1
|
Nemkov T, Isiksacan Z, William N, Senturk R, Boudreau LE, Yarmush ML, Acker JP, D'Alessandro A, Usta OB. Supercooled storage of red blood cells slows down the metabolic storage lesion. RESEARCH SQUARE 2025:rs.3.rs-5256734. [PMID: 40060052 PMCID: PMC11888543 DOI: 10.21203/rs.3.rs-5256734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Red blood cell (RBC) transfusion, a life-saving intervention, is limited by reduced RBC potency over time. Cold storage at +4 °C for up to 42 days can reduce transfusion efficacy due to alterations termed the "storage lesion." Strategies to mitigate the storage lesion include alkaline additive solutions and supercooled storage to extend storage by reducing metabolic stresses. However, RBC metabolism during supercooled storage in standard or alkaline additives remains unstudied. This study, thus, investigated the impact of storage additives (alkaline E-Sol5 and standard SAGM) and temperatures (+4 °C, -4 °C, -8 °C) on RBC metabolism during 21- and 42-days storage using high-throughput metabolomics. RBCs stored with E-Sol5 showed increased glycolysis and higher ratios of reduced to oxidized glutathione compared to SAGM. Supercooled storage at -4 °C showed markedly lower hemolysis than -8°C, preserved adenylate pools, decreased glucose consumption, and reduced lactate accumulation and pentose phosphate pathway activation. The combination of supercooled storage and E-Sol5 helped to preserve ATP and 2,3-DPG reservoirs, while preventing catabolism and free fatty acid accumulation. While supercooled storage with E-Sol5 offers a promising alternative to standard storage, preserving RBC metabolic and functional quality, further research is necessary to validate and improve on these foundational findings.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 5612 AZ
| | - Luke E Boudreau
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA, 08854
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| |
Collapse
|
2
|
Swift LM, Roberts A, Pressman J, Guerrelli D, Allen S, Haq KT, Reisz JA, D’Alessandro A, Posnack NG. Evidence for the cardiodepressive effects of the plasticizer di-2-ethylhexyl phthalate. Toxicol Sci 2023; 197:79-94. [PMID: 37812252 PMCID: PMC10734602 DOI: 10.1093/toxsci/kfad105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Di-2-ethylhexyl phthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell units stored between 7 and 42 days (17-119 μg/ml). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 μg/ml), but sinus rate declined by 43% and sinus node recovery time (SNRT) prolonged by 56.5% following 30-min exposure to 100 μg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length (WBCL), and increased incidence of atrioventricular (AV) uncoupling (60-min exposure). Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on AV conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using human-induced pluripotent stem cell-derived cardiomyocytes confirmed that DEHP slows electrical conduction in a time (15 min-3 h) and dose-dependent manner (10-100 μg/ml). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexylphthalate. This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Anysja Roberts
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Samuel Allen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Kazi T Haq
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| |
Collapse
|
3
|
Liu X, Gao S, Ren L, Yuan X. Achieving high intracellular trehalose in hRBCs by reversible membrane perturbation of maltopyranosides with synergistic membrane protection of macromolecular protectants. BIOMATERIALS ADVANCES 2022; 141:213114. [PMID: 36113360 DOI: 10.1016/j.bioadv.2022.213114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Trehalose is considered as a biocompatible cryoprotectant for solvent-free cryopreservation of cells, but the difficulty of the current trehalose delivery platforms to human red blood cells (hRBCs) limits its wide applications. Due to cell injuries caused by incubation at 37 °C and low intracellular loading efficiency, development of novel methods to facilitate trehalose entry in hRBCs is essential. Herein, a reversible membrane perturbation and synergistic membrane stabilization system based on maltopyranosides and macromolecular protectants was constructed, demonstrating the ability of efficient trehalose loading in hRBCs at 4 °C. Results of confocal laser scanning microscopy exhibited that the intracellular loading with the assistance of maltopyranosides was a reversible process, while the membrane protective effect of macromolecular protectants on trehalose loading in hRBCs was necessary. It was suggested that introduction of 30 mM poly(vinyl pyrrolidone) 8000 combined with 1 mM dodecyl-β-D-maltopyranoside and 0.8 M trehalose could increase the intracellular trehalose to 84.0 ± 11.3 mM in hRBCs, whereas poly(ethylene glycol), dextran, human serum albumin or hydroxyethyl starch had a weak effect. All the macromolecular protectants could promote the cryosurvival of hRBCs, exhibiting membrane stabilization, and incubation and followed by cryopreservation did not change the basic functions and normal morphology of hRBCs substantially. This study provided an alternative strategy for glycerol-free cryopreservation of cells and the delivery of membrane-impermeable cargos.
Collapse
Affiliation(s)
- Xingwen Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Liu Y, Hesse LE, Geiger MK, Zinn KR, McMahon TJ, Chen C, Spence DM. A 3D-printed transfusion platform reveals beneficial effects of normoglycemic erythrocyte storage solutions and a novel rejuvenating solution. LAB ON A CHIP 2022; 22:1310-1320. [PMID: 35258064 PMCID: PMC9235508 DOI: 10.1039/d2lc00030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A set of 3D-printed analytical devices were developed to investigate erythrocytes (ERYs) processed in conventional and modified storage solutions used in transfusion medicine. During storage, prior to transfusion into a patient recipient, ERYs undergo many chemical and physical changes that are not completely understood. However, these changes are thought to contribute to an increase in post-transfusion complications, and even an increase in mortality rates. Here, a reusable fluidic device (fabricated with additive manufacturing technologies) enabled the evaluation of ERYs prior to, and after, introduction into a stream of flowing fresh ERYs, thus representing components of an in vivo ERY transfusion on an in vitro platform. Specifically, ERYs stored in conventional and glucose-modified solutions were assayed by chemiluminescence for their ability to release flow-induced ATP. The ERY's deformability was also determined throughout the storage duration using a novel membrane transport approach housed in a 3D-printed scaffold. Results show that hyperglycemic conditions permanently alter ERY deformability, which may explain the reduced ATP release, as this phenomenon is related to cell deformability. Importantly, the reduced deformability and ATP release were reversible in an in vitro model of transfusion; specifically, when stored cells were introduced into a flowing stream of healthy cells, the ERY-derived release of ATP and cell deformability both returned to states similar to that of non-stored cells. However, after 1-2 weeks of storage, the deleterious effects of the storage were permanent. These results suggest that currently approved hyperglycemic storage solutions are having adverse effects on stored ERYs used in transfusion medicine and that normoglycemic storage may reduce the storage lesion, especially for cells stored for longer than 14 days.
Collapse
Affiliation(s)
- Yueli Liu
- Departments of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura E Hesse
- Departments of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Morgan K Geiger
- Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt R Zinn
- Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy J McMahon
- Department of Medicine, Duke University, Durham, North Carolina, 27710, USA
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Dana M Spence
- Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Liu X, Gao S, Niu Q, Zhu K, Ren L, Yuan X. Facilitating trehalose entry into hRBCs at 4 °C by alkylated ε-poly(L-lysine) for glycerol-free cryopreservation. J Mater Chem B 2022; 10:1042-1054. [PMID: 35080234 DOI: 10.1039/d1tb02674g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, glycerol is a conventional cryoprotectant of human red blood cells (hRBCs), but the time-consuming thawing and deglycerolization processes are essential before transfusion. Much of the research up to now has been conducted on the delivery of impermeable trehalose to hRBCs at 37 °C, but the cryoprotective effect of trehalose and deterioration of cells still remain challenging. Encouraged by the interaction of hydrophobic or cationic groups on cell membranes and osmotic stabilization, herein, we propose a novel cryopreservation system to facilitate trehalose entry into hRBCs at 4 °C and pH 7.4. High intracellular trehalose contents and cryosurvival of hRBCs were achieved with small function variations via the assistance of self-assembled nanoparticles of alkylated ε-poly(L-lysine) (ε-PL) along with poly(vinyl pyrrolidone) (PVP). The effect of amphipathic alkylated ε-PL with various alkyl chains and grafting ratios on membrane perturbation with protection of PVP was systematically investigated. Overall, by the combination of alkylated ε-PL and PVP, the intracellular trehalose could be enhanced to 109.7 ± 6.1 mM and subsequently hRBC cryosurvival reached 91.7 ± 5.5%, significantly higher than those containing trehalose only, 11.9 ± 1.1 mM and 50.0 ± 2.1%, respectively. It was observed that the biocompatible trehalose-loading system could benefit glycerol-free cryopreservation of hRBCs and also provide a feasible way for impermeable biomacromolecule delivery.
Collapse
Affiliation(s)
- Xingwen Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Shuhui Gao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Qingjing Niu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Ferrari A, Cassaniti I, Sammartino JC, Mortellaro C, Del Fante C, De Vitis S, Barone E, Troletti D, Prati F, Baldanti F, Percivalle E, Cesare P. SARS-CoV-2 variants inactivation of plasma units using a riboflavin and ultraviolet light-based photochemical treatment. Transfus Apher Sci 2022; 61:103398. [PMID: 35227599 PMCID: PMC8847076 DOI: 10.1016/j.transci.2022.103398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
Abstract
Background Test the ability of Mirasol Pathogen Reduction Technology (PRT, Terumo BCT, Lakewood Co, USA) treatment with riboflavin and ultraviolet light (R + UV) in reducing SARS-CoV-2 infectivity while maintaining blood product quality. Material and methods SARS-CoV-2 strains were isolated and titrated to prepare cell free virus for plasma units infection. The units were then under treatment with Mirasol PRT. The infectious titers were determined before and after treatment with an in house microtitration assay on Vero E6 cells. Thirty-six plasma pool bags underwent PRT treatment. Results In all the experiments, the measured titer following riboflavin and UV treatment was below the limit of detection of microtitration assay for all the different SARS-CoV-2 strains. Despite the high copies number detected by RT-PCR for each viral strain after treatment, viruses were completely inactivated and not able to infect VERO E6 cells. Conclusion Riboflavin and UV light treatment effectively reduced the virus titers of human plasma to the limit of detection in tissue culture, regardless of the strain. These data suggest that pathogen reduction in blood products highlight the safety of CP therapy procedures for critically ill COVID-19 patients, while maintaining blood product quality.
Collapse
Affiliation(s)
- Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Josè Camilla Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Cristina Mortellaro
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Simona De Vitis
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Eugenio Barone
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Daniela Troletti
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Federica Prati
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, 27100, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, 27100, Italy.
| | - Perotti Cesare
- Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy
| |
Collapse
|
7
|
Roubinian NH, Reese SE, Qiao H, Plimier C, Fang F, Page GP, Cable RG, Custer B, Gladwin MT, Goel R, Harris B, Hendrickson JE, Kanias T, Kleinman S, Mast AE, Sloan SR, Spencer BR, Spitalnik SL, Busch MP, Hod EA, on behalf of the National Heart Lung and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study IV Pediatrics (REDS-IV-P). Donor genetic and nongenetic factors affecting red blood cell transfusion effectiveness. JCI Insight 2022; 7:e152598. [PMID: 34793330 PMCID: PMC8765041 DOI: 10.1172/jci.insight.152598] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDRBC transfusion effectiveness varies due to donor, component, and recipient factors. Prior studies identified characteristics associated with variation in hemoglobin increments following transfusion. We extended these observations, examining donor genetic and nongenetic factors affecting transfusion effectiveness.METHODSThis is a multicenter retrospective study of 46,705 patients and 102,043 evaluable RBC transfusions from 2013 to 2016 across 12 hospitals. Transfusion effectiveness was defined as hemoglobin, bilirubin, or creatinine increments following single RBC unit transfusion. Models incorporated a subset of donors with data on single nucleotide polymorphisms associated with osmotic and oxidative hemolysis in vitro. Mixed modeling accounting for repeated transfusion episodes identified predictors of transfusion effectiveness.RESULTSBlood donor (sex, Rh status, fingerstick hemoglobin, smoking), component (storage duration, γ irradiation, leukoreduction, apheresis collection, storage solution), and recipient (sex, BMI, race and ethnicity, age) characteristics were associated with hemoglobin and bilirubin, but not creatinine, increments following RBC transfusions. Increased storage duration was associated with increased bilirubin and decreased hemoglobin increments, suggestive of in vivo hemolysis following transfusion. Donor G6PD deficiency and polymorphisms in SEC14L4, HBA2, and MYO9B genes were associated with decreased hemoglobin increments. Donor G6PD deficiency and polymorphisms in SEC14L4 were associated with increased transfusion requirements in the subsequent 48 hours.CONCLUSIONDonor genetic and other factors, such as RBC storage duration, affect transfusion effectiveness as defined by decreased hemoglobin or increased bilirubin increments. Addressing these factors will provide a precision medicine approach to improve patient outcomes, particularly for chronically transfused RBC recipients, who would most benefit from more effective transfusion products.FUNDINGFunding was provided by HHSN 75N92019D00032, HHSN 75N92019D00034, 75N92019D00035, HHSN 75N92019D00036, and HHSN 75N92019D00037; R01HL126130; and the National Institute of Child Health and Human Development (NICHD).
Collapse
Affiliation(s)
- Nareg H. Roubinian
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | | | | | - Colleen Plimier
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Fang Fang
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Grier P. Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | | | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchika Goel
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Steve Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, British Colombia, Canada
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Steven R. Sloan
- Department of Pathology, Children’s Hospital Boston, Boston, Massachusetts, USA
| | | | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
8
|
Gao S, Niu Q, Liu X, Zhu C, Chong J, Ren LX, Zhu K, Yuan X. Cryopreservation of human erythrocytes through high intracellular trehalose with membrane stabilization of maltotriose-grafted ε-poly(L-lysine). J Mater Chem B 2022; 10:4452-4462. [DOI: 10.1039/d2tb00445c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryopreservation of human erythrocytes via suitable cryoprotectants is essential for transfusion at emergency, but the conventional glycerolization method requires a tedious thawing-deglycerolization process. Alternatively, trehalose, a nonreducing disaccharide, has gained...
Collapse
|
9
|
Gao S, Zhu K, Zhang Q, Niu Q, Chong J, Ren L, Yuan X. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules 2021; 23:530-542. [PMID: 34965723 DOI: 10.1021/acs.biomac.1c01372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Qifa Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Rapid clearance of storage-induced microerythrocytes alters transfusion recovery. Blood 2021; 137:2285-2298. [PMID: 33657208 DOI: 10.1182/blood.2020008563] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.
Collapse
|
11
|
Burke M, Sinha P, Luban NLC, Posnack NG. Transfusion-Associated Hyperkalemic Cardiac Arrest in Neonatal, Infant, and Pediatric Patients. Front Pediatr 2021; 9:765306. [PMID: 34778153 PMCID: PMC8586075 DOI: 10.3389/fped.2021.765306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Red blood cell (RBC) transfusions are a life-saving intervention, with nearly 14 million RBC units transfused in the United States each year. However, the safety and efficacy of this procedure can be influenced by variations in the collection, processing, and administration of RBCs. Procedures or manipulations that increase potassium (K+) levels in stored blood products can also predispose patients to hyperkalemia and transfusion-associated hyperkalemic cardiac arrest (TAHCA). In this mini review, we aimed to provide a brief overview of blood storage, the red cell storage lesion, and variables that increase extracellular [K+]. We also summarize cases of TAHCA and identify potential mitigation strategies. Hyperkalemia and cardiac arrhythmias can occur in pediatric patients when RBCs are transfused quickly, delivered directly to the heart without time for electrolyte equilibration, or accumulate extracellular K+ due to storage time or irradiation. Advances in blood banking have improved the availability and quality of RBCs, yet, some patient populations are sensitive to transfusion-associated hyperkalemia. Future research studies should further investigate potential mitigation strategies to reduce the risk of TAHCA, which may include using fresh RBCs, reducing storage time after irradiation, transfusing at slower rates, implementing manipulations that wash or remove excess extracellular K+, and implementing restrictive transfusion strategies.
Collapse
Affiliation(s)
- Morgan Burke
- School of Medicine, George Washington University, Washington, DC, United States
| | - Pranava Sinha
- Department of Pediatrics, School of Medicine, George Washington University, Washington, DC, United States.,Division of Cardiac Surgery, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Naomi L C Luban
- Department of Pediatrics, School of Medicine, George Washington University, Washington, DC, United States.,Department of Pathology, School of Medicine, George Washington University, Washington, DC, United States.,Division of Hematology and Laboratory Medicine, Children's National Hospital, Washington, DC, United States
| | - Nikki Gillum Posnack
- Department of Pediatrics, School of Medicine, George Washington University, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology & Physiology, School of Medicine, George Washington University, Washington, DC, United States.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
12
|
Reilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, Ramadan M, Luban NLC, Posnack NG. Potential Consequences of the Red Blood Cell Storage Lesion on Cardiac Electrophysiology. J Am Heart Assoc 2020; 9:e017748. [PMID: 33086931 PMCID: PMC7763412 DOI: 10.1161/jaha.120.017748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.
Collapse
Affiliation(s)
- Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Chantal D. Bruno
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Division of Critical Care MedicineChildren’s National HospitalWashingtonDC
| | - Tomas M. Prudencio
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Raj Nair
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
| | - Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Naomi L. C. Luban
- Division of Hematology and Laboratory MedicineChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of PathologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of Pharmacology & PhysiologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| |
Collapse
|
13
|
Ki KK, Faddy HM, Flower RL, Dean MM. Packed Red Blood Cell Transfusion Modulates Myeloid Dendritic Cell Activation and Inflammatory Response In Vitro. J Interferon Cytokine Res 2019; 38:111-121. [PMID: 29565746 DOI: 10.1089/jir.2017.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transfusion of packed red blood cells (PRBCs) modulates patients' immune responses and clinical outcomes; however, the underpinning mechanism(s) remain unknown. The potential for PRBC to modulate myeloid dendritic cells (mDC) and blood DC antigen 3 was assessed using an in vitro transfusion model. In parallel, to model processes activated by viral or bacterial infection, toll-like receptor agonists polyinosinic:polycytidylic acid or lipopolysaccharide were added. Exposure to PRBC upregulated expression of CD83 and downregulated CD40 and CD80 on both DC subsets, and it suppressed production of interleukin (IL)-6, IL-8, IL-12, tumor necrosis factor-α, and interferon-gamma-inducible protein-10 by these cells. Similar effects were observed when modeling processes activated by concurrent infection. Furthermore, exposure to PRBC at date of expiry was associated with more pronounced effects in all assays. Our study suggests PRBC have an impact on recipient DC function, which may result in failure to establish an appropriate immune response, particularly in patients with underlying infection.
Collapse
Affiliation(s)
- Katrina K Ki
- 1 Research and Development Laboratory, The Australian Red Cross Blood Service , Kelvin Grove, Queensland, Australia .,2 School of Medicine, The University of Queensland , Brisbane, St. Lucia, Queensland, Australia
| | - Helen M Faddy
- 1 Research and Development Laboratory, The Australian Red Cross Blood Service , Kelvin Grove, Queensland, Australia .,2 School of Medicine, The University of Queensland , Brisbane, St. Lucia, Queensland, Australia
| | - Robert L Flower
- 1 Research and Development Laboratory, The Australian Red Cross Blood Service , Kelvin Grove, Queensland, Australia
| | - Melinda M Dean
- 1 Research and Development Laboratory, The Australian Red Cross Blood Service , Kelvin Grove, Queensland, Australia
| |
Collapse
|
14
|
Roubinian N, Kleinman S, Murphy EL, Glynn SA, Edgren G. Methodological considerations for linked blood donor-component-recipient analyses in transfusion medicine research. ACTA ACUST UNITED AC 2019; 15:185-193. [PMID: 32368251 DOI: 10.1111/voxs.12518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, there has been a concerted effort to improve our understanding of the quality and effectiveness of transfused blood components. The expanding use of large datasets built from electronic health records allows the investigation of potential benefits or adverse outcomes associated with transfusion therapy. Together with data collected on blood donors and components, these datasets permit an evaluation of associations between donor or blood component factors and transfusion recipient outcomes. Large linked donor-component recipient datasets provide the power to study exposures relevant to transfusion efficacy and safety, many of which would not otherwise be amenable to study for practical or sample size reasons. Analyses of these large blood banking-transfusion medicine datasets allow for characterization of the populations under study and provide an evidence base for future clinical studies. Knowledge generated from linked analyses have the potential to change the way donors are selected and how components are processed, stored and allocated. However, unrecognized confounding and biased statistical methods continue to be limitations in the study of transfusion exposures and patient outcomes. Results of observational studies of blood donor demographics, storage age, and transfusion practice have been conflicting. This review will summarize statistical and methodological challenges in the analysis of linked blood donor, component, and transfusion recipient outcomes.
Collapse
Affiliation(s)
- Nareg Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California.,Vitalant Research Institute, San Francisco, California.,University of California, San Francisco, San Francisco, California
| | | | - Edward L Murphy
- University of California, San Francisco, San Francisco, California.,Vitalant Research Institute, San Francisco, California
| | - Simone A Glynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gustaf Edgren
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
15
|
Donnenberg AD, Kanias T, Triulzi DJ, Dennis CJ, Meyer EM, Gladwin M. Improved quantitative detection of biotin-labeled red blood cells by flow cytometry. Transfusion 2019; 59:2691-2698. [PMID: 31172532 PMCID: PMC9236723 DOI: 10.1111/trf.15354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 07/28/2023]
Abstract
BACKGROUND Biotin-labeled red blood cells (BioRBC) can be tracked after transfusion, providing a convenient and safe way to measure RBC survival in vivo. RBC survival is of interest for determining optimal blood storage conditions and for assessing the impact of genetic and biologic variants in blood donors on the survival of transfused RBCs. Here we present an improved, platform-independent assay for quantifying biotin on BioRBC. This approach is also useful for detecting BioRBC in peripheral blood samples as rare events. STUDY DESIGN AND METHODS We optimized the signal-to-noise ratio of the detecting reagent (phycoerythrin-conjugated streptavidin [SA-PE]) by determining the SA-PE concentration yielding the greatest separation index between BioRBC and unlabeled RBCs. We calibrated the fluorescence intensity measurements to molecules of equivalent soluble fluorochrome (MESF), a quantitative metric of fluorochrome binding and therefore of biotin bound per RBC. We then characterized the limit of blank and limit of quantification (LoQ) for BioRBC labeled at different densities. RESULTS Biotin-labeled RBCs at sulfo-NHS-biotin concentrations of 3 to 30 μg/mL (27-271 nmol/mL RBCs) ranged from approximately 32,000 to 200,000 MESF/RBC. The LoQ ranged from one in 274,000 to one in 649,000, depending on biotin-labeling density. CONCLUSION Increased sensitivity to detect BioRBC may facilitate tracking over longer periods and/or reduction of the BioRBC dose. Total RBC-bound biotin dose has been shown to correlate with the likelihood of developing antibodies to BioRBC. Lowering the dose of labeled cells may help avoid this eventuality.
Collapse
Affiliation(s)
- Albert D. Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Darrell J. Triulzi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | | | - E. Michael Meyer
- Hillman Cancer Center Cytometry Facility, Pittsburgh, Pennsylvania
| | - Mark Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Norris PJ, Schechtman K, Inglis HC, Adelman A, Heitman JW, Vilardi R, Shah A, Roubinian NH, Danesh A, Guiltinan AM, Keating SM, Lacroix J, Cohen MJ, Spinella PC. Influence of blood storage age on immune and coagulation parameters in critically ill transfused patients. Transfusion 2019; 59:1223-1232. [PMID: 30882927 PMCID: PMC6450744 DOI: 10.1111/trf.15250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Several retrospective studies have suggested that transfusion with red blood cells (RBCs) stored for longer periods is associated with increased mortality. The Age of Blood Evaluation (ABLE) study randomized subjects to receive fresh vs. standard issue RBC units and showed no difference in the primary or secondary endpoints of mortality or change in multi-organ dysfunction syndrome (MODS) score. METHODS In this study a subset of 100 ABLE subjects were enrolled to measure coagulation and immune parameters. Samples were collected pre-transfusion and on days 2, 6, 28, and 180 post-transfusion. Levels of 16 coagulation parameters, regulatory and functional T cells, 25 cytokines, and 16 markers of extracellular vesicles (EVs) were determined. RESULTS Changes from baseline in levels of protein C, factor V, and EVs expressing phosphatidyl serine and CTLA-4 (CD152) differed between recipients of fresh and standard storage age RBC units, with the vast majority of coagulation and EV markers and all cytokines tested showing no difference between study arms. Although most analytes showed no difference between subjects in the fresh and standard arms of the study, 6 coagulation parameters, 15 cytokines, and 7 EV parameters changed significantly in the period post-transfusion. DISCUSSION Transfusion of fresh vs. standard issue RBC units does not result in substantial changes in coagulation or immune parameters, up to day 35 of RBC storage. Furthermore, significant changes in multiple coagulation and immune parameters are detectable post-transfusion, though causality cannot be determined based on the current study.
Collapse
Affiliation(s)
- Philip J Norris
- Vitalant Research Institute, University of California, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Ken Schechtman
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Heather C Inglis
- Vitalant Research Institute, University of California, San Francisco, California
| | - Avril Adelman
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - John W Heitman
- Vitalant Research Institute, University of California, San Francisco, California
| | - Ryan Vilardi
- Department of Surgery, University of California, San Francisco, California
| | - Avani Shah
- Vitalant Research Institute, University of California, San Francisco, California
| | - Nareg H Roubinian
- Vitalant Research Institute, University of California, San Francisco, California
| | - Ali Danesh
- Vitalant Research Institute, University of California, San Francisco, California
| | - Anne M Guiltinan
- Vitalant Research Institute, University of California, San Francisco, California
| | - Sheila M Keating
- Vitalant Research Institute, University of California, San Francisco, California
| | - Jacques Lacroix
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montreal, Canada
| | - Mitchell J Cohen
- Department of Surgery, University of California, San Francisco, California
| | - Philip C Spinella
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Development of Zinc Chelating Resin Polymer Beads for the Removal of Cell-Free Hemoglobin. Ann Biomed Eng 2019; 47:1470-1478. [PMID: 30919138 DOI: 10.1007/s10439-019-02249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Red blood cell (RBC) hemolysis is one of the most common storage lesions in packed RBCs (pRBC). Older units of pRBCs, especially those > 21 days old, have increasing levels of hemolysis leading to increased oxidative stress and premature platelet activation. This effect can mostly be attributed to the increase of cell-free hemoglobin (Hb). Therefore, removal of cell-free Hb from pRBCs prior to transfusion could mitigate these deleterious effects. We propose a new method for the removal of Hb from pRBCs using zinc beads. Prepared Hb solutions and pRBCs were treated with zinc beads using two different protocols. UV-Vis spectrophotometry was used to determine Hb concentrations, before and after treatment. Experiments were run in triplicate and paired t tests were used to determine significant differences between groups. Zinc beads removed on average 94% of cell-free Hb within 15 min and 78% Hb from pRBCs (p < 0.0001), demonstrating a maximum binding capacity ~ 66.2 ± 0.7 mg Hb/mL beads. No differences in RBC morphology or deformability were observed after treatment. This study demonstrates the feasibility of using zinc beads for the rapid and targeted removal of Hb from pRBC units. Further investigation is needed to scale this method for large volume removal.
Collapse
|
18
|
Pathak AK, Shiau JC, Thomas MB, Murdock CC. Cryogenically preserved RBCs support gametocytogenesis of Plasmodium falciparum in vitro and gametogenesis in mosquitoes. Malar J 2018; 17:457. [PMID: 30522507 PMCID: PMC6282341 DOI: 10.1186/s12936-018-2612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The malaria Eradication Research Agenda (malERA) has identified human-to-mosquito transmission of Plasmodium falciparum as a major target for eradication. The cornerstone for identifying and evaluating transmission in the laboratory is standard membrane feeding assays (SMFAs) where mature gametocytes of P. falciparum generated in vitro are offered to mosquitoes as part of a blood-meal. However, propagation of "infectious" gametocytes requires 10-12 days with considerable physico-chemical demands imposed on host RBCs and thus, "fresh" RBCs that are ≤ 1-week old post-collection are generally recommended. However, in addition to the costs, physico-chemical characteristics unique to RBC donors may confound reproducibility and interpretation of SMFAs. Cryogenic storage of RBCs ("cryo-preserved RBCs") is accepted by European and US FDAs as an alternative to refrigeration (4 °C) for preserving RBC "quality" and while cryo-preserved RBCs have been used for in vitro cultures of other Plasmodia and the asexual stages of P. falciparum, none of the studies required RBCs to support parasite development for > 4 days. RESULTS Using the standard laboratory strain, P. falciparum NF54, 11 SMFAs were performed with RBCs from four separate donors to demonstrate that RBCs cryo-preserved in the gaseous phase of liquid nitrogen (- 196 °C) supported gametocytogenesis in vitro and subsequent gametogenesis in Anopheles stephensi mosquitoes. Overall levels of sporogony in the mosquito, as measured by oocyst and sporozoite prevalence, as well as oocyst burden, from each of the four donors thawed after varying intervals of cryopreservation (1, 4, 8, and 12 weeks) were comparable to using ≤ 1-week old refrigerated RBCs. Lastly, the potential for cryo-preserved RBCs to serve as a suitable alternative substrate is demonstrated for a Cambodian isolate of P. falciparum across two independent SMFAs. CONCLUSIONS Basic guidelines are presented for integrating cryo-preserved RBCs into an existing laboratory/insectary framework for P. falciparum SMFAs with significant potential for reducing running costs while achieving greater reliability. Lastly, scenarios are discussed where cryo-preserved RBCs may be especially useful in enhancing the understanding and/or providing novel insights into the patterns and processes underlying human-to-mosquito transmission.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Justine C Shiau
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and the Department of Entomology, Pennsylvania State University, State College, PA, 16803, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
- Riverbasin Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
19
|
Lanteri MC, Kanias T, Keating S, Stone M, Guo Y, Page GP, Brambilla DJ, Endres-Dighe SM, Mast AE, Bialkowski W, D'Andrea P, Cable RG, Spencer BR, Triulzi DJ, Murphy EL, Kleinman S, Gladwin MT, Busch MP. Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study. Transfusion 2018; 59:79-88. [PMID: 30408207 DOI: 10.1111/trf.14987] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Genetic determinants may underlie the susceptibility of red blood cells (RBCs) to hemolyze in vivo and during routine storage. This study characterized the reproducibility and dynamics of in vitro hemolysis variables from a subset of the 13,403 blood donors enrolled in the RBC-Omics study. STUDY DESIGN AND METHODS RBC-Omics donors with either low or high hemolysis results on 4°C-stored leukoreduced (LR)-RBC samples from enrollment donations stored for 39 to 42 days were recalled 2 to 12 months later to donate LR-RBCs. Samples of stored LR-RBCs from the unit and from transfer bags were evaluated for spontaneous and stress-induced hemolysis at selected storage time points. Intradonor reproducibility of hemolysis variables was evaluated in transfer bags over two donations. Hemolysis data at serial storage time points were generated on LR-RBCs from parent bags and analyzed by site, sex, race/ethnicity, and donation frequency. RESULTS A total of 664 donors were successfully recalled. Analysis of intradonor reproducibility revealed that osmotic and oxidative hemolysis demonstrated good and moderate reproducibility (Pearson's r = 0.85 and r = 0.53, respectively), while spontaneous hemolysis reproducibility was poor (r = 0.40). Longitudinal hemolysis in parent bags showed large increases over time in spontaneous (508.6%) and oxidative hemolysis (399.8%) and smaller increases in osmotic (9.4%) and mechanical fragility (3.4%; all p < 0.0001). CONCLUSION Spontaneous hemolysis is poorly reproducible in donors over time and may depend on site processing methods, while oxidative and osmotic hemolysis were reproducible in donors and hence could reflect consistent heritable phenotypes attributable to genetic traits. Spontaneous and oxidative hemolysis increased over time of storage, whereas osmotic and mechanical hemolysis remained relatively stable.
Collapse
Affiliation(s)
- Marion C Lanteri
- Vitalant Research Institute (previously Blood Systems Research Institute), University of San Francisco, San Francisco, California.,Department of Laboratory Medicine, University of San Francisco, San Francisco, California
| | - Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Atlanta, Georgia.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Atlanta, Georgia
| | - Sheila Keating
- Vitalant Research Institute (previously Blood Systems Research Institute), University of San Francisco, San Francisco, California.,Department of Laboratory Medicine, University of San Francisco, San Francisco, California
| | - Mars Stone
- Vitalant Research Institute (previously Blood Systems Research Institute), University of San Francisco, San Francisco, California.,Department of Laboratory Medicine, University of San Francisco, San Francisco, California
| | | | | | | | | | - Alan E Mast
- Blood Research and Medical Sciences Institutes, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Walter Bialkowski
- Blood Research and Medical Sciences Institutes, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Pam D'Andrea
- The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | | | | | - Darrell J Triulzi
- The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edward L Murphy
- Vitalant Research Institute (previously Blood Systems Research Institute), University of San Francisco, San Francisco, California.,Department of Laboratory Medicine, University of San Francisco, San Francisco, California
| | - Steven Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Atlanta, Georgia.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Atlanta, Georgia
| | - Michael P Busch
- Vitalant Research Institute (previously Blood Systems Research Institute), University of San Francisco, San Francisco, California.,Department of Laboratory Medicine, University of San Francisco, San Francisco, California
| | | |
Collapse
|
20
|
Koch CG, Duncan AI, Figueroa P, Dai L, Sessler DI, Frank SM, Ness PM, Mihaljevic T, Blackstone EH. Real Age: Red Blood Cell Aging During Storage. Ann Thorac Surg 2018; 107:973-980. [PMID: 30342044 DOI: 10.1016/j.athoracsur.2018.08.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND During cold storage, some red blood cell (RBC) units age more rapidly than others. Yet, the Food and Drug Administration has set a uniform storage limit of 42 days. Objectives of this review are to present evidence for an RBC storage lesion and suggest that functional measures of stored RBC quality-which we call real age-may be more appropriate than calendar age. METHODS During RBC storage, biochemical substances and byproducts accumulate and RBC shape alters. Factors that influence the rate of degradation include donor characteristics, bio-preservation conditions, and vesiculation. Better understanding of markers of RBC quality may lead to standardized, quantifiable, and operationally practical measures to improve donor selection, assess quality of an RBC unit, improve storage conditions, and test efficacy of the transfused product. RESULTS The conundrum is that clinical trials of younger versus older RBC units have not aligned with in vitro aging data; that is, the units transfused were not old enough. In vitro changes are considerable beyond 28 to 35 days, and average storage age for older transfused units was 14 to 21 days. CONCLUSIONS RBC product real age varies by donor characteristics, storage conditions, and biological changes during storage. Metrics to measure temporal changes in quality of the stored RBC product may be more appropriate than the 42-day expiration date. Randomized trials and observational studies are focused on average effect, but, in the evolving age of precision medicine, we must acknowledge that vulnerable populations and individuals may be harmed by aging blood.
Collapse
Affiliation(s)
- Colleen G Koch
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Maryland.
| | - Andra I Duncan
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | | | - Lu Dai
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| | - Steven M Frank
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Paul M Ness
- Department of Transfusion Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Tomislav Mihaljevic
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Eugene H Blackstone
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
21
|
Benites BD. Reticulocytes and the storage lesion. Hematol Transfus Cell Ther 2018; 40:103-104. [PMID: 30057981 PMCID: PMC6001925 DOI: 10.1016/j.htct.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
22
|
Tucci M, Lacroix J, Fergusson D, Doctor A, Hébert P, Berg RA, Caro J, Josephson CD, Leteurtre S, Menon K, Schechtman K, Steiner ME, Turgeon AF, Clayton L, Bockelmann T, Spinella PC. The age of blood in pediatric intensive care units (ABC PICU): study protocol for a randomized controlled trial. Trials 2018; 19:404. [PMID: 30055634 PMCID: PMC6064163 DOI: 10.1186/s13063-018-2809-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/16/2018] [Indexed: 02/02/2023] Open
Abstract
Background The “Age of Blood in Children in Pediatric Intensive Care Unit” (ABC PICU) study is a randomized controlled trial (RCT) that aims to determine if red blood cell (RBC) unit storage age affects outcomes in critically ill children. While RBCs can be stored for up to 42 days in additive solutions, their efficacy and safety after long-term storage have been challenged. Preclinical and clinical observational evidence suggests loss of efficacy and lack of safety of older RBC units, especially in more vulnerable populations such as critically ill children. Because there is a belief that shorter storage will improve outcomes, some physicians and institutions systematically transfuse fresh RBCs to children. Conversely, the standard practice of blood banks is to deliver the oldest available RBC unit (first-in, first-out policy) in order to decrease wastage. Methods/design The ABC PICU study, is a double-blind superiority trial comparing the development of “New or Progressive Multiple Organ Dysfunction Syndrome” (NPMODS) in 1538 critically ill children randomized to either transfusion with RBCs stored for ≤ 7 days or to standard-issue RBCs (oldest in inventory). Patients are being recruited from 52 centers in the US, Canada, France, Italy, and Israel. Discussion The ABC PICU study should have significant implications for blood procurement services. A relative risk reduction of 33% is postulated in the short-storage arm. If a difference is found, this will indicate that fresher RBCs do improve outcomes in the pediatric intensive care unit population and would justify that use in critically ill children. If no difference is found, this will reassure clinicians and transfusion medicine specialists regarding the safety of the current system of allocating the oldest RBC unit in inventory and will discourage clinicians from preferentially requesting fresher blood for critically ill children. Trial registration ClinicalTrials.gov, ID: NCT01977547. Registered on 6 November 2013. Electronic supplementary material The online version of this article (10.1186/s13063-018-2809-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marisa Tucci
- From the Division of Pediatric Critical Care Medicine, Department of Pediatrics, Sainte-Justine Hospital, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada. .,Sainte-Justine Hospital, 3175 Côte Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.
| | - Jacques Lacroix
- From the Division of Pediatric Critical Care Medicine, Department of Pediatrics, Sainte-Justine Hospital, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Allan Doctor
- Division of Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Hébert
- Division of Critical Care Medicine, Department of Medicine, Montreal University Health Center, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Robert A Berg
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Faculty of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaime Caro
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Evidera, Boston, MA, USA
| | - Cassandra D Josephson
- Departments of Pathology and Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stéphane Leteurtre
- University of Lille, CHU Lille, EA 2694 - Santé Publique : épidémiologie et qualité des soins, F-59000, Lille, France
| | - Kusum Menon
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth Schechtman
- Clinical Epidemiology Program, St. Louis Children's Hospital, Faculty of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marie E Steiner
- Division of Pediatric Hematology-Oncology and Division of Pulmonary and Critical Care, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alexis F Turgeon
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, and CHU de Québec-Université Laval Research Centre, Population Health and Optimal Health Practices Unit, Université Laval, Québec City, QC, Canada
| | - Lucy Clayton
- From the Clinical Research Unit, Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - Tina Bockelmann
- Division of Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip C Spinella
- Division of Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | |
Collapse
|
23
|
The 3-phase evolution of stored red blood cells and the clinical trials: an obvious relationship. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:188. [PMID: 28263178 DOI: 10.2450/2017.0317-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022]
|
24
|
Red blood cell storage and clinical outcomes: new insights. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:101-103. [PMID: 28263164 DOI: 10.2450/2017.0018-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Green RS, Erdogan M, Lacroix J, Hébert PC, Tinmouth AT, Sabri E, Zhang T, Fergusson DA, Turgeon AF. Age of transfused blood in critically ill adult trauma patients: a prespecified nested analysis of the Age of Blood Evaluation randomized trial. Transfusion 2018; 58:1846-1854. [PMID: 29672869 DOI: 10.1111/trf.14640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Blood transfusion is common in the resuscitation of patients with traumatic injury. However, the clinical impact of the length of storage of transfused blood is unclear in this population. STUDY DESIGN AND METHODS We undertook a prespecified nested analysis of 372 trauma victims of the 2510 critically ill patients from 64 centers treated as part of the Age of Blood Evaluation (ABLE) randomized controlled trial. Patients were randomized according to their trauma status to receive either a transfusion of fresh blood stored not more than 7 days or standard-issue blood. Our primary outcome was 90-day all-cause mortality. RESULTS Overall, 186 trauma patients received fresh blood and 186 received standard-issue blood. Adherence to transfusion protocol was 94% (915/971) for all fresh blood transfused and 100% (753/753) for all standard-issue blood transfused. Mean ± SD blood storage duration was 5.6 ± 3.8 days in the fresh group and 22.7 ± 8.4 days in the standard-issue group (p < 0.001). Ninety-day mortality in the fresh group was 21% (38/185), compared to 16% (29/184) in the standard-issue group, with an unadjusted absolute risk difference of 5% (95% confidence interval [CI], -3.1 to 12.6) and an adjusted absolute risk difference of 2% (95% CI, -3.5 to 6.8). CONCLUSION In critically ill trauma patients, transfusion of fresh blood did not decrease 90-day mortality or secondary outcomes, a finding similar to the overall population of the ABLE trial.
Collapse
Affiliation(s)
- Robert S Green
- Department of Critical Care, Dalhousie University, Halifax, Nova Scotia, Canada.,Trauma Nova Scotia, NS Department of Health and Wellness, Halifax, Nova Scotia, Canada
| | - Mete Erdogan
- Trauma Nova Scotia, NS Department of Health and Wellness, Halifax, Nova Scotia, Canada
| | - Jacques Lacroix
- Department of Pediatrics, Division of Critical Care Medicine, Université de Montréal, Centre Hospitalier Universitaire (CHU) Sainte Justine
| | - Paul C Hébert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Alan T Tinmouth
- Departments of Medicine and Laboratory Medicine & Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elham Sabri
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tinghua Zhang
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexis F Turgeon
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec City, Quebec, Canada.,Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Quebec, Canada
| | | |
Collapse
|
26
|
Crestani C, Stefani A, Carminato A, Cro A, Capello K, Corrò M, Bozzato E, Mutinelli F, Vascellari M. In vitro assessment of quality of citrate-phosphate-dextrose-adenine-1 preserved feline blood collected by a commercial closed system. J Vet Intern Med 2018; 32:1051-1059. [PMID: 29635743 PMCID: PMC5980295 DOI: 10.1111/jvim.15056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Optimal procedure for storage of feline blood is needed. Open-collection systems have been employed in feline medicine, thus limiting the possibility for storage. OBJECTIVES To evaluate indicators of quality of feline blood stored for 35 days at +4°C in a closed-collection system specifically designed for cats. ANIMALS Eight healthy adult European domestic shorthair cats with a weight of 5-6.8 kg. METHODS This is a case series study. A bacteriological test, CBC, blood smear, pH, osmotic fragility, 2,3-diphosphoglycerate (2,3-DPG), and adenosine triphosphate (ATP) measurement were performed weekly on whole blood (WB) units from day 1 to day 35 after donation. The hemolysis index, lactate and potassium concentrations, prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen were measured on plasma aliquots. RESULTS One out of eight blood units (BUs) had bacterial growth (Serratia marcescens) at day 35. No significant differences were found regarding CBC, morphology, pH, and osmotic fragility. Despite high inter-individual variability and low starting levels, significant decreases in the mean concentrations of 2,3-DPG (T0 1.99 mmol/g Hb, SD 0.52, T35 1.25 mmol/g Hb, SD 1.43; P = .003) and ATP (T0 1.45 mmol/g Hb, SD 0.71, T35 0.62 mmol/g Hb, SD 0.51; P < .001) were detected during the study, as opposed to an increase in hemolysis (T0 0.11 mmol/L, SD 0.07, T35 0.84 mmol/L, SD 0.19; P < .001), lactate (T0 3.30 mmol/L, SD 0.86, T35 13.36 mmol/L, SD 2.90; P < .001), and potassium (T0 3.10 mmol/L, SD 0.21, T35 4.12 mmol/L, SD 0.35; P < .001) concentrations. CONCLUSIONS AND CLINICAL IMPORTANCE The commercial BU kit is appropriate for blood collection and conservation of WB in cats. The maintenance of WB quality indicators during storage is essential for future improvements of feline transfusion medicine.
Collapse
Affiliation(s)
- Chiara Crestani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Annalisa Stefani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Antonio Carminato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy.,Veterinary Medical Center "della Riviera", Camponogara (VE), Italy
| | - Angelica Cro
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Katia Capello
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Elisa Bozzato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| |
Collapse
|
27
|
Yurkovich JT, Bordbar A, Sigurjónsson ÓE, Palsson BO. Systems biology as an emerging paradigm in transfusion medicine. BMC SYSTEMS BIOLOGY 2018. [PMID: 29514691 PMCID: PMC5842607 DOI: 10.1186/s12918-018-0558-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood transfusions are an important part of modern medicine, delivering approximately 85 million blood units to patients annually. Recently, the field of transfusion medicine has started to benefit from the “omic” data revolution and corresponding systems biology analytics. The red blood cell is the simplest human cell, making it an accessible starting point for the application of systems biology approaches. In this review, we discuss how the use of systems biology has led to significant contributions in transfusion medicine, including the identification of three distinct metabolic states that define the baseline decay process of red blood cells during storage. We then describe how a series of perturbations to the standard storage conditions characterized the underlying metabolic phenotypes. Finally, we show how the analysis of high-dimensional data led to the identification of predictive biomarkers. The transfusion medicine community is in the early stages of a paradigm shift, moving away from the measurement of a handful of chosen variables to embracing systems biology and a cell-scale point of view.
Collapse
Affiliation(s)
- James T Yurkovich
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA
| | - Aarash Bordbar
- Sinopia Biosciences, 600 W Broadway Suite 700, San Diego, 92101, USA
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Hringbraut 101, Reykjavík, 101, Iceland.,The Blood Bank, Landspítali-University Hospital, 9500 Gilman Drive, Reykjavík, 101, Iceland
| | - Bernhard O Palsson
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
28
|
Chen Y, Feng Y, Wan J, Chen H. Enhanced separation of aged RBCs by designing channel cross section. BIOMICROFLUIDICS 2018; 12:024106. [PMID: 29576837 PMCID: PMC5849466 DOI: 10.1063/1.5024598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 05/31/2023]
Abstract
Prolonged storage will alter the biophysical properties of red blood cells (RBCs), and it decreases the quality of stored blood for blood transfusion. It has been known that less deformable aged RBCs can be separated by margination, but the recognition of the storage time from the separation efficiency of the stiff RBCs is still a challenge. In this study, we realized enhanced separation of aged RBCs from normal RBCs by controlling the channel cross section and demonstrated that the storage time can be deduced from the percentage of the separated RBCs in the stored RBCs. This separation technology helps to reveal the regulation of time on the RBC aging mechanism and offer a new method to separate stiffened cells with high efficiency.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuzhen Feng
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandi Wan
- Department of Microsystem Engineering, Rochester Institute of Technology, Rochester, New York 14623-5608, USA
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
|
30
|
Vostal JG, Buehler PW, Gelderman MP, Alayash AI, Doctor A, Zimring JC, Glynn SA, Hess JR, Klein H, Acker JP, Spinella PC, D'Alessandro A, Palsson B, Raife TJ, Busch MP, McMahon TJ, Intaglietta M, Swartz HM, Dubick MA, Cardin S, Patel RP, Natanson C, Weisel JW, Muszynski JA, Norris PJ, Ness PM. Proceedings of the Food and Drug Administration's public workshop on new red blood cell product regulatory science 2016. Transfusion 2017; 58:255-266. [PMID: 29243830 DOI: 10.1111/trf.14435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
The US Food and Drug Administration (FDA) held a workshop on red blood cell (RBC) product regulatory science on October 6 and 7, 2016, at the Natcher Conference Center on the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop was supported by the National Heart, Lung, and Blood Institute, NIH; the Department of Defense; the Office of the Assistant Secretary for Health, Department of Health and Human Services; and the Center for Biologics Evaluation and Research, FDA. The workshop reviewed the status and scientific basis of the current regulatory framework and the available scientific tools to expand it to evaluate innovative and future RBC transfusion products. A full record of the proceedings is available on the FDA website (http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm507890.htm). The contents of the summary are the authors' opinions and do not represent agency policy.
Collapse
Affiliation(s)
- Jaroslav G Vostal
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Paul W Buehler
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Monique P Gelderman
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Abdu I Alayash
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Alan Doctor
- Department of Pediatric Critical Care, St Louis Children's Hospital, St Louis, Missouri
| | | | - Simone A Glynn
- Division of Blood Diseases and Resources, NHLBI, NIH, Bethesda, Maryland
| | - John R Hess
- Department of Laboratory Medicine and Hematology, University of Washington, School of Medicine, Seattle, Washington
| | - Harvey Klein
- Department of Transfusion Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Jason P Acker
- Department of Research & Development, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Philip C Spinella
- Department of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Denver, Colorado
| | - Bernhard Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Thomas J Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Timothy J McMahon
- Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, Duke University Medical Center, and the Durham VA Medical Center, Durham, North Carolina
| | - Marcos Intaglietta
- Department of Bioengineering, University of California at San Diego, San Diego, California
| | - Harold M Swartz
- Department of Radiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | | | - Sylvain Cardin
- Naval Medical Research Unit-San Antonio, San Antonio, Texas
| | - Rakesh P Patel
- Center for Free Radical Biology and Translational and Molecular Sciences Certificate Program, University of Alabama, Birmingham, Alabama
| | | | - John W Weisel
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Philip J Norris
- Blood Systems Research Institute, Blood Systems, Inc., San Francisco, California
| | - Paul M Ness
- Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Kalhan TG, Bateman DA, Bowker RM, Hod EA, Kashyap S. Effect of red blood cell storage time on markers of hemolysis and inflammation in transfused very low birth weight infants. Pediatr Res 2017; 82:964-969. [PMID: 28738026 PMCID: PMC5685900 DOI: 10.1038/pr.2017.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/18/2017] [Indexed: 12/19/2022]
Abstract
BackgroundProlonged storage of transfused red blood cells (RBCs) is associated with hemolysis in healthy adults and inflammation in animal models. We aimed to determine whether storage duration affects markers of hemolysis (e.g., serum bilirubin, iron, and non-transferrin-bound iron (NTBI)) and inflammation (e.g., interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1) in transfused very low birth weight (VLBW) infants.MethodsBlood samples from 23 independent transfusion events were collected by heel stick before and 2-6 h after transfusion.ResultsSerum iron, total bilirubin, NTBI, and MCP-1 levels were significantly increased after transfusion of RBCs (P<0.05 for each comparison). The storage age of transfused RBCs positively correlated with increases in NTBI following transfusion (P<0.001; R2=0.44). No associations between storage duration and changes in the other analytes were observed.ConclusionTransfusion of RBCs into VLBW infants is associated with increased markers of hemolysis and the inflammatory chemokine MCP-1. RBC-storage duration only correlated with increases in NTBI levels following transfusion. NTBI was only observed in healthy adults following 35 days of storage; however, this study suggests that VLBW infants are potentially more susceptible to produce this pathological form of iron, with increased levels observed after transfusion of only 20-day-old RBCs.
Collapse
Affiliation(s)
- Tamara G. Kalhan
- Division of Neonatology, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David A. Bateman
- Division of Neonatology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Rakhee M. Bowker
- Division of Neonatology, Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032,Correspondence: Eldad A. Hod, M.D., Department of Pathology and Cell Biology, 630 West 168th St, Room P&S 14-434, Laboratory of Transfusion Biology, College of Physicians & Surgeons of Columbia University, New York, NY 10032; Phone: 212-342-5648;
| | - Sudha Kashyap
- Division of Neonatology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
32
|
Stolla M, Henrichs K, Cholette JM, Pietropaoli AP, Phipps RP, Spinelli SL, Blumberg N. Haem is associated with thrombosis in neonates and infants undergoing cardiac surgery for congenital heart disease. Vox Sang 2017; 113:72-75. [PMID: 29044674 DOI: 10.1111/vox.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Haem levels are associated with thrombosis in a variety of diseases, as well as being a contributing cause of thrombotic events in animal models. MATERIALS AND METHODS We retrospectively analyzed samples from 39 children who underwent cardiac surgery with cardiopulmonary bypass, including 15 children who developed a postoperative thrombosis and 24 controls. RESULTS Patients who developed thrombosis postoperatively had statistically significant higher average haem levels over time (presurgery to 12 h postsurgery) compared to patients who did not develop thrombosis. CONCLUSION Higher cell-free total haem levels are associated with a higher risk of thrombosis in a paediatric cardiac surgical cohort.
Collapse
Affiliation(s)
- M Stolla
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA.,Bloodworks Northwest Research Institute, Seattle, WA, USA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - K Henrichs
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - J M Cholette
- Department of Pediatrics, Critical Care and Cardiology, University of Rochester, Rochester, NY, USA
| | - A P Pietropaoli
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester, Rochester, NY, USA
| | - R P Phipps
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA.,Department of Pediatrics, Critical Care and Cardiology, University of Rochester, Rochester, NY, USA.,Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester, Rochester, NY, USA.,Environmental Medicine, Lung Biology and Disease Program, University of Rochester, Rochester, NY, USA
| | - S L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - N Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Mesenchymal stromal cells can be applied to red blood cells storage as a kind of cellular additive. Biosci Rep 2017; 37:BSR20170676. [PMID: 28864783 PMCID: PMC5603755 DOI: 10.1042/bsr20170676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
During storage in blood banks, red blood cells (RBCs) undergo the mechanical and metabolic damage, which may lead to the diminished capacity to deliver oxygen. At high altitude regions, the above-mentioned damage may get worse. Thus, more attention should be paid to preserve RBCs when these components need transfer from plain to plateau regions. Recently, we found that mesenchymal stromal cells (MSCs) could rescue from anemia, and MSCs have been demonstrated in hematopoietic stem cells (HSCs) transplantation to reconstitute hematopoiesis in vivo by us. Considering the functions and advantages of MSCs mentioned above, we are trying to find out whether they are helpful to RBCs in storage duration at high altitudes. In the present study, we first found that mice MSCs could be preserved in citrate phosphate dextrose adenine-1 (CPDA-1) at 4 ± 2°C for 14 days, and still maintained great viability, even at plateau region. Thus, we attempted to use MSCs as an available supplement to decrease RBCs lesion during storage. We found that MSCs were helpful to support RBCs to maintain biochemical parameters and kept RBCs function well on relieving anemia in an acute hemolytic murine model. Therefore, our investigation developed a method to get a better storage of RBCs through adding MSCs, which may be applied in RBCs storage as a kind of cellular additive into preservation solution.
Collapse
|
34
|
Peters MJ, Argent A, Festa M, Leteurtre S, Piva J, Thompson A, Willson D, Tissières P, Tucci M, Lacroix J. The intensive care medicine clinical research agenda in paediatrics. Intensive Care Med 2017; 43:1210-1224. [PMID: 28315043 DOI: 10.1007/s00134-017-4729-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intensive Care Medicine set us the task of outlining a global clinical research agenda for paediatric intensive care (PIC). In line with the clinical focus of this journal, we have limited this to research that may directly influence patient care. METHODS Clinician researchers from PIC research networks of varying degrees of formality from around the world were invited to answer two main questions: (1) What have been the major recent advances in paediatric critical care research? (2) What are the top 10 studies for the next 10 years? RESULTS (1) Inclusive databases are well established in many countries. These registries allow detailed observational studies and feasibility testing of clinical trial protocols. Recent trials are larger and more valuable, and (2) most common interventions in PIC are not evidenced-based. Clinical studies for the next 10 years should address this deficit, including: ventilation techniques and interfaces; fluid, transfusion and feeding strategies; optimal targets for vital signs; multiple organ failure definitions, mechanisms and treatments; trauma, prevention and treatment; improving safety; comfort of the patient and their family; appropriate care in the face of medical complexity; defining post-PICU outcomes; and improving knowledge generation and adoption, with novel trial design and implementation strategies. The group specifically highlighted the need for research in resource-limited environments wherein mortality remains often tenfold higher than in well-resourced settings. CONCLUSION Paediatric intensive care research has never been healthier, but many gaps in knowledge remain. We need to close these urgently. The impact of new knowledge will be greatest in resource-limited environments.
Collapse
Affiliation(s)
- Mark J Peters
- Paediatric Intensive Care Society Study Group (PICS-SG), UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew Argent
- PICU, Red Cross War Memorial Children's Hospital, School of Child and Adolescent Health, University of Cape Town, Cape Town, Republic of South Africa
| | - Marino Festa
- Paediatric Intensive Care Unit, the Children's Hospital at Westmead, the Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Stéphane Leteurtre
- Pediatric Intensive Care Unit, University Lille, CHU Lille, EA 2694, Santé publique: épidémiologie et qualité des soins, 59000, Lille, France
| | - Jefferson Piva
- Pediatric Emergency and Critical Care Department, H Clinicas, UFRGS University, Porto Alegre, Brazil
| | - Ann Thompson
- Pediatric Acute Lung Injury and Sepsis Investigators (PALISI Network), Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas Willson
- Executive Committee, PALISI, John Mickell Professor of Pediatric Critical Care, Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | - Pierre Tissières
- Réanimation Pédiatrique et Médecine Néonatale, Hôpitaux Universitaires Paris-Sud AP-HP, Le Kremlin-Bicêtre, France
| | - Marisa Tucci
- Pediatric Interest Group, Canadian Critical Care Trials Group, Montreal, Canada
- Division of Pediatric Intensive Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Sainte-Justine Hospital, Room 3431, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Jacques Lacroix
- Division of Pediatric Intensive Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Sainte-Justine Hospital, Room 3431, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
35
|
Kozlova E, Chernysh A, Moroz V, Sergunova V, Gudkova O, Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci Rep 2017; 7:7846. [PMID: 28798476 PMCID: PMC5552796 DOI: 10.1038/s41598-017-08255-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
Transfusion of packed red blood cells (PRBC) to patients in critical states is often accompanied by post-transfusion complications. This may be related with disturbance of properties of PRBC and their membranes during long-term storage in the hemopreservative solution. The purpose of our work is the study of transformation of morphology, membranes stiffness and nanostructure for assessment of PRBC quality, in vitro. By atomic force microscopy we studied the transformation of cell morphology, the appearance of topological nanodefects of membranes and by atomic force spectroscopy studied the change of membrane stiffness during 40 days of storage of PRBC. It was shown that there is a transition period (20–26 days), in which we observed an increase in the Young’s modulus of the membranes 1.6–2 times and transition of cells into irreversible forms. This process was preceded by the appearance of topological nanodefects of membranes. These parameters can be used for quality assessment of PRBC and for improvement of transfusion rules.
Collapse
Affiliation(s)
- E Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation. .,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - A Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - V Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - V Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - O Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - E Manchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| |
Collapse
|
36
|
Tzounakas VL, Seghatchian J, Grouzi E, Kokoris S, Antonelou MH. Red blood cell transfusion in surgical cancer patients: Targets, risks, mechanistic understanding and further therapeutic opportunities. Transfus Apher Sci 2017. [PMID: 28625825 DOI: 10.1016/j.transci.2017.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anemia is present in more than half of cancer patients and appears to be an independent prognostic factor of short- and long-term adverse outcomes. It increases in the advanced period of cancer and perioperatively, in patients with solid tumors who undergo surgery. As a result, allogeneic red blood cell (RBC) transfusion is an indispensable treatment in cancer. However, its safety remains controversial, based on several laboratory and clinical data reporting a linkage with increased risk for cancer recurrence, infection and cancer-related mortality. Immunological, inflammatory and thrombotic reactions mediated by the residual leukocytes and platelets, the stored RBCs per se, the biological response modifiers and the plasticizer of the unit may underlie infection and tumor-promoting effects. Although the causality between transfusion and infection has been established, the effects of transfusion on cancer recurrence remain confusing; this is mainly due to the extreme biological heterogeneity that characterizes RBC donations and cancer context. In fact, the functional interplay between donation-associated factors and recipient characteristics, including tumor biology per se, inflammation, infection, coagulation and immune activation state and competence may synergistically and individually define the clinical impact of each transfusion in any given cancer patient. Our understanding of how the potential risk is mediated is important to make RBC transfusion safer and to pave the way for novel, promising and highly personalized strategies for the treatment of anemia in surgical cancer patients.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| | - Elissavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | - Styliani Kokoris
- Department of Blood Transfusion, Medical School, "Attikon" General Hospital, NKUA, Athens, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
37
|
Sanz CC, Pereira A. Age of blood and survival after massive transfusion. Transfus Clin Biol 2017; 24:449-453. [PMID: 28529005 DOI: 10.1016/j.tracli.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Massive transfusion is the clinical scenario where the presumed adverse effects of stored blood are expected to be more evident because the whole patient's blood volume is replaced by stored blood. OBJECTIVE To analyse the association between age of transfused red blood cells (RBC) and survival in massively transfused patients. METHODS In this retrospective study, clinical and transfusion data of all consecutive patients massively transfused between 2008 and 2014 in a large, tertiary-care hospital were electronically extracted from the Transfusion Service database and the patients' electronic medical records. Prognostic factors for in-hospital mortality were investigated by multivariate logistic regression. RESULTS A total of 689 consecutive patients were analysed (median age: 61 years; 65% males) and 272 died in-hospital. Projected mortality at 2, 30, and 90 days was 21%, 35% and 45%, respectively. The odds ratio (OR) for in-hospital mortality among patients who survived after the 2nd day increased with patient age (OR: 1.037, 95% CI: 1.021-1.054; per year P<0.001), with the number of RBC unit transfused in the first 48hours (OR: 1.060; 95% CI: 1.038-1.020 per unit; P<0.001), and the percentage of such RBC stored for more than 28 days (1.010, 95% CI: 1.005-1.018 per percent point; P=0.01). CONCLUSION Mortality after massive transfusion was associated with a higher proportion of old RBCs transfused in the first 48hours. Other factors associated with poor prognosis were older patient's age and larger volumes of transfused RBCs.
Collapse
Affiliation(s)
- C C Sanz
- Transfusion Service, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain.
| | - A Pereira
- Transfusion Service, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
38
|
Baek JH, Yalamanoglu A, Gao Y, Guenster R, Spahn DR, Schaer DJ, Buehler PW. Iron accelerates hemoglobin oxidation increasing mortality in vascular diseased guinea pigs following transfusion of stored blood. JCI Insight 2017; 2:93577. [PMID: 28469086 DOI: 10.1172/jci.insight.93577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
Non-transferrin-bound iron (NTBI) and free hemoglobin (Hb) accumulate in circulation following stored RBC transfusions. This study investigated transfusion, vascular disease, and mortality in guinea pigs after stored RBC transfusion alone and following cotransfusion with apo-transferrin (apo-Tf) and haptoglobin (Hp). The effects of RBC exchange transfusion dose (1, 3, and 9 units), storage period (14 days), and mortality were evaluated in guinea pigs with a vascular disease phenotype. Seven-day mortality and the interaction between iron and Hb as cocontributors to adverse outcome were studied. Concentrations of iron and free Hb were greatest after transfusion with 9 units of stored RBCs compared with fresh RBCs or stored RBCs at 1- and 3-unit volumes. Nine units of stored RBCs led to mortality in vascular diseased animals, but not normal animals. One and 3 units of stored RBCs did not cause a mortality effect, suggesting the concomitant relevance of NTBI and Hb on outcome. Cotransfusion with apo-Tf or Hp restored survival to 100% following 9-unit RBC transfusions in vascular diseased animals. Our data suggest that increases in plasma NTBI and Hb contribute to vascular disease-associated mortality through iron-enhanced Hb oxidation and enhanced tissue injury.
Collapse
Affiliation(s)
| | | | - Yamei Gao
- Division of Viral Products, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Ricardo Guenster
- Institute of Anesthesiology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Donat R Spahn
- Institute of Anesthesiology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
39
|
D'Alessandro A, Gray AD, Szczepiorkowski ZM, Hansen K, Herschel LH, Dumont LJ. Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage. Transfusion 2017; 57:1019-1030. [PMID: 28295356 DOI: 10.1111/trf.14034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Storage of red blood cells (RBCs) under blood bank conditions promotes metabolic modulation within the RBC. This "metabolic storage lesion" may affect the quality and safety of the transfused RBCs. The aim of this study is to determine the metabolic changes in stored RBCs over 42 days of routine storage followed by a US Food and Drug Administration-approved method of rejuvenation, freezing, and preparation for transfusion. STUDY DESIGN AND METHODS We exploited a mass spectrometry-based metabolomics approach to monitor 42-day-stored citrate phosphate dextrose/AS-1 RBCs (n = 29) that were rejuvenated, glycerolized and frozen, then thawed and deglycerolized, and held for 24 hours at 1 to 6ºC in saline-glucose. RESULTS Previously reported metabolic alterations were confirmed in 42-day-old RBCs. In this study, in total, 181 (62%) of the biochemical compounds exhibited significant (p ≤ 0.05) change compared with Day 0 values. Rejuvenation restored adenosine triphosphate and 2,3-diphosphoglycerate levels, replenished purine reservoirs, up regulated glycolysis, increased levels of pentose phosphate pathway intermediates, and partially rescued glutathione biosynthesis. Increased levels of lysophospholipid in rejuvenated RBCs suggests the activation of recycling pathways of damaged membrane lipids, in which a total of 167 (57%) biochemical compounds showed significant change compared with Day 42 values. CONCLUSION Rejuvenation reversed over one-half of the metabolic biochemical compounds evaluated compared with Day 42 values, and the compounds were stable through frozen storage and preparation for transfusion. Rejuvenation promoted significant metabolic reprogramming, including the reactivation of energy-generating and antioxidant pathways (the pentose phosphate pathway and glutathione homeostasis), salvage reactions, cofactor reservoirs, and membrane lipid recycling.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Zbigniew M Szczepiorkowski
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Larry J Dumont
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
40
|
Unraveling the Gordian knot: red blood cell storage lesion and transfusion outcomes. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:126-130. [PMID: 28263169 DOI: 10.2450/2017.0313-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 01/28/2023]
Abstract
What is following the impressive progress that has been made? During the last couple of years several tremors have shaken the field of Transfusion Medicine. The epicentres of those tremors were located on novel insights into the RBC storage lesion, on emerging connections between storage lesion and post-transfusion performance and effects, and on acknowledging that storage time is only one (rather than the most prominent) of the parameters which contribute to the progression of storage lesion in any given unit of blood. The optimisation of bio-preservation conditions emerged at the same time with all-new scientific knowledge gained by advances in research tools, implementation of technological innovations, and application of elegant in vitro and in vivo models of transfusion. Simultaneously, one after another, all the reported randomised clinical trials concluded, with spectacular consensus, that there is no significant difference in the rate of adverse clinical events (including death) among patients who underwent transfusion with fresh (and presumably good) or standard of care (and presumably bad) blood. The comparative analysis and comprehension of the aforementioned data would set the context for the next generation of research in blood transfusion science, since the need for safer and more efficient transfusions remains.
Collapse
|
41
|
D'Alessandro A, Seghatchian J. Hitchhiker's guide to the red cell storage galaxy: Omics technologies and the quality issue. Transfus Apher Sci 2017; 56:248-253. [PMID: 28343934 DOI: 10.1016/j.transci.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red blood cell storage in the blood bank makes millions of units of available for transfusion to civilian and military recipients every year. From glass bottles to plastic bags, from anticoagulants to complex additives, from whole blood to leukocyte filtered packed red blood cells: huge strides have been made in the field of blood component processing and storage in the blood bank during the last century. Still, refrigerated preservation of packed red blood cells under blood bank conditions results in the progressive accumulation of a wide series of biochemical and morphological changes to the stored erythrocytes, collectively referred to as the storage lesion(s). Approximately ten years ago, retrospective clinical evidence had suggested that such lesion(s) may be clinically relevant and mediate some of the untoward transfusion-related effects observed especially in some categories of recipients at risk (e.g. massively or chronically transfused recipients). Since then, randomized clinical trials have failed to prospectively detect any signal related to red cell storage duration and increased morbidity and mortality in several categories of recipients, at the limits of the statistical power of these studies. While a good part of the transfusion community has immediately adopted the take-home message "if it isn't broken, don't fix it" (i.e. no change to the standard of practice should be pursued), decision makers have been further questioning whether there may be room for further improvements in this field. Provocatively, we argue that consensus has yet to be unanimously reached on what makes a good quality marker of the red cell storage lesion and transfusion safety/efficacy. In other words, if it is true that "you can't manage what you can't measure", then future advancements in the field of transfusion medicine will necessarily rely on state of the art analytical omics technologies of well-defined quality parameters. Heavily borrowing from Douglas Adam's imaginary repertoire from the world famous "Hitchhiker's guide to the galaxy", we briefly summarize how some of the principles for intergalactic hitchhikers may indeed apply to inform navigation through the complex universe of red cell storage quality, safety and efficacy.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
42
|
D’Alessandro A, Nemkov T, Reisz J, Dzieciatkowska M, Wither MJ, Hansen KC. Omics markers of the red cell storage lesion and metabolic linkage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:137-144. [PMID: 28263171 PMCID: PMC5336335 DOI: 10.2450/2017.0341-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 01/28/2023]
Abstract
The introduction of omics technologies in the field of Transfusion Medicine has significantly advanced our understanding of the red cell storage lesion. While the clinical relevance of such a lesion is still a matter of debate, quantitative and redox proteomics approaches, as well quantitative metabolic flux analysis and metabolic tracing experiments promise to revolutionise our understanding of the role of blood processing strategies, inform the design and testing of novel additives or technologies (such as pathogen reduction), and evaluate the clinical relevance of donor and recipient biological variability with respect to red cell storability and transfusion outcomes. By reviewing existing literature in this rapidly expanding research endeavour, we highlight for the first time a correlation between metabolic markers of the red cell storage age and protein markers of haemolysis. Finally, we introduce the concept of metabolic linkage, i.e. the appreciation of a network of highly correlated small molecule metabolites which results from biochemical constraints of erythrocyte metabolic enzyme activities. For the foreseeable future, red cell studies will advance Transfusion Medicine and haematology by addressing the alteration of metabolic linkage phenotypes in response to stimuli, including, but not limited to, storage additives, enzymopathies (e.g. glucose 6-phosphate dehydrogenase deficiency), hypoxia, sepsis or haemorrhage.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Matthew J. Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
43
|
D'Alessandro A, Zolla L. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? Expert Rev Proteomics 2017; 14:243-252. [PMID: 28162022 DOI: 10.1080/14789450.2017.1291347] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating 'bags of hemoglobin'. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease. Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies - especially proteomics and metabolomics - are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future. Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Lello Zolla
- b Department of Ecological and Biological Sciences , Universita' degli Studi della Tuscia , Viterbo , Italy
| |
Collapse
|
44
|
Larson MC, Karafin MS, Hillery CA, Hogg N. Phosphatidylethanolamine is progressively exposed in RBCs during storage. Transfus Med 2017; 27:136-141. [PMID: 28134466 DOI: 10.1111/tme.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND It is well established that as a blood unit ages, fewer of the unit's red blood cells (RBCs) remain in circulation post-transfusion. The mechanism for clearance is not well defined. Phosphatidylethanolamine (PE) is a phospholipid that is primarily found on the inner leaflet of healthy cells, and is an important ligand for phagocytosis of dead cells when exposed. OBJECTIVES The objective of the present study was to measure the change in PE exposure in donor RBCs over increasing storage ages using the novel PE-specific probe, duramycin. METHODS Five adsol (AS-1) preserved RBC units were sampled weekly for 6 weeks and were labelled with duramycin. The percentage of PE exposed on red cells in each sample was determined using flow cytometry. Surface phosphatidylserine (PS) was evaluated for comparison. RESULTS We found that RBCs in AS-preserved donor units increasingly exposed PE, from less than 1% in freshly processed RBCs, to nearly 20% at 42 days of storage and correlated with increased relative vesiculation or microparticle concentration and release of cell-free haemoglobin. By comparison, only 5% of cells exposed PS at 42 days. CONCLUSION We conclude that exposure of PE in the RBC outer membrane was higher than that of PS during 42 days of storage and correlated significantly with increased vesiculation and release of haemoglobin.
Collapse
Affiliation(s)
- M C Larson
- Medical Imaging Department, University of Arizona, Tucson, Arizona, USA
| | - M S Karafin
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, USA.,Pathology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C A Hillery
- Pediatric Hematology Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - N Hogg
- Biophysics Department, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
45
|
Ashikhmina E. Did near-infrared spectroscopy leave us in the dark? J Thorac Cardiovasc Surg 2016; 153:620-621. [PMID: 27964984 DOI: 10.1016/j.jtcvs.2016.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Elena Ashikhmina
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
46
|
Rapido F, Brittenham GM, Bandyopadhyay S, La Carpia F, L'Acqua C, McMahon DJ, Rebbaa A, Wojczyk BS, Netterwald J, Wang H, Schwartz J, Eisenberger A, Soffing M, Yeh R, Divgi C, Ginzburg YZ, Shaz BH, Sheth S, Francis RO, Spitalnik SL, Hod EA. Prolonged red cell storage before transfusion increases extravascular hemolysis. J Clin Invest 2016; 127:375-382. [PMID: 27941245 DOI: 10.1172/jci90837] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes. METHODS Sixty healthy adult volunteers were randomized to a single standard, autologous, leukoreduced, packed red cell transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage (n = 10 per group). 51-Chromium posttransfusion red cell recovery studies were performed and laboratory parameters measured before and at defined times after transfusion. RESULTS Extravascular hemolysis after transfusion progressively increased with increasing storage time (P < 0.001 for linear trend in the AUC of serum indirect bilirubin and iron levels). Longer storage duration was associated with decreasing posttransfusion red cell recovery (P = 0.002), decreasing elevations in hematocrit (P = 0.02), and increasing serum ferritin (P < 0.0001). After 6 weeks of refrigerated storage, transfusion was followed by increases in AUC for serum iron (P < 0.01), transferrin saturation (P < 0.001), and nontransferrin-bound iron (P < 0.001) as compared with transfusion after 1 to 5 weeks of storage. CONCLUSIONS After 6 weeks of refrigerated storage, transfusion of autologous red cells to healthy human volunteers increased extravascular hemolysis, saturated serum transferrin, and produced circulating nontransferrin-bound iron. These outcomes, associated with increased risks of harm, provide evidence that the maximal allowable red cell storage duration should be reduced to the minimum sustainable by the blood supply, with 35 days as an attainable goal.REGISTRATION. ClinicalTrials.gov NCT02087514. FUNDING NIH grant HL115557 and UL1 TR000040.
Collapse
|
47
|
Abstract
Transfusion of rbc is a routine, often lifesaving procedure that depends on a stored supply of blood. In the US, 42 days is the maximum duration allowed for rbc storage; however, several lines of evidence indicate that patients that receive blood at the upper end of this storage limit are at a higher risk of morbidity and mortality. In this issue of the JCI, Rapido and colleagues evaluated the effects of transfusing one unit of blood close to the storage limit into healthy adults. Compared to those that received rbc stored for five weeks or less, those that received blood stored for six weeks showed several effects associated with increased harm, including disruption in iron handling, increased extravascular hemolysis, and the formation of circulating non-transferrin-bound iron. Together, the results of this study suggest that current maximum storage durations should be carefully reevaluated.
Collapse
|
48
|
Affiliation(s)
- A. D'Alessandro
- Department of Biochemistry and Molecular Genetics; University of Colorado Denver; Aurora CO USA
| |
Collapse
|
49
|
Affiliation(s)
- Aaron A R Tobian
- From the Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore
| | - Paul M Ness
- From the Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore
| |
Collapse
|
50
|
Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci 2016; 55:292-301. [PMID: 27839967 DOI: 10.1016/j.transci.2016.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.
Collapse
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|