1
|
Fernandes T, Gonçalves NM, Matiolli CC, Rodrigues MAA, Barros PM, Oliveira MM, Abreu IA. SUMOylation of rice DELLA SLR1 modulates transcriptional responses and improves yield under salt stress. PLANTA 2024; 260:136. [PMID: 39514093 PMCID: PMC11549141 DOI: 10.1007/s00425-024-04565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
MAIN CONCLUSION SUMOylation of SLR1 at K2 protects productivity under salt stress, possibly by modulation of SLR1 interactome. DELLA proteins modulate GA signaling and are major regulators of plant plasticity to endure stress. DELLAs are mostly regulated at the post-translational level, and their activity relies on the interaction with upstream regulators and transcription factors (TFs). SUMOylation is a post-translational modification (PTM) capable of changing protein interaction and has been found to influence DELLA activity in Arabidopsis. We determined that SUMOylation of the single rice DELLA, SLENDER RICE1 (SLR1), occurs in a lysine residue different from the one identified in Arabidopsis REPRESSOR OF GA (RGA). Artificially increasing the SUMOylated SLR1 levels attenuated the penalty of salt stress on rice yield. Gene expression analysis revealed that the overexpression of SUMOylated SLR1 can regulate GA biosynthesis, which could partially explain the sustained productivity upon salt stress imposition. Furthermore, SLR1 SUMOylation blocked the interaction with the growth regulator YAB4, which may fine-tune GA20ox2 expression. We also identified novel SLR1 interactors: bZIP23, bHLH089, bHLH094, and OSH1. All those interactions were impaired in the presence of SUMOylated SLR1. Mechanistically, we propose that SUMOylation of SLR1 disrupts its interaction with several transcription factors implicated in GA-dependent growth and ABA-dependent salinity tolerance to modulate downstream gene expression. We found that SLR1 SUMOylation represents a novel mechanism modulating DELLA activity, which attenuates the impact of stress on plant performance.
Collapse
Affiliation(s)
- Telma Fernandes
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Nuno M Gonçalves
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Cleverson C Matiolli
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Mafalda A A Rodrigues
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| |
Collapse
|
2
|
Aghdam MS, Razavi F, Jia H. TOR and SnRK1 signaling pathways manipulation for improving postharvest fruits and vegetables marketability. Food Chem 2024; 456:139987. [PMID: 38852461 DOI: 10.1016/j.foodchem.2024.139987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
During postharvest life, intracellular sugar insufficiency accompanied by insufficient intracellular ATP and NADPH supply, intracellular ROS overaccumulation along with intracellular ABA accumulation arising from water shortage could be responsible for accelerating fruits and vegetables deterioration through promoting SnRK1 and SnRK2 signaling pathways while preventing TOR signaling pathway. By TOR and SnRK1 signaling pathways manipulation, sufficient intracellular ATP and NADPH providing, supporting phenols, flavonoids and anthocyanins accumulation accompanied by improving DPPH, FRAP, and ABTS scavenging capacity by enhancing phenylpropanoid pathway activity, stimulating endogenous salicylic acid accumulation and NPR1-TGA-PRs signaling pathway, enhancing fatty acids biosynthesis, elongation and unsaturation, suppressing intracellular ROS overaccumulation, and promoting endogenous sucrose accumulation could be responsible for chilling injury palliating, fungal decay alleviating, senescence delaying and sensory and nutritional quality preservation in fruits and vegetables. Therefore, TOR and SnRK1 signaling pathways manipulation during postharvest shelf life by employing eco-friendly approaches such as exogenous trehalose and ATP application or engaging biotechnological approaches such as genome editing CRISPR-Cas9 or sprayable double-stranded RNA-based RNA interference would be applicable for improving fruits and vegetables marketability.
Collapse
Affiliation(s)
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Haifeng Jia
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
Lopes FL, Formosa-Jordan P, Malivert A, Margalha L, Confraria A, Feil R, Lunn JE, Jönsson H, Landrein B, Baena-González E. Sugar signaling modulates SHOOT MERISTEMLESS expression and meristem function in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2408699121. [PMID: 39240964 PMCID: PMC11406306 DOI: 10.1073/pnas.2408699121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 09/08/2024] Open
Abstract
In plants, development of all above-ground tissues relies on the shoot apical meristem (SAM) which balances cell proliferation and differentiation to allow life-long growth. To maximize fitness and survival, meristem activity is adjusted to the prevailing conditions through a poorly understood integration of developmental signals with environmental and nutritional information. Here, we show that sugar signals influence SAM function by altering the protein levels of SHOOT MERISTEMLESS (STM), a key regulator of meristem maintenance. STM is less abundant in inflorescence meristems with lower sugar content, resulting from plants being grown or treated under limiting light conditions. Additionally, sucrose but not light is sufficient to sustain STM accumulation in excised inflorescences. Plants overexpressing the α1-subunit of SUCROSE-NON-FERMENTING1-RELATED KINASE 1 (SnRK1) accumulate less STM protein under optimal light conditions, despite higher sugar accumulation in the meristem. Furthermore, SnRK1α1 interacts physically with STM and inhibits its activity in reporter assays, suggesting that SnRK1 represses STM protein function. Contrasting the absence of growth defects in SnRK1α1 overexpressors, silencing SnRK1α in the SAM leads to meristem dysfunction and severe developmental phenotypes. This is accompanied by reduced STM transcript levels, suggesting indirect effects on STM. Altogether, we demonstrate that sugars promote STM accumulation and that the SnRK1 sugar sensor plays a dual role in the SAM, limiting STM function under unfavorable conditions but being required for overall meristem organization and integrity under favorable conditions. This highlights the importance of sugars and SnRK1 signaling for the proper coordination of meristem activities.
Collapse
Affiliation(s)
- Filipa L Lopes
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Pau Formosa-Jordan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Max Planck Institute for Plant Breeding Research, Cologne D-50829, Germany
| | - Alice Malivert
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de la Recherche Agronomique, Lyon Cedex 07 69342, France
| | - Leonor Margalha
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0DZ, United Kingdom
- Computational Biology and Biological Physics, Lund University, Lund 223 62, Sweden
| | - Benoît Landrein
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de la Recherche Agronomique, Lyon Cedex 07 69342, France
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
4
|
Wang J, Zhu R, Meng Q, Qin H, Quan R, Wei P, Li X, Jiang L, Huang R. A natural variation in OsDSK2a modulates plant growth and salt tolerance through phosphorylation by SnRK1A in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1881-1896. [PMID: 38346083 PMCID: PMC11182596 DOI: 10.1111/pbi.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 06/19/2024]
Abstract
Plants grow rapidly for maximal production under optimal conditions; however, they adopt a slower growth strategy to maintain survival when facing environmental stresses. As salt stress restricts crop architecture and grain yield, identifying genetic variations associated with growth and yield responses to salinity is critical for breeding optimal crop varieties. OsDSK2a is a pivotal modulator of plant growth and salt tolerance via the modulation of gibberellic acid (GA) metabolism; however, its regulation remains unclear. Here, we showed that OsDSK2a can be phosphorylated at the second amino acid (S2) to maintain its stability. The gene-edited mutant osdsk2aS2G showed decreased plant height and enhanced salt tolerance. SnRK1A modulated OsDSK2a-S2 phosphorylation and played a substantial role in GA metabolism. Genetic analysis indicated that SnRK1A functions upstream of OsDSK2a and affects plant growth and salt tolerance. Moreover, SnRK1A activity was suppressed under salt stress, resulting in decreased phosphorylation and abundance of OsDSK2a. Thus, SnRK1A preserves the stability of OsDSK2a to maintain plant growth under normal conditions, and reduces the abundance of OsDSK2a to limit growth under salt stress. Haplotype analysis using 3 K-RG data identified a natural variation in OsDSK2a-S2. The allele of OsDSK2a-G downregulates plant height and improves salt-inhibited grain yield. Thus, our findings revealed a new mechanism for OsDSK2a stability and provided a valuable target for crop breeding to overcome yield limitations under salinity stress.
Collapse
Affiliation(s)
- Juan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rui Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Qingshi Meng
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hua Qin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Pengcheng Wei
- College of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Xiaoying Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Lei Jiang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
5
|
Sun J, Liu H, Blanford JK, Cai Y, Zhai Z, Shanklin J. GRIK phosphorylates and activates KIN10 which also promotes its degradation. FRONTIERS IN PLANT SCIENCE 2024; 15:1375471. [PMID: 38590740 PMCID: PMC10999582 DOI: 10.3389/fpls.2024.1375471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
The sensor kinase Sucrose Non-fermenting-1-Related Kinase 1 (SnRK1) plays a central role in energy and metabolic homeostasis. KIN10 is a major catalytic (α) kinase subunit of SnRK1 regulated by transcription, posttranslational modification, targeted protein degradation, and its subcellular localization. Geminivirus Rep Interacting Kinase 1 and 2 (GRIK1 and 2) are immediate upstream kinases of KIN10. In the transient protein expression assays carried out in Nicotiana benthamiana (N. benthamiana) leaves, GRIK1 not only phosphorylates KIN10 but also simultaneously initiates its degradation. Posttranslational GRIK-mediated KIN10 degradation is dependent on both GRIK kinase activity and phosphorylation of the KIN10 T-loop. KIN10 proteins are significantly enriched in the grik1-1 grik2-1 double mutant, consistent with the transient assays in N. benthamiana. Interestingly. Among the enriched KIN10 proteins from grik1-1 grik2-1, is a longer isoform, putatively derived by alternative splicing which is barely detectable in wild-type plants. The reduced stability of KIN10 upon phosphorylation and activation by GRIK represents a mechanism that enables the KIN10 activity to be rapidly reduced when the levels of intracellular sugar/energy are restored to their set point, representing an important homeostatic control that prevents a metabolic overreaction to low-sugar conditions. Since GRIKs are activating kinases of KIN10, KIN10s in the grik1 grik2 double null mutant background remain un-phosphorylated, with only their basal level of activity, are more stable, and therefore increase in abundance, which also explains the longer isoform KIN10L which is a minor isoform in wild type is clearly detected in the grik1 grik2 double mutant.
Collapse
|
6
|
Li X, Xu Y, Wei Z, Kuang J, She M, Wang Y, Jin Q. NnSnRK1-NnATG1-mediated autophagic cell death governs flower bud abortion in shaded lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:979-998. [PMID: 38102881 DOI: 10.1111/tpj.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.
Collapse
Affiliation(s)
- Xiehongsheng Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyao Wei
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaying Kuang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhao She
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Asim M, Zhang Y, Sun Y, Guo M, Khan R, Wang XL, Hussain Q, Shi Y. Leaf senescence attributes: the novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormones signaling nodes. Crit Rev Biotechnol 2023; 43:1092-1110. [PMID: 35968918 DOI: 10.1080/07388551.2022.2094215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Sugars are the primary products of photosynthesis and play multiple roles in plants. Although sugars are usually considered to be the building blocks of energy storage and carbon transport molecules, they have also gradually come to be acknowledged as signaling molecules that can initiate senescence. Senescence is an active and essential process that occurs at the last developmental stage and corresponds to programmed degradation of: cells, tissues, organs, and entire organisms. It is a complex process involving: numerous biochemical changes, transporters, genes, and transcription factors. The process is controlled by multiple developmental signals, among which sugar signals are considered to play a vital role; however, the regulatory pathways involved are not fully understood. The dynamic mechanistic framework of sugar accumulation has an inconsistent effect on senescence through the sugar signaling pathway. Key metabolizing enzymes produce different sugar signals in response to the onset of senescence. Diverse sugar signal transduction pathways and a variety of sugar sensors are involved in controlling leaf senescence. This review highlights the processes underlying initiation of sugar signaling and crosstalk between sugars and hormones signal transduction pathways affecting leaf senescence. This summary of the state of current knowledge across different plants aids in filling knowledge gaps and raises key questions that remain to be answered with respect to regulation of leaf senescence by sugar signaling pathways.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Yanguo Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Mei Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Xiao Lin Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| |
Collapse
|
8
|
Simpson-Lavy K, Kupiec M. Glucose Inhibits Yeast AMPK (Snf1) by Three Independent Mechanisms. BIOLOGY 2023; 12:1007. [PMID: 37508436 PMCID: PMC10376661 DOI: 10.3390/biology12071007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Snf1, the fungal homologue of mammalian AMP-dependent kinase (AMPK), is a key protein kinase coordinating the response of cells to a shortage of glucose. In fungi, the response is to activate respiratory gene expression and metabolism. The major regulation of Snf1 activity has been extensively investigated: In the absence of glucose, it becomes activated by phosphorylation of its threonine at position 210. This modification can be erased by phosphatases when glucose is restored. In the past decade, two additional independent mechanisms of Snf1 regulation have been elucidated. In response to glucose (or, surprisingly, also to DNA damage), Snf1 is SUMOylated by Mms21 at lysine 549. This inactivates Snf1 and leads to Snf1 degradation. More recently, glucose-induced proton export has been found to result in Snf1 inhibition via a polyhistidine tract (13 consecutive histidine residues) at the N-terminus of the Snf1 protein. Interestingly, the polyhistidine tract plays also a central role in the response to iron scarcity. This review will present some of the glucose-sensing mechanisms of S. cerevisiae, how they interact, and how their interplay results in Snf1 inhibition by three different, and independent, mechanisms.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Yang C, Li X, Yang L, Chen S, Liao J, Li K, Zhou J, Shen W, Zhuang X, Bai M, Bassham DC, Gao C. A positive feedback regulation of SnRK1 signaling by autophagy in plants. MOLECULAR PLANT 2023; 16:1192-1211. [PMID: 37408307 DOI: 10.1016/j.molp.2023.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
SnRK1, an evolutionarily conserved heterotrimeric kinase complex that acts as a key metabolic sensor in maintaining energy homeostasis in plants, is an important upstream activator of autophagy that serves as a cellular degradation mechanism for the healthy growth of plants. However, whether and how the autophagy pathway is involved in regulating SnRK1 activity remains unknown. In this study, we identified a clade of plant-specific and mitochondria-localized FCS-like zinc finger (FLZ) proteins as currently unknown ATG8-interacting partners that actively inhibit SnRK1 signaling by repressing the T-loop phosphorylation of the catalytic α subunits of SnRK1, thereby negatively modulating autophagy and plant tolerance to energy deprivation caused by long-term carbon starvation. Interestingly, these AtFLZs are transcriptionally repressed by low-energy stress, and AtFLZ proteins undergo a selective autophagy-dependent pathway to be delivered to the vacuole for degradation, thereby constituting a positive feedback regulation to relieve their repression of SnRK1 signaling. Bioinformatic analyses show that the ATG8-FLZ-SnRK1 regulatory axis first appears in gymnosperms and seems to be highly conserved during the evolution of seed plants. Consistent with this, depletion of ATG8-interacting ZmFLZ14 confers enhanced tolerance, whereas overexpression of ZmFLZ14 leads to reduced tolerance to energy deprivation in maize. Collectively, our study reveals a previously unknown mechanism by which autophagy contributes to the positive feedback regulation of SnRK1 signaling, thereby enabling plants to better adapt to stressful environments.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mingyi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Wang H, Han C, Wang JG, Chu X, Shi W, Yao L, Chen J, Hao W, Deng Z, Fan M, Bai MY. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression. NATURE PLANTS 2022; 8:1094-1107. [PMID: 36050463 DOI: 10.1038/s41477-022-01236-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The coordinated metabolism of carbon and nitrogen is essential for optimal plant growth and development. Nitrate is an important molecular signal for plant adaptation to a changing environment, but how nitrate regulates plant growth under carbon deficiency conditions remains unclear. Here we show that the evolutionarily conserved energy sensor SnRK1 negatively regulates the nitrate signalling pathway. Nitrate promoted plant growth and downstream gene expression, but such effects were repressed when plants were grown under carbon deficiency conditions. Mutation of KIN10, the α-catalytic subunit of SnRK1, partially suppressed the inhibitory effects of carbon deficiency on nitrate-mediated plant growth. KIN10 phosphorylated NLP7, the master regulator of the nitrate signalling pathway, to promote its cytoplasmic localization and degradation. Furthermore, nitrate depletion induced KIN10 accumulation, whereas nitrate treatment promoted KIN10 degradation. Such KIN10-mediated NLP7 regulation allows carbon and nitrate availability to control optimal nitrate signalling and ensures the coordination of carbon and nitrogen metabolism in plants.
Collapse
Affiliation(s)
- Honglei Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jia-Gang Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaoqian Chu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
11
|
Jiang H, Zhou LJ, Gao HN, Wang XF, Li ZW, Li YY. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. PLANT PHYSIOLOGY 2022; 189:2044-2060. [PMID: 35522008 PMCID: PMC9342976 DOI: 10.1093/plphys/kiac211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 05/08/2023]
Abstract
Conjugation of the small ubiquitin-like modifier (SUMO) peptide to target proteins is an important post-translational modification. SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (MdSIZ1) is an apple (Malus domestica Borkh). SUMO E3 ligase that mediates sumoylation of its targets during plant growth and development under adverse environmental conditions. However, it is unclear how MdSIZ1 senses the various environmental signals and whether sumoylation is regulated at the transcriptional level. In this study, we analyzed the MdSIZ1 promoter and found that it contained an MYB binding site (MBS) motif that was essential for the response of MdSIZ1 to low temperature (LT) and drought. Subsequently, we used yeast one-hybridization screening to demonstrate that a MYB transcription factor, MdMYB2, directly bound to the MBS motif in the MdSIZ1 promoter. Phenotypic characterization of MdMYB2 and MdSIZ1 suggested that the expression of both MdMYB2 and MdSIZ1 substantially improved cold tolerance in plants. MdMYB2 was induced by LT and further activated the expression of MdSIZ1, thereby promoting the sumoylation of MdMYB1, a key regulator of anthocyanin biosynthesis in apple. MdMYB2 promoted anthocyanin accumulation in apple fruits, apple calli, and Arabidopsis (Arabidopsis thaliana) in an MdSIZ1-dependent manner. In addition, the interaction of MdMYB2 and the MdSIZ1 promoter substantially improved plant tolerance to cold stress. Taken together, our findings reveal an important role for transcriptional regulation of sumoylation and provide insights into plant anthocyanin biosynthesis regulation mechanisms and stress response.
Collapse
Affiliation(s)
| | | | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zhi-Wen Li
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | | |
Collapse
|
12
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
13
|
Han C, Qiao Y, Yao L, Hao W, Liu Y, Shi W, Fan M, Bai MY. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. THE NEW PHYTOLOGIST 2022; 234:107-121. [PMID: 35060119 DOI: 10.1111/nph.17984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the differentiation of epidermal cells into stomata is regulated by endogenous and environmental signals. Sugar is required for plant epidermal cell proliferation and differentiation. However, it is unclear how epidermal cells maintain division and differentiation to generate proper amounts of stomata in response to different sugar availability. Here, we show that two evolutionarily conserved kinase Snf1-related protein kinase 1 (SnRK1) and Target of rapamycin (TOR) play critical roles in the regulation of stomatal development under different sugar availability. When plants are grown on a medium containing 1% sucrose, sucrose-activated TOR promotes the stomatal development by inducing the expression of SPEECHLESS (SPCH), a master regulator of stomatal development. SnRK1 promotes stomatal development through phosphorylating and stabilizing SPCH. However, under the high sucrose conditions, the highly accumulated trehalose-6-phosphate (Tre6P) represses the activity of KIN10, the catalytic α-subunit of SnRK1, by reducing the interaction between KIN10 and its upstream kinase, consequently promoting SPCH degradation and inhibiting stomatal development. Our findings revealed that TOR and SnRK1 finely regulate SPCH expression and protein stability to optimize the stomatal development in response to exogenously supplied sugar.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
14
|
Sarkar AK, Sadhukhan S. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13647. [PMID: 35141895 DOI: 10.1111/ppl.13647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Sugar transport and distribution have a direct impact on the growth and development of plants. Many sugars significantly influence salt stress response. The sensing of salt stress signals triggers a wide array of complicated network transduction pathways in plants. Trehalose and its intermediate compounds effectively modulate salt response and salt tolerance. Sugars such as trehalose and its derivatives not only serve as metabolic resources and structural components of cells in plants but also exhibit hormone-like regulating properties. Trehalose has an important physiological role in improving plant tolerance against salinity stresses in different plants. Plants finely adjust their cytoplasmic compatible solute pool to cope with high salinity. Salt stress induces a variety of structural, anatomical, molecular, biochemical, and physiological changes in plants, all of which have a detrimental influence on plant growth and development. This review highlights the recent developments in understanding trehalose and trehalose-6-phosphate signaling processes in plants, especially their impacts on plants growing in salty environments.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
15
|
Aghdam MS, Ebrahimi A, Sheikh-Assadi M. Phytosulfokine α (PSKα) delays senescence and reinforces SUMO1/SUMO E3 ligase SIZ1 signaling pathway in cut rose flowers (Rosa hybrida cv. Angelina). Sci Rep 2021; 11:23227. [PMID: 34853400 PMCID: PMC8636500 DOI: 10.1038/s41598-021-02712-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Roses are widely used as cut flowers worldwide. Petal senescence confines the decorative quality of cut rose flowers, an impressively considerable economic loss. Herein, we investigated the SUMO1/SUMO E3 ligase SIZ1 signaling pathway during bud opening, and petal senescence of cut rose flowers. Our results exhibited that the higher expression of SUMO1 and SUMO E3 ligase SIZ1 during bud opening was accompanied by lower endogenous H2O2 accumulation arising from higher expression and activities of SOD, CAT, APX, and GR, promoting proline accumulation by increasing P5CS expression and activity and enhancing GABA accumulation by increasing GAD expression and activity. In harvested flowers, lower expressions of SUMO1 and SUMO E3 ligase SIZ1 during petal senescence were associated with higher endogenous H2O2 accumulation due to lower expression and activities of SOD, CAT, APX, and GR. Therefore, promoting the activity of the GABA shunt pathway as realized by higher expression and activities of GABA-T and SSADH accompanied by increasing OAT expression and activity for sufficiently supply proline in rose flowers during petal senescence might serve as an endogenous antisenescence mechanism for slowing down petals senescence by avoiding endogenous H2O2 accumulation. Following phytosulfokine α (PSKα) application, postponing petal senescence in cut rose flowers could be ascribed to higher expression of SUMO1 and SUMO E3 ligase SIZ1 accompanied by higher expression and activities of SOD, CAT, APX, and GR, higher activity of GABA shunt pathway as realized by higher expression and activities of GAD, GABA-T, and SSADH, higher expression and activities of P5CS and OAT for supplying proline and higher expression of HSP70 and HSP90. Therefore, our results highlight the potential of the PSKα as a promising antisenescence signaling peptide in the floriculture industry for postponing senescence and extending the vase life of cut rose flowers.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Amin Ebrahimi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Morteza Sheikh-Assadi
- Department of Horticultural Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
16
|
Gao S, Zeng X, Wang J, Xu Y, Yu C, Huang Y, Wang F, Wu K, Yang S. Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells 2021; 10:cells10113001. [PMID: 34831226 PMCID: PMC8616286 DOI: 10.3390/cells10113001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023] Open
Abstract
The changes in histone acetylation mediated by histone deacetylases (HDAC) play a crucial role in plant development and response to environmental changes. Mammalian HDACs are regulated by post-translational modifications (PTM), such as phosphorylation, acetylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification (SUMOylation), which affect enzymatic activity and transcriptional repression. Whether PTMs of plant HDACs alter their functions are largely unknown. In this study, we demonstrated that the Arabidopsis SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HISTONE DEACETYLASE 6 (HDA6) both in vitro and in vivo. Biochemical analyses indicated that HDA6 is not modified by SUMO1. Overexpression of HDA6 in siz1-3 background results in a decreased level of histone H3 acetylation, indicating that the activity of HDA6 is increased in siz1-3 plants. Chromatin immunoprecipitation (ChIP) assays showed that SIZ1 represses HDA6 binding to its target genes FLOWERING LOCUS C (FLC) and MADS AFFECTING FLOWERING 4 (MAF4), resulting in the upregulation of FLC and MAF4 by increasing the level of histone H3 acetylation. Together, these findings indicate that the Arabidopsis SUMO E3 ligase SIZ1 interacts with HDA6 and negatively regulates HDA6 function.
Collapse
Affiliation(s)
- Sujuan Gao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Ministry of Agriculture, Guangzhou 510225, China;
| | - Xueqin Zeng
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510000, China;
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Chunwei Yu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
| | - Yishui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
- Correspondence: (K.W.); (S.Y.)
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (K.W.); (S.Y.)
| |
Collapse
|
17
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
18
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
19
|
Lessons from Comparison of Hypoxia Signaling in Plants and Mammals. PLANTS 2021; 10:plants10050993. [PMID: 34067566 PMCID: PMC8157222 DOI: 10.3390/plants10050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia is an important stress for organisms, including plants and mammals. In plants, hypoxia can be the consequence of flooding and causes important crop losses worldwide. In mammals, hypoxia stress may be the result of pathological conditions. Understanding the regulation of responses to hypoxia offers insights into novel approaches for crop improvement, particularly for the development of flooding-tolerant crops and for producing better therapeutics for hypoxia-related diseases such as inflammation and cancer. Despite their evolutionary distance, plants and mammals deploy strikingly similar mechanisms to sense and respond to the different aspects of hypoxia-related stress, including low oxygen levels and the resulting energy crisis, nutrient depletion, and oxidative stress. Over the last two decades, the ubiquitin/proteasome system and the ubiquitin-like protein SUMO have been identified as key regulators that act in concert to regulate core aspects of responses to hypoxia in plants and mammals. Here, we review ubiquitin and SUMO-dependent mechanisms underlying the regulation of hypoxia response in plants and mammals. By comparing and contrasting these mechanisms in plants and mammals, this review seeks to pinpoint conceptually similar mechanisms but also highlight future avenues of research at the junction between different fields of research.
Collapse
|
20
|
Zhang X, Huai J, Liu S, Jin JB, Lin R. SIZ1-Mediated SUMO Modification of SEUSS Regulates Photomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100080. [PMID: 33367258 PMCID: PMC7748021 DOI: 10.1016/j.xplc.2020.100080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
Small ubiquitin-like modifier (SUMO) post-translational modification (SUMOylation) plays essential roles in regulating various biological processes; however, its function and regulation in the plant light signaling pathway are largely unknown. SEUSS (SEU) is a transcriptional co-regulator that integrates light and temperature signaling pathways, thereby regulating plant growth and development in Arabidopsis thaliana. Here, we show that SEU is a substrate of SUMO1, and that substitution of four conserved lysine residues disrupts the SUMOylation of SEU, impairs its function in photo- and thermomorphogenesis, and enhances its interaction with PHYTOCHROME-INTERACTING FACTOR 4 transcription factors. Furthermore, the SUMO E3 ligase SIZ1 interacts with SEU and regulates its SUMOylation. Moreover, SEU directly interacts with phytochrome B photoreceptors, and the SUMOylation and stability of SEU are activated by light. Our study reveals a novel post-translational modification mechanism of SEU in which light regulates plant growth and development through SUMOylation-mediated protein stability.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo Jin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
21
|
Han C, Liu Y, Shi W, Qiao Y, Wang L, Tian Y, Fan M, Deng Z, Lau OS, De Jaeger G, Bai MY. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nat Commun 2020; 11:4214. [PMID: 32843632 PMCID: PMC7447634 DOI: 10.1038/s41467-020-18048-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
22
|
Zheng T, Li Y, Lei W, Qiao K, Liu B, Zhang D, Lin H. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110355. [PMID: 32005403 DOI: 10.1016/j.plantsci.2019.110355] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 05/20/2023]
Abstract
Sumoylation is one of post-translational modification (PTM) in which SUMO (small ubiquitin-like modifier) are covalently conjugated to protein substrates through a range of biochemical steps. This paper presents evidence that SUMO E3 ligase SIZ1 positively regulates anthocyanin accumulation. Loss-of-function siz1 mutant seedlings exhibit anthocyanin accumulation-reduced phenotype under high light conditions. Moreover, SIZ1 interacts and sumoylates MYB75/PAP1, a key transcription factor in anthocyanin accumulation. Loss-of-function siz1 or K246R substitution in MYB75 blocked SIZ1-mediated sumoylation in vitro and in vivo. Anthocyanin accumulation in mutant myb75-c can not be rescued by expressing MYB75K246R, but expression of wild-type MYB75WT complements the mutant phenotype. It suggested that sumoylation is important for MYB75 function. We further prove that sumoylation is essential for MYB75 protein stability. And SIZ1 is involved in the light-induced accumulation of anthocyanins. Our findings reveal an important role for sumoylation of MYB in regulation of anthocyanin accumulation in plants.
Collapse
Affiliation(s)
- Ting Zheng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Kang Qiao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
23
|
Ninova M, Chen YCA, Godneeva B, Rogers AK, Luo Y, Fejes Tóth K, Aravin AA. Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. Mol Cell 2019; 77:556-570.e6. [PMID: 31901446 DOI: 10.1016/j.molcel.2019.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023]
Abstract
Regulation of transcription is the main mechanism responsible for precise control of gene expression. Whereas the majority of transcriptional regulation is mediated by DNA-binding transcription factors that bind to regulatory gene regions, an elegant alternative strategy employs small RNA guides, Piwi-interacting RNAs (piRNAs) to identify targets of transcriptional repression. Here, we show that in Drosophila the small ubiquitin-like protein SUMO and the SUMO E3 ligase Su(var)2-10 are required for piRNA-guided deposition of repressive chromatin marks and transcriptional silencing of piRNA targets. Su(var)2-10 links the piRNA-guided target recognition complex to the silencing effector by binding the piRNA/Piwi complex and inducing SUMO-dependent recruitment of the SetDB1/Wde histone methyltransferase effector. We propose that in Drosophila, the nuclear piRNA pathway has co-opted a conserved mechanism of SUMO-dependent recruitment of the SetDB1/Wde chromatin modifier to confer repression of genomic parasites.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alicia K Rogers
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Yicheng Luo
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the "yin-yang" model? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110220. [PMID: 31521220 DOI: 10.1016/j.plantsci.2019.110220] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
Plants are sessile photo-autotrophic organisms continuously exposed to a variety of environmental stresses. Monitoring the sugar level and energy status is essential, since this knowledge allows the integration of external and internal cues required for plant physiological and developmental plasticity. Most abiotic stresses induce severe metabolic alterations and entail a great energy cost, restricting plant growth and producing important crop losses. Therefore, balancing energy requirements with supplies is a major challenge for plants under unfavorable conditions. The conserved kinases target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase-1 (SnRK1) play central roles during plant growth and development, and in response to environmental stresses; these kinases affect cellular processes and metabolic reprogramming, which has physiological and phenotypic consequences. The "yin-yang" model postulates that TOR and SnRK1 act in opposite ways in the regulation of metabolic-driven processes. In this review, we describe and discuss the current knowledge about the complex and intricate regulation of TOR and SnRK1 under abiotic stresses. We especially focus on the physiological perspective that, under certain circumstances during the plant stress response, the TOR and SnRK1 kinases could be modulated differently from what is postulated by the "yin-yang" concept.
Collapse
Affiliation(s)
- Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Rodrigo Parola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Sofia Andreola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Cintia Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| | - Giselle Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| |
Collapse
|
25
|
Zhao RQ. Expression, purification and characterization of the plant Snf1-related protein kinase 1 from Escherichia coli. Protein Expr Purif 2019; 162:24-31. [DOI: 10.1016/j.pep.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022]
|
26
|
Crepin N, Rolland F. SnRK1 activation, signaling, and networking for energy homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:29-36. [PMID: 31030062 DOI: 10.1016/j.pbi.2019.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 05/25/2023]
Abstract
The SnRK1 kinases are key regulators of the plant energy balance, but how their activity is regulated by metabolic status is still unclear. While the heterotrimeric kinase complex is well conserved among plants, fungi, and animals, plants appear to have modified its regulation to better fit their unique physiology and lifestyle. The SnRK1 kinases control metabolism, growth, and development, and stress tolerance by direct phosphorylation of metabolic enzymes and regulatory proteins and by extensive transcriptional regulation. Diverse types of transcription factors have already been implicated, with a well-studied role for the heterodimerizing group C and group S1 bZIPs. SnRK1 is also part of a more elaborate metabolic and stress signaling network, which includes the TOR kinase and the ABA-signaling SnRK2 kinases.
Collapse
Affiliation(s)
- Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
27
|
Osorio MB, Ng S, Berkowitz O, De Clercq I, Mao C, Shou H, Whelan J, Jost R. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. PLANT PHYSIOLOGY 2019; 181:332-352. [PMID: 31262954 PMCID: PMC6716250 DOI: 10.1104/pp.18.00594] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.
Collapse
Affiliation(s)
- Marina Borges Osorio
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
28
|
Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F. Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development. THE PLANT CELL 2019; 31:1614-1632. [PMID: 31123051 PMCID: PMC6635846 DOI: 10.1105/tpc.18.00500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 05/18/2023]
Abstract
Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (Saccharomyces cerevisiae), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis (Arabidopsis thaliana) SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory β-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Tuong Vi T Dang
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
29
|
Rosa MT, Abreu IA. Exploring the regulatory levels of SUMOylation to increase crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:43-51. [PMID: 31177030 DOI: 10.1016/j.pbi.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
SUMOylation is an essential post-translational modification that affects several cellular processes, from gene replication to stress response. Studies using the SUMO (de)conjugation machinery have provided evidence regarding its potential to improve crop performance and productivity under normal and adverse conditions. However, the pleiotropic effect of SUMOylation can be a disadvantage in both situations, especially when considering unpredictable environmental conditions caused by climate changes. Here, we discuss the pleiotropic effects caused by disrupting the SUMOylation machinery, and new strategies that may help to overcome pleiotropy. We propose exploring the several regulatory levels of SUMOylation recently revealed, including transcriptional, post-transcriptional regulation by alternative splicing, and post-translational modifications. These new findings may provide valuable tools to increase crop productivity.
Collapse
Affiliation(s)
- Margarida Tg Rosa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
30
|
Jamsheer K M, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2239-2259. [PMID: 30870564 DOI: 10.1093/jxb/erz107] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
31
|
Liu C, Yu H, Li L. SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007928. [PMID: 30657769 PMCID: PMC6355022 DOI: 10.1371/journal.pgen.1007928] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/31/2019] [Accepted: 01/02/2019] [Indexed: 11/18/2022] Open
Abstract
A wide range of biological processes are regulated by sumoylation, a post-translational modification involving the conjugation of SUMO (Small Ubiquitin-Like Modifier) to protein. In Arabidopsis thaliana, AtSIZ1 encodes a SUMO E3 ligase for SUMO modification. siz1 mutants displayed defective secondary cell walls (SCWs) in inflorescence fiber cells. Such defects were caused by repression of SND1/NST1-mediated transcriptional networks. Yeast two-hybrid assay indicated that SIZ1 interacts with the LBD30 C-terminal domain, which was further confirmed using bimolecular fluorescence complementation and immunoprecipitation. Mass spectrometry and co-immunoprecipitation indicated that SIZ1 mediates SUMO conjugation to LBD30 at the K226 residue. Genes controlling SCW formation were activated by the overexpression of LBD30, but not in the LBD30(K226R) mutant. LBD30 enhancement of SCW formation resulted from upregulation of SND1/NST1-mediated transcriptional networks. This study presents a mechanism by which sumoylation of LBD30, mediated by SIZ1, regulates SCW formation in A. thaliana.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hasi Yu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Rosa MTG, Almeida DM, Pires IS, da Rosa Farias D, Martins AG, da Maia LC, de Oliveira AC, Saibo NJM, Oliveira MM, Abreu IA. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC PLANT BIOLOGY 2018; 18:349. [PMID: 30541427 PMCID: PMC6291987 DOI: 10.1186/s12870-018-1547-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.
Collapse
Affiliation(s)
- Margarida T. G. Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Diego M. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM), Montpellier, France
| | - Inês S. Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- Frontiers Media SA, Avenue du Tribunal-Fédéral 34, CH-1015 Lausanne, Switzerland
| | - Daniel da Rosa Farias
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Alice G. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - António Costa de Oliveira
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
33
|
Vu LD, Gevaert K, De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. TRENDS IN PLANT SCIENCE 2018; 23:1068-1080. [PMID: 30279071 DOI: 10.1016/j.tplants.2018.09.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) are at the heart of many cellular signaling events. Apart from a single regulatory PTM, there are also PTMs that function in orchestrated manners. Such PTM crosstalk usually serves as a fine-tuning mechanism to adjust cellular responses to the slightest changes in the environment. While PTM crosstalk has been studied in depth in various species; in plants, this field is just emerging. In this review, we discuss recent studies on crosstalk between three of the most common protein PTMs in plant cells, being phosphorylation, ubiquitination, and sumoylation, and we highlight the diverse underlying mechanisms as well as signaling outputs of such crosstalk.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
34
|
Augustine RC, Vierstra RD. SUMOylation: re-wiring the plant nucleus during stress and development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:143-154. [PMID: 30014889 DOI: 10.1016/j.pbi.2018.06.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 05/08/2023]
Abstract
Conjugation of small ubiquitin-related modifier (SUMO) to intracellular proteins provides a dynamic regulatory mechanism that enables plants to rapidly defend against environmental challenges. SUMOylation of mostly nuclear proteins is among the fastest stress responses observed but precisely how this post-translational modification provides stress resilience remains unclear. Here, we describe the plant SUMO system and its expanding target catalog, which implicates this modification in DNA repair, chromatin modification/remodeling, transcriptional activation/repression, epigenetics, and RNA metabolism, with a likely outcome being extensive nuclear re-wiring to withstand stress. In parallel, studies have linked SUMO to developmental programs such as gametogenesis and gene silencing. The accumulating data support the notion that SUMOylation substantially influences the transcriptional and epigenetic landscapes to promote stress tolerance and developmental progression.
Collapse
Affiliation(s)
- Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
35
|
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. THE PLANT CELL 2018; 30:1077-1099. [PMID: 29588388 PMCID: PMC6002191 DOI: 10.1105/tpc.17.00993] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
Collapse
Affiliation(s)
- Thérèse C Rytz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Yu-Ting Juan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
36
|
Castro PH, Verde N, Tavares RM, Bejarano ER, Azevedo H. Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. PLANT SIGNALING & BEHAVIOR 2018; 13:e1179417. [PMID: 27136402 PMCID: PMC5933906 DOI: 10.1080/15592324.2016.1179417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas the sugar-signaling effect of sugars is independent of SA.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Nuno Verde
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Rui Manuel Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
37
|
Castro PH, Verde N, Tavares RM, Bejarano ER, Azevedo H. Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. PLANT SIGNALING & BEHAVIOR 2018; 13:e1179417. [PMID: 27136402 DOI: 10.1080/15592324.2016.11794170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas the sugar-signaling effect of sugars is independent of SA.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Nuno Verde
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Rui Manuel Tavares
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Eduardo Rodríguez Bejarano
- b Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC) , Dept. Biología Celular, Genética y Fisiología , Málaga , Spain
| | - Herlânder Azevedo
- c CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão , Vairão , Portugal
| |
Collapse
|
38
|
Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers PFK, Jonker MJ, van den Burg HA. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 2018; 14:e1007157. [PMID: 29357355 PMCID: PMC5794169 DOI: 10.1371/journal.pgen.1007157] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/01/2018] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Paul F K Wackers
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Barajas‐Lopez JDD, Moreno JR, Gamez‐Arjona FM, Pardo JM, Punkkinen M, Zhu J, Quintero FJ, Fujii H. Upstream kinases of plant SnRKs are involved in salt stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:107-118. [PMID: 29094495 PMCID: PMC5814739 DOI: 10.1111/tpj.13761] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 05/03/2023]
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.
Collapse
Affiliation(s)
| | - Jose Ramon Moreno
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones Cientificas41012SevillaSpain
| | - Francisco M. Gamez‐Arjona
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones Cientificas41012SevillaSpain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Cientificas41092SevillaSpain
| | - Matleena Punkkinen
- Molecular Plant Biology UnitDepartment of BiochemistryUniversity of Turku20014TurkuFinland
| | - Jian‐Kang Zhu
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Shanghai Center for Plant Stress BiologyShanghai Institutes for Biological SciencesCenter of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Cientificas41092SevillaSpain
| | - Hiroaki Fujii
- Molecular Plant Biology UnitDepartment of BiochemistryUniversity of Turku20014TurkuFinland
| |
Collapse
|
40
|
Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A. Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:505-517. [PMID: 28419593 PMCID: PMC5518230 DOI: 10.1111/tpj.13575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 05/09/2023]
Abstract
Conjugation of the small ubiquitin-related modifier (SUMO) to protein substrates has an impact on stress responses and on development. We analyzed the proteome and phosphoproteome of mutants in this pathway. The mutants chosen had defects in SUMO ligase SIZ1, which catalyzes attachment of single SUMO moieties onto substrates, and in ligases PIAL1 and PIAL2, which are known to form SUMO chains. A total of 2657 proteins and 550 phosphopeptides were identified and quantified. Approximately 40% of the proteins and 20% of the phosphopeptides showed differences in abundance in at least one of the analyzed genotypes, demonstrating the influence of SUMO conjugation on protein abundance and phosphorylation. The data show that PIAL1 and PIAL2 are integral parts of the SUMO conjugation system with an impact on stress response, and confirm the involvement of SIZ1 in plant defense. We find a high abundance of predicted SUMO attachment sites in phosphoproteins (70% versus 40% in the total proteome), suggesting convergence of phosphorylation and sumoylation signals onto a set of common targets.
Collapse
Affiliation(s)
- Ella Nukarinen
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
| | - Konstantin Tomanov
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Ionida Ziba
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaA‐1060ViennaAustria
| | - Andreas Bachmair
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| |
Collapse
|
41
|
Zhai Z, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis. THE PLANT CELL 2017; 29:871-889. [PMID: 28314829 PMCID: PMC5435435 DOI: 10.1105/tpc.17.00019] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
WRINKLED1 (WRI1), a member of the APETALA2 (AP2) class of transcription factors, positively regulates glycolysis and lipid biosynthesis in Arabidopsis thaliana Here, we identify mechanistic links between KIN10, the major SUCROSE NON-FERMENTATION1-RELATED KINASE1 involved in sugar/energy homeostasis, and the posttranslational regulation of WRI1. Transient expression of WRI1 with OLEOSIN1 in Nicotiana benthamiana stimulates triacylglycerol accumulation, but their coexpression with KIN10 abrogates this effect by inducing proteasomal degradation of WRI1. While WRI1 lacks canonical KIN10 target sequences, we demonstrated direct KIN10-dependent phosphorylation of WRI1 using purified Escherichia coli-expressed components. The resulting phosphorylated WRI1 was more rapidly degraded than native WRI1 in cell-free degradation assays. WRI1 phosphorylation was localized to two variants of the canonical KIN10 recognition sequence, one in each of its two AP2 DNA binding domains. Conversion of the phosphorylation sites at Thr-70 and Ser-166 to Ala resulted in a loss of KIN10-dependent phosphorylation, and when coexpressed with KIN10 the WRI1 double mutant accumulated to 2- to 3-fold higher levels than native WRI1. KIN10-dependent degradation of WRI1 provides a homeostatic mechanism that favors lipid biosynthesis when intracellular sugar levels are elevated and KIN10 is inhibited; conversely, glycolysis and lipid biosynthesis are curtailed as sugar levels decrease and KIN10 regains activity.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
42
|
Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response. Sci Rep 2017; 7:44090. [PMID: 28272518 PMCID: PMC5341030 DOI: 10.1038/srep44090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/01/2017] [Indexed: 12/16/2022] Open
Abstract
The highly conserved eukaryotic WD40 repeat protein, Receptor for Activated C Kinase 1 (RACK1), is involved in the abscisic acid (ABA) response in Arabidopsis. However, the regulation of RACK1 and the proteins with which it interacts are poorly understood. Here, we show that RACK1B is sumoylated at four residues, Lys50, Lys276, Lys281 and Lys291. Sumoylation increases RACK1B stability and its tolerance to ubiquitination-mediated degradation in ABA response. As a result, sumoylation leads to enhanced interaction between RACK1B and RAP2.6, an AP2/ERF family transcription factor. RACK1B binds directly to the AP2 domain of RAP2.6, which alters the affinity of RAP2.6 for CE1 and GCC cis-acting regulatory elements. Taken together, our findings illustrate that protein stability controlled by dynamic post-transcriptional modification is a critical regulatory mechanism for RACK1B, which functions as scaffold protein for RAP2.6 in ABA signaling.
Collapse
|
43
|
Lyzenga WJ, Sullivan V, Liu H, Stone SL. The Kinase Activity of Calcineurin B-like Interacting Protein Kinase 26 (CIPK26) Influences Its Own Stability and that of the ABA-regulated Ubiquitin Ligase, Keep on Going (KEG). FRONTIERS IN PLANT SCIENCE 2017; 8:502. [PMID: 28443108 PMCID: PMC5385374 DOI: 10.3389/fpls.2017.00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
The Really Interesting New Gene (RING)-type E3 ligase, Keep on Going (KEG) plays a critical role in Arabidopsis growth after germination and the connections between KEG and hormone signaling pathways are expanding. With regards to abscisic acid (ABA) signaling, KEG targets ABA-responsive transcription factors abscisic acid insensitive 5, ABF1 and ABF3 for ubiquitination and subsequent degradation through the 26S proteasome. Regulation of E3 ligases through self-ubiquitination is common to RING-type E3 ligases and ABA promotes KEG self-ubiquitination and degradation. ABA-mediated degradation of KEG is phosphorylation-dependent; however, upstream signaling proteins that may regulate KEG stability have not been characterized. In this report, we show that CBL-Interacting Protein Kinase (CIPK) 26 can phosphorylate KEG in vitro. Using both in vitro and in planta degradation assays we provide evidence which suggests that the kinase activity of CIPK26 promotes the degradation of KEG. Furthermore, we found that the kinase activity of CIPK26 also influences its own stability; a constitutively active version is more stable than a wild type or a kinase dead version. Our results suggest a reciprocal regulation model wherein an activated and stable CIPK26 phosphorylates KEG to promote degradation of the E3.
Collapse
|
44
|
Piattoni CV, Ferrero DML, Dellaferrera I, Vegetti A, Iglesias AÁ. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated during Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:522. [PMID: 28443115 PMCID: PMC5387080 DOI: 10.3389/fpls.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) is involved in a critical energetic step of glycolysis and also has many important functions besides its enzymatic activity. The recombinant wheat NAD-GAPDH was phosphorylated in vitro at Ser205 by a SNF1-Related protein kinase 1 (SnRK1) from wheat heterotrophic (but not from photosynthetic) tissues. The S205D mutant enzyme (mimicking the phosphorylated form) exhibited a significant decrease in activity but similar affinity toward substrates. Immunodetection and activity assays showed that NAD-GAPDH is phosphorylated in vivo, the enzyme depicting different activity, abundance and phosphorylation profiles during development of seeds that mainly accumulate starch (wheat) or lipids (castor oil seed). NAD-GAPDH activity gradually increases along wheat seed development, but protein levels and phosphorylation status exhibited slight changes. Conversely, in castor oil seed, the activity slightly increased and total protein levels do not significantly change in the first half of seed development but both abruptly decreased in the second part of development, when triacylglycerol synthesis and storage begin. Interestingly, phospho-NAD-GAPDH levels reached a maximum when the seed switch their metabolism to mainly support synthesis and accumulation of carbon reserves. After this point the castor oil seed NAD-GAPDH protein levels and activity highly decreased, and the protein stability assays showed that the protein would be degraded by the proteasome. The results presented herein suggest that phosphorylation of NAD-GAPDH during seed development would have impact on the partitioning of triose-phosphate between different metabolic pathways and cell compartments to support the specific carbon, energy and reducing equivalent demands during synthesis of storage products.
Collapse
Affiliation(s)
- Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| | - Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
| | - Ignacio Dellaferrera
- Cultivos Extensivos, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Abelardo Vegetti
- Morfología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Alberto Á. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| |
Collapse
|
45
|
Mazur MJ, Spears BJ, Djajasaputra A, van der Gragt M, Vlachakis G, Beerens B, Gassmann W, van den Burg HA. Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci. FRONTIERS IN PLANT SCIENCE 2017; 8:2043. [PMID: 29250092 PMCID: PMC5714883 DOI: 10.3389/fpls.2017.02043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 05/20/2023]
Abstract
In Arabidopsis more than 400 proteins have been identified as SUMO targets, both in vivo and in vitro. Among others, transcription factors (TFs) are common targets for SUMO conjugation. Here we aimed to exhaustively screen for TFs that interact with the SUMO machinery using an arrayed yeast two-hybrid library containing more than 1,100 TFs. We identified 76 interactors that foremost interact with the SUMO conjugation enzyme SCE1 and/or the SUMO E3 ligase SIZ1. These interactors belong to various TF families, which control a wide range of processes in plant development and stress signaling. Amongst these interactors, the TCP family was overrepresented with several TCPs interacting with different proteins of the SUMO conjugation cycle. For a subset of these TCPs we confirmed that the catalytic site of SCE1 is essential for this interaction. In agreement, TCP1, TCP3, TCP8, TCP14, and TCP15 were readily SUMO modified in an E. coli sumoylation assay. Strikingly, these TCP-SCE1 interactions were found to redistribute these TCPs into nuclear foci/speckles, suggesting that these TCP foci represent sites for SUMO (conjugation) activity.
Collapse
Affiliation(s)
- Magdalena J. Mazur
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Benjamin J. Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| | - André Djajasaputra
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Michelle van der Gragt
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Harrold A. van den Burg
| |
Collapse
|
46
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
47
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
48
|
Carvalho RF, Szakonyi D, Simpson CG, Barbosa ICR, Brown JWS, Baena-González E, Duque P. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability. THE PLANT CELL 2016; 28:1910-25. [PMID: 27436712 PMCID: PMC5006706 DOI: 10.1105/tpc.16.00301] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars.
Collapse
Affiliation(s)
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Craig G Simpson
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - John W S Brown
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
49
|
Lin XL, Niu D, Hu ZL, Kim DH, Jin YH, Cai B, Liu P, Miura K, Yun DJ, Kim WY, Lin R, Jin JB. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity. PLoS Genet 2016; 12:e1006016. [PMID: 27128446 PMCID: PMC4851335 DOI: 10.1371/journal.pgen.1006016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants. In darkness, the ubiquitin E3 ligase COP1 accumulates in the nucleus and mediates ubiquitination and degradation of positive regulators of photomorphogenesis, such as HY5. In response to light, COP1 activity is reduced to ensure proper photomorphogenic development. However, post-translational modifications that regulate COP1 activity are largely unknown. We have found that the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates photomorphogenesis. Genetic and biochemical lines of evidence demonstrate that SIZ1-mediated SUMO modification of COP1 enhances its E3 ubiquitin ligase activity, which causes increased ubiquitination and degradation of HY5. In response to the light, sumoylation level of COP1 is decreased, which may also contributes to the reduction of COP1 activity in the light. Moreover, COP1 mediates ubiquitination and 26S proteasome-dependent degradation of SIZ1 and this feedback repression may ensure the moderate levels of COP1 activity. Our study established a post-translational regulatory modular consisting of SIZ1-mediated sumoylation and COP1-mediated ubiquitination that tightly regulate photomorphogenesis.
Collapse
Affiliation(s)
- Xiao-Li Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zi-Liang Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, Republic of Korea
| | - Yin Hua Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21Plus), PMBBRC & IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), PMBBRC & IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
50
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|