1
|
Taniyoshi K, Honda S, Miyamoto A, Asagi N, Matsuoka M, Yamori W, Tanaka Y, Adachi S. Genetic diversity of leaf photosynthesis under fluctuating light conditions among temperate japonica rice varieties. JOURNAL OF EXPERIMENTAL BOTANY 2025:eraf083. [PMID: 40244216 DOI: 10.1093/jxb/eraf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Under field conditions, solar radiation on a crop canopy fluctuates according to clouds, wind, and self-shading. The slower response of photosynthesis compared with the rate of irradiation changes leads to loss of photosynthetic carbon gain. Although some genetic differences in the rate of photosynthetic induction have been reported, the diversity among rice varieties is largely unknown. Here we evaluated genetic variation in the response of photosynthesis to a step increase in light intensity among 166 temperate japonica varieties including landraces and modern varieties. Large genetic variation in photosynthetic induction and less evidence of improvement across modern breeding programmes were acknowledged. In the correlation analysis between physiological traits for all varieties, the efficiency of non-stomatal processes was the major factor affecting the rate of induction. The landrace Aikokumochi, which has intermediate photosynthetic capacity, showed rapid photosynthetic induction-eight times that of the slowest variety. This was attributed to smaller non-stomatal limitation in the initial phase of induction and smaller stomatal limitation in the later phase than in reference varieties. Aikokumochi also had a greater photosynthetic CO2 gain without reduced water use efficiency under repeated fluctuating light. These findings demonstrate the importance of genetic resources to improve photosynthesis while maintaining water use efficiency under fluctuating light conditions.
Collapse
Affiliation(s)
- Kazuki Taniyoshi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sotaro Honda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Airi Miyamoto
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Naomi Asagi
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Makoto Matsuoka
- Faculty of Food and Agricultural Sciences, Institute of Fermentation Sciences, Fukushima University, Fukushima 960-1296, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Science, The University of Tokyo, Nishitokyo, Tokyo 188-002, Japan
| | - Yu Tanaka
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Tan SL, Vera-Vives AM, Alboresi A, Morosinotto T. Light intensity activation of alternative electron transport mechanisms in the moss Physcomitrium patens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109904. [PMID: 40288259 DOI: 10.1016/j.plaphy.2025.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Photosynthetic organisms exploit sunlight to drive an electron transport chain and obtain the chemical energy supporting their metabolism. In highly dynamic environmental conditions, excitation energy and electron transport need to be continuously modulated to prevent over-reduction and the consequent damage. An essential role in the regulation of electron transport is played by alternative electron transport mechanisms such as cyclic electron transport (CET) facilitated by PGRL1/PGR5 and NDH complex and pseudo-cyclic electron transport (PCET) mediated by the flavodiiron proteins (FLV) and the Mehler reaction. In this work mutant lines of the moss Physcomitrium patens depleted in PCET (flva KO) or CET (pgrl1/ndhm KO) were compared to wild-type plants for their ability to regulate photosynthetic electron transport in response to light fluctuations of different intensities. FLV activity enables a very fast increase in electron transport capacity but its impact is transient and becomes undetectable after 3 min from a light change. The FLV electron transport capacity is saturated at 100 μmol photons m-2 s-1 and does not increase even if exposed to stronger illumination. On the other hand, CET activation after an increase in illumination has a smaller contribution on electron transport capacity, but it provides a steady contribution for several minutes after a change in illumination intensity. Overall, these results demonstrate that light adapted plants CO2 fixation capacity needs approx. 3 min to adjust to different illumination intensities. In this interval CET and PCET enable adjusting temporary unbalances in electron transport, fully responding to 2-4 time increases in illumination. In case of larger increases, these mechanisms still contribute to protection from light damage by reducing the accumulation of electrons at PSI acceptor side. While the two mechanisms play an overlapping function, their activity shows distinctive kinetics and electron transport capacity thus they are complementary in ensuring optimal photoprotection.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
3
|
Feyissa BA, de Becker EM, Salesse-Smith CE, Shu M, Zhang J, Yates TB, Xie M, De K, Gotarkar D, Chen MSS, Jawdy SS, Carper DL, Barry K, Schmutz J, Weston DJ, Abraham PE, Tsai CJ, Morrell-Falvey JL, Taylor G, Chen JG, Tuskan GA, Long SP, Burgess SJ, Muchero W. An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity. Dev Cell 2025; 60:723-734.e7. [PMID: 39631390 DOI: 10.1016/j.devcel.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Organelle-to-nucleus DNA transfer is an ongoing process playing an important role in the evolution of eukaryotic life. Here, genome-wide association studies (GWAS) of non-photochemical quenching parameters in 743 Populus trichocarpa accessions identified a nuclear-encoded genomic region associated with variation in photosynthesis under fluctuating light. The identified gene, BOOSTER (BSTR), comprises three exons, two with apparent endophytic origin and the third containing a large fragment of plastid-encoded Rubisco large subunit. Higher expression of BSTR facilitated anterograde signaling between nucleus and plastid, which corresponded to enhanced expression of Rubisco, increased photosynthesis, and up to 35% greater plant height and 88% biomass in poplar accessions under field conditions. Overexpression of BSTR in Populus tremula × P. alba achieved up to a 200% in plant height. Similarly, Arabidopsis plants heterologously expressing BSTR gained up to 200% in biomass and up to 50% increase in seed.
Collapse
Affiliation(s)
- Biruk A Feyissa
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Elsa M de Becker
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Coralie E Salesse-Smith
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dhananjay Gotarkar
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65201, USA
| | - Margot S S Chen
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Chung-Jui Tsai
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Gail Taylor
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P Long
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven J Burgess
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
4
|
Pelech EA, Stutz SS, Wang Y, Lochocki EB, Long SP. Have We Selected for Higher Mesophyll Conductance in Domesticating Soybean? PLANT, CELL & ENVIRONMENT 2025; 48:1594-1607. [PMID: 39463010 PMCID: PMC11695774 DOI: 10.1111/pce.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
Soybean (Glycine max) is the single most important global source of vegetable protein. Yield improvements per unit land area are needed to avoid further expansion onto natural systems. Mesophyll conductance (gm) quantifies the ease with which CO2 can diffuse from the sub-stomatal cavity to Rubisco. Increasing gm is attractive since it increases photosynthesis without increasing water use. Most measurements of gm have been made during steady-state light saturated photosynthesis. In field crop canopies, light fluctuations are frequent and the speed with which gm can increase following shade to sun transitions affects crop carbon gain. Is there variability in gm within soybean germplasm? If so, indirect selection may have indirectly increased gm during domestication and subsequent breeding for sustainability and yield. A modern elite cultivar (LD11) was compared with four ancestor accessions of Glycine soja from the assumed area of domestication by concurrent measurements of gas exchange and carbon isotope discrimination (∆13C). gm was a significant limitation to soybean photosynthesis both at steady state and through light induction but was twice the value of the ancestors in LD11. This corresponded to a substantial increase in leaf photosynthetic CO2 uptake and water use efficiency.
Collapse
Affiliation(s)
- Elena A. Pelech
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Samantha S. Stutz
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Yu Wang
- School of Life SciencesNanjing UniversityNanjingChina
| | - Edward B. Lochocki
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Stephen P. Long
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Salesse‐Smith CE, Wang Y, Long SP. Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency. THE NEW PHYTOLOGIST 2025; 245:951-965. [PMID: 39688507 PMCID: PMC11711929 DOI: 10.1111/nph.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO2 concentrating mechanisms into C3 crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter-term strategy that could fill this time gap, but with smaller productivity increases (c. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C3 and C4 crops. Combining three-dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C4) and 9% in soybean (C3). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene-free gain of function mutations or using breeding.
Collapse
Affiliation(s)
- Coralie E. Salesse‐Smith
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- School of Life SciencesNanjing UniversityNanjing210008China
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
6
|
Ramakers LAI, Harbinson J, Wientjes E, van Amerongen H. Unravelling the different components of nonphotochemical quenching using a novel analytical pipeline. THE NEW PHYTOLOGIST 2025; 245:625-636. [PMID: 39545639 DOI: 10.1111/nph.20271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Photoprotection in plants includes processes collectively known as nonphotochemical quenching (NPQ), which quench excess excitation-energy in photosystem II. NPQ is triggered by acidification of the thylakoid lumen, which leads to PsbS-protein protonation and violaxanthin de-epoxidase activation, resulting in zeaxanthin accumulation. Despite extensive study, questions persist about the mechanisms of NPQ. We have set up a novel analytical pipeline to disentangle NPQ induction curves measured at many light intensities into a limited number of different kinetic components. To validate the method, we applied it to Chl-fluorescence measurements, which utilised the saturating-pulse methodology, on wild-type (wt) and zeaxanthin-lacking (npq1) Arabidopsis thaliana plants. NPQ induction curves in wt and npq1 can be explained by four components ( α , β , γ and δ ). The fastest two ( β and γ ) correlate with pH difference formed across the thylakoid membrane in wt and npq1. In wt, the slower component ( α ) appears to be due to the formation of zeaxanthin-related quenching whilst for npq1, this component is 'replaced' by a slower component ( δ ), which reflects a photoinhibition-like process that appears in the absence of zeaxanthin-induced quenching. Expanding this approach will allow the effects of mutations and other abiotic-stress factors to be directly probed by changes in these underlying components.
Collapse
Affiliation(s)
- Lennart A I Ramakers
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6708WE, Wageningen, the Netherlands
| |
Collapse
|
7
|
Shao B, Zhang Y, Vincenzi E, Berman S, Vialet-Chabrand S, Marcelis LFM, Li T, Kaiser E. Photosynthesis and photoprotection in top leaves respond faster to irradiance fluctuations than bottom leaves in a tomato canopy. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7217-7236. [PMID: 39171726 PMCID: PMC11630027 DOI: 10.1093/jxb/erae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Accounting for the dynamic responses of photosynthesis and photoprotection to naturally fluctuating irradiance can improve predictions of plant performance in the field, but the variation of these dynamics within crop canopies is poorly understood. We conducted a detailed study of dynamic and steady-state photosynthesis, photoprotection, leaf pigmentation, and stomatal anatomy in four leaf layers (100, 150, 200, and 250 cm from the floor) of a fully grown tomato (Solanum lycopersicum cv. Foundation) canopy in a greenhouse. We found that leaves at the top of the canopy exhibited higher photosynthetic capacity and slightly faster photosynthetic induction compared with lower-canopy leaves, accompanied by higher stomatal conductance and a faster activation of carboxylation and linear electron transport capacities. In upper-canopy leaves, non-photochemical quenching showed faster induction and relaxation after increases and decreases in irradiance, allowing for more effective photoprotection in these leaves. Despite these observed differences in transient responses between leaf layers, steady-state rather than dynamic photosynthesis traits were more influential for predicting photosynthesis under fluctuating irradiance. Also, a model analysis revealed that time-averaged photosynthesis under fluctuating irradiance could be accurately predicted by one set of Rubisco activation/deactivation parameters across all four leaf layers, thereby greatly simplifying future modelling efforts of whole-canopy photosynthesis.
Collapse
Affiliation(s)
- Bingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elena Vincenzi
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sarah Berman
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
8
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Bi X, Xu H, Yang C, Zhang H, Li W, Su W, Zheng M, Lei B. Investigating the influence of varied ratios of red and far-red light on lettuce ( Lactuca sativa): effects on growth, photosynthetic characteristics and chlorophyll fluorescence. FRONTIERS IN PLANT SCIENCE 2024; 15:1430241. [PMID: 39319008 PMCID: PMC11419988 DOI: 10.3389/fpls.2024.1430241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Far red photon flux accelerates photosynthetic electron transfer rates through photosynthetic pigments, influencing various biological processes. In this study, we investigated the impact of differing red and far-red light ratios on plant growth using LED lamps with different wavelengths and Ca1.8Mg1.2Al2Ge3O12:0.03Cr3+ phosphor materials. The control group (CK) consisted of a plant growth special lamp with 450 nm blue light + 650 nm red light. Four treatments were established: F1 (650 nm red light), F2 (CK + 730 nm far-red light in a 3:2 ratio), F3 (650 nm red light + 730 nm far-red light in a 3:2 ratio), and F4 (CK + phosphor-converted far-red LED in a 3:2 ratio). The study assessed changes in red and far-red light ratios and their impact on the growth morphology, photosynthetic characteristics, fluorescence characteristics, stomatal status, and nutritional quality of cream lettuce. The results revealed that the F3 light treatment exhibited superior growth characteristics and quality compared to the CK treatment. Notably, leaf area, aboveground fresh weight, vitamin C content, and total soluble sugar significantly increased. Additionally, the addition of far-red light resulted in an increase in stomatal density and size, and the F3 treatments were accompanied by increases in net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), and stomatal conductance (Gs). The results demonstrated that the F3 treatment, with its optimal red-to-far-red light ratio, promoted plant growth and photosynthetic characteristics. This indicates its suitability for supplementing artificial light sources in plant factories and greenhouses.
Collapse
Affiliation(s)
- Xueting Bi
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong Xu
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chaowei Yang
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haoran Zhang
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wei Li
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingtao Zheng
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Bingfu Lei
- Key laboratory for Biobased Materials and Energy of Ministry of Education, College Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
10
|
Sun X, Kaiser E, Zhang Y, Marcelis LFM, Li T. Quantifying the Photosynthetic Quantum Yield of Ultraviolet-A1 Radiation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248578 DOI: 10.1111/pce.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Although it powers photosynthesis, ultraviolet-A1 radiation (UV-A1) is usually not defined as photosynthetically active radiation (PAR). However, the quantum yield (QY) with which UV-A1 drives net photosynthesis rate (A) is unknown, as are the kinetics of A and chlorophyll fluorescence under constant UV-A1 exposure. We measured A in leaves of six genotypes at four spectra peaking at 365, 385, 410 and 450 nm, at intensities spanning 0-300 μmol m s-1. All treatments powered near-linear increases in A in a wavelength-dependent manner. QY at 365 and 385 nm was linked to the apparent concentration of flavonoids, implicating the pigment in reductions of photosynthetic efficiency under UV-A1; in several genotypes, A under 365 and 385 nm was negative regardless of illumination intensity, suggesting very small contributions of UV-A1 radiation to CO2 fixation. Exposure to treatment spectra for 30 min caused slow increases in nonphotochemical quenching, transient reductions in A and dark-adapted maximum quantum yield of photosystem II, that depended on wavelength and intensity, but were generally stronger the lower the peak wavelength was. We conclude that UV-A1 generally powers A, but its definition as PAR requires additional evidence of its capacity to significantly increase whole-canopy carbon uptake in nature.
Collapse
Affiliation(s)
- Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Vera-Vives AM, Novel P, Zheng K, Tan SL, Schwarzländer M, Alboresi A, Morosinotto T. Mitochondrial respiration is essential for photosynthesis-dependent ATP supply of the plant cytosol. THE NEW PHYTOLOGIST 2024; 243:2175-2186. [PMID: 39073122 DOI: 10.1111/nph.19989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
Plants rely on solar energy to synthesize ATP and NADPH for photosynthetic carbon fixation and all cellular need. Mitochondrial respiration is essential in plants, but this may be due to heterotrophic bottlenecks during plant development or because it is also necessary in photosynthetically active cells. In this study, we examined in vivo changes of cytosolic ATP concentration in response to light, employing a biosensing strategy in the moss Physcomitrium patens and revealing increased cytosolic ATP concentration caused by photosynthetic activity. Plants depleted of respiratory Complex I showed decreased cytosolic ATP accumulation, highlighting a critical role of mitochondrial respiration in light-dependent ATP supply of the cytosol. Consistently, targeting mitochondrial ATP production directly, through the construction of mutants deficient in mitochondrial ATPase (complex V), led to drastic growth reduction, despite only minor alterations in photosynthetic electron transport activity. Since P. patens is photoautotrophic throughout its development, we conclude that heterotrophic bottlenecks cannot account for the indispensable role of mitochondrial respiration in plants. Instead, our results support that mitochondrial respiration is essential for ATP provision to the cytosol in photosynthesizing cells. Mitochondrial respiration provides metabolic integration, ensuring supply of cytosolic ATP essential for supporting plant growth and development.
Collapse
Affiliation(s)
- Antoni M Vera-Vives
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Piero Novel
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Shun-Ling Tan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
12
|
Matthews ML, Burgess SJ. How much could improving photosynthesis increase crop yields? A call for systems-level perspectives to guide engineering strategies. Curr Opin Biotechnol 2024; 88:103144. [PMID: 38815490 DOI: 10.1016/j.copbio.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Global yield gaps can be reduced through breeding and improved agronomy. However, signs of yield plateaus from wheat and rice grown in intensively farmed systems indicate a need for new strategies if output is to continue to increase. Approaches to improve photosynthesis are suggested as a solution. Empirical evidence supporting this approach comes from small-scale free-CO2 air enrichment and transgenic studies. However, the likely achievable gains from improving photosynthesis are less understood. Models predict maximum increases in yield of 5.3-19.1% from genetic manipulation depending on crop, environment, and approach, but uncertainty remains in the presence of stress. This review seeks to provide context to the rationale for improving photosynthesis, highlight areas of uncertainty, and identify the steps required to create more accurate projections.
Collapse
Affiliation(s)
- Megan L Matthews
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, United States; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States.
| | - Steven J Burgess
- Department of Plant Biology, University of Illinois Urbana-Champaign, United States; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
13
|
Sahay S, Grzybowski M, Schnable JC, Głowacka K. Genotype-specific nonphotochemical quenching responses to nitrogen deficit are linked to chlorophyll a to b ratios. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154261. [PMID: 38705078 DOI: 10.1016/j.jplph.2024.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznań, Poland.
| |
Collapse
|
14
|
Degen GE. Light-driven dynamics: unravelling thiol-redox networks in plants through proteomics. PLANT PHYSIOLOGY 2024; 195:1111-1113. [PMID: 38345862 PMCID: PMC11142341 DOI: 10.1093/plphys/kiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Gustaf E Degen
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Srivastava A, Srinivasan V, Long SP. Stomatal conductance reduction tradeoffs in maize leaves: A theoretical study. PLANT, CELL & ENVIRONMENT 2024; 47:1716-1731. [PMID: 38305579 DOI: 10.1111/pce.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
As the leading global grain crop, maize significantly impacts agricultural water usage. Presently, photosynthesis (A net ${A}_{\text{net}}$ ) in leaves of modern maize crops is saturated withCO 2 ${\text{CO}}_{2}$ , implying that reducing stomatal conductance (g s ${g}_{{\rm{s}}}$ ) would not affectA net ${A}_{\text{net}}$ but reduce transpiration (τ $\tau $ ), thereby increasing water use efficiency (WUE). Whileg s ${g}_{{\rm{s}}}$ reduction benefits upper canopy leaves under optimal conditions, the tradeoffs in low light and nitrogen-deficient leaves under nonoptimal microenvironments remain unexplored. Moreover,g s ${g}_{{\rm{s}}}$ reduction increases leaf temperature (T leaf ${T}_{\text{leaf}}$ ) and water vapor pressure deficit, partially counteracting transpiratory water savings. Therefore, the overall impact ofg s ${g}_{{\rm{s}}}$ reduction on water savings remains unclear. Here, we use a process-based leaf model to investigate the benefits of reducedg s ${g}_{{\rm{s}}}$ in maize leaves under different microenvironments. Our findings show that increases inT leaf ${T}_{\text{leaf}}$ due tog s ${g}_{{\rm{s}}}$ reduction can diminish WUE gains by up to 20%. However,g s ${g}_{{\rm{s}}}$ reduction still results in beneficial WUE tradeoffs, where a 29% decrease ing s ${g}_{{\rm{s}}}$ in upper canopy leaves results in a 28% WUE gain without loss inA net ${A}_{\text{net}}$ . Lower canopy leaves exhibit superior tradeoffs ing s ${g}_{{\rm{s}}}$ reduction with 178% gains in WUE without loss inA net ${A}_{\text{net}}$ . Our simulations show that these WUE benefits are resilient to climate change.
Collapse
Affiliation(s)
- Antriksh Srivastava
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Venkatraman Srinivasan
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
- School of Sustainability, Indian Institute of Technology Madras, Chennai, India
| | - Stephen P Long
- The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, Illinois, USA
- Department of Crop Sciences, University of Illinois Urbana Champaign, Champaign, Illinois, USA
- Department of Plant Biology, University of Illinois Urbana Champaign, Champaign, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
16
|
Yu H, Weng L, Wu S, He J, Yuan Y, Wang J, Xu X, Feng X. Time-Series Field Phenotyping of Soybean Growth Analysis by Combining Multimodal Deep Learning and Dynamic Modeling. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0158. [PMID: 38524738 PMCID: PMC10959008 DOI: 10.34133/plantphenomics.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
The rate of soybean canopy establishment largely determines photoperiodic sensitivity, subsequently influencing yield potential. However, assessing the rate of soybean canopy development in large-scale field breeding trials is both laborious and time-consuming. High-throughput phenotyping methods based on unmanned aerial vehicle (UAV) systems can be used to monitor and quantitatively describe the development of soybean canopies for different genotypes. In this study, high-resolution and time-series raw data from field soybean populations were collected using UAVs. The RGB (red, green, and blue) and infrared images are used as inputs to construct the multimodal image segmentation model-the RGB & Infrared Feature Fusion Segmentation Network (RIFSeg-Net). Subsequently, the segment anything model was employed to extract complete individual leaves from the segmentation results obtained from RIFSeg-Net. These leaf aspect ratios facilitated the accurate categorization of soybean populations into 2 distinct varieties: oval leaf type variety and lanceolate leaf type variety. Finally, dynamic modeling was conducted to identify 5 phenotypic traits associated with the canopy development rate that differed substantially among the classified soybean varieties. The results showed that the developed multimodal image segmentation model RIFSeg-Net for extracting soybean canopy cover from UAV images outperformed traditional deep learning image segmentation networks (precision = 0.94, recall = 0.93, F1-score = 0.93). The proposed method has high practical value in the field of germplasm resource identification. This approach could lead to the use of a practical tool for further genotypic differentiation analysis and the selection of target genes.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 310012, China
| | - Lin Weng
- Zhejiang Lab, Hangzhou 310012, China
| | | | | | | | - Jun Wang
- Zhejiang Lab, Hangzhou 310012, China
| | | | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 310012, China
| |
Collapse
|
17
|
Degen GE, Pastorelli F, Johnson MP. Proton Gradient Regulation 5 is required to avoid photosynthetic oscillations during light transitions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:947-961. [PMID: 37891008 DOI: 10.1093/jxb/erad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
The production of ATP and NADPH by the light reactions of photosynthesis and their consumption by the Calvin-Benson-Bassham (CBB) cycle and other downstream metabolic reactions requires careful regulation. Environmental shifts perturb this balance, leading to photo-oxidative stress and losses in CO2 assimilation. Imbalances in the production and consumption of ATP and NADPH manifest themselves as transient instability in the chlorophyll fluorescence, P700, electrochromic shift, and CO2 uptake signals recorded on leaves. These oscillations can be induced in wild-type plants by sudden shifts in CO2 concentration or light intensity; however, mutants exhibiting increased oscillatory behaviour have yet to be reported. This has precluded an understanding of the regulatory mechanisms employed by plants to suppress oscillations. Here we show that the Arabidopsis pgr5 mutant, which is deficient in Proton Gradient Regulation 5 (PGR5)-dependent cyclic electron transfer (CET), exhibits increased oscillatory behaviour. In contrast, mutants lacking the NADH-dehydrogenase-like-dependent CET are largely unaffected. The absence of oscillations in the hope2 mutant which, like pgr5, lacks photosynthetic control and exhibits high ATP synthase conductivity, ruled out loss of these photoprotective mechanisms as causes. Instead, we observed slower formation of the proton motive force and, by inference, ATP synthesis in pgr5 following environmental perturbation, leading to the transient reduction of the electron transfer chain and photosynthetic oscillations. PGR5-dependent CET therefore plays a major role in damping the effect of environmental perturbations on photosynthesis to avoid losses in CO2 fixation.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Federica Pastorelli
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matthew P Johnson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Cho YB, Stutz SS, Jones SI, Wang Y, Pelech EA, Ort DR. Impact of pod and seed photosynthesis on seed filling and canopy carbon gain in soybean. PLANT PHYSIOLOGY 2023; 193:966-979. [PMID: 37265110 DOI: 10.1093/plphys/kiad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
There is a limited understanding of the carbon assimilation capacity of nonfoliar green tissues and its impact on yield and seed quality since most photosynthesis research focuses on leaf photosynthesis. In this study, we investigate the photosynthetic efficiency of soybean (Glycine max) pods and seeds in a field setting and evaluate its effect on mature seed weight and composition. We demonstrate that soybean pod and seed photosynthesis contributes 13% to 14% of the mature seed weight. Carbon assimilation by soybean pod and seed photosynthesis can compensate for 81% of carbon loss through the respiration of the same tissues, and our model predicts that soybean pod and seed photosynthesis contributes up to 9% of the total daily carbon gain of the canopy. Chlorophyll fluorescence (CF) shows that the operating efficiency of photosystem II in immature soybean seeds peaks at the 10 to 100 mg seed weight stage, while that of immature pods peaks at the 75 to 100 mg stage. This study provides quantitative information about the efficiency of soybean pod and seed photosynthesis during tissue development and its impact on yield.
Collapse
Affiliation(s)
- Young B Cho
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha S Stutz
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah I Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena A Pelech
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
19
|
Wu A. Modelling plants across scales of biological organisation for guiding crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:435-454. [PMID: 37105931 DOI: 10.1071/fp23010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 06/07/2023]
Abstract
Grain yield improvement in globally important staple crops is critical in the coming decades if production is to keep pace with growing demand; so there is increasing interest in understanding and manipulating plant growth and developmental traits for better crop productivity. However, this is confounded by complex cross-scale feedback regulations and a limited ability to evaluate the consequences of manipulation on crop production. Plant/crop modelling could hold the key to deepening our understanding of dynamic trait-crop-environment interactions and predictive capabilities for supporting genetic manipulation. Using photosynthesis and crop growth as an example, this review summarises past and present experimental and modelling work, bringing about a model-guided crop improvement thrust, encompassing research into: (1) advancing cross-scale plant/crop modelling that connects across biological scales of organisation using a trait dissection-integration modelling principle; (2) improving the reliability of predicted molecular-trait-crop-environment system dynamics with experimental validation; and (3) innovative model application in synergy with cross-scale experimentation to evaluate G×M×E and predict yield outcomes of genetic intervention (or lack of it) for strategising further molecular and breeding efforts. The possible future roles of cross-scale plant/crop modelling in maximising crop improvement are discussed.
Collapse
Affiliation(s)
- Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
20
|
Schiphorst C, Koeman C, Caracciolo L, Staring K, Theeuwen TPJM, Driever SM, Harbinson J, Wientjes E. The effects of different daily irradiance profiles on Arabidopsis growth, with special attention to the role of PsbS. FRONTIERS IN PLANT SCIENCE 2023; 14:1070218. [PMID: 36968375 PMCID: PMC10035889 DOI: 10.3389/fpls.2023.1070218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In nature, light is never constant, while in the controlled environments used for vertical farming, in vitro propagation, or plant production for scientific research, light intensity is often kept constant during the photoperiod. To investigate the effects on plant growth of varying irradiance during the photoperiod, we grew Arabidopsis thaliana under three irradiance profiles: a square-wave profile, a parabolic profile with gradually increasing and subsequently decreasing irradiance, and a regime comprised of rapid fluctuations in irradiance. The daily integral of irradiance was the same for all three treatments. Leaf area, plant growth rate, and biomass at time of harvest were compared. Plants grown under the parabolic profile had the highest growth rate and biomass. This could be explained by a higher average light-use efficiency for carbon dioxide fixation. Furthermore, we compared the growth of wild type plants with that of the PsbS-deficient mutant npq4. PsbS triggers the fast non-photochemical quenching process (qE) that protects PSII from photodamage during sudden increases in irradiance. Based mainly on field and greenhouse experiments, the current consensus is that npq4 mutants grow more slowly in fluctuating light. However, our data show that this is not the case for several forms of fluctuating light conditions under otherwise identical controlled-climate room conditions.
Collapse
Affiliation(s)
- Christo Schiphorst
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Cas Koeman
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Koen Staring
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | | | - Steven M. Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Burgess AJ, Retkute R, Murchie EH. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1116367. [PMID: 36968397 PMCID: PMC10034362 DOI: 10.3389/fpls.2023.1116367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of 'entrainment' of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement.
Collapse
Affiliation(s)
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
22
|
Burgess AJ, Cardoso AA. Throwing shade: Limitations to photosynthesis at high planting densities and how to overcome them. PLANT PHYSIOLOGY 2023; 191:825-827. [PMID: 36493382 PMCID: PMC9922388 DOI: 10.1093/plphys/kiac567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Affiliation(s)
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
23
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
24
|
Wang Y, Stutz SS, Bernacchi CJ, Boyd RA, Ort DR, Long SP. Increased bundle-sheath leakiness of CO 2 during photosynthetic induction shows a lack of coordination between the C 4 and C 3 cycles. THE NEW PHYTOLOGIST 2022; 236:1661-1675. [PMID: 36098668 PMCID: PMC9827928 DOI: 10.1111/nph.18485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/25/2022] [Indexed: 05/31/2023]
Abstract
Use of a complete dynamic model of NADP-malic enzyme C4 photosynthesis indicated that, during transitions from dark or shade to high light, induction of the C4 pathway was more rapid than that of C3 , resulting in a predicted transient increase in bundle-sheath CO2 leakiness (ϕ). Previously, ϕ has been measured at steady state; here we developed a new method, coupling a tunable diode laser absorption spectroscope with a gas-exchange system to track ϕ in sorghum and maize through the nonsteady-state condition of photosynthetic induction. In both species, ϕ showed a transient increase to > 0.35 before declining to a steady state of 0.2 by 1500 s after illumination. Average ϕ was 60% higher than at steady state over the first 600 s of induction and 30% higher over the first 1500 s. The transient increase in ϕ, which was consistent with model prediction, indicated that capacity to assimilate CO2 into the C3 cycle in the bundle sheath failed to keep pace with the rate of dicarboxylate delivery by the C4 cycle. Because nonsteady-state light conditions are the norm in field canopies, the results suggest that ϕ in these major crops in the field is significantly higher and energy conversion efficiency lower than previous measured values under steady-state conditions.
Collapse
Affiliation(s)
- Yu Wang
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Samantha S. Stutz
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
| | - Carl J. Bernacchi
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- USDA‐ARS Global Change and Photosynthesis Research UnitUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ryan A. Boyd
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
| | - Donald R. Ort
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Stephen P. Long
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
25
|
Harvey CM, Cavanagh AP, Kim SY, Wright DA, Edquilang RG, Shreeves KS, Perdomo JA, Spalding MH, Ort DR, Bernacchi CJ, Huber SC. Removal of redox-sensitive Rubisco Activase does not alter Rubisco regulation in soybean. PHOTOSYNTHESIS RESEARCH 2022; 154:169-182. [PMID: 36163583 DOI: 10.1007/s11120-022-00962-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rubisco activase (Rca) facilitates the catalytic repair of Rubisco, the CO2-fixing enzyme of photosynthesis, following periods of darkness, low to high light transitions or stress. Removal of the redox-regulated isoform of Rubisco activase, Rca-α, enhances photosynthetic induction in Arabidopsis and has been suggested as a strategy for the improvement of crops, which may experience frequent light transitions in the field; however, this has never been tested in a crop species. Therefore, we used RNAi to reduce the Rca-α content of soybean (Glycine max cv. Williams 82) below detectable levels and then characterized the growth, photosynthesis, and Rubisco activity of the resulting transgenics, in both growth chamber and field conditions. Under a 16 h sine wave photoperiod, the reduction of Rca-α contents had no impact on morphological characteristics, leaf expansion rate, or total biomass. Photosynthetic induction rates were unaltered in both chamber-grown and field-grown plants. Plants with reduced Rca-α content maintained the ability to regulate Rubisco activity in low light just as in control plants. This result suggests that in soybean, Rca-α is not as centrally involved in the regulation of Rca oligomer activity as it is in Arabidopsis. The isoform stoichiometry supports this conclusion, as Rca-α comprises only ~ 10% of the Rubisco activase content of soybean, compared to ~ 50% in Arabidopsis. This is likely to hold true in other species that contain a low ratio of Rca-α to Rca-ß isoforms.
Collapse
Affiliation(s)
- Christopher M Harvey
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA.
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | | - David A Wright
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ron G Edquilang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kayla S Shreeves
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan Alejandro Perdomo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven C Huber
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Acebron K, Salvatori N, Alberti G, Muller O, Peressotti A, Rascher U, Matsubara S. Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) Cultivar. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Zhen S, van Iersel MW, Bugbee B. Photosynthesis in sun and shade: the surprising importance of far-red photons. THE NEW PHYTOLOGIST 2022; 236:538-546. [PMID: 35832002 DOI: 10.1111/nph.18375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The current definition of photosynthetically active radiation includes only photons from 400 up to 700 nm, despite evidence of the synergistic interaction between far-red photons and shorter-wavelength photons. The synergy between far-red and shorter-wavelength photons has not been studied in sunlight under natural conditions. We used a filter to remove photons above 700 nm to quantify the effects on photosynthesis in diverse species under full sun, medium light intensity and vegetation shade. Far-red photons (701 to 750 nm) in sunlight are used efficiently for photosynthesis. This is especially important for leaves in vegetation shade, where far-red photons can be > 50% of the total incident photons between 400 and 750 nm. Far-red photons accounted for 24-25% of leaf gross photosynthesis (Pgross ) in a C3 and a C4 species when sunlight was filtered through a leaf, and 10-14% of leaf Pgross in a tree and an understory species in deep shade. Accounting for the photosynthetic activity of far-red photons is critical for accurate measurement and modeling of photosynthesis at single leaf, canopy and ecosystem scales. This, in turn, is crucial in understanding crop productivity, the global carbon cycle and climate change impacts on agriculture and ecosystems.
Collapse
Affiliation(s)
- Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Marc W van Iersel
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Bruce Bugbee
- Department of Plants, Soils and Climate, Utah State University, Logan, UT, 84341, USA
| |
Collapse
|
28
|
Bru P, Steen CJ, Park S, Amstutz CL, Sylak-Glassman EJ, Lam L, Fekete A, Mueller MJ, Longoni F, Fleming GR, Niyogi KK, Malnoë A. The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants. J Biol Chem 2022; 298:102519. [PMID: 36152752 PMCID: PMC9615032 DOI: 10.1016/j.jbc.2022.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants’ survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl–Chl excitonic interaction.
Collapse
Affiliation(s)
- Pierrick Bru
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Collin J Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Cynthia L Amstutz
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily J Sylak-Glassman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lam Lam
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Fiamma Longoni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
29
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
30
|
Gleason SM, Barnard DM, Green TR, Mackay S, Wang DR, Ainsworth EA, Altenhofen J, Brodribb TJ, Cochard H, Comas LH, Cooper M, Creek D, DeJonge KC, Delzon S, Fritschi FB, Hammer G, Hunter C, Lombardozzi D, Messina CD, Ocheltree T, Stevens BM, Stewart JJ, Vadez V, Wenz J, Wright IJ, Yemoto K, Zhang H. Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. PLANT, CELL & ENVIRONMENT 2022; 45:2554-2572. [PMID: 35735161 DOI: 10.1111/pce.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Collapse
Affiliation(s)
- Sean M Gleason
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Dave M Barnard
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Timothy R Green
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Scott Mackay
- Department of Geography & Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
| | - Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth A Ainsworth
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, Illinois, USA
| | - Jon Altenhofen
- Northern Colorado Water Conservancy District, Berthoud, Colorado, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Tasmania Node, Hobart, Tasmania, Australia
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Louise H Comas
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Danielle Creek
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kendall C DeJonge
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, cedex, France
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Cameron Hunter
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Danica Lombardozzi
- National Center for Atmospheric Research (NCAR), Climate & Global Dynamics Lab, Boulder, Colorado, USA
| | - Carlos D Messina
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Troy Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Maxwell Stevens
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Jared J Stewart
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | | | - Joshua Wenz
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Western Sydney University Node, Penrith, New South Wales, Australia
| | - Kevin Yemoto
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Huihui Zhang
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| |
Collapse
|
31
|
De Souza AP, Burgess SJ, Doran L, Hansen J, Manukyan L, Maryn N, Gotarkar D, Leonelli L, Niyogi KK, Long SP. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 2022; 377:851-854. [PMID: 35981033 DOI: 10.1126/science.adc9831] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. This protective dissipation continues after the leaf transitions to shade, reducing crop photosynthesis. A bioengineered acceleration of this adjustment increased photosynthetic efficiency and biomass in tobacco in the field. But could that also translate to increased yield in a food crop? Here we bioengineered the same change into soybean. In replicated field trials, photosynthetic efficiency in fluctuating light was higher and seed yield in five independent transformation events increased by up to 33%. Despite increased seed quantity, seed protein and oil content were unaltered. This validates increasing photosynthetic efficiency as a much needed strategy toward sustainably increasing crop yield in support of future global food security.
Collapse
Affiliation(s)
- Amanda P De Souza
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven J Burgess
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Plant Biology, Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lynn Doran
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey Hansen
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lusya Manukyan
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nina Maryn
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Dhananjay Gotarkar
- Department of Plant Biology, Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauriebeth Leonelli
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
32
|
Durand M, Stangl ZR, Salmon Y, Burgess AJ, Murchie EH, Robson TM. Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. THE NEW PHYTOLOGIST 2022; 235:1365-1378. [PMID: 35569099 PMCID: PMC9543657 DOI: 10.1111/nph.18222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 05/12/2023]
Abstract
Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.
Collapse
Affiliation(s)
- Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| | - Zsofia R. Stangl
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/PhysicsUniversity of HelsinkiPO Box 68, Gustaf Hällströminkatu 2bHelsinki00014Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of HelsinkiPO Box 27Helsinki00014Finland
| | - Alexandra J. Burgess
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Erik H. Murchie
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - T. Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
33
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
34
|
Systematic monitoring of 2-Cys peroxiredoxin-derived redox signals unveiled its role in attenuating carbon assimilation rate. Proc Natl Acad Sci U S A 2022; 119:e2119719119. [PMID: 35648819 DOI: 10.1073/pnas.2119719119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SignificanceIdentifying the intrinsic factors that regulate leaf photosynthetic rate may pave the way toward developing new strategies to enhance carbon assimilation. While the dependence of photosynthesis on the reductive activation of the Calvin-Benson cycle enzymes is well established, the role of oxidative signals in counterbalancing the reductive activity is just beginning to be explored. By developing 2-Cys peroxiredoxin-based genetically encoded biosensors, we demonstrated the induction of photosynthetically derived oxidative signals under habitual light conditions, a phenomenon typically masked by the dominance of the reductive power. Moreover, we unraveled the simultaneous activation of reductive and oxidative signals during photosynthesis induction phase and showed that 2-Cys peroxiredoxin activity attenuates carbon assimilation rates, demonstrating the restrictions imposed on photosynthetic performance by oxidative signals.
Collapse
|
35
|
Zhang Y, Kaiser E, Li T, Marcelis LFM. NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3637-3650. [PMID: 35218186 DOI: 10.1093/jxb/erac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
NaCl stress affects stomatal behavior and photosynthesis by a combination of osmotic and ionic components, but it is unknown how these components affect stomatal and photosynthetic dynamics. Tomato (Solanum lycopersicum) plants were grown in a reference nutrient solution [control; electrical conductivity (EC)=2.3 dS m-1], a solution containing additional macronutrients (osmotic effect; EC=12.6 dS m-1), or a solution with additional 100 mM NaCl (osmotic and ionic effects; EC=12.8 dS m-1). Steady-state and dynamic photosynthesis, and leaf biochemistry, were characterized throughout leaf development. The osmotic effect decreased steady-state stomatal conductance while speeding up stomatal responses to light intensity shifts. After 19 d of treatment, photosynthetic induction was reduced by the osmotic effect, which was attributable to lower initial stomatal conductance due to faster stomatal closing under low light. Ionic effects of NaCl were barely observed in dynamic stomatal and photosynthetic behavior, but led to a reduction in leaf photosynthetic capacity, CO2 carboxylation rate, and stomatal conductance in old leaves after 26 d of treatment. With increasing leaf age, rates of light-triggered stomatal movement and photosynthetic induction decreased across treatments. We conclude that NaCl impacts dynamic stomatal and photosynthetic kinetics by osmotic effects and reduces photosynthetic capacity by ionic effects.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
36
|
Montes CM, Fox C, Sanz-Sáez Á, Serbin SP, Kumagai E, Krause MD, Xavier A, Specht JE, Beavis WD, Bernacchi CJ, Diers BW, Ainsworth EA. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population. Genetics 2022; 221:iyac065. [PMID: 35451475 PMCID: PMC9157091 DOI: 10.1093/genetics/iyac065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Photosynthesis is a key target to improve crop production in many species including soybean [Glycine max (L.) Merr.]. A challenge is that phenotyping photosynthetic traits by traditional approaches is slow and destructive. There is proof-of-concept for leaf hyperspectral reflectance as a rapid method to model photosynthetic traits. However, the crucial step of demonstrating that hyperspectral approaches can be used to advance understanding of the genetic architecture of photosynthetic traits is untested. To address this challenge, we used full-range (500-2,400 nm) leaf reflectance spectroscopy to build partial least squares regression models to estimate leaf traits, including the rate-limiting processes of photosynthesis, maximum Rubisco carboxylation rate, and maximum electron transport. In total, 11 models were produced from a diverse population of soybean sampled over multiple field seasons to estimate photosynthetic parameters, chlorophyll content, leaf carbon and leaf nitrogen percentage, and specific leaf area (with R2 from 0.56 to 0.96 and root mean square error approximately <10% of the range of calibration data). We explore the utility of these models by applying them to the soybean nested association mapping population, which showed variability in photosynthetic and leaf traits. Genetic mapping provided insights into the underlying genetic architecture of photosynthetic traits and potential improvement in soybean. Notably, the maximum Rubisco carboxylation rate mapped to a region of chromosome 19 containing genes encoding multiple small subunits of Rubisco. We also mapped the maximum electron transport rate to a region of chromosome 10 containing a fructose 1,6-bisphosphatase gene, encoding an important enzyme in the regeneration of ribulose 1,5-bisphosphate and the sucrose biosynthetic pathway. The estimated rate-limiting steps of photosynthesis were low or negatively correlated with yield suggesting that these traits are not influenced by the same genetic mechanisms and are not limiting yield in the soybean NAM population. Leaf carbon percentage, leaf nitrogen percentage, and specific leaf area showed strong correlations with yield and may be of interest in breeding programs as a proxy for yield. This work is among the first to use hyperspectral reflectance to model and map the genetic architecture of the rate-limiting steps of photosynthesis.
Collapse
Affiliation(s)
| | - Carolyn Fox
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn, AL 36849, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Etsushi Kumagai
- Institute of Agro-environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8604, Japan
| | - Matheus D Krause
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA 50011, USA
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Department of Biostatistics, Corteva Agrisciences, Johnston, IA 50131, USA
| | - James E Specht
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - William D Beavis
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA 50011, USA
| | - Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian W Diers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
38
|
Lee JH, Park YJ, Kim JY, Park CM. Phytochrome B Conveys Low Ambient Temperature Cues to the Ethylene-Mediated Leaf Senescence in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:326-339. [PMID: 34950951 DOI: 10.1093/pcp/pcab178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is an active developmental process that is tightly regulated through extensive transcriptional and metabolic reprogramming events, which underlie controlled degradation and relocation of nutrients from aged or metabolically inactive leaves to young organs. The onset of leaf senescence is coordinately modulated by intrinsic aging programs and environmental conditions, such as prolonged darkness and temperature extremes. Seedlings growing under light deprivation, as often experienced in severe shading or night darkening, exhibit an accelerated senescing process, which is mediated by a complex signaling network that includes sugar starvation responses and light signaling events via the phytochrome B (phyB)-PHYTOCHROME-INTERACTING FACTOR (PIF) signaling routes. Notably, recent studies indicate that nonstressful ambient temperatures profoundly influence the onset and progression of leaf senescence in darkness, presumably mediated by the phyB-PIF4 signaling pathways. However, it is not fully understood how temperature signals regulate leaf senescence at the molecular level. Here, we demonstrated that low ambient temperatures repress the nuclear export of phyB and the nuclear phyB suppresses the transcriptional activation activity of ethylene signaling mediator ETHYLENE INSENSITIVE3 (EIN3), thus delaying leaf senescence. Accordingly, leaf senescence was insensitive to low ambient temperatures in transgenic plants overexpressing a constitutively nuclear phyB form, as observed in ein3 eil1 mutants. In contrast, leaf senescence was significantly promoted in phyB-deficient mutants under identical temperature conditions. Our data indicate that phyB coordinately integrates light and temperature cues into the EIN3-mediated ethylene signaling pathway that regulates leaf senescence under light deprivation, which would enhance plant fitness under fluctuating natural environments.
Collapse
Affiliation(s)
- June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Taylor SH, Gonzalez-Escobar E, Page R, Parry MAJ, Long SP, Carmo-Silva E. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. NATURE PLANTS 2022; 8:118-124. [PMID: 35058608 PMCID: PMC8863576 DOI: 10.1038/s41477-021-01068-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/25/2021] [Indexed: 05/12/2023]
Abstract
Cowpea is the major source of vegetable protein for rural populations in sub-Saharan Africa and average yields are not keeping pace with population growth. Each day, crop leaves experience many shade events and the speed of photosynthetic adjustment to this dynamic environment strongly affects daily carbon gain. Rubisco activity is particularly important because it depends on the speed and extent of deactivation in shade and recovers slowly on return to sun. Here, direct biochemical measurements showed a much faster rate of Rubisco deactivation in cowpea than prior estimates inferred from dynamics of leaf gas exchange in other species1-3. Shade-induced deactivation was driven by decarbamylation, and half-times for both deactivation in shade and activation in saturating light were shorter than estimates from gas exchange (≤53% and 79%, respectively). Incorporating these half-times into a model of diurnal canopy photosynthesis predicted a 21% diurnal loss of productivity and suggests slowing Rubisco deactivation during shade is an unexploited opportunity for improving crop productivity.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Rhiannon Page
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen P Long
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Departments of Plant Biology and of Crop Sciences, Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
40
|
Jung CG, Xu X, Shi Z, Niu S, Xia J, Sherry R, Jiang L, Zhu K, Hou E, Luo Y. Warmer and wetter climate promotes net primary production in
C
4
grassland with additional enhancement by hay harvesting. Ecosphere 2022. [DOI: 10.1002/ecs2.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chang Gyo Jung
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- Department of Biology University of Central Florida Orlando Florida USA
| | - Xia Xu
- College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Zheng Shi
- Department of Ecology and Evolutionary Biology University of California Irvine Irvine California USA
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- Department of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Jianyang Xia
- Tiantong National Forest Ecosystem Observation and Research Station School of Ecological and Environmental Sciences, East China Normal University Shanghai China
- Research Center for Global Change and Ecological Forecasting East China Normal University Shanghai China
| | - Rebecca Sherry
- Department of Microbiology and Plant Biology University of Oklahoma Norman Oklahoma USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz California USA
| | - Enqing Hou
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| | - Yiqi Luo
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
41
|
Song Q, Van Rie J, Den Boer B, Galle A, Zhao H, Chang T, He Z, Zhu XG. Diurnal and Seasonal Variations of Photosynthetic Energy Conversion Efficiency of Field Grown Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:817654. [PMID: 35283909 PMCID: PMC8914475 DOI: 10.3389/fpls.2022.817654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 05/22/2023]
Abstract
Improving canopy photosynthetic light use efficiency and energy conversion efficiency (ε c ) is a major option to increase crop yield potential. However, so far, the diurnal and seasonal variations of canopy light use efficiency (LUE) and ε c are largely unknown due to the lack of an efficient method to estimate ε c in a high temporal resolution. Here we quantified the dynamic changes of crop canopy LUE and ε c during a day and a growing season with the canopy gas exchange method. A response curve of whole-plant carbon dioxide (CO2) flux to incident photosynthetically active radiation (PAR) was further used to calculate ε c and LUE at a high temporal resolution. Results show that the LUE of two wheat cultivars with different canopy architectures at five stages varies between 0.01 to about 0.05 mol CO2 mol-1 photon, with the LUE being higher under medium PAR. Throughout the growing season, the ε c varies from 0.5 to 3.7% (11-80% of the maximal ε c for C3 plants) with incident PAR identified as a major factor controlling variation of ε c . The estimated average ε c from tillering to grain filling stages was about 2.17%, i.e., 47.2% of the theoretical maximal. The estimated season-averaged radiation use efficiency (RUE) was 1.5-1.7 g MJ-1, which was similar to the estimated RUE based on biomass harvesting. The large variations of LUE and ε c imply a great opportunity to improve canopy photosynthesis for greater wheat biomass and yield potential.
Collapse
Affiliation(s)
- Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeroen Van Rie
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Bart Den Boer
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Alexander Galle
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Honglong Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tiangen Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xin-Guang Zhu,
| |
Collapse
|
42
|
Bashir N, Athar HUR, Kalaji HM, Wróbel J, Mahmood S, Zafar ZU, Ashraf M. Is Photoprotection of PSII One of the Key Mechanisms for Drought Tolerance in Maize? Int J Mol Sci 2021; 22:ijms222413490. [PMID: 34948287 PMCID: PMC8708075 DOI: 10.3390/ijms222413490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Drought is one of the most important abiotic stress factors limiting maize production worldwide. The objective of this study was to investigate whether photoprotection of PSII was associated with the degree of drought tolerance and yield in three maize hybrids (30Y87, 31R88, P3939). To do this, three maize hybrids were subjected to three cycles of drought, and we measured the activities of photosystem II (PSII) and photosystem I (PSI). In a second field experiment, three maize hybrids were subjected to drought by withholding irrigation, and plant water status, yield and yield attributes were measured. Drought stress decreased leaf water potential (ΨL) in three maize hybrids, and this reduction was more pronounced in hybrid P3939 (−40%) compared to that of 30Y87 (−30%). Yield and yield attributes of three maize hybrids were adversely affected by drought. The number of kernels and 100-kernel weight was the highest in maize hybrid 30Y87 (−56%, −6%), whereas these were lowest in hybrid P3939 (−88%, −23%). Drought stress reduced the quantum yield of PSII [Y(II)], photochemical quenching (qP), electron transport rate through PSII [ETR(II)] and NPQ, except in P3939. Among the components of NPQ, drought increased the Y(NPQ) with concomitant decrease in Y(NO) only in P3939, whereas Y(NO) increased in drought-stressed plants of hybrid 30Y87 and 31R88. However, an increase in cyclic electron flow (CEF) around PSI and Y(NPQ) in P3939 might have protected the photosynthetic machinery but it did not translate in yield. However, drought-stressed plants of 30Y87 might have sufficiently downregulated PSII to match the energy consumption in downstream biochemical processes. Thus, changes in PSII and PSI activity and development of NPQ through CEF are physiological mechanisms to protect the photosynthetic apparatus, but an appropriate balance between these physiological processes is required, without which plant productivity may decline.
Collapse
Affiliation(s)
- Nahidah Bashir
- Department of Botany, The Women University, Multan 66000, Pakistan
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.-u.-R.A.); (S.M.); (Z.U.Z.)
- Correspondence: (N.B.); (H.M.K.); Tel.: +48-664943484 (H.M.K.)
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.-u.-R.A.); (S.M.); (Z.U.Z.)
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, University of Life Sciences SGGW, 02-776 Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
- Correspondence: (N.B.); (H.M.K.); Tel.: +48-664943484 (H.M.K.)
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland;
| | - Seema Mahmood
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.-u.-R.A.); (S.M.); (Z.U.Z.)
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.-u.-R.A.); (S.M.); (Z.U.Z.)
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| |
Collapse
|
43
|
Pignon CP, Fernandes SB, Valluru R, Bandillo N, Lozano R, Buckler E, Gore MA, Long SP, Brown PJ, Leakey ADB. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. PLANT PHYSIOLOGY 2021; 187:2544-2562. [PMID: 34618072 PMCID: PMC8644692 DOI: 10.1093/plphys/kiab395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 05/07/2023]
Abstract
Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential for maintaining water-use efficiency (WUE). However, a little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. Here, we used high-throughput thermal imaging to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum (Sorghum bicolor) accessions. Results from thermal imaging significantly correlated with photosynthetic gas exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with the greatest confidence, 77 were putative orthologs of Arabidopsis (Arabidopsis thaliana) genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production.
Collapse
Affiliation(s)
- Charles P Pignon
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN1 3QE, UK
| | - Nonoy Bandillo
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Edward Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 1YX, UK
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Author for communication:
| |
Collapse
|
44
|
Kang C, Zhang Y, Cheng R, Kaiser E, Yang Q, Li T. Acclimating Cucumber Plants to Blue Supplemental Light Promotes Growth in Full Sunlight. FRONTIERS IN PLANT SCIENCE 2021; 12:782465. [PMID: 34912362 PMCID: PMC8668241 DOI: 10.3389/fpls.2021.782465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Raising young plants is important for modern greenhouse production. Upon transfer from the raising to the production environment, young plants should maximize light use efficiency while minimizing deleterious effects associated with exposure to high light (HL) intensity. The light spectrum may be used to establish desired traits, but how plants acclimated to a given spectrum respond to HL intensity exposure is less well explored. Cucumber (Cucumis sativus) seedlings were grown in a greenhouse in low-intensity sunlight (control; ∼2.7 mol photons m-2 day-1) and were treated with white, red, blue, or green supplemental light (4.3 mol photons m-2 day-1) for 10 days. Photosynthetic capacity was highest in leaves treated with blue light, followed by white, red, and green, and was positively correlated with leaf thickness, nitrogen, and chlorophyll concentration. Acclimation to different spectra did not affect the rate of photosynthetic induction, but leaves grown under blue light showed faster induction and relaxation of non-photochemical quenching (NPQ) under alternating HL and LL intensity. Blue-light-acclimated leaves showed reduced photoinhibition after HL intensity exposure, as indicated by a high maximum quantum yield of photosystem II photochemistry (F v /F m ). Although plants grown under different supplemental light spectra for 10 days had similar shoot biomass, blue-light-grown plants (B-grown plants) showed a more compact morphology with smaller leaf areas and shorter stems. However, after subsequent, week-long exposure to full sunlight (10.7 mol photons m-2 day-1), B-grown plants showed similar leaf area and 15% higher shoot biomass, compared to plants that had been acclimated to other spectra. The faster growth rate in blue-light-acclimated plants compared to other plants was mainly due to a higher photosynthetic capacity and highly regulated NPQ performance under intermittent high solar light. Acclimation to blue supplemental light can improve light use efficiency and diminish photoinhibition under high solar light exposure, which can benefit plant growth.
Collapse
Affiliation(s)
- Chenqian Kang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Zhao HL, Chang TG, Xiao Y, Zhu XG. Potential metabolic mechanisms for inhibited chloroplast nitrogen assimilation under high CO2. PLANT PHYSIOLOGY 2021; 187:1812-1833. [PMID: 34618071 PMCID: PMC8566258 DOI: 10.1093/plphys/kiab345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 05/31/2023]
Abstract
Improving photosynthesis is considered a major and feasible option to dramatically increase crop yield potential. Increased atmospheric CO2 concentration often stimulates both photosynthesis and crop yield, but decreases protein content in the main C3 cereal crops. This decreased protein content in crops constrains the benefits of elevated CO2 on crop yield and affects their nutritional value for humans. To support studies of photosynthetic nitrogen assimilation and its complex interaction with photosynthetic carbon metabolism for crop improvement, we developed a dynamic systems model of plant primary metabolism, which includes the Calvin-Benson cycle, the photorespiration pathway, starch synthesis, glycolysis-gluconeogenesis, the tricarboxylic acid cycle, and chloroplastic nitrogen assimilation. This model successfully captures responses of net photosynthetic CO2 uptake rate (A), respiration rate, and nitrogen assimilation rate to different irradiance and CO2 levels. We then used this model to predict inhibition of nitrogen assimilation under elevated CO2. The potential mechanisms underlying inhibited nitrogen assimilation under elevated CO2 were further explored with this model. Simulations suggest that enhancing the supply of α-ketoglutarate is a potential strategy to maintain high rates of nitrogen assimilation under elevated CO2. This model can be used as a heuristic tool to support research on interactions between photosynthesis, respiration, and nitrogen assimilation. It also provides a basic framework to support the design and engineering of C3 plant primary metabolism for enhanced photosynthetic efficiency and nitrogen assimilation in the coming high-CO2 world.
Collapse
Affiliation(s)
- Hong-Long Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Gen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Xiao
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
46
|
Burgess AJ, Durand M, Gibbs JA, Retkute R, Robson TM, Murchie EH. The effect of canopy architecture on the patterning of "windflecks" within a wheat canopy. PLANT, CELL & ENVIRONMENT 2021; 44:3524-3537. [PMID: 34418115 DOI: 10.1111/pce.14168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.
Collapse
Affiliation(s)
- Alexandra J Burgess
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire, UK
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jonathon A Gibbs
- Computer Vision Lab, School of Computer Science, University of Nottingham Jubilee Campus, Nottingham, UK
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
47
|
Nedbal L, Lazár D. Photosynthesis dynamics and regulation sensed in the frequency domain. PLANT PHYSIOLOGY 2021; 187:646-661. [PMID: 34608969 PMCID: PMC8491066 DOI: 10.1093/plphys/kiab317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/19/2021] [Indexed: 05/20/2023]
Abstract
Foundations of photosynthesis research have been established mainly by studying the response of plants to changing light, typically to sudden exposure to a constant light intensity after dark acclimation or light flashes. This approach remains valid and powerful, but can be limited by requiring dark acclimation before time-domain measurements and often assumes that rate constants determining the photosynthetic response do not change between dark and light acclimation. We show that these limits can be overcome by measuring plant responses to sinusoidally modulated light of varying frequency. By its nature, such frequency-domain characterization is performed in light-acclimated plants with no need for prior dark acclimation. Amplitudes, phase shifts, and upper harmonic modulation extracted from the data for a wide range of frequencies can target different kinetic domains and regulatory feedbacks. The occurrence of upper harmonic modulation reflects nonlinear phenomena, including photosynthetic regulation. To support these claims, we measured chlorophyll fluorescence emission of the green alga Chlorella sorokiniana in light that was sinusoidally modulated in the frequency range 1000-0.001 Hz. Based on these experimental data and numerical as well as analytical mathematical models, we propose that frequency-domain measurements can become a versatile tool in plant sensing.
Collapse
Affiliation(s)
- Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
- Author for communication:
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
48
|
Acevedo‐Siaca LG, Dionora J, Laza R, Paul Quick W, Long SP. Dynamics of photosynthetic induction and relaxation within the canopy of rice and two wild relatives. Food Energy Secur 2021; 10:e286. [PMID: 34594547 PMCID: PMC8459282 DOI: 10.1002/fes3.286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Wild rice species are a source of genetic material for improving cultivated rice (Oryza sativa) and a means to understand its evolutionary history. Renewed interest in non-steady-state photosynthesis in crops has taken place due its potential in improving sustainable productivity. Variation was characterized for photosynthetic induction and relaxation at two leaf canopy levels in three rice species. The wild rice accessions had 16%-40% higher rates of leaf CO2 uptake (A) during photosynthetic induction relative to the O. sativa accession. However, O. sativa had an overall higher photosynthetic capacity when compared to accessions of its wild progenitors. Additionally, O. sativa had a faster stomatal closing response, resulting in higher intrinsic water-use efficiency during high-to-low light transitions. Leaf position in the canopy had a significant effect on non-steady-state photosynthesis, but not steady-state photosynthesis. The results show potential to utilize wild material to refine plant models and improve non-steady-state photosynthesis in cultivated rice for increased productivity.
Collapse
Affiliation(s)
- Liana G. Acevedo‐Siaca
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)Mexico DFMexico
| | | | - Rebecca Laza
- C4 Rice CenterInternational Rice Research InstituteLos BañosPhilippines
| | - William Paul Quick
- C4 Rice CenterInternational Rice Research InstituteLos BañosPhilippines
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Stephen P. Long
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
49
|
Wang Y, Chan KX, Long SP. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:343-359. [PMID: 34087011 PMCID: PMC9291162 DOI: 10.1111/tpj.15365] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 05/22/2023]
Abstract
The most productive C4 food and biofuel crops, such as Saccharum officinarum (sugarcane), Sorghum bicolor (sorghum) and Zea mays (maize), all use NADP-ME-type C4 photosynthesis. Despite high productivities, these crops fall well short of the theoretical maximum solar conversion efficiency of 6%. Understanding the basis of these inefficiencies is key for bioengineering and breeding strategies to increase the sustainable productivity of these major C4 crops. Photosynthesis is studied predominantly at steady state in saturating light. In field stands of these crops light is continually changing, and often with rapid fluctuations. Although light may change in a second, the adjustment of photosynthesis may take many minutes, leading to inefficiencies. We measured the rates of CO2 uptake and stomatal conductance of maize, sorghum and sugarcane under fluctuating light regimes. The gas exchange results were combined with a new dynamic photosynthesis model to infer the limiting factors under non-steady-state conditions. The dynamic photosynthesis model was developed from an existing C4 metabolic model for maize and extended to include: (i) post-translational regulation of key photosynthetic enzymes and their temperature responses; (ii) dynamic stomatal conductance; and (iii) leaf energy balance. Testing the model outputs against measured rates of leaf CO2 uptake and stomatal conductance in the three C4 crops indicated that Rubisco activase, the pyruvate phosphate dikinase regulatory protein and stomatal conductance are the major limitations to the efficiency of NADP-ME-type C4 photosynthesis during dark-to-high light transitions. We propose that the level of influence of these limiting factors make them targets for bioengineering the improved photosynthetic efficiency of these key crops.
Collapse
Affiliation(s)
- Yu Wang
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Kher Xing Chan
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Stephen P. Long
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
50
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|