1
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Key AM, Earley EJ, Tzounakas VL, Anastasiadi AT, Nemkov T, Stephenson D, Dzieciatkowska M, Reisz JA, Keele GR, Deng X, Stone M, Kleinman S, Hansen KC, Norris PJ, Busch MP, Roubinian N, Page GP, D’Alessandro A. Red blood cell urate levels are linked to hemolysis in vitro and post-transfusion as a function of donor sex, population and genetic polymorphisms in SLC2A9 and ABCG2. Transfusion 2025; 65:560-574. [PMID: 39828898 PMCID: PMC11925674 DOI: 10.1111/trf.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations. STUDY DESIGN AND METHODS Urate levels were measured in 13,091 RBC units from the REDS study. Characteristics tested included hemolysis parameters (spontaneous, osmotic, oxidative) at storage end and post-transfusion hemoglobin (Hb) increments in recipients. Donor demographics, urate levels, and genetic variants were analyzed for associations with these outcomes. RESULTS Elevated urate levels were linked to male sex, older age, high BMI, and Asian descent. Units with high urate levels exhibited increased spontaneous and osmotic hemolysis, while oxidative hemolysis was unaffected. Genetic variants in SLC2A9 (V282I) and ABCG2 (Q141K) were strongly associated with elevated urate, particularly in Asian donors. Post-transfusion analyses revealed that units from female donors carrying these variants were associated with reduced Hb increments, with up to a 31% reduction in efficacy. This effect was not observed in male donors. DISCUSSION RBC urate levels and genetic traits significantly impact storage quality and transfusion outcomes. These findings highlight the importance of donor molecular characteristics for optimizing transfusion strategies. Moreover, genetic and metabolic insights may inform donor recruitment efforts, providing health feedback to volunteers while ensuring effective transfusion products.
Collapse
Affiliation(s)
- Alicia M. Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric J. Earley
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Omix Technologies Inc, Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory R. Keele
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco CA, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco CA, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Grier P. Page
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Omix Technologies Inc, Aurora, CO, USA
| |
Collapse
|
3
|
Haiman ZB, Key A, D’Alessandro A, Palsson BO. RBC-GEM: A genome-scale metabolic model for systems biology of the human red blood cell. PLoS Comput Biol 2025; 21:e1012109. [PMID: 40072998 PMCID: PMC11925312 DOI: 10.1371/journal.pcbi.1012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, one of the most comprehensive, curated genome-scale metabolic reconstructions of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 29 studies published over the past two decades resulting in an RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome to form a genome-scale metabolic model (GEM) of the RBC. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. RBC-GEM represents a metabolic network is a consisting of 820 genes encoding proteins acting on 1,685 unique metabolites through 2,723 biochemical reactions: a 740% size expansion over its predecessor. We demonstrated the utility of RBC-GEM by creating context-specific proteome-constrained models derived from proteomic data of stored RBCs for 616 blood donors, and classified reactions based on their simulated abundance dependence. This reconstruction as an up-to-date curated GEM can be used for contextualization of data and for the construction of a computational whole-cell models of the human RBC.
Collapse
Affiliation(s)
- Zachary B. Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, California, United States of America
| |
Collapse
|
4
|
Sertori R, Pasricha SR. QTLs unlock RBC storage hemolysis secrets. Blood 2025; 145:661-662. [PMID: 39946153 DOI: 10.1182/blood.2024027136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025] Open
Affiliation(s)
- Robert Sertori
- Walter and Eliza Hall Institute of Medical Research
- The University of Melbourne
| | - Sant-Rayn Pasricha
- Walter and Eliza Hall Institute of Medical Research
- The University of Melbourne
- The Royal Melbourne Hospital
- The Peter MacCallum Cancer Centre and The Royal Melbourne Hospital
| |
Collapse
|
5
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2025; 24:e14388. [PMID: 39478346 PMCID: PMC11822668 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Alicia Key
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven L. Spitalnik
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Eldad A. Hod
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Steven Kleinman
- University of British ColumbiaVictoriaBritish ColumbiaCanada
| | - Nareg H. Roubinian
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Kaiser Permanente Northern California Division of ResearchPleasantonCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark T. Gladwin
- Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreMarylandUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Philip J. Norris
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Busch
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James C. Zimring
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| |
Collapse
|
6
|
Zhang C, Huang P, Singh RJ, Zubair AC. Effects of blood donor characteristics and storage on red blood cell haemoglobin β S-nitrosylation. Vox Sang 2025; 120:132-139. [PMID: 39571611 DOI: 10.1111/vox.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND AND OBJECTIVES In the setting of tissue hypoxia, S-nitrosylated haemoglobin (SNO-Hb) plays crucial roles in the control of blood flow. This is associated with decreased oxygen affinity to haemoglobin and increase in tissue oxygenation. Red blood cell (RBC) transfusion is primarily performed to improve tissue oxygenation in anaemic patients. RBCs after storage undergo a variety of biochemical and functional alterations, including deficiency of nitric oxide (NO) bioactivity. However, how donor characteristics affect NO levels during RBC storage is unclear. We sought to investigate the association of blood donor age, gender and storage duration with NO and SNO-Hb levels in blood units. MATERIALS AND METHODS Blood samples from 42 healthy younger (≤30 years) and older (≥45 years) donors were collected and stored for up to 42 days. Total NO kits were used to detect total nitrite and nitrate levels in blood storage solution. SNO-Hb levels in RBCs were detected and analysed by quantitative mass spectrometry. RESULTS Total NO levels in the blood storage solution significantly increased with donor age and storage duration. Proteomic analysis revealed that RBCs from older donors, particularly older females, significantly lost SNO-Hb during storage. Our findings indicate that RBCs from older donors are associated with reduced SNO-Hb levels and increased NO metabolites in storage solution after ≥35 days storage. CONCLUSION The findings suggest stored RBCs from older donors may have reduced capacity to deliver oxygen to tissues under hypoxia. A shorter shelf life may be required for storing RBCs from older donors, particularly older females.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
7
|
Fang F, Roubinian NH, Bean SW, Kemmler C, Page GG, Kanias T. Genetic determinants of plasma testosterone in male blood donors are associated with altered red blood cell characteristics and survival in cold storage and after transfusion. Transfus Apher Sci 2024; 63:104017. [PMID: 39427552 PMCID: PMC11641673 DOI: 10.1016/j.transci.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Genetic mutations in genes regulating plasma testosterone in men may interfere with effective erythropoiesis, and may result in red blood cell (RBC) dysfunction and hemolysis. The aim of this study was to identify genetic polymorphisms in male donors that regulate plasma testosterone and impact RBC survival in cold storage and after transfusion. We evaluated nine single nucleotide polymorphisms (SNPs) previously reported to be associated with circulating testosterone in male plasma. These SNPs were linked with donor-component-recipient databases (NIH REDS program) to determine SNP associations with donor RBC hematological indices, osmotic and oxidative hemolysis, and RBC transfusion effectiveness defined as adjusted hemoglobin increments (delta hemoglobin, ΔHb) following a single RBC unit transfusion. Four of the nine testosterone SNPs were located on the X chromosome, of which two (rs7057002, rs73629199) were significantly associated with reduced hemoglobin increments (0.2 and 0.3 g/dL, respectively) compared with reference alleles in transfused recipients. Seven of the nine testosterone SNPs were associated with significant changes in RBC susceptibility to osmotic hemolysis including a missense mutation in the major plasma carrier of testosterone (SHBG, rs6259), and four SNPs with changes in oxidative hemolysis. Four SNPs were associated with decreased RBC count, hemoglobin, and hematocrit. Ancestry/ethnicity-specific (African and Hispanic) associations were observed between two SNPs (rs7057002, rs7879462) and oxidative hemolysis. Genetic determinants of plasma testosterone in male donors significantly impact the quality and transfusion effectiveness of cold stored RBCs. Testosterone SNPs associated with decreased RBC transfusion effectiveness may have clinical implications and warrant further revaluation.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics and Translational Research Center, RTI International, NC, USA
| | - Nareg H Roubinian
- Vitalant Research Institute, San Francisco, CA, USA; Kaiser Permanente Northern California Division of Research, Pleasanton, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Grier G Page
- Analytics Program and RTI Fellow Program, RTI International, Atlanta, GA, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, CO, USA; Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman ZB, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and genetic determinants of glycolysis: Phosphofructokinase isoforms boost energy status of stored red blood cells and transfusion outcomes. Cell Metab 2024; 36:1979-1997.e13. [PMID: 38964323 PMCID: PMC11374506 DOI: 10.1016/j.cmet.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary B Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krystalyn E Hudson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA.
| |
Collapse
|
9
|
Tran J, Jackman RP, Muench MO, Hazegh K, Bean SW, Thomas KA, Fang F, Page G, O’Connor K, Roubinian N, Anawalt BD, Kanias T. Testosterone supplementation increases red blood cell susceptibility to oxidative stress, decreases membrane deformability, and decreases survival after cold storage and transfusion. Transfusion 2024; 64:1469-1480. [PMID: 38884364 PMCID: PMC11316632 DOI: 10.1111/trf.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Blood collection from donors on testosterone therapy (TT) is restricted to red blood cell (RBC) concentrates to avoid patient exposure to supraphysiological testosterone (T). The objective of this study was to identify TT-related changes in RBC characteristics relevant to transfusion effectiveness in patients. STUDY DESIGN This was a two-part study with cohorts of patients and blood donors on TT. In part 1, we conducted longitudinal evaluation of RBCs collected before and at three time points after initiation of T. RBC assays included storage and oxidative hemolysis, membrane deformability (elongation index), and oximetry. In part 2, we evaluated the fate of transfused RBCs from TT donors in immunodeficient mice and by retrospective analyses of NIH's vein-to-vein databases. RESULTS TT increased oxidative hemolysis (1.45-fold change) and decreased RBC membrane deformability. Plasma free testosterone was positively correlated with oxidative hemolysis (r = .552) and negatively correlated with the elongation index (r = -.472). Stored and gamma-irradiated RBCs from TT donors had lower posttransfusion recovery in mice compared to controls (41.6 ± 12 vs. 55.3 ± 20.5%). Recipients of RBCs from male donors taking T had 25% lower hemoglobin increments compared to recipients of RBCs from non-TT male donors, and had increased incidence (OR, 1.80) of requiring additional RBC transfusions within 48 h of the index transfusion event. CONCLUSIONS TT is associated with altered RBC characteristics and transfusion effectiveness. These results suggest that clinical utilization of TT RBCs may be less effective in recipients who benefit from longer RBC survival, such as chronically transfused patients.
Collapse
Affiliation(s)
- Johnson Tran
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Kimberly A. Thomas
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Fang Fang
- Genomics and Translational Research Center, RTI International, NC, USA
| | - Grier Page
- Genomics and Translational Research Center, RTI International, NC, USA
- Fellow program, RTI International, Atlanta, GA, USA
| | - Kim O’Connor
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Bradley D. Anawalt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Nemkov T, Key A, Stephenson D, Earley EJ, Keele GR, Hay A, Amireault P, Casimir M, Dussiot M, Dzieciatkowska M, Reisz JA, Deng X, Stone M, Kleinman S, Spitalnik SL, Hansen KC, Norris PJ, Churchill GA, Busch MP, Roubinian N, Page GP, Zimring JC, Arduini A, D’Alessandro A. Genetic regulation of carnitine metabolism controls lipid damage repair and aging RBC hemolysis in vivo and in vitro. Blood 2024; 143:2517-2533. [PMID: 38513237 PMCID: PMC11208298 DOI: 10.1182/blood.2024023983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Eric J. Earley
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - Gregory R. Keele
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
- The Jackson Laboratory, Bar Harbor, ME
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Pascal Amireault
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Madeleine Casimir
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Michaël Dussiot
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Steve Kleinman
- The University of British Columbia, Victoria, BC, Canada
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Nareg Roubinian
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Grier P. Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Lugano, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
11
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman Z, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and Genetic Determinants of Glycolysis: Phosphofructokinase Isoforms Boost Energy Status of Stored Red Blood Cells and Transfusion Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557250. [PMID: 38260479 PMCID: PMC10802247 DOI: 10.1101/2023.09.11.557250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. eTOC and Highlights Highlights Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.
Collapse
|
12
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
13
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
15
|
Hay A, Nemkov T, Gamboni F, Dzieciatkowska M, Key A, Galbraith M, Bartsch K, Sun K, Xia Y, Stone M, Busch MP, Norris PJ, Zimring JC, D’Alessandro A. Sphingosine 1-phosphate has a negative effect on RBC storage quality. Blood Adv 2023; 7:1379-1393. [PMID: 36469038 PMCID: PMC10139937 DOI: 10.1182/bloodadvances.2022008936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 μM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.
Collapse
Affiliation(s)
- Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Matthew Galbraith
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kyle Bartsch
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Yang Xia
- University of Changsha, Changsha, China
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
16
|
Crowder LA, Cable RG, Spencer BR. Validity of donor-reported iron supplementation practices obtained at the time of donation. Transfusion 2023; 63:470-475. [PMID: 36606513 DOI: 10.1111/trf.17235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Iron supplementation (IS) improves blood donors' iron stores and allows more frequent blood donation. Understanding the accuracy of self-reported IS is helpful for potential application of IS practices to donor eligibility or donation intervals. METHODS Successful whole blood and red cell apheresis donors completed a survey at donation on the use of select dietary supplements. Respondents reporting use of either iron pills (IP) or multivitamins (MV) were invited by email to complete a similar follow-up survey 6-8 weeks later and to provide the quantitative iron content of IS by referring the donor to the pill bottle label. Consistency between baseline and follow-up responses was assessed overall and by pill type and demographic variables. RESULTS Of 2444 donors answering the baseline survey, 40% (978) reported MV or IP at donation, 354 of whom completed the follow-up survey. A majority of survey respondents (56%-61%) reported taking iron across the two surveys, and 21%-24% took MV but were uncertain if their pills contained iron. Of 215 reporting IS at baseline, overall concordance at follow-up was 68% and was higher for donors who were female, ≥50-years old, and taking iron as an iron pill rather than in a multivitamin. CONCLUSION Consistency of donor responses may be insufficient for use in guiding donor eligibility. Referring donors to their pill bottles was unsuccessful in improving the high frequency of uncertain responses. Incorporating IS into donor eligibility determinations is a complex endeavor that will benefit from careful planning and from post-implementation monitoring.
Collapse
Affiliation(s)
- Lauren A Crowder
- Scientific Affairs, American Red Cross, Rockville, Maryland, USA
| | - Ritchard G Cable
- Scientific Affairs, American Red Cross, Farmington, Connecticut, USA
| | - Bryan R Spencer
- Scientific Affairs, American Red Cross, Dedham, Massachusetts, USA
| |
Collapse
|
17
|
Kreft IC, Hoogendijk AJ, van der Zwaan C, van Alphen FPJ, Boon-Spijker M, Prinsze F, Meijer AB, de Korte D, van den Hurk K, van den Biggelaar M. Mass spectrometry-based analysis on the impact of whole blood donation on the global plasma proteome. Transfusion 2023; 63:564-573. [PMID: 36722460 DOI: 10.1111/trf.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Biomonitoring may provide important insights into the impact of a whole blood donation for individual blood donors. STUDY DESIGN AND METHODS Here, we used unbiased mass spectrometry (MS)-based proteomics to assess longitudinal changes in the global plasma proteome, after a single blood donation for new and regular donors. Subsequently, we compared plasma proteomes of 76 male and female whole blood donors, that were grouped based on their ferritin and hemoglobin (Hb) levels. RESULTS The longitudinal analysis showed limited changes in the plasma proteomes of new and regular donors after a whole blood donation during a 180-day follow-up period, apart from a significant short-term decrease in fibronectin. No differences were observed in the plasma proteomes of donors with high versus low Hb and/or ferritin levels. Plasma proteins with the highest variation between and within donors included pregnancy zone protein, which was associated with sex, Alfa 1-antitrypsin which was associated with the allelic variation, and Immunoglobulin D. Coexpression analysis revealed clustering of proteins that are associated with platelet, red cell, and neutrophil signatures as well as with the complement system and immune responses, including a prominent correlating cluster of immunoglobulin M (IgM), immunoglobulin J chain (JCHAIN), and CD5 antigen-like (CD5L). DISCUSSION Overall, our proteomic approach shows that whole blood donation has a limited impact on the plasma proteins measured. Our findings suggest that plasma profiling can be successfully employed to consistently detect proteins and protein complexes that reflect the functionality and integrity of platelets, red blood cells, and immune cells in blood donors and thus highlights its potential use for donor health monitoring.
Collapse
Affiliation(s)
- Iris C Kreft
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Floris P J van Alphen
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Mariette Boon-Spijker
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Femmeke Prinsze
- Donor Studies, Department of Donor Medicine Research, Sanquin Research, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Katja van den Hurk
- Donor Studies, Department of Donor Medicine Research, Sanquin Research, Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Laboratory of Proteomics, Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review examines recent research on the prevalence and importance of iron deficiency in blood donors, and on efforts to mitigate it. RECENT FINDINGS Premenopausal females, teenagers, and high-frequency donors are at the highest risk for donation-induced iron deficiency, in both high-resource and low-resource settings. The physiology relating iron stores to hemoglobin levels and low hemoglobin deferral is well elucidated in blood donor populations, yet the clinical effects attributable to iron loss in the absence of anemia are challenging to identify. Expanded adoption of ferritin testing is improving donor management but may cause decreases in the blood supply from temporary donor loss. The potential for personalized donor management is emerging with development of computational models that predict individual interdonation intervals that aim to optimize blood collected from each donor while minimizing low hemoglobin deferrals. SUMMARY Measures to reduce iron deficiency are available that can be deployed on a standardized or, increasingly, personalized basis. Blood centers, regulators, and donors should continue to evaluate different tactics for addressing this problem, to obtain a balanced approach that is optimal for maintaining adequate collections while safeguarding donor health.
Collapse
Affiliation(s)
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
19
|
Ning S, Li N, Barty R, Arnold D, Heddle NM. Database-driven research and big data analytic approaches in transfusion medicine. Transfusion 2022; 62:1427-1434. [PMID: 35689523 DOI: 10.1111/trf.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shuoyan Ning
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Ancaster, Ontario, Canada
| | - Na Li
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Barty
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Donald Arnold
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Nancy M Heddle
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Canadian Blood Services, Center for Innovation, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Liu H, Burns RT, Spencer BR, Page GP, Mast AE. Demographic, clinical, and biochemical predictors of pica in high-intensity blood donors. Transfus Med 2022; 32:288-292. [PMID: 35750589 PMCID: PMC10193843 DOI: 10.1111/tme.12890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Frequent blood donors who contribute multiple times annually are important for maintaining an adequate blood supply. However, repeated donations exacerbate iron deficiency, which can lead to pica, a condition characterised as repeated eating or chewing of a non-nutritious substance such as ice, clay and dirt. Understanding characteristics of frequent donors that are associated with increased risk for developing pica will help to identify them and prevent this adverse consequence of blood donation. METHODS Demographic, clinical, haematological, and biochemical factors associated with pica were investigated using univariable and multivariable logistic regression analysis in a cohort of 1693 high-intensity donors who gave nine or more units of whole blood in the preceding 2 years. Pica was classified by questionnaire responses as consuming at least 8 oz of ice daily and/or consumption of non-ice substances regardless of the amount and frequency. RESULTS Pica was present in 1.5% of the high-intensity donors, and only occurred in those with ferritin <50 ng/ml. Of 16 candidate variables, only haematocrit (OR = 0.835, p = 0.020) was independently associated with pica. Although severe iron deficiency was more prevalent in high-intensity donors, pica behaviours were less prevalent than in less frequent donors (2.2%). CONCLUSION We have uncovered predictors of pica in high-intensity donors, which further emphasises the need to continue to implement iron replacement programs to reduce the prevalence of pica and maintain a robust pool of frequent donors.
Collapse
Affiliation(s)
- Hefei Liu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA.,School of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Robert T Burns
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Bryan R Spencer
- American Red Cross Scientific Affairs, Dedham, Massachusetts, USA
| | | | - Alan E Mast
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
21
|
Josephson CD, Glynn S, Mathew S, Birch R, Bakkour S, Kreuziger LB, Busch MP, Chapman K, Dinardo C, Hendrickson J, Hod EA, Kelly S, Luban N, Mast A, Norris P, Custer B, Sabino E, Sachais B, Spencer BR, Stone M, Kleinman S. The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P): A research program striving to improve blood donor safety and optimize transfusion outcomes across the lifespan. Transfusion 2022; 62:982-999. [PMID: 35441384 PMCID: PMC9353062 DOI: 10.1111/trf.16869] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) is a new iteration of prior National Heart, Lung, and Blood Institute (NHLBI) REDS programs that focus on improving transfusion recipient outcomes across the lifespan as well as the safety and availability of the blood supply. STUDY DESIGN AND METHODS The US program includes blood centers and hospitals (22 including 6 free-standing Children's hospitals) in four geographic regions. The Brazilian program has 5 participating hemocenters. A Center for Transfusion Laboratory Studies (CTLS) and a Data Coordinating Center (DCC) support synergistic studies and activities over the 7-year REDS-IV-P program. RESULTS The US is building a centralized, vein-to-vein (V2V) database, linking information collected from blood donors, their donations, the resulting manufactured components, and data extracts from hospital electronic medical records of transfused and non-transfused patients. Simultaneously, the Brazilian program is building a donor, donation, and component database. The databases will serve as the backbone for retrospective and prospective observational studies in transfusion epidemiology, transfusion recipient outcomes, blood component quality, and emerging blood safety issues. Special focus will be on preterm infants, patients with sickle cell disease, thalassemia or cancer, and the effect of donor biologic variability and component manufacturing on recipient outcomes. A rapid response capability to emerging safety threats has resulted in timely studies related to Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2). CONCLUSIONS The REDS-IV-P program endeavors to improve donor-recipient-linked research with a focus on children and special populations while also maintaining the flexibility to address emerging blood safety issues.
Collapse
Affiliation(s)
- Cassandra D. Josephson
- Departments of Pathology and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Simone Glynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunitha Mathew
- Public Health and Epidemiology Practice, Westat, Rockville, Maryland, USA
| | - Rebecca Birch
- Public Health and Epidemiology Practice, Westat, Rockville, Maryland, USA
| | - Sonia Bakkour
- Vitalant Research Institute, University of California San Francisco, San Francisco, California, USA
| | | | - Michael P. Busch
- Vitalant Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Kathleen Chapman
- Public Health and Epidemiology Practice, Westat, Rockville, Maryland, USA
| | - Carla Dinardo
- Immunohematology, Faculdade de Medicina da Universidade de Sao and Fundacao Pro-Sangue, São Paulo, Brazil
| | - Jeanne Hendrickson
- Departments of Pediatrics and Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Shannon Kelly
- Department of Pediatric Hematology & Oncology, UCSF Benioff Children’s Hospital, Oakland, California, USA
| | - Naomi Luban
- Children’s Research National Institute, Children’s National Hospital, Washington, District of Columbia, USA
| | - Alan Mast
- Versiti Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Philip Norris
- Vitalant Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Brian Custer
- Vitalant Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Ester Sabino
- Department of Infectious Disease, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Bryan R. Spencer
- Scientific Affairs, American Red Cross, Dedham, Massachusetts, USA
| | - Mars Stone
- Vitalant Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Steve Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
22
|
Fang F, Hazegh K, Mast AE, Triulzi DJ, Spencer BR, Gladwin MT, Busch MP, Kanias T, Page GP. Sex-specific genetic modifiers identified susceptibility of cold stored red blood cells to osmotic hemolysis. BMC Genomics 2022; 23:227. [PMID: 35321643 PMCID: PMC8941732 DOI: 10.1186/s12864-022-08461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Genetic variants have been found to influence red blood cell (RBC) susceptibility to hemolytic stress and affect transfusion outcomes and the severity of blood diseases. Males have a higher susceptibility to hemolysis than females, but little is known about the genetic mechanism contributing to the difference. Results To investigate the sex differences in RBC susceptibility to hemolysis, we conducted a sex-stratified genome-wide association study and a genome-wide gene-by-sex interaction scan in a multi-ethnic dataset with 12,231 blood donors who have in vitro osmotic hemolysis measurements during routine blood storage. The estimated SNP-based heritability for osmotic hemolysis was found to be significantly higher in males than in females (0.46 vs. 0.41). We identified SNPs associated with sex-specific susceptibility to osmotic hemolysis in five loci (SPTA1, KCNA6, SLC4A1, SUMO1P1, and PAX8) that impact RBC function and hemolysis. Conclusion Our study established a best practice to identify sex-specific genetic modifiers for sexually dimorphic traits in datasets with mixed ancestries, providing evidence of different genetic regulations of RBC susceptibility to hemolysis between sexes. These and other variants may help explain observed sex differences in the severity of hemolytic diseases, such as sickle cell and malaria, as well as the viability of red cell storage and recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08461-4.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, Durham, NC, USA.
| | | | - Alan E Mast
- Versiti Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Darrell J Triulzi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mark T Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, UCSF, San Francisco, CA, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, CO, USA.,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Grier P Page
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, Durham, NC, USA.,Division of Biostatistics and Epidemiology, RTI International, GA, Atlanta, USA
| |
Collapse
|
23
|
Roubinian NH, Reese SE, Qiao H, Plimier C, Fang F, Page GP, Cable RG, Custer B, Gladwin MT, Goel R, Harris B, Hendrickson JE, Kanias T, Kleinman S, Mast AE, Sloan SR, Spencer BR, Spitalnik SL, Busch MP, Hod EA, on behalf of the National Heart Lung and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study IV Pediatrics (REDS-IV-P). Donor genetic and nongenetic factors affecting red blood cell transfusion effectiveness. JCI Insight 2022; 7:e152598. [PMID: 34793330 PMCID: PMC8765041 DOI: 10.1172/jci.insight.152598] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDRBC transfusion effectiveness varies due to donor, component, and recipient factors. Prior studies identified characteristics associated with variation in hemoglobin increments following transfusion. We extended these observations, examining donor genetic and nongenetic factors affecting transfusion effectiveness.METHODSThis is a multicenter retrospective study of 46,705 patients and 102,043 evaluable RBC transfusions from 2013 to 2016 across 12 hospitals. Transfusion effectiveness was defined as hemoglobin, bilirubin, or creatinine increments following single RBC unit transfusion. Models incorporated a subset of donors with data on single nucleotide polymorphisms associated with osmotic and oxidative hemolysis in vitro. Mixed modeling accounting for repeated transfusion episodes identified predictors of transfusion effectiveness.RESULTSBlood donor (sex, Rh status, fingerstick hemoglobin, smoking), component (storage duration, γ irradiation, leukoreduction, apheresis collection, storage solution), and recipient (sex, BMI, race and ethnicity, age) characteristics were associated with hemoglobin and bilirubin, but not creatinine, increments following RBC transfusions. Increased storage duration was associated with increased bilirubin and decreased hemoglobin increments, suggestive of in vivo hemolysis following transfusion. Donor G6PD deficiency and polymorphisms in SEC14L4, HBA2, and MYO9B genes were associated with decreased hemoglobin increments. Donor G6PD deficiency and polymorphisms in SEC14L4 were associated with increased transfusion requirements in the subsequent 48 hours.CONCLUSIONDonor genetic and other factors, such as RBC storage duration, affect transfusion effectiveness as defined by decreased hemoglobin or increased bilirubin increments. Addressing these factors will provide a precision medicine approach to improve patient outcomes, particularly for chronically transfused RBC recipients, who would most benefit from more effective transfusion products.FUNDINGFunding was provided by HHSN 75N92019D00032, HHSN 75N92019D00034, 75N92019D00035, HHSN 75N92019D00036, and HHSN 75N92019D00037; R01HL126130; and the National Institute of Child Health and Human Development (NICHD).
Collapse
Affiliation(s)
- Nareg H. Roubinian
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | | | | | - Colleen Plimier
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Fang Fang
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Grier P. Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | | | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchika Goel
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Steve Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, British Colombia, Canada
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Steven R. Sloan
- Department of Pathology, Children’s Hospital Boston, Boston, Massachusetts, USA
| | | | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
24
|
Liu H, Burns RT, Spencer BR, Page GP, Mast AE, NHLBI Recipient Epidemiology Donor Evaluation Study (REDS)-III. Demographic, clinical, and biochemical predictors of pica in a large cohort of blood donors. Transfusion 2021; 61:2090-2098. [PMID: 33913181 PMCID: PMC8571648 DOI: 10.1111/trf.16409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pica is characterized as repeatedly eating or chewing a non-nutritious substance including, but not limited to ice, clay and dirt, starch, raw pasta, chalk, coal, paint, or paper. Pica symptoms can be intense and addiction-like and disrupt quality of life. It is strongly linked to iron deficiency. Since substantial iron loss occurs during blood donation, blood donors may be susceptible to development of pica behaviors. METHODS We investigated demographic, clinical, hematological, and biochemical factors associated with pica using univariable and multivariable logistic regression analysis in a cohort of 11,418 racially diverse blood donors. Pica was defined by questionnaire responses as consuming at least 8 oz of ice daily and/or consumption of non-ice substances regardless of the amount and frequency. RESULTS Pica was present in 2.2% of the donors. The sensitivity and specificity of pica in iron-deficient donors were 36% and 82%, respectively. Lower ferritin (p = .001), non-Asian race (p < .001), higher red cell distribution width (p < .001), younger age, and restless legs syndrome (p = .008) were independently associated with pica. Female sex is associated with iron deficiency but was not an independent predictor of pica suggesting that iron deficient males and females were equally susceptible to the development of pica behaviors. Donors with normal ferritin levels also reported pica, reinforcing the role of non-iron related factors in its presentation. CONCLUSIONS We have identified demographic, clinical, and biochemical predictors of pica that help identify those most at risk for developing pica behaviors, and thereby assist in its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hefei Liu
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Robert T. Burns
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Bryan R. Spencer
- Department of Scientific Affairs, American Red Cross, Dedham, Massachusetts, USA
| | - Grier P. Page
- BioStatEpi, RTI International, Atlanta, Georgia, USA
| | - Alan E. Mast
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
25
|
Page GP, Kanias T, Guo YJ, Lanteri MC, Zhang X, Mast AE, Cable RG, Spencer BR, Kiss JE, Fang F, Endres-Dighe SM, Brambilla D, Nouraie M, Gordeuk VR, Kleinman S, Busch MP, Gladwin MT. Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage. J Clin Invest 2021; 131:146077. [PMID: 34014839 DOI: 10.1172/jci146077] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
BackgroundThe evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease.MethodsWe sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis.ResultsGWAS revealed 27 significant loci (P < 5 × 10-8), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4.ConclusionsMany of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria.
Collapse
Affiliation(s)
- Grier P Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Yuelong J Guo
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Marion C Lanteri
- Vitalant Research Institute and the Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Joseph E Kiss
- Vitalant Northeast Division, Pittsburgh, Pennsylvania, USA
| | - Fang Fang
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Stacy M Endres-Dighe
- Division of Biostatistics and Epidemiology, RTI International, Rockville, Maryland, USA
| | - Donald Brambilla
- Division of Biostatistics and Epidemiology, RTI International, Rockville, Maryland, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute and the Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
26
|
D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, Stone M, Busch MP, Zimring JC. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106:1290-1302. [PMID: 32241843 PMCID: PMC8094095 DOI: 10.3324/haematol.2020.246603] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.
Collapse
Affiliation(s)
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | | | - Julie A Reisz
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mark T Gladwin
- University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
27
|
Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, O'Brien KO. Ethnic Differences in Iron Status. Adv Nutr 2021; 12:1838-1853. [PMID: 34009254 PMCID: PMC8483971 DOI: 10.1093/advances/nmab035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases, including cirrhosis, diabetes, and heart failure. To date, only ∼30% of the interindividual variability in iron absorption can be captured by iron status biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans, African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders.
Collapse
Affiliation(s)
- Wanhui Kang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Alexa Barad
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
28
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|
29
|
Earley EJ, Didriksen M, Spencer BR, Kiss JE, Erikstrup C, Pedersen OB, Sørensen E, Burgdorf KS, Kleinman SH, Mast AE, Busch MP, Ullum H, Page GP. Association of proton pump inhibitor and histamine H2-receptor antagonists with restless legs syndrome. Sleep 2021; 44:5942955. [PMID: 33119070 PMCID: PMC8033459 DOI: 10.1093/sleep/zsaa220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Indexed: 01/15/2023] Open
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder, which can disrupt sleep and is thought to be caused in part by low cellular iron stores. Proton pump inhibitors (PPI) and histamine H2-receptor antagonists (H2A) are among the most commonly used drugs worldwide and show evidence of causing iron deficiency. We conducted a case/non-case observational study of blood donors in the United States (N = 13,403; REDS-III) and Denmark (N = 50,323; Danish Blood Donor Study, DBDS), both of which had complete blood count measures and a completed RLS assessment via the Cambridge–Hopkins RLS questionnaire. After adjusting for age, sex, race, BMI, blood donation frequency, smoking, hormone use, and iron supplement use, PPI/H2A use was associated with RLS (odds ratio [OR] = 1.41; 95% confidence interval [CI], 1.13–1.76; p = 0.002) in REDS-III for both PPI (OR = 1.43; CI, 1.03–1.95; p = 0.03) and H2A (OR = 1.56; CI, 1.10–2.16; p = 0.01). DBDS exhibited a similar association with PPIs/H2As (OR = 1.29; CI, 1.20–1.40; p < 0.001), and for PPIs alone (OR = 1.27; CI, 1.17–1.38; p < 0.001), but not H2As alone (OR = 1.18; CI, 0.92–1.53; p = 0.2). We found no evidence of blood iron stores mediating this association. The association of PPI, and possibly H2A, consumption with RLS independent of blood iron status and other factors which contribute to RLS risk suggest the need to re-evaluate use of PPI/H2A in populations at particular risk for RLS.
Collapse
Affiliation(s)
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bryan R Spencer
- Department of Laboratory Medicine, Yale University, New Haven, CT.,American Red Cross Scientific Affairs, Boston, MA
| | - Joseph E Kiss
- Department of Medicine, University of Pittsburgh, PA.,Vitalant Northeast Division, Pittsburgh, PA
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steven H Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alan E Mast
- Blood Research Institute, Versiti, Milwaukee, WI.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Michael P Busch
- Department of Laboratory Medicine, University of California San Francisco, CA.,Vitalant Research Institute, San Francisco, CA
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
30
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
31
|
Nemkov T, Stefanoni D, Bordbar A, Issaian A, Palsson BO, Dumont LJ, Hay A, Song A, Xia Y, Redzic JS, Eisenmesser EZ, Zimring JC, Kleinman S, Hansen KC, Busch MP, D'Alessandro A. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight 2021; 6:146175. [PMID: 33351786 PMCID: PMC7934844 DOI: 10.1172/jci.insight.146175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine — though rarely detected in the blood donor population — has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could — through mechanisms involving sphingosine 1–phosphate–dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin — improve erythrocyte metabolism and storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Ariel Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Anren Song
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Xia
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | |
Collapse
|
32
|
Hazegh K, Fang F, Bravo MD, Tran JQ, Muench MO, Jackman RP, Roubinian N, Bertolone L, D’Alessandro A, Dumont L, Page GP, Kanias T. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress. Transfusion 2021; 61:435-448. [PMID: 33146433 PMCID: PMC7902376 DOI: 10.1111/trf.16168] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity is a global pandemic characterized by multiple comorbidities, including cardiovascular and metabolic diseases. The aim of this study was to define the associations between blood donor body mass index (BMI) and RBC measurements of metabolic stress and hemolysis. STUDY DESIGN AND METHODS The associations between donor BMI (<25 kg/m2 , normal weight; 25-29.9 kg/m2 , overweight; and ≥30 kg/m2 , obese) and hemolysis (storage, osmotic, and oxidative; n = 18 donors) or posttransfusion recovery (n = 14 donors) in immunodeficient mice were determined in stored leukocyte-reduced RBC units. Further evaluations were conducted using the National Heart, Lung, and Blood Institute RBC-Omics blood donor databases of hemolysis (n = 13 317) and metabolomics (n = 203). RESULTS Evaluations in 18 donors revealed that BMI was significantly (P < 0.05) and positively associated with storage and osmotic hemolysis. A BMI of 30 kg/m2 or greater was also associated with lower posttransfusion recovery in mice 10 minutes after transfusion (P = 0.026). Multivariable linear regression analyses in RBC-Omics revealed that BMI was a significant modifier for all hemolysis measurements, explaining 4.5%, 4.2%, and 0.2% of the variance in osmotic, oxidative, and storage hemolysis, respectively. In this cohort, obesity was positively associated (P < 0.001) with plasma ferritin (inflammation marker). Metabolomic analyses on RBCs from obese donors (44.1 ± 5.1 kg/m2 ) had altered membrane lipid composition, dysregulation of antioxidant pathways (eg, increased oxidized lipids, methionine sulfoxide, and xanthine), and dysregulation of nitric oxide metabolism, as compared to RBCs from nonobese (20.5 ± 1.0 kg/m2 ) donors. CONCLUSIONS Obesity is associated with significant changes in RBC metabolism and increased susceptibility to hemolysis under routine storage of RBC units. The impact on transfusion efficacy warrants further evaluation.
Collapse
Affiliation(s)
| | - Fang Fang
- RTI International, Research Triangle Park, North Carolina
| | | | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
- Kaiser Permanente Northern California, Division of Research, Oakland, California
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D’Alessandro
- Vitalant Research Institute, Denver, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine Division of Hematology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Larry Dumont
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
33
|
Didriksen M, Nawaz MS, Dowsett J, Bell S, Erikstrup C, Pedersen OB, Sørensen E, Jennum PJ, Burgdorf KS, Burchell B, Butterworth AS, Soranzo N, Rye DB, Trotti LM, Saini P, Stefansdottir L, Magnusson SH, Thorleifsson G, Sigmundsson T, Sigurdsson AP, Van Den Hurk K, Quee F, Tanck MWT, Ouwehand WH, Roberts DJ, Earley EJ, Busch MP, Mast AE, Page GP, Danesh J, Di Angelantonio E, Stefansson H, Ullum H, Stefansson K. Large genome-wide association study identifies three novel risk variants for restless legs syndrome. Commun Biol 2020; 3:703. [PMID: 33239738 PMCID: PMC7689502 DOI: 10.1038/s42003-020-01430-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023] Open
Abstract
Restless legs syndrome (RLS) is a common neurological sensorimotor disorder often described as an unpleasant sensation associated with an urge to move the legs. Here we report findings from a meta-analysis of genome-wide association studies of RLS including 480,982 Caucasians (cases = 10,257) and a follow up sample of 24,977 (cases = 6,651). We confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three novel RLS associations; rs112716420-G (OR = 1.25, P = 1.5 × 10-18), rs10068599-T (OR = 1.09, P = 6.9 × 10-10) and rs10769894-A (OR = 0.90, P = 9.4 × 10-14). At four of the 22 RLS loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk score for RLS we extended prior epidemiological findings implicating obesity, smoking and high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of seeking better treatments, more genetics studies yielding deeper insights into the disease biology are needed.
Collapse
Affiliation(s)
- Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
- deCODE Genetics, 101, Reykjavik, Iceland
| | - Muhammad Sulaman Nawaz
- deCODE Genetics, 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Steven Bell
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Nastved Sygehus, Nastved, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Poul J Jennum
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Brendan Burchell
- Faculty of Human, Social and Political Sciences, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Adam S Butterworth
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Nicole Soranzo
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - David B Rye
- Department of Neurology and Program in Sleep, Emory University, Atlanta, GA, USA
| | - Lynn Marie Trotti
- Department of Neurology and Program in Sleep, Emory University, Atlanta, GA, USA
| | - Prabhjyot Saini
- Department of Neurology and Program in Sleep, Emory University, Atlanta, GA, USA
| | | | | | | | - Thordur Sigmundsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Psychiatry, Telemark Hospital Trust, Skien, Norway
| | | | - Katja Van Den Hurk
- Department of Donor Studies, Sanquin Research, 1066 CX, Amsterdam, The Netherlands
| | - Franke Quee
- Department of Donor Studies, Sanquin Research, 1066 CX, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem H Ouwehand
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - David J Roberts
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- National Health Service (NHS) Blood and Transplant and Radcliffe Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
- BRC Haematology Theme and Department of Haematology, Churchill Hospital, Oxford, UK
| | - Eric J Earley
- RTI International, Research Triangle Park, Durham, NC, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
| | - Alan E Mast
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | | | - John Danesh
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Emanuele Di Angelantonio
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Roubinian NH, Kanias T. Blood donor component-recipient linkages: is there fire where there is smoke? Transfusion 2020; 59:2485-2488. [PMID: 31374151 DOI: 10.1111/trf.15450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California.,Vitalant Research Institute, San Francisco, California.,University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
35
|
D'Alessandro A, Fu X, Reisz JA, Kanias T, Page GP, Stone M, Kleinman S, Zimring JC, Busch M. Stored RBC metabolism as a function of caffeine levels. Transfusion 2020; 60:1197-1211. [PMID: 32394461 DOI: 10.1111/trf.15813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells. STUDY DESIGN AND METHODS We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days. RESULTS Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway. CONCLUSION Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
36
|
Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, Dumont L, Roubinian N, Stone M, Kleinman S, Busch M, Zimring JC, D'Alessandro A. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion 2020; 60:1160-1174. [PMID: 32385854 DOI: 10.1111/trf.15812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado
| | | |
Collapse
|
37
|
D'Alessandro A, Fu X, Reisz JA, Stone M, Kleinman S, Zimring JC, Busch M. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors. Transfusion 2020; 60:1183-1196. [PMID: 32385922 DOI: 10.1111/trf.15811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cell (RBC) storage in the blood bank is associated with the progressive accumulation of oxidant stress. While the mature erythrocyte is well equipped to cope with such stress, recreative habits like alcohol consumption may further exacerbate the basal level of oxidant stress and contribute to the progress of the storage lesion. STUDY DESIGN AND METHODS RBC levels of ethyl glucuronide, a marker of alcohol consumption, were measured via ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry. Analyses were performed on 599 samples from the recalled donor population at Storage Days 10, 23, and 42 (n = 250), as part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study. This cohort consisted of the 5th and 95th percentile of donors with extreme hemolytic propensity out of the original cohort of 13,403 subjects enrolled in the REDS-III RBC Omics study. Ehtyl glucuronide levels were thus correlated to global metabolomics and lipidomics analyses and RBC hemolytic propensity. RESULTS Ethyl glucuronide levels were positively associated with oxidant stress markers, including glutathione consumption and turnover, methionine oxidation, S-adenosylhomocysteine accumulation, purine oxidation, and transamination markers. Decreases in glycolysis and energy metabolism, the pentose phosphate pathway and ascorbate system were observed in those subjects with the highest levels of ethyl glucuronide, though hemolysis values were comparable between groups. CONCLUSION Though preliminary, this study is suggestive that markers of alcohol consumption are associated with increases in oxidant stress and decreases in energy metabolism with no significant impact on hemolytic parameters in stored RBCs from healthy donor volunteers.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vita lant Research Institute, Denver, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
38
|
Bertolone L, Roy MK, Hay AM, Morrison EJ, Stefanoni D, Fu X, Kanias T, Kleinman S, Dumont LJ, Stone M, Nemkov T, Busch MP, Zimring JC, D'Alessandro A. Impact of taurine on red blood cell metabolism and implications for blood storage. Transfusion 2020; 60:1212-1226. [PMID: 32339326 DOI: 10.1111/trf.15810] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress. STUDY DESIGN AND METHODS Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink. Reductionistic studies were also performed by incubating human RBCs with taurine ex vivo (unlabeled or 13 C15 N-labeled) at increasing doses (0, 100, 500, and 1000 μmol/L) at 37°C for up to 16 hours, with and without oxidant stress challenge with hydrogen peroxide (0.1% or 0.5%). Finally, we stored human and murine RBCs under blood bank conditions in additives supplemented with 500 μmol/L taurine, before metabolomics and posttransfusion recovery studies. RESULTS Consumption of energy drinks increased plasma and RBC levels of taurine, which was paralleled by increases in glycolysis and glutathione (GSH) metabolism in the RBC. These observations were recapitulated ex vivo after incubation with taurine and hydrogen peroxide. Taurine levels in the RBCs from the REDS-III RBC-Omics donor biobank were directly proportional to the total levels of GSH and glutathionylated metabolites and inversely correlated to oxidative hemolysis measurements. Storage of human RBCs in the presence of taurine improved energy and redox markers of storage quality and increased posttransfusion recoveries in FVB mice. CONCLUSION Taurine modulates RBC antioxidant metabolism in vivo and ex vivo, an observation of potential relevance to transfusion medicine.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Ariel M Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| |
Collapse
|
39
|
Mast AE, Langer JC, Guo Y, Bialkowski W, Spencer BR, Lee TH, Kiss J, Cable RG, Brambilla D, Busch MP, Page GP. Genetic and behavioral modification of hemoglobin and iron status among first-time and high-intensity blood donors. Transfusion 2020; 60:747-758. [PMID: 32163187 DOI: 10.1111/trf.15743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Some people rapidly develop iron deficiency anemia following blood donation, while others can repeatedly donate without becoming anemic. METHODS Two cohorts of blood donors were studied. Participants (775) selected from a 2-year longitudinal study were classified into six analysis groups based on sex, donation intensity, and low hemoglobin deferral. Associations with iron supplement use, cigarette smoking, and four genetic variants of iron metabolism were examined at enrollment and with longitudinal regression models. An unbiased assessment of genetic variability and ability to repeatedly donate blood without experiencing low hemoglobin deferral was conducted on participants (13,403) in a cross-sectional study who were examined by genome wide association (GWA). RESULTS Behaviors and genetic variants were associated with differences in hemoglobin and ferritin change following repeated donation. At least weekly iron supplement use was associated with improved status in first-time donors, while daily use was associated with improved status in high-intensity donors. Cigarette smoking was associated with 0.5 g/dL increased hemoglobin in high-intensity donors. A736V in TMPRSS6 was associated with a rapid drop in hemoglobin and ferritin in first-time females following repeated donation. Conversely, the protective TMPRSS6 genotype was not enriched among high-intensity donors. H63D in HFE was associated with increased hemoglobin in female high-intensity donors. However, no differences in genotype between first-time and high-intensity donors were found in GWA analyses. CONCLUSION Behavioral and genetic modifiers contributed to first-time donor hemoglobin and iron status, while iron supplement use was more important than underlying genetics in high-intensity donors.
Collapse
Affiliation(s)
- Alan E Mast
- Blood Research Institute Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Yuelong Guo
- RTI International, Durham, North Carolina, USA
| | | | - Bryan R Spencer
- American Red Cross Scientific Affairs, Dedham, Massachusetts, USA
| | - Tzong-Hae Lee
- Vitalant Research Institute, San Francisco, California, USA
| | - Joseph Kiss
- Vitalant Northeast Division, Pittsburgh, Pennsylvania, USA
| | - Ritchard G Cable
- American Red Cross Scientific Affairs, Farmington, Connecticut, USA
| | | | - Michael P Busch
- American Red Cross Scientific Affairs, Dedham, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Sex hormone intake in female blood donors: impact on haemolysis during cold storage and regulation of erythrocyte calcium influx by progesterone. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 17:263-273. [PMID: 31385799 DOI: 10.2450/2019.0053-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sex hormone intake in blood donors may affect the quality of red blood cell (RBC) products via modulation of RBC function and predisposition to haemolysis during cold storage. The aims of this study were to evaluate the association between female sex hormone intake and RBC storage outcomes, and to examine possible mechanisms by which sex hormones interact with RBCs. MATERIALS AND METHODS Sex hormone intake by race/ethnicity and menopausal status, and association analyses between hormone intake and donor scores of storage, osmotic or oxidative haemolysis, were evaluated in 6,636 female donors who participated in the National Heart, Lung and Blood Institute's RBC-Omics study. A calcium fluorophore, Fluo-3AM, was used to define RBC calcium influx in response to exogenous sex hormones or transient receptor potential cation (TRPC) channel drugs. RESULTS Sex hormone intake was more prevalent in premenopausal women from all racial groups (18-31%) than in postmenopausal women (4-8%). Hormone intake was significantly (p<0.0001) associated with reduced storage haemolysis in all females, reduced osmotic haemolysis in postmenopausal donors (23.1±10.2% vs 26.8±12.0% in controls, p<0.001), and enhanced susceptibility to oxidative haemolysis in premenopausal women. In vitro, supraphysiological levels of progesterone (10 μmol/L), but not 17β-oestradiol or testosterone, inhibited calcium influx into RBC and was associated with lower spontaneous haemolysis after 30 days of cold storage (0.95±0.18% vs 1.85±0.35% in controls, p<0.0001) or in response to a TRPC6 activator. CONCLUSIONS Sex hormone intake in female donors is associated with changes in RBC predisposition to haemolysis. Menstrual status and the type of hormone preparation may contribute to differences in haemolytic responses of female RBCs to osmotic and oxidative stress. Progesterone modulates calcium influx into RBC via a mechanism that may involve interactions with membrane TRPC6 channels.
Collapse
|
41
|
Spencer BR, Guo Y, Cable RG, Kiss JE, Busch MP, Page GP, Endres-Dighe SM, Kleinman S, Glynn SA, Mast AE. Iron status and risk factors for iron depletion in a racially/ethnically diverse blood donor population. Transfusion 2019; 59:3146-3156. [PMID: 31318071 DOI: 10.1111/trf.15448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The optimal approach for reducing iron depletion (ID) in blood donors may vary depending on biologic or behavioral differences across donors. STUDY DESIGN AND METHODS More than 12,600 successful whole blood donors were enrolled from four US blood centers for ferritin testing. The study population was enriched for racial/ethnic minorities (1605 African American, 1616 Asian, 1023 Hispanic). Subjects completed questionnaires on ID risk factors. Logistic regression identified predictors of absent iron stores (AIS; ferritin <12 ng/mL) and low ferritin (LF; ferritin <26 ng/mL). RESULTS Across all subjects, 19% had AIS and 42% had LF, with a sharp increase in risk observed with increasing donation intensity and among women a large decrease in risk in those more than 50 years old. When other factors were controlled for, African American and Asian donors showed 20% to 25% decreased risk for AIS compared to non-Hispanic Caucasian donors, while Hispanic donors had 25% higher risk. Daily iron supplementation reduced risk for LF and AIS by 30% to 40%, respectively, while the benefit from less frequent use was lower (7%-19% protection). Regular antacid use was associated with at least 20% increment to risk. Use of oral contraceptives or estrogen in females reduced risk by 16% to 22%, while males who reported supplemental testosterone use had a 50% to 125% greater risk for LF and AIS. CONCLUSIONS This study confirms high prevalence of LF and AIS in US donors and the principal risk factors of age, sex, and donation frequency. Additional demographic and behavioral risk factors of secondary importance might allow for refinement of ID mitigation strategies.
Collapse
Affiliation(s)
- Bryan R Spencer
- American Red Cross Scientific Affairs, Dedham, Massachusetts
| | | | | | - Joseph E Kiss
- Vitalant Northeast Division (formerly The Institute for Transfusion Medicine), Pittsburgh, Pennsylvania
| | | | | | | | - Steven Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Simone A Glynn
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Alan E Mast
- Blood Research Institute, Versiti (formerly, Blood Center of Wisconsin), Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
42
|
Kanias T, Busch MP. Diversity in a blood bag: application of omics technologies to inform precision Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:258-262. [PMID: 31184580 PMCID: PMC6683866 DOI: 10.2450/2019.0056-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Kanias
- Vitalant Research Institute, Denver, CO, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| |
Collapse
|
43
|
Personalised Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:255-257. [PMID: 31385798 PMCID: PMC6683867 DOI: 10.2450/2018.0142-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Cable RG, Spencer BR. Iron supplementation by blood donors: demographics, patterns of use, and motivation. Transfusion 2019; 59:2857-2864. [DOI: 10.1111/trf.15407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
|
45
|
Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:281-288. [PMID: 31184577 DOI: 10.2450/2019.0072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Red blood cells (RBCs) have been historically regarded as a critical model to investigate cellular and oxidant stress biology. First of all, they are constantly exposed to oxidant stress, as their main function is to transport and deliver oxygen to tissues. Second, they are devoid of de novo protein synthesis capacity, which prevents RBCs from replacing irreversibly oxidised proteins with newly synthesised ones. As such, RBCs have evolved to (i) protect themselves from oxidant stress, in order to prevent oxidant damage from reactive species; (ii) repair oxidatively damaged proteins, through mechanisms that involve glutathione and one-carbon metabolism; (iii) destroy irreversibly oxidised proteins through proteasomal or protease-dependent degradation; and (iv) sacrifice membrane portions through mechanism of vesiculation. In this brief review we will summarize these processes and their relevance to RBC redox biology (within the context of blood storage), with a focus on how polymorphisms in RBC antioxidant responses could contribute to explaining the heterogeneity in the progression and severity of the RBC storage lesion that can be observed across the healthy donor population.
Collapse
|
46
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
47
|
Spitalnik SL, Devine DV. Translating red cell “omics” into new perspectives in transfusion medicine: mining the gems in the data mountains. Transfusion 2019; 59:2-5. [DOI: 10.1111/trf.15066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Dana V. Devine
- Canadian Blood Services, Centre for Innovation Canada
- The Centre for Blood ResearchUniversity of British Columbia Vancouver Canada
| |
Collapse
|
48
|
Guo Y, Busch MP, Seielstad M, Endres-Dighe S, Westhoff CM, Keating B, Hoppe C, Bordbar A, Custer B, Butterworth AS, Kanias T, Mast AE, Kleinman S, Lu Y, Page GP. Development and evaluation of a transfusion medicine genome wide genotyping array. Transfusion 2019; 59:101-111. [PMID: 30456907 PMCID: PMC7032526 DOI: 10.1111/trf.15012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many aspects of transfusion medicine are affected by genetics. Current single-nucleotide polymorphism (SNP) arrays are limited in the number of targets that can be interrogated and cannot detect all variation of interest. We designed a transfusion medicine array (TM-Array) for study of both common and rare transfusion-relevant variations in genetically diverse donor and recipient populations. STUDY DESIGN AND METHODS The array was designed by conducting extensive bioinformatics mining and consulting experts to identify genes and genetic variation related to a wide range of transfusion medicine clinical relevant and research-related topics. Copy number polymorphisms were added in the alpha globin, beta globin, and Rh gene clusters. RESULTS The final array contains approximately 879,000 SNP and copy number polymorphism markers. Over 99% of SNPs were called reliably. Technical replication showed the array to be robust and reproducible, with an error rate less than 0.03%. The array also had a very low Mendelian error rate (average parent-child trio accuracy of 0.9997). Blood group results were in concordance with serology testing results, and the array accurately identifies rare variants (minor allele frequency of 0.5%). The array achieved high genome-wide imputation coverage for African-American (97.5%), Hispanic (96.1%), East Asian (94.6%), and white (96.1%) genomes at a minor allele frequency of 5%. CONCLUSIONS A custom array for transfusion medicine research has been designed and evaluated. It gives wide coverage and accurate identification of rare SNPs in diverse populations. The TM-Array will be useful for future genetic studies in the diverse fields of transfusion medicine research.
Collapse
Affiliation(s)
- Yuelong Guo
- RTI International, Research Triangle Park, North Carolina
| | - Michael P Busch
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Mark Seielstad
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | | | | | - Brendan Keating
- Penn Transplant Institute, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn Hoppe
- UCSF Benioff Children's Hospital Oakland, Oakland, California
| | | | - Brian Custer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Tamir Kanias
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Yontao Lu
- Affymetrix Incorporated, Santa Clara, California
| | | |
Collapse
|
49
|
Stone M, Keating SM, Kanias T, Lanteri MC, Lebedeva M, Sinchar D, Hampton D, Jakub A, Rychka V, Brewer G, Bakkour S, Gefter N, Murcia K, Page GP, Endres-Dighe S, Bialkowski W, Fu X, Zimring J, Raife TJ, Kleinman S, Gladwin MT, Busch MP. Piloting and implementation of quality assessment and quality control procedures in RBC-Omics: a large multi-center study of red blood cell hemolysis during storage. Transfusion 2018; 59:57-66. [PMID: 30566231 DOI: 10.1111/trf.15099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The major aims of the RBC-Omics study were to evaluate the genomic and metabolomic determinants of spontaneous and stress-induced hemolysis during RBC storage. This study was unique in scale and design to allow evaluation of RBC donations from a sufficient number of donors across the spectrum of race, ethnicity, sex, and donation intensity. Study procedures were carefully piloted, optimized, and controlled to enable high-quality data collection. METHODS The enrollment goal of 14,000 RBC donors across four centers, with characterization of RBC hemolysis across two testing laboratories, required rigorous piloting and optimization and establishment of a quality assurance (QA) and quality control (QC) program. Optimization of WBC elution from leukoreduction (LR) filters, development and validation of small-volume transfer bags, impact of manufacturing and sample-handling procedures on hemolysis parameters, and testing consistency across laboratories and technicians and over time were part of this quality assurance/quality control program. RESULTS LR filter elution procedures were optimized for obtaining DNA for analysis. Significant differences between standard and pediatric storage bags led to use of an alternative LR-RBC transfer bag. The impact of sample preparation and freezing methods on metabolomics analyses was evaluated. Proficiency testing monitored and documented testing consistency across laboratories and technicians. CONCLUSION Piloting and optimization, and establishment of a robust quality assurance/quality control program documented process consistency throughout the study and was essential in executing this large-scale multicenter study. This program supports the validity of the RBC-Omics study results and a sample repository that can be used in future studies.
Collapse
Affiliation(s)
- Mars Stone
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Sheila M Keating
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marion C Lanteri
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Mila Lebedeva
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Derek Sinchar
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dylan Hampton
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Adam Jakub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Val Rychka
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Greg Brewer
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sonia Bakkour
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Nelly Gefter
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Karla Murcia
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | | | | | - Walter Bialkowski
- Blood Research and Medical Sciences Institutes, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyun Fu
- Bloodworks NW Research Institute; and the Department of Laboratory Medicine and the Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - Jim Zimring
- Bloodworks NW Research Institute; and the Department of Laboratory Medicine and the Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - Thomas J Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steve Kleinman
- Clinical Pathology, University of British Columbia, School of Medicine, Vancouver, British Columbia, Canada
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Busch
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | | |
Collapse
|
50
|
Kanias T, Stone M, Page GP, Guo Y, Endres-Dighe SM, Lanteri MC, Spencer BR, Cable RG, Triulzi DJ, Kiss JE, Murphy EL, Kleinman S, Gladwin MT, Busch MP, Mast AE. Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis. Transfusion 2018; 59:67-78. [PMID: 30474858 DOI: 10.1111/trf.14998] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Frequent whole blood donations increase the prevalence of iron depletion in blood donors, which may subsequently interfere with normal erythropoiesis. The purpose of this study was to evaluate the associations between donation frequency and red blood cell (RBC) storage stability in a racially/ethnically diverse population of blood donors. STUDY DESIGN Leukoreduced RBC concentrate-derived samples from 13,403 donors were stored for 39 to 42 days (1-6°C) and then evaluated for storage, osmotic, and oxidative hemolysis. Iron status was evaluated by plasma ferritin measurement and self-reported intake of iron supplements. Donation history in the prior 2 years was obtained for each subject. RESULTS Frequent blood donors enrolled in this study were likely to be white, male, and of older age (56.1 ± 5.0 years). Prior donation intensity was negatively associated with oxidative hemolysis (p < 0.0001) in multivariate analyses correcting for age, sex, and race/ethnicity. Increased plasma ferritin concentration was associated with increased RBC susceptibility to each of the three measures of hemolysis (p < 0.0001 for all), whereas self-reported iron intake was associated with reduced susceptibility to osmotic and oxidative hemolysis (p < 0.0001 for both). CONCLUSIONS Frequent blood donations may alter the quality of blood components by modulating RBC predisposition to hemolysis. RBCs collected from frequent donors with low ferritin have altered susceptibility to hemolysis. Thus, frequent donation and associated iron loss may alter the quality of stored RBC components collected from iron-deficient donors. Further investigation is necessary to assess posttransfusion safety and efficacy in patients receiving these RBC products.
Collapse
Affiliation(s)
- Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | | | - Yuelong Guo
- RTI International, Research Triangle Park, North Carolina
| | | | - Marion C Lanteri
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | | | | | - Darrell J Triulzi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | - Joseph E Kiss
- The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | - Edward L Murphy
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|