkonian
- Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
36
|
Mohammadi M, Mashayekh T, Rashidi-Monfared S, Ebrahimi A, Abedini D. New insights into diosgenin biosynthesis pathway and its regulation in Trigonella foenum-graecum L. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:229-241. [PMID: 31469464 DOI: 10.1002/pca.2887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Throughout history, thousands of medicinal and aromatic plants have been widely utilised by people worldwide. Owing to them possessing of valuable compounds with little side effects in comparison with chemical drugs, herbs have been of interest to humans for a number of purposes. Diosgenin, driven from fenugreek, Trigonella foenum-graecum L., has extensively drawn scientist's attention owing to having curable properties and being a precursor of steroid hormones synthesis. Nonetheless, complete knowledge about the biosynthesis pathway of this metabolite is still elusive. OBJECTIVE In the present research, we isolated the full-length CDS of 14 genes involving in diosgenin formation and measured their expression rate in various genotypes, which had illustrated different amount of diosgenin. METHODOLOGY The genes were successfully isolated, and functional motifs were also assessed using in silico approaches. RESULTS Moreover, combining transcript and metabolite analysis revealed that there are many genes playing the role in diosgenin formation, some of which are highly influential. Among them, ∆24 -reductase, which converts cycloartenol to cycloartanol, is the first-committed and rate-limiting enzyme in this pathway. Additionally, no transcripts indicating to the presence or expression of lanosterol synthase were detected, contradicting the previous hypothesis about the biosynthetic pathway of diosgenin in fenugreek. CONCLUSION Considering all these, therefore, we propose the most possible pathway of diosgenin. This knowledge will then pave the way toward cloning the genes as well as engineering the diosgenin biosynthesis pathway.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Tooba Mashayekh
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi-Monfared
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Davar Abedini
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
Ma R, Yu Z, Cai Q, Li H, Dong Y, Oksman-Caldentey KM, Rischer H. Agrobacterium-Mediated Genetic Transformation of the Medicinal Plant Veratrum dahuricum. PLANTS 2020; 9:plants9020191. [PMID: 32033134 PMCID: PMC7076492 DOI: 10.3390/plants9020191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Veratrum dahuricum L. (Liliaceae), a monocotyledonous species distributed throughout the Changbai mountains of Northeast China, is pharmaceutically important, due to the capacity to produce the anticancer drug cyclopamine. An efficient transformation system of Veratrum dahuricum mediated with Agrobacterium tumefaciens is presented. Murashige and Skoog (MS) medium containing 8 mg/L picloram was used to induce embryogenic calli from immature embryos with 56% efficiency. A. tumefaciens LBA4404 carrying the bar gene driven by the cauliflower mosaic virus 35S promoter was employed for embryogenic callus inoculation. A. tumefaciens cell density OD660 = 0.8 for inoculation, half an hour infection period, and three days of co-culture duration were found to be optimal for callus transformation. Phosphinothricin (PPT, 16 mg/L) was used as the selectable agent, and a transformation efficiency of 15% (transgenic plants/100 infected calli) was obtained. The transgenic nature of the regenerated plants was confirmed by PCR and Southern blot analysis, and expression of the bar gene was detected by RT-PCR and Quick PAT/bar strips. The steroid alkaloids cyclopamine, jervine, and veratramine were detected in transgenic plants, in non-transformed and control plants collected from natural sites. The transformation system constitutes a prerequisite for the production of the pharmaceutically important anticancer drug cyclopamine by metabolic engineering of Veratrum.
Collapse
Affiliation(s)
- Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (R.M.); (Z.Y.); (Q.C.); (H.L.)
| | - Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (R.M.); (Z.Y.); (Q.C.); (H.L.)
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (R.M.); (Z.Y.); (Q.C.); (H.L.)
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (R.M.); (Z.Y.); (Q.C.); (H.L.)
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (R.M.); (Z.Y.); (Q.C.); (H.L.)
- Correspondence: (Y.D.); (H.R.); Tel.: +86-0431-8706-3008 (Y.D.); +358-20-722-4461 (H.R.)
| | | | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., P. O. Box 1000, FI-02044 VTT, Espoo, Finland;
- Correspondence: (Y.D.); (H.R.); Tel.: +86-0431-8706-3008 (Y.D.); +358-20-722-4461 (H.R.)
| |
Collapse
|
38
|
Cárdenas PD, Almeida A, Bak S. Evolution of Structural Diversity of Triterpenoids. FRONTIERS IN PLANT SCIENCE 2019; 10:1523. [PMID: 31921225 PMCID: PMC6929605 DOI: 10.3389/fpls.2019.01523] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/01/2019] [Indexed: 05/19/2023]
Abstract
Plants have evolved to produce a blend of specialized metabolites that serve functional roles in plant adaptation. Among them, triterpenoids are one of the largest subclasses of such specialized metabolites, with more than 14,000 known structures. They play a role in plant defense and development and have potential applications within food and pharma. Triterpenoids are cyclized from oxidized squalene precursors by oxidosqualene cyclases, creating more than 100 different cyclical triterpene scaffolds. This limited number of scaffolds is the first step towards creating the vast structural diversity of triterpenoids followed by extensive diversification, in particular, by oxygenation and glycosylation. Gene duplication, divergence, and selection are major forces that drive triterpenoid structural diversification. The triterpenoid biosynthetic genes can be organized in non-homologous gene clusters, such as in Avena spp., Cucurbitaceae and Solanum spp., or scattered along plant chromosomes as in Barbarea vulgaris. Paralogous genes organized as tandem repeats reflect the extended gene duplication activities in the evolutionary history of the triterpenoid saponin pathways, as seen in B. vulgaris. We review and discuss examples of convergent and divergent evolution in triterpenoid biosynthesis, and the apparent mechanisms occurring in plants that drive their increasing structural diversity within and across species. Using B. vulgaris' saponins as examples, we discuss the impact a single structural modification can have on the structure of a triterpenoid and how this affect its biological properties. These examples provide insight into how plants continuously evolve their specialized metabolome, opening the way to study uncharacterized triterpenoid biosynthetic pathways.
Collapse
Affiliation(s)
| | | | - Søren Bak
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
39
|
Eshaghi M, Shiran B, Fallahi H, Ravash R, Đeri BB. Identification of genes involved in steroid alkaloid biosynthesis in Fritillaria imperialis via de novo transcriptomics. Genomics 2019; 111:1360-1372. [DOI: 10.1016/j.ygeno.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023]
|
40
|
Turner MW, Rossi M, Campfield V, French J, Hunt E, Wade E, McDougal OM. Steroidal alkaloid variation in Veratrum californicum as determined by modern methods of analytical analysis. Fitoterapia 2019; 137:104281. [PMID: 31381957 DOI: 10.1016/j.fitote.2019.104281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Veratrum californicum is a rich source of steroidal alkaloids, many of which have proven to be antagonists of the Hedgehog (Hh) signaling pathway that becomes aberrant in over twenty types of cancer. These alkaloids first became known in the 1950's due to their teratogenic properties, which resulted in newborn and fetal lambs developing cyclopia as a result of pregnant ewes consuming Veratrum californicum. It was discovered that the alkaloids in V. californicum were concentrated in the root and rhizome of the plant with much lower amounts of the most active alkaloid, cyclopamine, present in the aerial plant, especially in the late growth season. Inspired by the limitations in analytical instrumentation and methods available to researchers at the time of the original investigation, we have used state-of-the-art instrumentation and modern analytical methods to quantitate four steroidal alkaloids based on study parameters including plant part, harvest location, and growth stage. The results of the current inquiry detail differences in alkaloid composition based on the study parameters, provide a detailed assessment for alkaloids that have been characterized previously (cyclopamine, veratramine, muldamine and isorubijervine), and identify at least six alkaloids that have not been previously characterized. This study provides insight into optimal harvest time, plant growth stage, harvest location, and plant part required to isolate, yet to be characterized, alkaloids of interest for exploration as Hh pathway antagonists with desirable medicinal properties.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - Meagan Rossi
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - Vannessa Campfield
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - John French
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - Ellie Hunt
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - Emily Wade
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Id, 83725, United States of America.
| |
Collapse
|
41
|
Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat Commun 2019; 10:3206. [PMID: 31324795 PMCID: PMC6642093 DOI: 10.1038/s41467-019-11286-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot medicinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum-graecum), an eudicot culinary herb plant commonly used as a galactagogue. Both plants have independently recruited pairs of cytochromes P450 that catalyze oxidative 5,6-spiroketalization of cholesterol to produce diosgenin, with evolutionary progenitors traced to conserved phytohormone metabolism. This study paves the way for engineering the production of diosgenin and derived analogs in heterologous hosts.
Collapse
|
42
|
Szeliga M, Ciura J, Grzesik M, Tyrka M. Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. Gene 2019; 712:143962. [PMID: 31288057 DOI: 10.1016/j.gene.2019.143962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland.
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michalina Grzesik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1, 35-601 Rzeszów, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland
| |
Collapse
|
43
|
Yang Z, Yang L, Liu C, Qin X, Liu H, Chen J, Ji Y. Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia 2019; 135:52-63. [PMID: 30999023 DOI: 10.1016/j.fitote.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
Steroidal saponins, one of the most diverse groups of plant-derived natural products, elicit biological and pharmacological activities; however, the genes involved in their biosynthesis and the corresponding biosynthetic pathway in monocotyledon plants remain unclear. This study aimed to identify genes involved in the biosynthesis of steroidal saponins by performing a comparative analysis among transcriptomes of Paris polyphylla var. chinensis (PPC), Ypsilandra thibetica (YT), and Polygonatum kingianum (PK). De novo transcriptome assemblies generated 57,537, 140,420, and 151,773 unigenes from PPC, YT, and PK, respectively, of which 56.54, 47.81, and 44.30% were successfully annotated, respectively. Among the transcriptomes for PPC, YT, and PK, we identified 194, 169, and 131; 17, 14, and 26; and, 80, 122, and 113 unigenes corresponding to terpenoid backbone biosynthesis; sesquiterpenoid and triterpenoid biosynthesis; and, steroid biosynthesis pathways, respectively. These genes are putatively involved in the biosynthesis of cholesterol that is the primary precursor of steroidal saponins. Phylogenetic analyses indicated that lanosterol synthase may be exclusive to dicotyledon plant species, and the cytochrome P450 unigenes were closely related to clusters CYP90B1 and CYP734A1, which are UDP-glycosyltransferases unigenes homologous with the UGT73 family. Thus, unigenes of β-glucosidase may be candidate genes for catalysis of later period modifications of the steroidal saponin skeleton. Our data provide evidence to support the hypothesis that monocotyledons biosynthesize steroidal saponins from cholesterol via the cycloartenol pathway.
Collapse
Affiliation(s)
- Zhenyan Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Lifang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; School of Life Science, Yunnan University, Kunming 650201, Yunnan, PR China
| | - Changkun Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jiahui Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
44
|
Zhou C, Li X, Zhou Z, Li C, Zhang Y. Comparative Transcriptome Analysis Identifies Genes Involved in Diosgenin Biosynthesis in Trigonella foenum-graecum L. Molecules 2019; 24:molecules24010140. [PMID: 30609669 PMCID: PMC6337231 DOI: 10.3390/molecules24010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
Trigonella foenum-graecum L. (fenugreek) is a valuable resource of producing diosgenin which serves as a substrate for synthesizing more than two hundred kinds of steroidal drugs. Phytochemical analysis indicated that methyl jasmonate (MeJA) efficiently induced diosgenin biosynthesis in fenugreek seedlings. Though early steps up to cholesterol have recently been elucidated in plants, cytochrome P450 (CYP)- and glycosyltransferase (GT)-encoding genes involved in the late steps from cholesterol to diosgenin remain unknown. This study established comparative fenugreek transcriptome datasets from the MeJA-treated seedlings and the corresponding control lines. Differential gene expression analysis identified a number of MeJA-induced CYP and GT candidate genes. Further gene expression pattern analysis across a different MeJA-treating time points, together with a phylogenetic analysis, suggested specific family members of CYPs and GTs that may participate in the late steps during diosgenin biosynthesis. MeJA-induced transcription factors (TFs) that may play regulatory roles in diosgenin biosynthesis were also discussed. This study provided a valuable genetic resource to functionally characterize the genes involved in diosgenin biosynthesis, which will push forward the production of diosgenin in microbial organisms using a promising synthetic biology strategy.
Collapse
Affiliation(s)
- Chen Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zilin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changfu Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yansheng Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
45
|
Yin Y, Gao L, Zhang X, Gao W. A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway. PHYTOCHEMISTRY 2018; 156:116-123. [PMID: 30268044 DOI: 10.1016/j.phytochem.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Polyphyllins are the major steroidal saponin components of Paris polyphylla, the main source plant of the common Chinese herbal medicine Paridis Rhizoma with strong pharmacological activity and extremely high economic value and great market prospects. However, the production of polyphyllins in plants is limited, and their biosynthesis pathway has not been reported. The downstream hydroxylation step was particularly unclear. To clarify the enzymes and intermediates involved in the downstream steps of polyphyllin biosynthesis, we performed a comparative transcriptome analysis and discovered a cytochrome P450 gene that encodes a protein with monooxygenase activity. Heterologous expression in Saccharomyces cerevisiae demonstrated that it encodes an enzyme that catalyzes the formation of 22(R)-hydroxycholesterol from cholesterol. The relative gene expression measured by RT-PCR and polyphyllin contents measured by HPLC in P. polyphylla roots at different ages confirmed that this gene is involved in polyphyllin biosynthesis. To our best knowledge, this is the first report on the cloning of a CYP450 enzyme gene from the steroidal saponin pathway of higher plants.
Collapse
Affiliation(s)
- Yan Yin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; State Key Laboratory of Breeding Base Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xianan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
46
|
Sun B, Wang P, Wang R, Li Y, Xu S. Molecular Cloning and Characterization of a meta/ para- O-Methyltransferase from Lycoris aurea. Int J Mol Sci 2018; 19:ijms19071911. [PMID: 29966257 PMCID: PMC6073595 DOI: 10.3390/ijms19071911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
O-methyltransferases (OMTs) have been demonstrated to play key roles in the biosynthesis of plant secondary metabolites, such as alkaloids, isoprenoids, and phenolic compounds. Here, we isolated and characterized an OMT gene from Lycoris aurea (namely LaOMT1), based on our previous transcriptome sequencing data. Sequence alignment and phylogenetic analysis showed that LaOMT1 belongs to the class I OMT, and shares high identity to other known plant OMTs. Also, LaOMT1 is highly identical in its amino acid sequence to NpN4OMT, a norbelladine 4′-OMT from Narcissus sp. aff. pseudonarcissus involved in the biosynthesis of Amaryllidaceae alkaloids. Biochemical analysis indicated that the recombinant LaOMT1 displayed both para and metaO-methylation activities with caffeic acid and 3,4-dihydroxybenzaldehyde, and showed a strong preference for the meta position. Besides, LaOMT1 also catalyzes the O-methylation of norbelladine to form 4′-O-methylnorbelladine, which has been demonstrated to be a universal precursor of all the primary Amaryllidaceae alkaloid skeletons. The results from quantitative real-time PCR assay indicated that LaOMT1 was ubiquitously expressed in different tissues of L. aurea, and its highest expression level was observed in the ovary. Meanwhile, the largest concentration of lycorine and galanthamine were found in the ovary, whereas the highest level of narciclasine was observed in the bulb. In addition, sodium chloride (NaCl), cold, polyethylene glycol (PEG), sodium nitroprusside (SNP), and methyl jasmonate (MeJA) treatments could significantly increase LaOMT1 transcripts, while abscisic acid (ABA) treatment dramatically decreased the expression level of LaOMT1. Subcellular localization showed that LaOMT1 is mainly localized in cytoplasm and endosome. Our results in this study indicate that LaOMT1 may play a multifunctional role, and lay the foundation for Amaryllidaceae alkaloid biosynthesis in L. aurea.
Collapse
Affiliation(s)
- Bin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Peng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| | - Yikui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| |
Collapse
|
47
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
48
|
Wang CC, Meng LH, Gao Y, Grierson D, Fu DQ. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:437. [PMID: 29706975 PMCID: PMC5906708 DOI: 10.3389/fpls.2018.00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5) and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3), by virus-induced gene silencing (VIGS), altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17), affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.
Collapse
Affiliation(s)
- Cui-cui Wang
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lan-huan Meng
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Gao
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Da-qi Fu
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Da-qi Fu
| |
Collapse
|
49
|
Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee HJ, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. PLANT PHYSIOLOGY 2017; 175:120-133. [PMID: 28754839 PMCID: PMC5580751 DOI: 10.1104/pp.17.00501] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites that are found in the Solanaceae. Potato (Solanum tuberosum) contains the SGAs α-solanine and α-chaconine, while tomato (Solanum lycopersicum) contains α-tomatine, all of which are biosynthesized from cholesterol. However, although two cytochrome P450 monooxygenases that catalyze the 22- and 26-hydroxylation of cholesterol have been identified, the 16-hydroxylase remains unknown. Feeding with deuterium-labeled cholesterol indicated that the 16α- and 16β-hydrogen atoms of cholesterol were eliminated to form α-solanine and α-chaconine in potato, while only the 16α-hydrogen atom was eliminated in α-tomatine biosynthesis, suggesting that a single oxidation at C-16 takes place during tomato SGA biosynthesis while a two-step oxidation occurs in potato. Here, we show that a 2-oxoglutarate-dependent dioxygenase, designated as 16DOX, is involved in SGA biosynthesis. We found that the transcript of potato 16DOX (St16DOX) was expressed at high levels in the tuber sprouts, where large amounts of SGAs are accumulated. Biochemical analysis of the recombinant St16DOX protein revealed that St16DOX catalyzes the 16α-hydroxylation of hydroxycholesterols and that (22S)-22,26-dihydroxycholesterol was the best substrate among the nine compounds tested. St16DOX-silenced potato plants contained significantly lower levels of SGAs, and a detailed metabolite analysis revealed that they accumulated the glycosides of (22S)-22,26-dihydroxycholesterol. Analysis of the tomato 16DOX (Sl16DOX) gene gave essentially the same results. These findings clearly indicate that 16DOX is a steroid 16α-hydroxylase that functions in the SGA biosynthetic pathway. Furthermore, St16DOX silencing did not affect potato tuber yield, indicating that 16DOX may be a suitable target for controlling toxic SGA levels in potato.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Naoyuki Umemoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
50
|
Kumar A, Chand G, Agnihotri VK. A new oxo-sterol derivative from the rhizomes of Costus speciosus. Nat Prod Res 2017; 32:18-22. [DOI: 10.1080/14786419.2017.1324962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Kumar
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Gopi Chand
- Biodiversity Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, India
| | - Vijai K. Agnihotri
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|