1
|
He R, Li Y, Bernards MA, Wang A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. THE NEW PHYTOLOGIST 2025; 245:299-317. [PMID: 39532690 PMCID: PMC11617660 DOI: 10.1111/nph.20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins are induced by abiotic and biotic stresses and generally considered as part of the plant defense mechanism. However, it remains yet largely unclear if and how they are involved in virus infection. Our recent quantitative, comparative proteomic study identified three PR-5 family proteins that are significantly differentially accumulated in the plasmodesmata (PD)-enriched fraction isolated from Nicotiana benthamiana leaves infected by turnip mosaic virus (TuMV). In this study, we employed the TuMV-Arabidopsis pathosystem to characterize the involvement of two Arabidopsis orthologs, AtOSM34 and AtOLP of the three N. benthamiana PR-5-like proteins. We show that AtOSM34 and AtOLP are PD-localized proteins and their expression is up- and downregulated in response to TuMV infection, respectively. Deficiency or overexpression of AtOLP does not affect viral RNA accumulation. Knockdown of AtOSM34 inhibits TuMV infection, whereas its overexpression promotes viral infection. We further demonstrate that AtOSM34 functions as a proviral factor through diminishing PD callose deposition to promote viral intercellular movement, targeting the viral replication complex to enhance viral replication, and suppressing the ROS-mediated antiviral response. Taken together, these data suggest that TuMV has evolved the ability to selectively upregulate and subvert AtOSM34, a PR-5 family protein to assist its infection.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Yinzi Li
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
| | - Mark A. Bernards
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| |
Collapse
|
2
|
Wu G, Wang L, He R, Cui X, Chen X, Wang A. Two plant membrane-shaping reticulon-like proteins play contrasting complex roles in turnip mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e70017. [PMID: 39412487 PMCID: PMC11481689 DOI: 10.1111/mpp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Positive-sense RNA viruses remodel cellular cytoplasmic membranes as the membranous sources for the formation of viral replication organelles (VROs) for viral genome replication. In plants, they traffic through plasmodesmata (PD), plasma membrane-lined pores enabling cytoplasmic connections between cells for intercellular movement and systemic infection. In this study, we employed turnip mosaic virus (TuMV), a plant RNA virus to investigate the involvement of RTNLB3 and RTNLB6, two ER (endoplasmic reticulum) membrane-bending, PD-located reticulon-like (RTNL) non-metazoan group B proteins (RTNLBs) in viral infection. We show that RTNLB3 interacts with TuMV 6K2 integral membrane protein and RTNLB6 binds to TuMV coat protein (CP). Knockdown of RTNLB3 promoted viral infection, whereas downregulation of RTNLB6 restricted viral infection, suggesting that these two RTNLs play contrasting roles in TuMV infection. We further demonstrate that RTNLB3 targets the α-helix motif 42LRKSM46 of 6K2 to interrupt 6K2 self-interactions and compromise 6K2-induced VRO formation. Moreover, overexpression of AtRTNLB3 apparently promoted the selective degradation of the ER and ER-associated protein calnexin, but not 6K2. Intriguingly, mutation of the α-helix motif of 6K2 that is required for induction of VROs severely affected 6K2 stability and abolished TuMV infection. Thus, RTNLB3 attenuates TuMV replication, probably through the suppression of 6K2 function. We also show that RTNLB6 promotes viral intercellular movement but does not affect viral replication. Therefore, the proviral role of RTNLB6 is probably by enhancing viral cell-to-cell trafficking. Taken together, our data demonstrate that RTNL family proteins may play diverse complex, even opposite, roles in viral infection in plants.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Liping Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Méndez-Yáñez A, Carrasco-Orellana C, Ramos P, Morales-Quintana L. Alpha-expansins: more than three decades of wall creep and loosening in fruits. PLANT MOLECULAR BIOLOGY 2024; 114:84. [PMID: 38995453 DOI: 10.1007/s11103-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.
Collapse
Affiliation(s)
- Angela Méndez-Yáñez
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Cinco Poniente No. 1670, Talca, Chile.
| | - Cristian Carrasco-Orellana
- División Agroindustrial de Empresas Carozzi S. A., Desarrollo E Innovación Aplicada Agrozzi, Centro Tecnológico de Investigación, Teno, Chile
| | - Patricio Ramos
- Plant Microorganism Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Cinco Poniente No. 1670, Talca, Chile.
| |
Collapse
|
4
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
5
|
Xie J, Fei X, Yan Q, Jiang T, Li Z, Chen H, Wang B, Chao Q, He Y, Fan Z, Wang L, Wang M, Shi L, Zhou T. The C4 photosynthesis bifunctional enzymes, PDRPs, of maize are co-opted to cytoplasmic viral replication complexes to promote infection of a prevalent potyvirus sugarcane mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1812-1832. [PMID: 38339894 PMCID: PMC11182595 DOI: 10.1111/pbi.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
In maize, two pyruvate orthophosphate dikinase (PPDK) regulatory proteins, ZmPDRP1 and ZmPDRP2, are respectively specific to the chloroplast of mesophyll cells (MCs) and bundle sheath cells (BSCs). Functionally, ZmPDRP1/2 catalyse both phosphorylation/inactivation and dephosphorylation/activation of ZmPPDK, which is implicated as a major rate-limiting enzyme in C4 photosynthesis of maize. Our study here showed that maize plants lacking ZmPDRP1 or silencing of ZmPDRP1/2 confer resistance to a prevalent potyvirus sugarcane mosaic virus (SCMV). We verified that the C-terminal domain (CTD) of ZmPDRP1 plays a key role in promoting viral infection while independent of enzyme activity. Intriguingly, ZmPDRP1 and ZmPDRP2 re-localize to cytoplasmic viral replication complexes (VRCs) following SCMV infection. We identified that SCMV-encoded cytoplasmic inclusions protein CI targets directly ZmPDRP1 or ZmPDRP2 or their CTDs, leading to their re-localization to cytoplasmic VRCs. Moreover, we found that CI could be degraded by the 26S proteasome system, while ZmPDRP1 and ZmPDRP2 could up-regulate the accumulation level of CI through their CTDs by a yet unknown mechanism. Most importantly, with genetic, cell biological and biochemical approaches, we provide evidence that BSCs-specific ZmPDRP2 could accumulate in MCs of Zmpdrp1 knockout (KO) lines, revealing a unique regulatory mechanism crossing different cell types to maintain balanced ZmPPDK phosphorylation, thereby to keep maize normal growth. Together, our findings uncover the genetic link of the two cell-specific maize PDRPs, both of which are co-opted to VRCs to promote viral protein accumulation for robust virus infection.
Collapse
Affiliation(s)
- Jipeng Xie
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaohong Fei
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Qin Yan
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Tong Jiang
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Zhifang Li
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Hui Chen
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Baichen Wang
- Key Laboratory of PhotobiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qing Chao
- Key Laboratory of PhotobiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Yueqiu He
- College of AgronomyYunnan Agricultural UniversityKunmingChina
| | - Zaifeng Fan
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Lijin Wang
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Meng Wang
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Liang Shi
- Longping Agriculture Science Co. Ltd.BeijingChina
| | - Tao Zhou
- State Key Laboratory for Maize Bio‐breeding and Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Xue M, Sofer L, Simon V, Arvy N, Diop M, Lion R, Beucher G, Bordat A, Tilsner J, Gallois J, German‐Retana S. AtHVA22a, a plant-specific homologue of Reep/DP1/Yop1 family proteins is involved in turnip mosaic virus propagation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13466. [PMID: 38767756 PMCID: PMC11104427 DOI: 10.1111/mpp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Luc Sofer
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Vincent Simon
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Mamoudou Diop
- UR 1052, INRAe, GAFL Domaine St MauriceMontfavet CedexFrance
| | - Roxane Lion
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Guillaume Beucher
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Amandine Bordat
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Jens Tilsner
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
| | | | - Sylvie German‐Retana
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| |
Collapse
|
7
|
Guo H, Xu C, Wang F, Jiang L, Zhang Y, Wang L, Liu D, Zhao J, Xia C, Gu Y, Wang Z, An M, Xia Z, Wu Y. Transcriptome analysis and functional verification reveal the roles of copper in resistance to potato virus Y infection in tobacco. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105893. [PMID: 38685255 DOI: 10.1016/j.pestbp.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.; Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Fei Wang
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Lianqiang Jiang
- Liangshan Branch of Sichuan Province Tobacco Company, Xichang 615000, China
| | - Yonghui Zhang
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Lifang Wang
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Dongyang Liu
- Liangshan Branch of Sichuan Province Tobacco Company, Xichang 615000, China
| | - Jinchao Zhao
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Chun Xia
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Yong Gu
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China..
| |
Collapse
|
8
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
9
|
Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Balkova D, Demko M, Blavet N, Alexiou P, Benes V, Mouille G, Hejatko J. Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. PLANT PHYSIOLOGY 2023; 194:209-228. [PMID: 37073485 PMCID: PMC10762514 DOI: 10.1093/plphys/kiad228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Alesia Melnikava
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Kareem Elsayad
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Evelina Gahurova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Ioannis Spyroglou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Elena V Zemlyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Darina Balkova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Martin Demko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nicolas Blavet
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Panagiotis Alexiou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
10
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
11
|
Gong P, Shen Q, Zhang M, Qiao R, Jiang J, Su L, Zhao S, Fu S, Ma Y, Ge L, Wang Y, Lozano-Durán R, Wang A, Li F, Zhou X. Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. MOLECULAR PLANT 2023; 16:1794-1810. [PMID: 37777826 DOI: 10.1016/j.molp.2023.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses, the most abundant viruses of eukaryotes in nature, require the synthesis of negative-sense RNA (-RNA) using their genomic (positive-sense) RNA (+RNA) as a template for replication. Based on current evidence, viral proteins are translated via viral +RNAs, whereas -RNA is considered to be a viral replication intermediate without coding capacity. Here, we report that plant and animal +ssRNA viruses contain small open reading frames (ORFs) in their -RNA (reverse ORFs [rORFs]). Using turnip mosaic virus (TuMV) as a model for plant +ssRNA viruses, we demonstrate that small proteins encoded by rORFs display specific subcellular localizations, and confirm the presence of rORF2 in infected cells through mass spectrometry analysis. The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes. The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase, and mutation of rORF2 completely abolishes virus infection, whereas ectopic expression of rORF2 rescues the mutant virus. Furthermore, we show that several rORFs in the -RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have the ability to suppress type I interferon production and facilitate the infection of vesicular stomatitis virus. In addition, we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs. Taken together, these findings indicate that the -RNA of +ssRNA viruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection, revealing a viral proteome larger than previously thought.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Su
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
14
|
Gombos S, Miras M, Howe V, Xi L, Pottier M, Kazemein Jasemi NS, Schladt M, Ejike JO, Neumann U, Hänsch S, Kuttig F, Zhang Z, Dickmanns M, Xu P, Stefan T, Baumeister W, Frommer WB, Simon R, Schulze WX. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. THE NEW PHYTOLOGIST 2023; 238:637-653. [PMID: 36636779 DOI: 10.1111/nph.18730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.
Collapse
Affiliation(s)
- Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Manuel Miras
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Vicky Howe
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathieu Pottier
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Moritz Schladt
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - J Obinna Ejike
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Franziska Kuttig
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marcel Dickmanns
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Wolf B Frommer
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Institute for Transformative Biomolecules, Nagoya University, Nagoya, 464-0813, Japan
| | - Rüdiger Simon
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
15
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
16
|
Pereira BM, Arraes F, Martins ACQ, Alves NSF, Melo BP, Morgante CV, Saraiva MAP, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. A novel soybean hairy root system for gene functional validation. PLoS One 2023; 18:e0285504. [PMID: 37200365 DOI: 10.1371/journal.pone.0285504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.
Collapse
Affiliation(s)
| | - Fabrício Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Bruno Paes Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Carolina Vianna Morgante
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
- EMBRAPA Semiárido, Petrolina, PE, Brazil
| | - Mario Alfredo Passos Saraiva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Patricia Messenberg Guimaraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| |
Collapse
|
17
|
Paterlini A, Sechet J, Immel F, Grison MS, Pilard S, Pelloux J, Mouille G, Bayer EM, Voxeur A. Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. FRONTIERS IN PLANT SCIENCE 2022; 13:1020506. [PMID: 36388604 PMCID: PMC9640925 DOI: 10.3389/fpls.2022.1020506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Plasmodesmata (PD) pores connect neighbouring plant cells and enable direct transport across the cell wall. Understanding the molecular composition of these structures is essential to address their formation and later dynamic regulation. Here we provide a biochemical characterisation of the cell wall co-purified with primary PD of Arabidopsis thaliana cell cultures. To achieve this result we combined subcellular fractionation, polysaccharide analyses and enzymatic fingerprinting approaches. Relative to the rest of the cell wall, specific patterns were observed in the PD fraction. Most xyloglucans, although possibly not abundant as a group, were fucosylated. Homogalacturonans displayed short methylated stretches while rhamnogalacturonan I species were remarkably abundant. Full rhamnogalacturonan II forms, highly methyl-acetylated, were also present. We additionally showed that these domains, compared to the broad wall, are less affected by wall modifying activities during a time interval of days. Overall, the protocol and the data presented here open new opportunities for the study of wall polysaccharides associated with PD.
Collapse
Affiliation(s)
- A. Paterlini
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - J. Sechet
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| | - F. Immel
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - M. S. Grison
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - S. Pilard
- Plateforme Analytique, Université de Picardie, Amiens, France
| | - J. Pelloux
- UMRT (Unité Mixte de Recherche Transfrontaliére) INRAE (Institut National de recherche pour l'Agriculture, l'alimentation et l'Environnement) 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, Université de Picardie, Amiens, France
| | - G. Mouille
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| | - E. M. Bayer
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - A. Voxeur
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| |
Collapse
|
18
|
Kirk P, Amsbury S, German L, Gaudioso-Pedraza R, Benitez-Alfonso Y. A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species. BMC Biol 2022; 20:128. [PMID: 35655273 PMCID: PMC9164936 DOI: 10.1186/s12915-022-01331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined. RESULTS Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate. CONCLUSIONS Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Amsbury
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Liam German
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
19
|
Rocher M, Simon V, Jolivet MD, Sofer L, Deroubaix AF, Germain V, Mongrand S, German-Retana S. StREM1.3 REMORIN Protein Plays an Agonistic Role in Potyvirus Cell-to-Cell Movement in N. benthamiana. Viruses 2022; 14:574. [PMID: 35336981 PMCID: PMC8951588 DOI: 10.3390/v14030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
REMORIN proteins belong to a plant-specific multigene family that localise in plasma membrane nanodomains and in plasmodesmata. We previously showed that in Nicotiana benthamiana, group 1 StREM1.3 limits the cell-to-cell spread of a potexvirus without affecting viral replication. This prompted us to check whether an effect on viral propagation could apply to potyvirus species Turnip mosaic virus (TuMV) and Potato virus A (PVA). Our results show that StREM1.3 transient or stable overexpression in transgenic lines increases potyvirus propagation, while it is slowed down in transgenic lines underexpressing endogenous NbREMs, without affecting viral replication. TuMV and PVA infection do not alter the membranous localisation of StREM1.3. Furthermore, StREM1.3-membrane anchoring is necessary for its agonist effect on potyvirus propagation. StREM1.3 phosphocode seems to lead to distinct plant responses against potexvirus and potyvirus. We also showed that StREM1.3 interacts in yeast and in planta with the key potyviral movement protein CI (cylindrical inclusion) at the level of the plasma membrane but only partially at plasmodesmata pit fields. TuMV infection also counteracts StREM1.3-induced plasmodesmata callose accumulation at plasmodesmata. Altogether, these results showed that StREM1.3 plays an agonistic role in potyvirus cell-to-cell movement in N. benthamiana.
Collapse
Affiliation(s)
- Marion Rocher
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Vincent Simon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Luc Sofer
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| |
Collapse
|
20
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
21
|
Simkovich A, Kohalmi SE, Wang A. Purification and Proteomics Analysis of Phloem Tissues from Virus-Infected Plants. Methods Mol Biol 2022; 2400:125-137. [PMID: 34905197 DOI: 10.1007/978-1-0716-1835-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant phloem vasculature is crucial for plant growth and development, and is essential for the systemic movement (SM) of plant viruses. Recent transcriptomic studies of the phloem during virus infection have shown the importance of this tissue, yet transcript levels do not provide definitive answers how virus-host interactions favour successful viral SM. Proteomic analyses have been used to identify host-virus protein interactions, uncovering a variety of ways by which viruses utilize host cellular machinery for completion of the viral infection cycle. Despite this new evidence through proteomics, very few phloem centric studies during viral infection have been performed. Here, we describe a protocol for the isolation of phloem tissues and proteins and the subsequent label-free quantitation (LFQ), for identification of proteomic alterations caused by viral infection.
Collapse
Affiliation(s)
- Aaron Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
22
|
Abstract
Protoplasts are the naked plant cells lacking the rigid cell wall and have been broadly utilized as an excellent tool to study the molecular virus-plant interactions, particularly at the early stages of the infection process, such as virion disassembly, viral genome translation, intracellular trafficking, and virus replication. Compared to the use of whole plants, the protoplast system has several major advantages in plant virology research, including homogeneous cell populations, high percentage of infected cells, synchronous infection, effects free from other cells/tissues, and ease of extraction of the viral RNA. This chapter describes a simple, streamlined, and efficient protocol for isolation and purification of mesophyll protoplasts from the model plants Arabidopsis thaliana and Nicotiana benthamiana, and subsequent transfection of the isolated protoplasts with a potyvirus infectious clone.
Collapse
Affiliation(s)
- Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
23
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
24
|
Dai Z, Wang A. Monitoring Virus Intercellular Movement from Primary Infected Cells to Neighboring Cells in Plants. Methods Mol Biol 2022; 2400:63-73. [PMID: 34905191 DOI: 10.1007/978-1-0716-1835-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viral cell-to-cell movement from the primary infected cells to neighboring cells is an essential step for viruses to establish systemic infection in plants. The classic experimental design for studying this process involves the application of a reporter protein such as β-glucuronidase (GUS), green fluorescent protein (GFP), or monomeric red fluorescent protein (mRFP or mCherry). However, such experimental settings are unable to unambiguously distinguish primary and secondary infected cells. In recent years, we have developed several double-labeling potyvirus infectious clones. Upon introduction of such vectors into plant leaf tissues, primary infected cells emit dual fluorescence (green and red) whereas secondary infected cells emit only green fluorescence. In this chapter, we provide detailed protocols on (1) construction of a GFP and mCherry-tagged turnip mosaic virus infectious clone, (2) delivery of the recombinant viral clones into plant cells by agroinfiltration, (3) confocal imaging of viral cell-to-cell movement, and (4) analysis of viral systemic infection. Using this dual-color imaging system, we have revealed coat protein (CP) is essential for TuMV cell-to-cell movement. This system provides a valuable and robust tool to study plant virus cell-to-cell movement.
Collapse
Affiliation(s)
- Zhaoji Dai
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aiming Wang
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
25
|
Abstract
In plants, plasmodesmata (PD) are plasmamembrane-lined pores that traverse the cell wall to establish cytoplasmic and endomembrane continuity between neighboring cells. As intercellular channels, PD play pivotal roles in plant growth and development, defense responses, and are also co-opted by viruses to spread cell-to-cell to establish systemic infection. Proteomic analyses of PD-enriched fractions may provide critical insights on plasmodesmal biology and PD-mediated virus-host interactions. However, it is difficult to isolate PD from plant tissues as they are firmly embedded in the cell wall. Here, we describe a protocol for the purification of PD from Nicotiana benthamiana leaves for proteomic analysis.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
26
|
Kurotani KI, Notaguchi M. Cell-to-Cell Connection in Plant Grafting-Molecular Insights into Symplasmic Reconstruction. PLANT & CELL PHYSIOLOGY 2021; 62:1362-1371. [PMID: 34252186 DOI: 10.1093/pcp/pcab109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 05/06/2023]
Abstract
Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
27
|
Modulation of Expression of PVY NTN RNA-Dependent RNA Polymerase (NIb) and Heat Shock Cognate Host Protein HSC70 in Susceptible and Hypersensitive Potato Cultivars. Vaccines (Basel) 2021; 9:vaccines9111254. [PMID: 34835185 PMCID: PMC8619674 DOI: 10.3390/vaccines9111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus Y (PVY) belongs to the genus Potyvirus and is considered to be one of the most harmful and important plant pathogens. Its RNA-dependent RNA polymerase (RdRp) is known as nuclear inclusion protein b (NIb). The recent findings show that the genome of PVY replicates in the cytoplasm of the plant cell by binding the virus replication complex to the membranous structures of different organelles. In some potyviruses, NIb has been found to be localized in the nucleus and associated with the endoplasmic reticulum membranes. Moreover, NIb has been shown to interact with other host proteins that are particularly involved in promoting the virus infection cycle, such as the heat shock proteins (HSPs). HSP70 is the most conserved among the five major HSP families that are known to affect the plant-pathogen interactions. Some plant viruses can induce the production of HSP70 during the development of infection. To understand the molecular mechanisms underlying the interactive response to PVYNTN (necrotic tuber necrosis strain of PVY), the present study focused on StHSC70-8 and PVYNTN-NIb gene expression via localization of HSC70 and NIb proteins during compatible (susceptible) and incompatible (hypersensitive) potato-PVYNTN interactions. Our results demonstrate that NIb and HSC70 are involved in the response to PVYNTN infections and probably cooperate at some stages of the virus infection cycle. Enhanced deposition of HSC70 proteins during the infection cycle was associated with the dynamic induction of PVYNTN-NIb gene expression and NIb localization during susceptible infections. In hypersensitive response (HR), a significant increase in HSC70 expression was observed up to 3 days post-inoculation (dpi) in the nucleus and chloroplasts. Thereafter, between 3 and 21 dpi, the deposition of NIb decreased, which can be attributed to a reduction in the levels of both virus accumulation and PVYNTN-NIb gene expression. Therefore, we postulate that increase in the expression of both StHSC70-8 and PVYNTN-NIb induces the PVY infection during susceptible infections. In contrast, during HRs, HSC70 cooperates with PVYNTN only at the early stages of interaction and mediates the defense response signaling pathway at the later stages of infection.
Collapse
|
28
|
Simkovich AJ, Li Y, Kohalmi SE, Griffiths JS, Wang A. Molecular Identification of Prune Dwarf Virus (PDV) Infecting Sweet Cherry in Canada and Development of a PDV Full-Length Infectious cDNA Clone. Viruses 2021; 13:2025. [PMID: 34696454 PMCID: PMC8541084 DOI: 10.3390/v13102025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.
Collapse
Affiliation(s)
- Aaron J. Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
| | - Susanne E. Kohalmi
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| |
Collapse
|
29
|
Brasileiro ACM, Lacorte C, Pereira BM, Oliveira TN, Ferreira DS, Mota APZ, Saraiva MAP, Araujo ACG, Silva LP, Guimaraes PM. Ectopic expression of an expansin-like B gene from wild Arachis enhances tolerance to both abiotic and biotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1681-1696. [PMID: 34231270 DOI: 10.1111/tpj.15409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 05/15/2023]
Abstract
Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.
Collapse
Affiliation(s)
| | | | - Bruna M Pereira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Thais N Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Deziany S Ferreira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, Brazil
| | - Ana P Z Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Ana C G Araujo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Luciano P Silva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | |
Collapse
|
30
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
31
|
Sager R, Bennett M, Lee JY. A Tale of Two Domains Pushing Lateral Roots. TRENDS IN PLANT SCIENCE 2021; 26:770-779. [PMID: 33685810 DOI: 10.1016/j.tplants.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Successful plant organ development depends on well-coordinated intercellular communication between the cells of the organ itself, as well as with surrounding cells. Intercellular signals often move via the symplasmic pathway using plasmodesmata. Intriguingly, brief periods of symplasmic isolation may also be necessary to promote organ differentiation and functionality. Recent findings suggest that symplasmic isolation of a subset of parental root cells and newly forming lateral root primordia (LRPs) plays a vital role in modulating lateral root development and emergence. In this opinion article we discuss how two symplasmic domains may be simultaneously established within an LRP and its overlying cells, and the significance of plasmodesmata in this process.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
32
|
Kozieł E, Otulak-Kozieł K, Bujarski JJ. Plant Cell Wall as a Key Player During Resistant and Susceptible Plant-Virus Interactions. Front Microbiol 2021; 12:656809. [PMID: 33776985 PMCID: PMC7994255 DOI: 10.3389/fmicb.2021.656809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023] Open
Abstract
The cell wall is a complex and integral part of the plant cell. As a structural element it sustains the shape of the cell and mediates contact among internal and external factors. We have been aware of its involvement in both abiotic (like drought or frost) and biotic stresses (like bacteria or fungi) for some time. In contrast to bacterial and fungal pathogens, viruses are not mechanical destructors of host cell walls, but relatively little is known about remodeling of the plant cell wall in response to viral biotic stress. New research results indicate that the cell wall represents a crucial active component during the plant’s response to different viral infections. Apparently, cell wall genes and proteins play key roles during interaction, having a direct influence on the rebuilding of the cell wall architecture. The plant cell wall is involved in both susceptibility as well as resistance reactions. In this review we summarize important progress made in research on plant virus impact on cell wall remodeling. Analyses of essential defensive wall associated proteins in susceptible and resistant responses demonstrate that the components of cell wall metabolism can affect the spread of the virus as well as activate the apoplast- and symplast-based defense mechanisms, thus contributing to the complex network of the plant immune system. Although the cell wall reorganization during the plant-virus interaction remains a challenging task, the use of novel tools and methods to investigate its composition and structure will greatly contribute to our knowledge in the field.
Collapse
Affiliation(s)
- Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Józef Julian Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
33
|
Wang A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol 2021; 48:10-16. [PMID: 33784579 DOI: 10.1016/j.coviro.2021.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023]
Abstract
Plant viruses have evolved efficient mechanisms to move cell-to-cell through plasmodesmata (PD) for systemic infection. Potyviruses including many economically important viruses constitute the largest group of known plant-infecting RNA viruses. Potyviral intercellular movement is accomplished by the coordinated action of at least three viral proteins and diverse host components. It requires the viral coat protein and is interlinked with active virus replication that generates, through RNA-polymerase slippage, a small percentage of frameshift viral RNA for the production of another essential movement protein named P3N-PIPO. This PD-located protein targets the virus-encoded cylindrical inclusion protein to PD to form special conical structures for potyviral passage, possibly in the form of virion. Here, I highlight and discuss major advances of potyviral intercellular trafficking.
Collapse
Affiliation(s)
- Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
34
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
35
|
Iswanto ABB, Shelake RM, Vu MH, Kim JY, Kim SH. Genome Editing for Plasmodesmal Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:679140. [PMID: 34149780 PMCID: PMC8207191 DOI: 10.3389/fpls.2021.679140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Minh Huy Vu
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- Jae-Yean Kim,
| | - Sang Hee Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Hee Kim,
| |
Collapse
|
36
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
37
|
Shi F, Wang Y, Zhang F, Yuan X, Chen H, Chen X, Chen X, Cui X. Soybean Endo-1,3-Beta-Glucanase ( GmGLU) Interaction With Soybean mosaic virus-Encoded P3 Protein May Contribute to the Intercelluar Movement. Front Genet 2020; 11:536771. [PMID: 33101374 PMCID: PMC7522550 DOI: 10.3389/fgene.2020.536771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022] Open
Abstract
Soybean mosaic virus (SMV), a member of the genus Potyvirus, is a prevalent and devastating viral pathogen in soybean-growing regions worldwide. Potyvirus-encoded P3 protein is reported to participate in virus replication, movements, and pathogenesis. This study provides evidence that the soybean (Glycine max) endo-1,3-beta-glucanase protein (designated as GmGLU) interacts with SMV-P3 by using a yeast two-hybrid system to screen a soybean cDNA library. A bimolecular fluorescence complementation assay further confirmed the interaction, which occurred on the cytomembrane in Nicotiana benthamiana cells. Subcellular localization experiment indicated that GmGLU localized in cytomembrane and could co-localized at PD with PD marker. The transient expression of GmGLU promoted the coupling of Turnip mosaic virus replication and cell-to-cell movement in N. benthamiana. Meanwhile, qRT-PCR experiment demonstrated that the expression of GmGLU which involved in callose regulation increased under SMV infection. Under SMV infection, callose deposition at PD was observed obviously by staining with aniline blue, which raise a physical barrier restricting cell-to-cell movement of SMV. When overexpression the GmGLU into the leaves under SMV infection, the callose induced by SMV was degraded. Coexpression the GmGLU and SMV in soybean leaves, callose was not found, whereas a large amount of callose deposition on soybean leaves which were only under SMV infection. The results show that GmGLU can degrade the callose induced by SMV infection and indicate that GmGLU may be an essential host factor involvement in potyvirus infection.
Collapse
Affiliation(s)
- Feifei Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Zhang
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xuehao Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Institute of Life Science, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Institute of Life Science, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Gayral M, Arias Gaguancela O, Vasquez E, Herath V, Flores FJ, Dickman MB, Verchot J. Multiple ER-to-nucleus stress signaling pathways are activated during Plantago asiatica mosaic virus and Turnip mosaic virus infection in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1233-1245. [PMID: 32390256 DOI: 10.1111/tpj.14798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol-requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA that produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089 and NAC103 factors in Arabidopsis thaliana. Using the corresponding knockout mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection, whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection, while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-green fluorescent protein (GFP) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Mathieu Gayral
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Omar Arias Gaguancela
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Evelyn Vasquez
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
| | - Venura Herath
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Francisco J Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial-UTE, Av. Mariscal Sucre y Mariana de Jesús, Quito, Pichincha, 170129, Ecuador
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| |
Collapse
|
39
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
40
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
41
|
The Expression of Potato Expansin A3 ( StEXPA3) and Extensin4 ( StEXT4) Genes with Distribution of StEXPAs and HRGPs-Extensin Changes as an Effect of Cell Wall Rebuilding in Two Types of PVY NTN- Solanum tuberosum Interactions. Viruses 2020; 12:v12010066. [PMID: 31948116 PMCID: PMC7020060 DOI: 10.3390/v12010066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023] Open
Abstract
The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN–potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.
Collapse
|
42
|
Wu G, Cui X, Dai Z, He R, Li Y, Yu K, Bernards M, Chen X, Wang A. A plant RNA virus hijacks endocytic proteins to establish its infection in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:384-400. [PMID: 31562664 DOI: 10.1111/tpj.14549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2β) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2β impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2β are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario, N0R 1G0, Canada
| | - Mark Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
43
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
44
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
45
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Zhang T, Liu P, Zhong K, Zhang F, Xu M, He L, Jin P, Chen J, Yang J. Wheat Yellow Mosaic Virus NIb Interacting with Host Light Induced Protein (LIP) Facilitates Its Infection through Perturbing the Abscisic Acid Pathway in Wheat. BIOLOGY 2019; 8:biology8040080. [PMID: 31652738 PMCID: PMC6955802 DOI: 10.3390/biology8040080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022]
Abstract
Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly reliant on host factors to fulfill their infection. However, few host factors have been identified to participate in wheat yellow mosaic virus (WYMV) infection. Here, we demonstrate that wheat (Triticum aestivum) light-induced protein (TaLIP) interacts with the WYMV nuclear inclusion b protein (NIb). A bimolecular fluorescence complementation (BIFC) assay displayed that the subcellular distribution patterns of TaLIP were altered by NIb in Nicotiana benthamiana. Transcription of TaLIP was significantly decreased by WYMV infection and TaLIP-silencing wheat plants displayed more susceptibility to WYMV in comparison with the control plants, suggesting that knockdown of TaLIP impaired host resistance. Moreover, the transcription level of TaLIP was induced by exogenous abscisic acid (ABA) stimuli in wheat, while knockdown of TaLIP significantly repressed the expression of ABA-related genes such as wheat abscisic acid insensitive 5 (TaABI5), abscisic acid insensitive 8 (TaABI8), pyrabatin resistance 1-Llike (TaPYL1), and pyrabatin resistance 3-Llike (TaPYL3). Collectively, our results suggest that the interaction of NIb with TaLIP facilitated the virus infection possibly by disturbing the ABA signaling pathway in wheat.
Collapse
Affiliation(s)
- Tianye Zhang
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China.
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jianping Chen
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China.
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
47
|
Expression of Two α-Type Expansins from Ammopiptanthus nanus in Arabidopsis thaliana Enhance Tolerance to Cold and Drought Stresses. Int J Mol Sci 2019; 20:ijms20215255. [PMID: 31652768 PMCID: PMC6862469 DOI: 10.3390/ijms20215255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Expansins, cell-wall loosening proteins, play an important role in plant growth and development and abiotic stress tolerance. Ammopiptanthus nanus (A. nanus) is an important plant to study to understand stress resistance in forestry. In our previous study, two α-type expansins from A. nanus were cloned and named AnEXPA1 and AnEXPA2. In this study, we found that they responded to different abiotic stress and hormone signals. It suggests that they may play different roles in response to abiotic stress. Their promoters show some of the same element responses to abiotic stress and hormones, but some special elements were identified between the expansins that could be essential for their expression. In order to further testify the reliability of the above results, we conducted an analysis of β-glucuronidase (GUS) dyeing. The analysis showed that AnEXPA1 was only induced by cold stress, whereas AnEXPA2 responded to hormone induction. AnEXPA1 and AnEXPA2 transgenic Arabidopsis plants showed better tolerance to cold and drought stresses. Moreover, the ability to scavenge reactive oxygen species (ROS) was significantly improved in the transgenic plants, and expansin activity was enhanced. These results suggested that AnEXPA1 and AnEXPA2 play an important role in the response to abiotic stress. Our research contributes to a better understanding of the regulatory network of expansins and may benefit agricultural production.
Collapse
|
48
|
Han X, Huang LJ, Feng D, Jiang W, Miu W, Li N. Plasmodesmata-Related Structural and Functional Proteins: The Long Sought-After Secrets of a Cytoplasmic Channel in Plant Cell Walls. Int J Mol Sci 2019; 20:ijms20122946. [PMID: 31212892 PMCID: PMC6627144 DOI: 10.3390/ijms20122946] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.
Collapse
Affiliation(s)
- Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Wenhan Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wenzhuo Miu
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
49
|
Sun Y, Huang D, Chen X. Dynamic regulation of plasmodesmatal permeability and its application to horticultural research. HORTICULTURE RESEARCH 2019; 6:47. [PMID: 30962940 PMCID: PMC6441653 DOI: 10.1038/s41438-019-0129-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Effective cell-to-cell communication allows plants to fine-tune their developmental processes in accordance with the prevailing environmental stimuli. Plasmodesmata (PD) are intercellular channels that span the plant cell wall and serve as cytoplasmic bridges to facilitate efficient exchange of signaling molecules between neighboring cells. The identification of PD-associated proteins and the subsequent elucidation of the regulation of PD structure have provided vital insights into the role of PD architecture in enforcing crucial cellular processes, including callose deposition, ER-Golgi-based secretion, cytoskeleton dynamics, membrane lipid raft organization, chloroplast metabolism, and cell wall formation. In this review, we summarize the emerging discoveries from recent studies that elucidated the regulatory mechanisms involved in PD biogenesis and the dynamics of PD opening-closure. Retrospectively, PD-mediated cell-to-cell communication has been implicated in diverse cellular and physiological processes that are fundamental for the development of horticultural plants. The potential application of PD biotechnological engineering represents a powerful approach for improving agronomic traits in horticultural crops in the future.
Collapse
Affiliation(s)
- Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
50
|
Xun H, Yang X, He H, Wang M, Guo P, Wang Y, Pang J, Dong Y, Feng X, Wang S, Liu B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. PLANT MOLECULAR BIOLOGY 2019; 99:95-111. [PMID: 30535849 DOI: 10.1007/s11103-018-0804-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE That overexpression of GmKR3 enhances innate virus resistance by stimulating. Soybean mosaic virus (SMV) is found in many soybean production areas, and SMV infection is one of the prevalent viral diseases that can cause significant yield losses in soybean. In plants, resistance (R) genes are involved in pathogen reorganization and innate immune response activation. Most R proteins have nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains, and some of the NBS-LRR type R proteins in dicots have Toll/Interleukin-1 Receptor (TIR) motifs. We report here the analysis of the over-expression of GmKR3, a soybean TIR-NBS-LRR type R gene on virus resistance in soybean. When over-expressed in soybean, GmKR3 enhanced the plant's resistance to several strains of SMV, the closely related potyviruses bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), and the secovirus bean pod mottle virus (BPMV). Importantly, over-expression of GmKR3 did not affect plant growth and development, including yield and qualities of the seeds. HPLC analysis showed that abscisic acid (ABA) content increased in the 35S:GmKR3 transgenic plants, and in both wild-type and 35S:GmKR3 transgenic plants in response to virus inoculation. Consistent with this observation, we found that the expression of two ABA catabolism genes was down-regulated in 35S:GmKR3 transgenic plants. We also found that the expression of Gm04.3, an ABA responsive gene encoding BURP domain-containing protein, was up-regulated in 35S:GmKR3 transgenic plants. Taken together, our results suggest that overexpression of GmKR3 enhanced virus resistance in soybean, which was achieved at least in part via ABA signaling.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangdong Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Meng Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Yingshan Dong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
- College of Life Science, Linyi University, Linyi, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|