1
|
Arce-Ortiz A, Jiménez-Martínez C, Gutiérrez-Rebolledo GA, Corzo-Ríos LJ, Olivo-Vidal ZE, Mora-Escobedo R, Cruz-Narváez Y, Sánchez-Chino XM. Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed ( Chrysobalanus icaco L.) in Murine Models. Molecules 2024; 29:3243. [PMID: 39064822 PMCID: PMC11279230 DOI: 10.3390/molecules29143243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.
Collapse
Affiliation(s)
- Abel Arce-Ortiz
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico; (A.A.-O.); (Z.E.O.-V.)
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Gabriel Alfonso Gutiérrez-Rebolledo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Luis Jorge Corzo-Ríos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticomán, Alcaldía Gustavo A. Madero, Mexico City 07340, Mexico;
| | - Zendy Evelyn Olivo-Vidal
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico; (A.A.-O.); (Z.E.O.-V.)
| | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Col. Lindavista, Mexico City 07738, Mexico;
| | - Xariss M. Sánchez-Chino
- Catedra-CONAHCYT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico
| |
Collapse
|
2
|
Qiao Y, Huang D, Li Y, Jiang S, Chen X, Chen J, Xiao Y, Chen W. Construction of lignan glycosides biosynthetic network in Escherichia coli using mutltienzyme modules. Microb Cell Fact 2024; 23:193. [PMID: 38970026 PMCID: PMC11225284 DOI: 10.1186/s12934-024-02467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Due to the complexity of the metabolic pathway network of active ingredients, precise targeted synthesis of any active ingredient on a synthetic network is a huge challenge. Based on a complete analysis of the active ingredient pathway in a species, this goal can be achieved by elucidating the functional differences of each enzyme in the pathway and achieving this goal through different combinations. Lignans are a class of phytoestrogens that are present abundantly in plants and play a role in various physiological activities of plants due to their structural diversity. In addition, lignans offer various medicinal benefits to humans. Despite their value, the low concentration of lignans in plants limits their extraction and utilization. Recently, synthetic biology approaches have been explored for lignan production, but achieving the synthesis of most lignans, especially the more valuable lignan glycosides, across the entire synthetic network remains incomplete. RESULTS By evaluating various gene construction methods and sequences, we determined that the pCDF-Duet-Prx02-PsVAO gene construction was the most effective for the production of (+)-pinoresinol, yielding up to 698.9 mg/L after shake-flask fermentation. Based on the stable production of (+)-pinoresinol, we synthesized downstream metabolites in vivo. By comparing different fermentation methods, including "one-cell, one-pot" and "multicellular one-pot", we determined that the "multicellular one-pot" method was more effective for producing (+)-lariciresinol, (-)-secoisolariciresinol, (-)-matairesinol, and their glycoside products. The "multicellular one-pot" fermentation yielded 434.08 mg/L of (+)-lariciresinol, 96.81 mg/L of (-)-secoisolariciresinol, and 45.14 mg/L of (-)-matairesinol. Subsequently, ultilizing the strict substrate recognition pecificities of UDP-glycosyltransferase (UGT) incorporating the native uridine diphosphate glucose (UDPG) Module for in vivo synthesis of glycoside products resulted in the following yields: (+)-pinoresinol glucoside: 1.71 mg/L, (+)-lariciresinol-4-O-D-glucopyranoside: 1.3 mg/L, (+)-lariciresinol-4'-O-D-glucopyranoside: 836 µg/L, (-)-secoisolariciresinol monoglucoside: 103.77 µg/L, (-)-matairesinol-4-O-D-glucopyranoside: 86.79 µg/L, and (-)-matairesinol-4'-O-D-glucopyranoside: 74.5 µg/L. CONCLUSIONS By using various construction and fermentation methods, we successfully synthesized 10 products of the lignan pathway in Isatis indigotica Fort in Escherichia coli, with eugenol as substrate. Additionally, we obtained a diverse range of lignan products by combining different modules, setting a foundation for future high-yield lignan production.
Collapse
Affiliation(s)
- Yuqi Qiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Doudou Huang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yajing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Songfan Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
4
|
Yang L, Yang M, Deng Z, Hou X, Zheng X, Ping Q, Rao Y, Shi J, Zhang Y. Selective synthesis of rebaudioside M2 through structure-guided engineering of glycosyltransferase UGT94D1. Front Bioeng Biotechnol 2024; 12:1334427. [PMID: 38375456 PMCID: PMC10875103 DOI: 10.3389/fbioe.2024.1334427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono β-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.
Collapse
Affiliation(s)
- Lifeng Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mengliang Yang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiwei Deng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaodong Hou
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiangting Zheng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
6
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
7
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
8
|
Yamashita M, Fujimori T, An S, Iguchi S, Takenaka Y, Kajiura H, Yoshizawa T, Matsumura H, Kobayashi M, Ono E, Ishimizu T. The apiosyltransferase celery UGT94AX1 catalyzes the biosynthesis of the flavone glycoside apiin. PLANT PHYSIOLOGY 2023; 193:1758-1771. [PMID: 37433052 PMCID: PMC10602602 DOI: 10.1093/plphys/kiad402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Apiose is a unique branched-chain pentose found in plant glycosides and a key component of the cell wall polysaccharide pectin and other specialized metabolites. More than 1,200 plant-specialized metabolites contain apiose residues, represented by apiin, a distinctive flavone glycoside found in celery (Apium graveolens) and parsley (Petroselinum crispum) in the family Apiaceae. The physiological functions of apiin remain obscure, partly due to our lack of knowledge on apiosyltransferase during apiin biosynthesis. Here, we identified UGT94AX1 as an A. graveolens apiosyltransferase (AgApiT) responsible for catalyzing the last sugar modification step in apiin biosynthesis. AgApiT showed strict substrate specificity for the sugar donor, UDP-apiose, and moderate specificity for acceptor substrates, thereby producing various apiose-containing flavone glycosides in celery. Homology modeling of AgApiT with UDP-apiose, followed by site-directed mutagenesis experiments, identified unique Ile139, Phe140, and Leu356 residues in AgApiT, which are seemingly crucial for the recognition of UDP-apiose in the sugar donor pocket. Sequence comparison and molecular phylogenetic analysis of celery glycosyltransferases suggested that AgApiT is the sole apiosyltransferase-encoding gene in the celery genome. Identification of this plant apiosyltransferase gene will enhance our understanding of the physioecological functions of apiose and apiose-containing compounds.
Collapse
Affiliation(s)
- Maho Yamashita
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tae Fujimori
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Song An
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Sho Iguchi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masaru Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Eiichiro Ono
- Suntory Global Innovation Center Ltd., Research Institute, Soraku-gun, Kyoto 619-0284, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Hoffmann TD, Kurze E, Liao J, Hoffmann T, Song C, Schwab W. Genome-wide identification of UDP-glycosyltransferases in the tea plant ( Camellia sinensis) and their biochemical and physiological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1191625. [PMID: 37346124 PMCID: PMC10279963 DOI: 10.3389/fpls.2023.1191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Tea (Camellia sinensis) has been an immensely important commercially grown crop for decades. This is due to the presence of essential nutrients and plant secondary metabolites that exhibit beneficial health effects. UDP-glycosyltransferases (UGTs) play an important role in the diversity of such secondary metabolites by catalysing the transfer of an activated sugar donor to acceptor molecules, and thereby creating a huge variety of glycoconjugates. Only in recent years, thanks to the sequencing of the tea plant genome, have there been increased efforts to characterise the UGTs in C. sinensis to gain an understanding of their physiological role and biotechnological potential. Based on the conserved plant secondary product glycosyltransferase (PSPG) motif and the catalytically active histidine in the active site, UGTs of family 1 in C. sinensis are identified here, and shown to cluster into 21 groups in a phylogenetic tree. Building on this, our current understanding of recently characterised C. sinensis UGTs (CsUGTs) is highlighted and a discussion on future perspectives made.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| |
Collapse
|
10
|
Sugimoto K, Ono E, Inaba T, Tsukahara T, Matsui K, Horikawa M, Toyonaga H, Fujikawa K, Osawa T, Homma S, Kiriiwa Y, Ohmura I, Miyagawa A, Yamamura H, Fujii M, Ozawa R, Watanabe B, Miura K, Ezura H, Ohnishi T, Takabayashi J. Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception. Nat Commun 2023; 14:677. [PMID: 36755045 PMCID: PMC9908901 DOI: 10.1038/s41467-023-36381-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl β-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl β-D-glucopyranoside arabinosylation to produce HexVic in planta.
Collapse
Affiliation(s)
- Koichi Sugimoto
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 510-2113, Japan.,Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd, Suntory Foundation for Life Sciences, 8-1-1 Seika-dai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tamaki Inaba
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takehiko Tsukahara
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seika-dai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Hiromi Toyonaga
- Research Institute, Suntory Global Innovation Center Ltd, Suntory Foundation for Life Sciences, 8-1-1 Seika-dai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seika-dai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seika-dai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Shunichi Homma
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Yoshikazu Kiriiwa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Agri-Intelligence Cultivation Institute, Shizuoka University, Nagoya, Suruga, Shizuoka, 422-8529, Japan
| | - Ippei Ohmura
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Atsushi Miyagawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hatsuo Yamamura
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Mikio Fujii
- School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 510-2113, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Chemistry Laboratory, The Jikei University School of Medicine, Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Kenji Miura
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Toshiyuki Ohnishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan. .,Agri-Intelligence Cultivation Institute, Shizuoka University, Nagoya, Suruga, Shizuoka, 422-8529, Japan. .,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan. .,Institute for Tea Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 510-2113, Japan.
| |
Collapse
|
11
|
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. THE NEW PHYTOLOGIST 2023; 237:999-1013. [PMID: 36305250 PMCID: PMC10107851 DOI: 10.1111/nph.18581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization PlatformUniversity of Copenhagen2200CopenhagenDenmark
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz‐Institute of Plant BiochemistryHalle06120Germany
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | | | - Ian E. Woodrow
- School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleVic.3052Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Elizabeth H. J. Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| |
Collapse
|
12
|
Parakkunnel R, Naik K B, Vanishree G, C S, Purru S, Bhaskar K U, Bhat KV, Kumar S. Gene fusions, micro-exons and splice variants define stress signaling by AP2/ERF and WRKY transcription factors in the sesame pan-genome. FRONTIERS IN PLANT SCIENCE 2022; 13:1076229. [PMID: 36618639 PMCID: PMC9817154 DOI: 10.3389/fpls.2022.1076229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Evolutionary dynamics of AP2/ERF and WRKY genes, the major components of defense response were studied extensively in the sesame pan-genome. Massive variation was observed for gene copy numbers, genome location, domain structure, exon-intron structure and protein parameters. In the pan-genome, 63% of AP2/ERF members were devoid of introns whereas >99% of WRKY genes contained multiple introns. AP2 subfamily was found to be micro-exon rich with the adjoining intronic sequences sharing sequence similarity to many stress-responsive and fatty acid metabolism genes. WRKY family included extensive multi-domain gene fusions where the additional domains significantly enhanced gene and exonic sizes as well as gene copy numbers. The fusion genes were found to have roles in acquired immunity, stress response, cell and membrane integrity as well as ROS signaling. The individual genomes shared extensive synteny and collinearity although ecological adaptation was evident among the Chinese and Indian accessions. Significant positive selection effects were noticed for both micro-exon and multi-domain genes. Splice variants with changes in acceptor, donor and branch sites were common and 6-7 splice variants were detected per gene. The study ascertained vital roles of lipid metabolism and chlorophyll biosynthesis in the defense response and stress signaling pathways. 60% of the studied genes localized in the nucleus while 20% preferred chloroplast. Unique cis-element distribution was noticed in the upstream promoter region with MYB and STRE in WRKY genes while MYC was present in the AP2/ERF genes. Intron-less genes exhibited great diversity in the promoter sequences wherein the predominance of dosage effect indicated variable gene expression levels. Mimicking the NBS-LRR genes, a chloroplast localized WRKY gene, Swetha_24868, with additional domains of chorismate mutase, cAMP and voltage-dependent potassium channel was found to act as a master regulator of defense signaling, triggering immunity and reducing ROS levels.
Collapse
Affiliation(s)
- Ramya Parakkunnel
- ICAR- Indian Institute of Seed Science, Regional Station, Gandhi Krishi Vigyana Kendra (GKVK) Campus, Bengaluru, India
| | - Bhojaraja Naik K
- ICAR- Indian Institute of Seed Science, Regional Station, Gandhi Krishi Vigyana Kendra (GKVK) Campus, Bengaluru, India
| | - Girimalla Vanishree
- ICAR- Indian Institute of Seed Science, Regional Station, Gandhi Krishi Vigyana Kendra (GKVK) Campus, Bengaluru, India
| | - Susmita C
- ICAR- Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Supriya Purru
- ICAR- National Academy of Agricultural Research Management, Hyderabad, Telengana, India
| | - Udaya Bhaskar K
- ICAR- Indian Institute of Seed Science, Regional Station, Gandhi Krishi Vigyana Kendra (GKVK) Campus, Bengaluru, India
| | - KV. Bhat
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| |
Collapse
|
13
|
Koyama T, Murata J, Horikawa M, Satake H. Production of beneficial lignans in heterologous host plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1026664. [PMID: 36330251 PMCID: PMC9623879 DOI: 10.3389/fpls.2022.1026664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
|
14
|
The wild allotetraploid sesame genome provides novel insights into evolution and lignan biosynthesis. J Adv Res 2022:S2090-1232(22)00233-8. [PMID: 36265763 PMCID: PMC10403651 DOI: 10.1016/j.jare.2022.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The wild tetraploid sesame (Sesamum schinzianum), an ancestral relative of diploid cultivated sesame, grows in the tropical desert of the African Plateau. As a valuable seed resource, wild sesame has several advantageous traits, such as strong environmental adaptability and an extremely high content of sesamolin in its seeds. High-quality genome assembly is essential for a detailed understanding of genome structure, genome evolution and crop improvement. OBJECTIVES Here, we generated two high-quality chromosome-scale genomes from S. schinzianum and a cultivated diploid elite sesame (Sesamum indicum L.) to investigate the potential genetic basis underlying these traits of wild sesame. METHODS The long-read data from PacBio Sequel II platform and high-throughput chromosome conformation capture (Hi-C) data were used to construct high-quality sesame genome. Then dissecting the molecular mechanisms of sesame evolution and lignan biosynthesis through comparative genomics and transcriptomics. RESULTS We found evidence of divergent evolution that involved differences in the number, sequence and expression level of homologous genes between the two sets of subgenomes from allotetraploids in S. schinzianum, all of which might be driven by subfunctionalization after polyploidization. Furthermore, it was found that a great number of genes involved in the stress response have undergone positive selection and resulted from gene family expansion in the wild sesame genome compared with the cultivated sesame genome, which, overall, is associated with adaptative evolution to the environment. We hypothesized that the sole functional member CYP92B14 (SscC22g35272) could be associated with high content of sesamolin in wild sesame seeds. CONCLUSION This study provides high-quality wild allotetraploid sesame and cultivated sesame genomes, reveals evolutionary features of the allotetraploid genome and provides novel insights into lignan synthesis pathways. Meanwhile, the wild sesame genome will be an important resource to conduct comparative genomic and evolutionary studies and plant improvement programmes.
Collapse
|
15
|
Efficient synthesis of rebaudioside D2 through UGT94D1-catalyzed regio-selective glycosylation. Carbohydr Res 2022; 522:108687. [DOI: 10.1016/j.carres.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
16
|
Zoclanclounon YAB, Rostás M, Chung NJ, Mo Y, Karlovsky P, Dossa K. Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame. Life (Basel) 2022; 12:1200. [PMID: 36013379 PMCID: PMC9410177 DOI: 10.3390/life12081200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael Rostás
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Nam-Jin Chung
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Komivi Dossa
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
17
|
Tan Y, Yang J, Jiang Y, Wang J, Liu Y, Zhao Y, Jin B, Wang X, Chen T, Kang L, Guo J, Cui G, Tang J, Huang L. Functional Characterization of UDP-Glycosyltransferases Involved in Anti-viral Lignan Glycosides Biosynthesis in Isatis indigotica. FRONTIERS IN PLANT SCIENCE 2022; 13:921815. [PMID: 35774804 PMCID: PMC9237620 DOI: 10.3389/fpls.2022.921815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/02/2023]
Abstract
Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-β-D-glucoside and lariciresinol-4,4'-bis-O-β-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.
Collapse
Affiliation(s)
- Yuping Tan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinyin Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yahui Liu
- National Institute of Metrology, Beijing, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Xu H, Lan Y, Xing J, Li Y, Liu L, Wang Y. AfCHIL, a Type IV Chalcone Isomerase, Enhances the Biosynthesis of Naringenin in Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2022; 13:891066. [PMID: 35665193 PMCID: PMC9158529 DOI: 10.3389/fpls.2022.891066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Naringenin is an essential precursor for all flavonoids, and effectively promoting naringenin production is crucial in metabolic engineering. The interaction between plant metabolic enzymes ensures metabolic flux. The effect can effectively improve the natural product synthesis of engineering microbial systems. In this study, chalcone isomerase genes in Allium fistulosum have been identified. The expression of AfCHIL is closely related to the accumulation of anthocyanins, and the expression of AfCHIL and AfCHS was highly synchronized. Yeast two-hybrid and firefly luciferase complementation imaging assay further confirmed AfCHIL physically interacted with AfCHS/AfCHI. The bioconversion experiment confirmed that AfCHIL reduced the derailment produced by AfCHS and increased the yield of naringenin. In addition, a system of biosynthesis naringenin involved in AfCHS was constructed, and these results suggested that the potential function between CHS with CHIL advanced naringenin production effectively. In conclusion, this study illustrated the function of AfCHIs in Allium fistulosum and provided new insight into improving the synthesis efficiency of naringenin.
Collapse
Affiliation(s)
- Huanhuan Xu
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiayi Xing
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Horticulture, College of Agronomy, Shihezi University, Shihezi, China
| | - Yi Li
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongqin Wang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
19
|
Li Y, Wang F, Li J, Ivey KL, Wilkinson JE, Wang DD, Li R, Liu G, Eliassen HA, Chan AT, Clish CB, Huttenhower C, Hu FB, Sun Q, Rimm EB. Dietary lignans, plasma enterolactone levels, and metabolic risk in men: exploring the role of the gut microbiome. BMC Microbiol 2022; 22:82. [PMID: 35350985 PMCID: PMC8966171 DOI: 10.1186/s12866-022-02495-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The conversion of plant lignans to bioactive enterolignans in the gastrointestinal tract is mediated through microbial processing. The goal of this study was to examine the relationships between lignan intake, plasma enterolactone concentrations, gut microbiome composition, and metabolic risk in free-living male adults. RESULTS In 303 men participating in the Men's Lifestyle Validation Study (MLVS), lignan intake was assessed using two sets of 7-day diet records, and gut microbiome was profiled through shotgun sequencing of up to 2 pairs of fecal samples (n = 911). A score was calculated to summarize the abundance of bacteria species that were significantly associated with plasma enterolactone levels. Of the 138 filtered species, plasma enterolactone levels were significantly associated with the relative abundances of 18 species at FDR < 0.05 level. Per SD increment of lignan intake was associated with 20.7 nM (SEM: 2.3 nM) higher enterolactone concentrations among participants with a higher species score, whereas the corresponding estimate was 4.0 nM (SEM: 1.7 nM) among participants with a lower species score (P for interaction < 0.001). A total of 12 plasma metabolites were also significantly associated with these enterolactone-predicting species. Of the association between lignan intake and metabolic risk, 19.8% (95%CI: 7.3%-43.6%) was explained by the species score alone, 54.5% (95%CI: 21.8%-83.7%) by both species score and enterolactone levels, and 79.8% (95%CI: 17.7%-98.6%) by further considering the 12 plasma metabolites. CONCLUSION We identified multiple gut bacteria species that were enriched or depleted at higher plasma levels of enterolactone in men. These species jointly modified the associations of lignan intake with plasma enterolactone levels and explained the majority of association between lignan intake and metabolic risk along with enterolactone levels and certain plasma metabolites.
Collapse
Affiliation(s)
- Yanping Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Fenglei Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Jun Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Kerry L. Ivey
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.430453.50000 0004 0565 2606Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1014.40000 0004 0367 2697Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Jeremy E. Wilkinson
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dong D. Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ruifeng Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Gang Liu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Heather A. Eliassen
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Andrew T. Chan
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Clary B. Clish
- grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Curtis Huttenhower
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Frank B. Hu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Qi Sun
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Eric B. Rimm
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
20
|
Oikawa D, Yamashita S, Takahashi S, Waki T, Kikuchi K, Abe T, Katayama T, Nakayama T. (+)-Sesamin, a sesame lignan, is a potent inhibitor of gut bacterial tryptophan indole-lyase that is a key enzyme in chronic kidney disease pathogenesis. Biochem Biophys Res Commun 2022; 590:158-162. [PMID: 34974305 DOI: 10.1016/j.bbrc.2021.12.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023]
Abstract
The progression of chronic kidney disease (CKD) increases the risks of cardiovascular morbidity and end-stage kidney disease. Indoxyl sulfate (IS), which is derived from dietary l-tryptophan by the action of bacterial l-tryptophan indole-lyase (TIL) in the gut, serves as a uremic toxin that exacerbates CKD-related kidney disorder. A mouse model previously showed that inhibition of TIL by 2-aza-l-tyrosine effectively reduced the plasma IS level, causing the recovery of renal damage. In this study, we found that (+)-sesamin and related lignans, which occur abundantly in sesame seeds, inhibit intestinal bacteria TILs. Kinetic studies revealed that (+)-sesamin and sesamol competitively inhibited Escherichia coli TIL (EcTIL) with Ki values of 7 μM and 14 μM, respectively. These Ki values were smaller than that of 2-aza-l-tyrosine (143 μM). Molecular docking simulation of (+)-sesamin- (or sesamol-)binding to EcTIL predicted that these inhibitors potentially bind near the active site of EcTIL, where the cofactor pyridoxal 5'-phosphate is bound, consistent with the kinetic results. (+)-Sesamin is a phytochemical with a long history of consumption and is generally regarded as safe. Hence, dietary supplementation of (+)-sesamin encapsulated in enteric capsules could be a promising mechanism-based strategy to prevent CKD progression. Moreover, the present findings would provide a new structural basis for designing more potent TIL inhibitors for the development of mechanism-based therapeutic drugs to treat CKD.
Collapse
Affiliation(s)
- Daiki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Yamashita
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Toshiyuki Waki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Koichi Kikuchi
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan; Department of Medical Megabank Tohoku University, Sendai, 980-8574, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan; Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan; Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
21
|
Jung J, Schachtschabel D, Speitling M, Nidetzky B. Controllable Iterative β-Glucosylation from UDP-Glucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14630-14642. [PMID: 34817995 PMCID: PMC8662728 DOI: 10.1021/acs.jafc.1c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Glycosylation in natural product metabolism and xenobiotic detoxification often leads to disaccharide-modified metabolites. The chemical synthesis of such glycosides typically separates the glycosylation steps in space and time. The option to perform the two-step glycosylation in one pot, and catalyzed by a single permissive enzyme, is interesting for a facile access to disaccharide-modified products. Here, we reveal the glycosyltransferase GT1 from Bacillus cereus (BcGT1; gene identifier: KT821092) for iterative O-β-glucosylation from uridine 5'-diphosphate (UDP)-glucose to form a β-linked disaccharide of different metabolites, including a C15 hydroxylated detoxification intermediate of the agricultural herbicide cinmethylin (15HCM). We identify thermodynamic and kinetic requirements for the selective formation of the disaccharide compared to the monosaccharide-modified 15HCM. As shown by NMR and high-resolution MS, β-cellobiosyl and β-gentiobiosyl groups are attached to the aglycone's O15 in a 2:1 ratio. Glucosylation reactions on methylumbelliferone and 4-nitrophenol involve reversible glycosyl transfer from and to UDP as well as UDP-glucose hydrolysis, both catalyzed by BcGT1. Collectively, this study delineates the iterative β-d-glucosylation of aglycones by BcGT1 and demonstrates applicability for the programmable one-pot synthesis of disaccharide-modified 15HCM.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| |
Collapse
|
22
|
Yang Y, Wu Y, Zhuang Y, Liu T. Discovery of Glycosyltransferases Involved in the Biosynthesis of Ligupurpuroside B. Org Lett 2021; 23:7851-7854. [PMID: 34609151 DOI: 10.1021/acs.orglett.1c02873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the characterization of three glycosyltransferases involved in the biosynthesis of ligupurpuroside B, a complex acylated phenolic glycoside in Ligustrum robustum. UGT85AF8 catalyzed the formation of salidroside from tyrosol. UGT79G7, an osmanthuside A 1,3-rhamnosyltransferase, and UGT79A19, an osmanthuside B 1,4-rhamnosyltransferase, sequentially converted osmanthuside A into ligupurpuroside B. Orthologs of UGT79G7 were also discovered from other plants producing verbascoside. These rhamnosyltransferases expand the toolbox for the biosynthesis of natural products with various sugar chains.
Collapse
Affiliation(s)
- Yihan Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yibin Zhuang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
23
|
Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P. Lignans of Sesame ( Sesamum indicum L.): A Comprehensive Review. Molecules 2021; 26:883. [PMID: 33562414 PMCID: PMC7914952 DOI: 10.3390/molecules26040883] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), University of Costa Rica, 2060 San Jose, Costa Rica;
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Evelyn Möller
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| |
Collapse
|
24
|
Zhang Y, Fernie AR. Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. PLANT COMMUNICATIONS 2021; 2:100081. [PMID: 33511342 PMCID: PMC7816073 DOI: 10.1016/j.xplc.2020.100081] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Metabolons are transient multi-protein complexes of sequential enzymes that mediate substrate channeling. They differ from multi-enzyme complexes in that they are dynamic, rather than permanent, and as such have considerably lower dissociation constants. Despite the fact that a huge number of metabolons have been suggested to exist in plants, most of these claims are erroneous as only a handful of these have been proven to channel metabolites. We believe that physical protein-protein interactions between consecutive enzymes of a pathway should rather be called enzyme-enzyme assemblies. In this review, we describe how metabolons are generally assembled by transient interactions and held together by both structural elements and non-covalent interactions. Experimental evidence for their existence comes from protein-protein interaction studies, which indicate that the enzymes physically interact, and direct substrate channeling measurements, which indicate that they functionally interact. Unfortunately, advances in cell biology and proteomics have far outstripped those in classical enzymology and flux measurements, rendering most reports reliant purely on interactome studies. Recent developments in co-fractionation mass spectrometry will likely further exacerbate this bias. Given this, only dynamic enzyme-enzyme assemblies in which both physical and functional interactions have been demonstrated should be termed metabolons. We discuss the level of evidence for the manifold plant pathways that have been postulated to contain metabolons and then list examples in both primary and secondary metabolism for which strong evidence has been provided to support these claims. In doing so, we pay particular attention to experimental and mathematical approaches to study metabolons as well as complexities that arise in attempting to follow them. Finally, we discuss perspectives for improving our understanding of these fascinating but enigmatic interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Chen X, Chen J, Feng J, Wang Y, Li S, Xiao Y, Diao Y, Zhang L, Chen W. Tandem UGT71B5s Catalyze Lignan Glycosylation in Isatis indigotica With Substrates Promiscuity. FRONTIERS IN PLANT SCIENCE 2021; 12:637695. [PMID: 33868336 PMCID: PMC8044456 DOI: 10.3389/fpls.2021.637695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/15/2021] [Indexed: 05/10/2023]
Abstract
Lignans are a class of chemicals formed by the combination of two molecules of phenylpropanoids with promising nutritional and pharmacological activities. Lignans glucosides, which are converted from aglycones catalyzed by uridine diphosphate (UDP) glycosyltransferases (UGTs), have abundant bioactivities. In the present study, two UGTs from Isatis indigotica Fort., namely IiUGT71B5a and IiUGT71B5b, were characterized to catalyze the glycosylation of lignans with promiscuities toward various sugar acceptors and sugar donors, and pinoresinol was the preferred substrate. IiUGT71B5a was capable of efficiently producing both pinoresinol monoglycoside and diglycoside. However, IiUGT71B5b only produced monoglycoside, and exhibited considerably lower activity than IiUGT71B5a. Substrate screening indicated that ditetrahydrofuran is the essential structural characteristic for sugar acceptors. The transcription of IiUGT71B5s was highly consistent with the spatial distribution of pinoresinol glucosides, suggesting that IiUGT71B5s may play biological roles in the modification of pinoresinol in I. indigotica roots. This study not only provides insights into lignan biosynthesis, but also elucidates the functional diversity of the UGT family.
Collapse
Affiliation(s)
- Xiao Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Biomedical Sciences, Huaqiao University, Fujian, China
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingxian Feng
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Shunuo Li
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Fujian, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Wansheng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Wansheng Chen,
| |
Collapse
|
26
|
Harada E, Murata J, Ono E, Toyonaga H, Shiraishi A, Hideshima K, Yamamoto MP, Horikawa M. (+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1117-1128. [PMID: 32955771 PMCID: PMC7756453 DOI: 10.1111/tpj.14989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sesamum spp. (sesame) are known to accumulate a variety of lignans in a lineage-specific manner. In cultivated sesame (Sesamum indicum), (+)-sesamin, (+)-sesamolin and (+)-sesaminol triglucoside are the three major lignans found richly in the seeds. A recent study demonstrated that SiCYP92B14 is a pivotal enzyme that allocates the substrate (+)-sesamin to two products, (+)-sesamolin and (+)-sesaminol, through multiple reaction schemes including oxidative rearrangement of α-oxy-substituted aryl groups (ORA). In contrast, it remains unclear whether (+)-sesamin in wild sesame undergoes oxidation reactions as in S. indicum and how, if at all, the ratio of the co-products is tailored at the molecular level. Here, we functionally characterised SrCYP92B14 as a SiCYP92B14 orthologue from a wild sesame, Sesamum radiatum, in which we revealed accumulation of the (+)-sesaminol derivatives (+)-sesangolin and its novel structural isomer (+)-7´-episesantalin. Intriguingly, SrCYP92B14 predominantly produced (+)-sesaminol either through ORA or direct oxidation on the aromatic ring, while a relatively low but detectable level of (+)-sesamolin was produced. Amino acid substitution analysis suggested that residues in the putative distal helix and the neighbouring heme propionate of CYP92B14 affect the ratios of its co-products. These data collectively show that the bimodal oxidation mechanism of (+)-sesamin might be widespread across Sesamum spp., and that CYP92B14 is likely to be a key enzyme in shaping the ratio of (+)-sesaminol- and (+)-sesamolin-derived lignans from the biochemical and evolutionary perspectives.
Collapse
Affiliation(s)
- Erisa Harada
- Suntory Foundation for Life Sciences (SUNBOR)Bioorganic Research Institute8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| | - Jun Murata
- Suntory Foundation for Life Sciences (SUNBOR)Bioorganic Research Institute8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| | - Eiichiro Ono
- Research InstituteSuntory Global Innovation Center Ltd (SIC)8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| | - Hiromi Toyonaga
- Research InstituteSuntory Global Innovation Center Ltd (SIC)8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences (SUNBOR)Bioorganic Research Institute8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| | - Kosuke Hideshima
- Graduate School of Science and EngineeringUniversity of Toyama3190 GofukuToyama930‐8555Japan
| | - Masayuki P. Yamamoto
- Faculty of ScienceAcademic AssemblyUniversity of Toyama3190 GofukuToyama930‐8555Japan
| | - Manabu Horikawa
- Suntory Foundation for Life Sciences (SUNBOR)Bioorganic Research Institute8‐1‐1 Seikadai, SeikaSorakuKyoto619‐0284Japan
| |
Collapse
|