1
|
Briante R, Zhai Q, Mohanty S, Zhang P, O’Connor A, Misker H, Wang W, Tan C, Abuhay M, Morgan J, Theolis R, Ponath P, Arathoon R. Successful targeting of multidrug-resistant tumors with bispecific antibodies. MAbs 2025; 17:2492238. [PMID: 40248904 PMCID: PMC12013451 DOI: 10.1080/19420862.2025.2492238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Multidrug resistance (MDR) hinders efficacious cancer chemotherapy. Overexpression of the P-glycoprotein (P-gp) efflux pump (EP) on cancer cells is a primary cause of MDR since it expels numerous anticancer drugs. Small molecule intracellular P-gp antagonists have been investigated clinically to redress MDR but have failed primarily due to adverse effects on P-gp in normal tissue. We used a new approach to counteract P-gp with bispecific antibodies (BsAbs) that simultaneously bound P-gp and CD47 in cis on MDR cells but not normal tissue. Affinities of the individual arms of the BsAbs were low enough to minimize normal tissue binding, but, when the two targets were co-located on MDR cancer cells, both arms of the BsAb engaged with effective avidity. Proof-of-concept was shown in three different MDR xenograft tumor models with a non-humanized chimeric BsAb (targeting P-gp and CD47) that potently restored tumor sensitivity to paclitaxel. Fully humanized variants were successfully developed and characterized. Significant anti-tumor efficacy was observed with the BsAbs both when combined with paclitaxel and as single agents in the absence of paclitaxel. Treatment of MDR cancers with BsAbs using this novel approach has several distinct advantages over prior efforts with small molecule antagonists, including 1) invoking a direct immune attack on the tumors, 2) multimodal mechanisms of action, 3) tumor-specific targeting (with reduced toxicity to normal tissue), and 4) broad applicability as single agents and compatibility with other therapeutics.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Animals
- Drug Resistance, Neoplasm/drug effects
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- CD47 Antigen/immunology
- Paclitaxel/pharmacology
- Neoplasms/drug therapy
- Neoplasms/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Female
Collapse
Affiliation(s)
- Raffaella Briante
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Qianting Zhai
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | | | - Pingping Zhang
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Alissa O’Connor
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Hiwot Misker
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Willie Wang
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Cindy Tan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Mastewal Abuhay
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Jessica Morgan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Richard Theolis
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Paul Ponath
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Robert Arathoon
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| |
Collapse
|
2
|
Reischer A, Leutbecher A, Hiller B, Perini E, White K, Hernández-Cáceres A, Schele A, Tast B, Rohrbacher L, Winter L, Czogalla B, Mahner S, Flaswinkel H, Leonhardt H, Wyder L, Wichmann C, Maenner D, Trillsch F, Kessler M, Hopfner KP, Fenn NC, Subklewe M. Targeted CD47 checkpoint blockade using a mesothelin-directed antibody construct for enhanced solid tumor-specific immunotherapy. Cancer Immunol Immunother 2025; 74:214. [PMID: 40402266 PMCID: PMC12098241 DOI: 10.1007/s00262-025-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/24/2025] [Indexed: 05/23/2025]
Abstract
The immune checkpoint CD47 is highly upregulated in several cancers as an innate immune escape mechanism. CD47 delivers a "don't eat me" signal to its co-receptor signal regulatory protein α (SIRPα), thereby inhibiting phagocytosis. Blocking the CD47-SIRPα axis is a promising immunotherapeutic strategy against cancer. However, early trial data has demonstrated on-target off-leukemia toxicity. In addition, the ubiquitous expression pattern of CD47 might contribute to an antigen sink. In this study, we combined low-affinity CD47 checkpoint blockade and specific tumor targeting in a multivalent and multifunctional antibody construct to prevent CD47-related toxicities. First, we established a local inhibitory checkpoint monoclonal antibody (LicMAb) by fusing two N-terminal extracellular domains of SIRPα to a full-length anti-human mesothelin (MSLN)-IgG1 antibody, a well-described tumor-associated antigen in epithelial ovarian cancer (EOC) and pancreatic ductal adenocarcinoma (PDAC). Next, we evaluated the SIRPα-αMSLN LicMAb for mediating a tumor-restricted immune response as observed by antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Our data validates CD47 and MSLN as highly upregulated targets expressed on various solid cancer entities, particularly EOC. We show tumor-specific binding and CD47 blocking by the SIRPα-αMSLN LicMAb even in the presence of healthy CD47-expressing cells. Furthermore, the LicMAb induces NK-cell-mediated cytotoxicity and improves phagocytosis of EOC and PDAC tumor cells. Moreover, cell death in EOC-derived organoids was specifically LicMAb-driven. Hence, the SIRPα-αMSLN LicMAb combines a tumor-restricted blockade of the CD47-SIRPα axis with a specific antitumor response while preventing on-target off-tumor toxicities. Our data supports the multifunctional SIRPα-αMSLN LicMAb as a promising approach to treating solid tumors.
Collapse
Affiliation(s)
- Anna Reischer
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Björn Hiller
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Enrico Perini
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Kieron White
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | | | - Alexandra Schele
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Benjamin Tast
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Lisa Rohrbacher
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Lis Winter
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Heinrich Flaswinkel
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich, Germany
| | - Lorenza Wyder
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis Maenner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Munich, Germany
| | | | - Nadja C Fenn
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany.
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
| |
Collapse
|
3
|
Huang H, Tong QS, Zhang JY, Miao WM, Yu HH, Wang J, Shen S, Du JZ. Phagocytosis-Activating Nanocomplex Orchestrates Macrophage-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500982. [PMID: 40289887 DOI: 10.1002/adma.202500982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The phagocytosis of macrophages to tumor cells represents an alluring strategy for cancer immunotherapy; however, its effectiveness is largely hindered by the detrimental upregulation of anti-phagocytic signals and insufficient expression of pro-phagocytic signals of tumor cells. Here, a pro-phagocytic polymer-based nanocomplex is designed to promote the macrophage engulfment of tumor cells through concurrent modulation of both the "eat me" and "don't eat me" signals. The nanocomplex MNCCD47i-CALRt is formed by complexing a synthetic PAMAM derivative (G4P-C7A) that is capable of intrinsically inducing the exposure of calreticulin (CALR, a crucial pro-phagocytic protein) and a small inference RNA that can inhibit the expression of CD47 (a primary anti-phagocytic protein). MNCCD47i-CALRt can significantly delay tumor growth and prolong the survival of tumor-bearing mice with negligible hematopoietic toxicity in multiple murine colorectal cancer models. Furthermore, the pro-phagocytic capacity of MNCCD47i-CALRt is validated in the patient-derived tumor organoid model. Collectively, the phagocytosis-promoting nanocomplex provides a simple and potent strategy for boosting macrophage-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Hua Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Qi-Song Tong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Wei-Min Miao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hui-Han Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Sullivan HC, Borge PD, Gammon RR, Gandhi M, Philogene MC, Wu Y, Kopko PM. Advances in Human Leukocyte Antigen Testing Technologies and Management Strategies for Platelet Transfusion Refractoriness. Arch Pathol Lab Med 2025; 149:372-380. [PMID: 38871350 DOI: 10.5858/arpa.2023-0484-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
CONTEXT.— The blood bank is often consulted for transfusion support of patients with suspected platelet transfusion refractoriness (PTR). The workup is complex because testing includes specialized assays that are uncommonly ordered with limited availability. Add to this the variety of possible products-crossmatched platelets, human leukocyte antigen (HLA)-matched platelets, HLA antigen-negative platelets-and the approach to PTR can be overwhelming. Moreover, most literature on the subject is published in transfusion medicine journals aimed at transfusion medicine physicians and blood bank specialists in academic settings. Resources tailored to community hospital blood banks are lacking. OBJECTIVE.— To provide pathologists who may not have subspecialized training in transfusion medicine and who direct blood bank algorithmic workflows based on clinical scenario and test availability to provide appropriate transfusion support for patients with PTR. DATA SOURCES.— This review is a comprehensive overview of terminology, HLA testing procedures, interpretations, and practical recommendations for managing PTR in various scenarios based on expert opinion as well as relevant medical literature published from 2007 to 2022. CONCLUSIONS.— Consultation on PTR is complicated and encompasses many clinical and laboratory aspects. The lack of guidelines derived from high-quality prospective studies poses challenges in the workup and management of PTR. Hindering the process further are limited test availability, unfamiliarity with the technical assays, and the various specialized platelet products. The clinical evaluation algorithm presented herein along with the workflow pathways offer pathologists user-friendly and best-practice guidelines with different options based on the clinical scenario and the tests available.
Collapse
Affiliation(s)
- H Cliff Sullivan
- From the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (Sullivan)
| | - P Dayand Borge
- the Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (Borge)
| | - Richard R Gammon
- the Office of the Medical Director, OneBlood, Orlando, Florida (Gammon)
| | - Manish Gandhi
- the Division of Transfusion Medicine, Mayo Clinic, Rochester, Minnesota (Gandhi)
| | - Mary C Philogene
- the Department of Surgery, Virginia Commonwealth University, Richmond (Philogene)
| | - YanYun Wu
- the Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida (Wu)
| | - Patricia M Kopko
- the Department of Pathology, University of California, San Diego (Kopko)
| |
Collapse
|
5
|
Krishnamoorthy M, Seelige R, Brown CR, Chau N, Nielsen Viller N, Johnson LDS, Linderoth E, Wang JCY, Dillon CP, Abayasiriwardana K, Lees C, Wong M, Kaneda MM, Uger RA, Lin GHY. Maplirpacept: a CD47 decoy receptor with minimal red blood cell binding and robust anti-tumor efficacy. Front Immunol 2025; 16:1518787. [PMID: 40078999 PMCID: PMC11897230 DOI: 10.3389/fimmu.2025.1518787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction CD47 is highly expressed on cancer cells and triggers an anti-phagocytic "don't eat me" signal when bound by the inhibitory signal regulatory protein α (SIRPα) expressed on macrophages. While CD47 blockade can mitigate tumor growth, many CD47 blockers also bind to red blood cells (RBCs), leading to anemia. Maplirpacept (TTI-622, PF-07901801) is a CD47 blocking fusion protein consisting of a human SIRPα fused to an IgG4 Fc region and designed to limit binding to RBCs. Methods To determine maplirpacept binding to RBCs and interference with blood tests, human blood samples were used. The ability of maplirpacept to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy as a monotherapy and in combination with other therapeutic agents was evaluated in xenograft models. Results In the current study, we demonstrate that maplirpacept has limited binding to RBCs while driving enhanced macrophage-mediated phagocytosis of hematological tumor cells in vitro and reducing tumor burden in human xenograft models. Moreover, phagocytosis of neoplastic cells can be enhanced when maplirpacept is combined with other therapeutic agents, including antibodies or chemotherapeutic agents. Conclusion These preclinical results establish maplirpacept as an effective CD47 blocker that mitigates the potential for anemia in patients.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Ruth Seelige
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | | | - Nancy Chau
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | | | - Lisa D. S. Johnson
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Emma Linderoth
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Jean C. Y. Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Clare Lees
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | - Mark Wong
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | | | - Robert A. Uger
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Gloria H. Y. Lin
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| |
Collapse
|
6
|
Westhoff CM, Floch A. Blood group genotype matching for transfusion. Br J Haematol 2025; 206:18-32. [PMID: 39104129 DOI: 10.1111/bjh.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The last decade has seen significant growth in the application of DNA-based methods for extended antigen typing, and the use of gene sequencing to consider variation in blood group genes to guide clinical care. The challenge for the field now lies in educating professionals, expanding accessibility and standardizing the use of genotyping for routine patient care. Here we discuss applications of genotyping when transfusion is not straightforward including when compatibility cannot be demonstrated by routine methods, when Rh type is unclear, when allo- and auto-antibodies are encountered in stem cell and organ transplantation, for prenatal testing to determine maternal and foetal risk for complications, and Group A subtyping for kidney and platelet donors. We summarize current commercial testing resources and new approaches to testing including high-density arrays and targeted next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Connie M Westhoff
- New York Blood Center Enterprises, National Center for Blood Group Genomics, New York, New York, USA
| | - Aline Floch
- Univ Paris Est Creteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France
- Laboratoire de Biologie Medicale de Référence en Immuno-Hematologie Moleculaire, Etablissement Francais du Sang Ile-de-France, Creteil, France
| |
Collapse
|
7
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Wang F, Wang W, Wu X, Liu Z, Wang Y, Zhang R, Gu S, An Q, Chen Y, Hu X. Depletion of anti-CD47mAb in plasma by genetically modified cells for pre-transfusion testing. Genes Dis 2024; 11:101104. [PMID: 38882017 PMCID: PMC11176643 DOI: 10.1016/j.gendis.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 06/18/2024] Open
Affiliation(s)
- Fei Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoshuang Wu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yafen Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rong Zhang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
9
|
Bevel N, Thorpe M, Vanniasinkam T. Is drug interference still an issue for pretransfusion testing of patients on anti CD38 and other monoclonal antibody therapies? Vox Sang 2024; 119:785-791. [PMID: 38705581 DOI: 10.1111/vox.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
Certain therapies that target CD markers on some blood cells can affect pretransfusion testing. Key examples are anti-CD38, CD47 monoclonal antibody (mAb) therapies such as daratumumab (DARA) and magrolimab, which have presented a challenge for transfusion medicine laboratories around the globe. Scientists have been faced with not only introducing a protocol to provide safe blood to patients but also investigating the most effective method to remove the pretransfusion pan-agglutinating interference caused. A number of papers in the last 5 years have reported on various methods to remove pretransfusion interference; however, most of these studies have been conducted only in a few countries. Most recent reviews on this topic have focused on techniques and reagents to remove pretransfusion interference, and dithiothreitol is currently the gold standard for removing DARA interference. However, it was clear from this review that while many laboratories have developed processes for addressing interference in pretransfusion testing, and DARA interference may not be a major issue, there are still laboratories around the world, that may not have adequately addressed this issue. In addition, the impact of mAb interference on widely used techniques such as flow cytometry is unclear.
Collapse
Affiliation(s)
- Nichole Bevel
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Transfusion Medicine Laboratory, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Meagan Thorpe
- Transfusion Medicine Laboratory, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Thiru Vanniasinkam
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
10
|
Murphy MF, Rajbhandary S, Carayiannis S, Cohn CS. How do transfusion services manage patients taking therapies such as anti-CD38 and anti-CD47 known to interfere with red blood cell compatibility testing? Transfusion 2024; 64:1217-1222. [PMID: 38767410 DOI: 10.1111/trf.17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Drugs such as daratumumab (Darzalex, anti-CD38) and Hu5F9-G4 (magrolimab, anti-CD47) may interfere with red blood cell compatibility testing as CD38 and CD47 are expressed on red blood cells. STUDY DESIGN AND METHODS A survey of AABB member transfusion services was undertaken to understand their experiences of managing patients taking therapeutic monoclonal antibodies that are known to interfere with blood grouping and compatibility testing. RESULTS The survey was distributed to the contact person at US-based AABB member transfusion services. The response rate was 27%. 172 of 240 (72%) indicated they had difficulties in performing compatibility testing in patients taking daratumumab and 66 of 91 (73%) reported difficulties in performing compatibility testing in patients taking magrolimab. Actions taken to provide compatible blood for these patients included referral of all samples to a reference center, blood group pheno/genotyping the patient in advance of starting the drug, treating reagent cells with 0.2 M dithiothreitol and using K-negative red cell units for patients taking daratumumab, and Gamma-clone (Immucor) anti-IgG for indirect antiglobulin testing for patients taking magrolimab. Lack of communication from clinical services about drug treatment was identified as a concern. CONCLUSION The results of the survey demonstrate that transfusion services are having challenges with the transfusion management of patients taking therapeutic monoclonal antibodies, and further education is needed.
Collapse
Affiliation(s)
- Michael F Murphy
- NHS Blood and Transplant, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | | | | | - Claudia S Cohn
- AABB, Bethesda, Maryland, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Yoon E, Kim TY, Kim H, Cho D. Evorpacept-Induced Interference and Application of a Novel Mitigation Agent, Evo-NR, in Pretransfusion Testing. Transfus Med Hemother 2024; 51:185-192. [PMID: 38867811 PMCID: PMC11166403 DOI: 10.1159/000534273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 06/14/2024] Open
Abstract
Introduction Evorpacept is a CD47-blocking agent currently being developed for the treatment of various cancers. Interference by evorpacept in pretransfusion compatibility testing has been reported at limited plasma concentrations. Although various mitigation strategies have been proposed, none are practical. This in vitro study assessed evorpacept-induced interference at extended concentrations and investigated the capability of a novel mitigation agent, Evo-NR. Methods Antibody screening tests were performed on evorpacept-spiked plasma with (anti-E and anti-Jka) or without alloantibodies at evorpacept concentrations up to 2,000 μg/mL using manual gel cards and automated analyzers. Evorpacept-coated red blood cells (RBCs) (rr [ce/ce], Fy[a+b-], S-s+) were tested by direct antiglobulin testing (DAT) and antigen typing using anti-Fyb and anti-S reagents at indirect antiglobulin testing (IAT) phase. Evo-NR was used to resolve the interference in plasma and RBC samples. Flow cytometry was used to assess the mitigation effects. Results Evorpacept-spiked plasma showed panreactive interference in antibody screening tests using manual gel cards (2+ to 3+) and automated analyzers (4+). A carryover effect was also observed in the automated analyzers. The use of a 3- to 6-fold molar excess of Evo-NR effectively resolved the interference in the plasma and enabled accurate alloantibody identification. Although the reduction in evorpacept binding to RBCs was identified via flow cytometry, Evo-NR was incapable of resolving the serologic interference observed in DAT and antigen typing at IAT phase. Discussion Evorpacept showed constant panreactivity and a carryover effect at high concentrations. Evo-NR successfully resolved the interference in the plasma samples and could be considered a practical and efficient mitigation solution. Implementation of Evo-NR has the potential to support RBC transfusion for patients undergoing evorpacept treatment.
Collapse
Affiliation(s)
- Eungjun Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungsuk Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Wu F, Pang H, Li F, Hua M, Song C, Tang J. Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 2024; 27:256. [PMID: 38646501 PMCID: PMC11027102 DOI: 10.3892/ol.2024.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin-1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP-AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T-cells, CAR macrophages and nanotechnology-based delivery systems, which are essential for future clinical research on targeting CD47.
Collapse
Affiliation(s)
- Fan Wu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hongyuan Pang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fan Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengqing Hua
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Tang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
13
|
Usmani A, Morris GP, Murphey C. The increasing need for ABO blood group genotyping and quality assurance implications for laboratory implementation. Hum Immunol 2024; 85:110766. [PMID: 38402098 DOI: 10.1016/j.humimm.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
ABO blood group antigens are critical determinants of immunologic self and non-self and are ubiquitously expressed on all cellular tissues. Antibodies against non-self ABO antigens are naturally present and can mediate pathologic reactions against incompatible transfused blood cells and transplanted tissues. Laboratory testing for ABO antigens and isoagglutinins is essential for safe and effective transfusion and transplantation. Testing for ABO antigens has traditionally depended on serologic testing. However, there is increasing need for evaluation of genetic analysis of ABO antigens, to enable evaluation of ABO blood group in cases where serologic testing may be ambiguous or impossible to accurately perform. The clinical need for ABO genotyping is being addressed by the development of multiple molecular diagnostic approaches. Recent data have clearly demonstrated the potential utility of ABO genotyping in solid organ transplantation, yet widespread implementation has been slow. We propose that this lag is related to practical considerations in laboratory testing, including limited regulatory guidance on the performance and reporting of these assays and the absence of widely available external proficiency testing programs for quality assurance. Here we describe approaches to ABO genotyping, current initiatives in developing ABO genotyping proficiency testing programs, and laboratory quality assurance considerations for ABO genotyping.
Collapse
Affiliation(s)
- Amena Usmani
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Cathi Murphey
- Southwest Immunodiagnostics, Inc., San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
Singh N, Staves J, Storry JR, Dinoso J, Renard C, Doshi P, Johnson LDS, Westhoff CM, Murphy MF. Transfusion management in the era of magrolimab (Hu5F9-G4), an anti-CD47 monoclonal antibody therapy. Transfusion 2023; 63:2377-2383. [PMID: 37970740 DOI: 10.1111/trf.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Nirupama Singh
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julie Staves
- Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Jason Dinoso
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Parul Doshi
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Connie M Westhoff
- New York Blood Center Enterprises, Immunohematology and Blood Group Genomics, New York, New York, USA
| | - Michael F Murphy
- NHS Blood and Transplant, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
16
|
Wang Z, Hu N, Wang H, Wu Y, Quan G, Wu Y, Li X, Feng J, Luo L. High-affinity decoy protein, nFD164, with an inactive Fc region as a potential therapeutic drug targeting CD47. Biomed Pharmacother 2023; 162:114618. [PMID: 37011485 DOI: 10.1016/j.biopha.2023.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
CD47, as an innate immune checkpoint molecule, is an important target of cancer immunotherapy. We previously reported that a high-affinity SIRPα variant FD164 fused with IgG1 subtype Fc showed a better antitumor effect than wild-type SIRPα in an immunodeficient tumor-bearing model. However, CD47 is widely expressed in blood cells, and the drugs targeting CD47 may cause potential hematological toxicity. Herein, we modified the FD164 molecule by Fc mutation (N297A) to inactivate the Fc-related effector function and named it nFD164. Moreover, we further studied the potential of nFD164 as a candidate drug targeting CD47, including the stability, in vitro activity, antitumor activity of single or combined drugs in vivo, and hematological toxicity in humanized CD47/SIRPα transgenic mouse model. The results show that nFD164 maintains strong binding activity to CD47 on tumor cells, but has weak binding activity with red blood cells or white blood cells, and nFD164 has good drug stability under accelerated conditions (high temperature, bright light and freeze-thaw cycles). More importantly, in the immunodeficient or humanized CD47/SIRPα transgenic mice bearing tumor model, the combination of nFD164 and anti-CD20 antibody or anti-mPD-1 antibody had a synergistic antitumor effect. Especially in transgenic mouse models, nFD164 combined with anti-mPD-1 significantly enhanced tumor suppressive activity compared with anti-mPD-1 (P < 0.01) or nFD164 (P < 0.01) as a single drug and had fewer hematology-related side effects than FD164 or Hu5F9-G4. When these factors are taken together, nFD164 is a promising high-affinity CD47-targeting drug candidate with better stability, potential antitumor activity, and improved safety profile.
Collapse
|
17
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
18
|
Li S, Wu X, Li N, Cao G, Wang J, Chen Y, Li S, He J, Wu J, Yang H, Lin K, Qiu C, Liu A, Zhou H, Adrian F, Schweizer L, Zhang W, Gu J, Zhang J. Safety, tolerability, pharmacokinetics, and immunogenicity of an anti-SARS-CoV-2 monoclonal antibody HFB30132A after single dose intravenous administration in healthy Chinese subjects: a phase 1, randomized, double-blind, placebo-controlled study. Front Pharmacol 2023; 14:1117293. [PMID: 37332355 PMCID: PMC10269516 DOI: 10.3389/fphar.2023.1117293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Objective: The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still protracts worldwide. HFB30132A is an anti- SARS-CoV-2 monoclonal antibody purposely engineered for an extended half-life with neutralizing activity against majority of the virus variants identified so far. The aim of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of HFB30132A in healthy Chinese subjects. Methods: A phase 1, randomized, double-blind, placebo-controlled, single ascending dose clinical trial was designed. Twenty subjects were enrolled to Cohort 1 (1,000 mg dose level, 10 subjects) or Cohort 2 (2,000 mg dose level, 10 subjects). Subjects in each cohort were assigned randomly to receive a single intravenous (IV) dose of HFB30132A or placebo at a ratio of 8:2. Safety was assessed in terms of treatment emergent adverse events (TEAEs), vital signs, physical examination, laboratory tests, and ECG findings. PK parameters were measured and calculated appropriately. Anti-drug antibody (ADA) test was performed to detect anti-HFB30132A antibodies. Results: All subjects completed the study. Overall, 13 (65%) of the 20 subjects experienced TEAEs. The most common TEAEs were laboratory abnormalities (12 subjects [60%]), gastrointestinal disorders (6 subjects [30%]), and dizziness (4 subjects [20%]). All TEAEs were Grade 1 or Grade 2 in severity based on the criteria of Common Terminology Criteria for Adverse Events (CTCAE). Serum exposure (Cmax, AUC0-t, AUC0-∞) of HFB30132A increased with ascending dose. After single dose of 1,000 mg and 2000 mg HFB30132A, the mean Cmax was 570.18 μg/mL and 898.65 μg/mL, the mean AUC0-t value was 644,749.42 h*μg/mL and 1,046,209.06 h*μg/mL, and the mean AUC0-∞ value was 806,127.47 h*μg/mL and 1,299,190.74 h*μg/mL, respectively. HFB30132A showed low clearance ranging from 1.38 to 1.59 mL/h, and a long terminal elimination half-life (t½) of 89-107 days. ADA test did not detect any anti-HFB30132A antibodies Conclusion: HFB30132A was safe and generally well-tolerated after single IV dose of 1,000 mg or 2000 mg in healthy Chinese adults. HFB30132A did not induce immunogenic response in this study. Our data support further clinical development of HFB30132A. Clinical Trial Registration: https://clinicaltrials.gov, identifier: NCT05275660.
Collapse
Affiliation(s)
- Shanshan Li
- Huashan Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojie Wu
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Nanyang Li
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoying Cao
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing Wang
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuancheng Chen
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Size Li
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinjie He
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jufang Wu
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haijing Yang
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Angela Liu
- HiFiBiO (Hang Zhou) Ltd., Shanghai, China
| | - He Zhou
- HiFiBiO (Hang Zhou) Ltd., Shanghai, China
| | | | | | | | - Jingwen Gu
- Huashan Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Phase 1 Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhu K, Xu Y, Zhong R, Li W, Wang H, Wong YS, Venkatraman S, Liu J, Cao Y. Hybrid liposome-erythrocyte drug delivery system for tumor therapy with enhanced targeting and blood circulation. Regen Biomater 2023; 10:rbad045. [PMID: 37250975 PMCID: PMC10224802 DOI: 10.1093/rb/rbad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Liposome, a widely used drug delivery system (DDS), still shows several disadvantages such as dominant clearance by liver and poor target organ deposition. To overcome the drawbacks of liposomes, we developed a novel red blood cell (RBC)-liposome combined DDS to modulate the tumor accumulation and extend the blood circulation life of the existing liposomal DDS. Here, RBCs, an ideal natural carrier DDS, were utilized to carry liposomes and avoid them undergo the fast clearance in the blood. In this study, liposomes could either absorbed onto RBCs' surface or fuse with RBCs' membrane by merely altering the interaction time at 37°C, while the interaction between liposome and RBCs would not affect RBCs' characteristics. In the in vivo antitumor therapeutic efficacy study, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes attached onto RBCs' surfaces exhibited lung targeting effect (via RBC-hitchhiking approach) and reduced clearance in the liver, while DPPC liposomes fused with RBCs had prolong blood circulation up to 48 h and no enrichment in any organ. Furthermore, 20 mol% of DPPC liposomes were replaced with pH-sensitive phospholipid 1,2-dioleoyl-Sn-glycero-3-phosphoethanolamine (DOPE) as it could respond to the low pH tumor microenvironment and then accumulate in the tumor. The DOPE attached/fusion RBCs showed partial enrichment in lung and about 5-8% tumor accumulation, which were significantly higher than (about 0.7%) the conventional liposomal DDS. Thus, RBC-liposome composite DDS is able to improve the liposomal tumor accumulation and blood circulation and shows the clinical application promises of using autologous RBCs for antitumor therapy.
Collapse
Affiliation(s)
- Kehui Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Yingcan Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Wanjing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Yee Shan Wong
- Biomedical Engineering, School of Engineering, Temasek Polytechnic, Singapore, Singapore
| | - Subramanian Venkatraman
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiaxin Liu
- Correspondence address. E-mail: (J.L.); , (Y.C.)
| | - Ye Cao
- Correspondence address. E-mail: (J.L.); , (Y.C.)
| |
Collapse
|
20
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
21
|
Is the new angel better than the old devil? Challenges and opportunities in CD47- SIRPα-based cancer therapy. Crit Rev Oncol Hematol 2023; 184:103939. [PMID: 36774991 DOI: 10.1016/j.critrevonc.2023.103939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The efficacy of immunotherapies is limited due to the impenetrable nature of the tumor microenvironment (TME). The TME of many tumors is immune-privileged, thus allowing them to evade host immunosurveillance. One mechanism through which this occurs is via the overexpression of CD47, a 'don't eat me' protein that can interact with SIRPα on myeloid cells to suppress their phagocytic action. In recent times, many studies are focusing on CD47-SIRPα-dependent immunotherapies to incite a 'seek and eat' interaction between phagocytes and tumors. Thus, in this review, we highlight the basic molecular properties and mechanisms of CD47-SIRPα cascade. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
|
22
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
23
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
24
|
Advantage of extracellular vesicles in hindering the CD47 signal for cancer immunotherapy. J Control Release 2022; 351:727-738. [DOI: 10.1016/j.jconrel.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
|
25
|
Fu Y, Hong HJ, Venault A, Chang Y. Thermo-responsive bioseparation engineered for human leukocyte enrichment process driven by functionalized polypropylene bio-separators. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Du C, Sui W, Huang H, Zhang Y, Ding X, Gao C, Wang Y. Effect of clinical application of anti-CD38 and anti-CD47 monoclonal antibodies on blood group detection and transfusion therapy and treatment. Leuk Res 2022; 122:106953. [PMID: 36182722 DOI: 10.1016/j.leukres.2022.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND To investigate the effect of anti-CD38 monoclonal antibodies (mAb) (daratumumab, DARA) and anti-CD47 mAb combined with azacytidine on blood transfusion compatibility tests, transfusion effects in the treatment of multiple myeloma or acute myeloid leukemia and the corresponding management strategy. MATERIALS AND METHODS Among the 19 patients who were treated with DARA and anti-CD47 mAb, 4 patients with cross matching incompatibility were selected. The ABO blood group, the Rh blood group, irregular antibody screening and direct antiglobulin test (DAT) and cross matching testing were performed before and after the application of mAbs using serological methods. Then, irregular antibody screening and microcolumn gel cross matching tests were performed with donor and recipient erythrocytes and serum treated with DL-dithiothreitol (DTT) and Immucor kit, respectively. The transfusion effect was monitored. RESULTS 21.05% (4/19) patients had mismatched cross-matching results after mAb treatment. The agglutination intensity of irregular antibody screening tests (3 + ∼ 4 +) after anti-CD47 mAb was higher than that (1 + ∼ 2 +) after DARA. In the DARA group, treating RBCs with 0.2 mol L-1 DTT eliminated the DARA interference with antibody screening. In the anti-CD47 mAb group, the antibody screening, cross-matching test and DAT had been strongly interfered, and using Immucor kit eliminated the interference with antibody screening testing. There was no difference in the transfusion effect. CONCLUSION The application of mAb drugs led to incompatibility of cross matching tests, and the transfusion effect was not affected.
Collapse
Affiliation(s)
- Chunhong Du
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Weijia Sui
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Huang
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Zhang
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Ding
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Cuicui Gao
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, China
| | - Yihao Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
27
|
Zhao H, Song S, Ma J, Yan Z, Xie H, Feng Y, Che S. CD47 as a promising therapeutic target in oncology. Front Immunol 2022; 13:757480. [PMID: 36081498 PMCID: PMC9446754 DOI: 10.3389/fimmu.2022.757480] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
CD47 is ubiquitously expressed on the surface of cells and plays a critical role in self-recognition. By interacting with SIRPα, TSP-1 and integrins, CD47 modulates cellular phagocytosis by macrophages, determines life span of individual erythrocytes, regulates activation of immune cells, and manipulates synaptic pruning during neuronal development. As such, CD47 has recently be regarded as one of novel innate checkpoint receptor targets for cancer immunotherapy. In this review, we will discuss increasing awareness about the diverse functions of CD47 and its role in immune system homeostasis. Then, we will discuss its potential therapeutic roles against cancer and outlines, the possible future research directions of CD47- based therapeutics against cancer.
Collapse
Affiliation(s)
- Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuangshuang Song
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junwei Ma
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiyong Yan
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shusheng Che
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shusheng Che,
| |
Collapse
|
28
|
Schnieders E, Leon J, Chapman JM, Knudson CM. Patient ABO blood type is a major predictor of a positive DAT following a transfusion reaction. Transfusion 2022; 62:1715-1719. [PMID: 35836408 DOI: 10.1111/trf.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND A direct antiglobulin test (DAT) checks for antibody or complement on the surface of RBCs and is often done following a transfusion reaction. While passive anti-A and anti-B antibodies are known to cause positive DATs, the extent this occurs following transfusion is unknown. STUDY DESIGN AND METHODS DAT results, ABO type, eluate information, and blood product information were recorded on 1097 transfusion reactions at a large academic hospital over 8 years. The effect of patient blood type, product type, and plasma compatibility of blood product transfused on DAT results were determined. Statistical significance was determined using Chi-squared testing. RESULTS Patient ABO blood type was a strong predictor of a positive DAT, with type O patients having 6.7% positive rate and non-O patients having a positive rate of 20.6% (p < .0001). Plasma compatibility of the product was a strong predictor of a positive DAT, with plasma compatible transfusions having a 9.4% positive rate while plasma incompatible transfusions were positive 44% of the time (p < .0001). Elution studies found that anti-A/B antibodies were the most common antibody identified. Platelets were more likely to be associated with a positive DAT when compared with RBC transfusions (p < .05). CONCLUSIONS These results demonstrate the patient ABO type and plasma incompatibility are strong predictors of positive DAT results following a transfusion reaction. Anti-A and anti-B antibodies are estimated to account for about 50% of positive DATs in this study.
Collapse
Affiliation(s)
- Eric Schnieders
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - Judith Leon
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - James M Chapman
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - C Michael Knudson
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Combining daratumumab with CD47 blockade prolongs survival in preclinical models of pediatric T-ALL. Blood 2022; 140:45-57. [PMID: 35452517 DOI: 10.1182/blood.2021014485] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapy strategies improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from T-ALL patients express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared to single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis (ADCP) in T-ALL cell lines as well as in random de novo and in relapsed/refractory T-ALL patient derived xenograft (PDX) samples. Similarly, enhanced ADCP was observed when combining Dara with pharmacological inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase II-like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease like (MRD-like) and overt leukemia models revealed a high anti-leukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (post-chemo MRD) and subsequently co-treated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration as compared to single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival as compared to single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harbouring a dismal prognosis in patients.
Collapse
|
30
|
Carll T, Mei Z, Aldarweesh F, Wool GD. Alloimmunization rates in transfused patients receiving anti-CD47 antibody therapy. Transfusion 2022; 62:916-918. [PMID: 35383955 DOI: 10.1111/trf.16825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy Carll
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Zhen Mei
- Department of Pathology, University of California - Los Angeles, Los Angeles, California, USA
| | - Fatima Aldarweesh
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Kim TY, Yu H, Phan MTT, Jang JH, Cho D. Application of Blood Group Genotyping by Next-Generation Sequencing in Various Immunohaematology Cases. Transfus Med Hemother 2022; 49:88-96. [PMID: 35611383 PMCID: PMC9082207 DOI: 10.1159/000517565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technology has been recently introduced into blood group genotyping; however, there are few studies using NGS-based blood group genotyping in real-world clinical settings. In this study, we applied NGS-based blood group genotyping into various immunohaematology cases encountered in routine clinical practice. METHODS This study included 4 immunohaematology cases: ABO subgroup, ABO chimerism, antibody to a high-frequency antigen (HFA), and anti-CD47 interference. We designed a hybridization capture-based NGS panel targeting 39 blood group-related genes and applied it to the 4 cases. RESULTS NGS analysis revealed a novel intronic variant (NM_020469.3:c.29-10T>G) in a patient with an Ael phenotype and detected a small fraction of ABO*A1.02 (approximately 3-6%) coexisting with the major genotype ABO*B.01/O.01.02 in dizygotic twins. In addition, NGS analysis found a homozygous stop-gain variant (NM_004827.3:c.376C>T, p.Gln126*; ABCG2*01N.01) in a patient with an antibody to an HFA; consequently, this patient's phenotype was predicted as Jr(a-). Lastly, blood group phenotypes predicted by NGS were concordant with those determined by serology in 2 patients treated with anti-CD47 drugs. CONCLUSION NGS-based blood group genotyping can be used for identifying ABO subgroup alleles, low levels of blood group chimerism, and antibodies to HFAs. Furthermore, it can be applied to extended blood group antigen matching for patients treated with anti-CD47 drugs.
Collapse
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - HongBi Yu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Minh-Trang Thi Phan
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
33
|
Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol 2021; 14:180. [PMID: 34717705 PMCID: PMC8557524 DOI: 10.1186/s13045-021-01197-w] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Much progress has been made in targeting CD47 for cancer immunotherapy in solid tumors (ST) and hematological malignancies. We summarized the CD47-related clinical research and analyzed the research trend both in the USA and in China. As of August 28, 2021, there are a total 23 related therapeutic agents with 46 clinical trials in the NCT registry platform. Among these trials, 29 are in ST, 14 in hematological malignancies and 3 in both solid tumor and hematological malignancy. The ST include gastric cancer, head and neck squamous cell carcinoma and leiomyosarcoma, while the hematological malignancies include non-Hodgkin's lymphoma, acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and chronic myeloid leukemia. Majority of the CD47-related clinical trials are at the early phases, such as 31 at phase I, 14 at phase II and 1 at phase III in the USA and 9, 6, 1, in China, respectively. The targets and spectrums of mechanism of action include 26 with mono-specific and 20 with bi-specific targets in the USA and 13 with mono-specific and 3 with bi-specific targets in China. The new generation CD47 antibodies have demonstrated promising results, and it is highly hopeful that some candidate agents will emerge and make into clinical application to meet the urgent needs of patients.
Collapse
Affiliation(s)
- Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Sun
- Department of Radiation Therapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201203, China.
| | - Yongping Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
34
|
Alquist CR, Helander L. Transfusion Blood Bank (Recipient) Testing. Clin Lab Med 2021; 41:599-610. [PMID: 34689967 DOI: 10.1016/j.cll.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pretransfusion and post-transfusion recipient testing are routine blood bank functions. This article presents a review of request and sample requirements, routine and extended typing and antibody evaluation, and post-transfusion circumstances requiring additional work-up. Although the regimented approach of blood banking fundamentals may be viewed as tedious, these steps are defined and designed to prevent potentially fatal ABO-incompatible transfusions and improve the overall safety of transfusion medicine patients.
Collapse
Affiliation(s)
- Caroline R Alquist
- Hoxworth Blood Center Academic Unit and Department of Pathology & Laboratory Medicine, University of Cincinnati, 3130 Highland Avenue, Hoxworth Building, 5th Floor TID, Cincinnati, OH 45267, USA.
| | - Louise Helander
- Children's Hospital Colorado; Department of Medicine, University of Colorado, ClinImmune Labs, Bioscience 2, 12705 East Montview Boulevard, Suite 250, Aurora, CO 80011, USA
| |
Collapse
|
35
|
Chen YC, Shi W, Shi JJ, Lu JJ. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. J Cancer Res Clin Oncol 2021; 148:1-14. [PMID: 34609596 DOI: 10.1007/s00432-021-03815-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
CD47, a transmembrane protein, acts as a "do not eat me" signal that is overexpressed in many tumor cell types, thereby forming a signaling axis with its ligand signal regulatory protein alpha (SIRPα) and enabling the tumor cells to escape from macrophage-mediated phagocytosis. Several clinical trials with CD47 targeting agents are underway and have achieved impressive results preliminarily. However, hematotoxicity (particularly anemia) has emerged as the most common side effect that cannot be neglected. In the development of CD47 targeting agents, various methods have been used to mitigate this toxicity. In this review, we summarized five strategies used to alleviate CD47 blockade-induced hematotoxicity, as follows: change in the mode of administration; dual targeting bispecific antibodies of CD47; CD47 antibodies/SIRPα fusion proteins with negligible red blood cell binding; anti-SIRPα antibodies; and glutaminyl-peptide cyclotransferase like inhibitors. With these strategies, the development of CD47 targeting agents can be improved.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
| |
Collapse
|
36
|
Wang Z, Hu N, Li X, Wang H, Ren C, Qiao C, Chen G, Wang J, Zhou L, Wu J, Zhang D, Feng J, Shen B, Peng H, Luo L. Selection and Characterization of FD164, a High-Affinity Signal Regulatory Protein α Variant with Balanced Safety and Effectiveness, from a Targeted Epitope Mammalian Cell-Displayed Antibody Library. Mol Pharmacol 2021; 100:193-202. [PMID: 34315811 DOI: 10.1124/molpharm.120.000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
Phagocytic resistance plays a key role in tumor-mediated immune escape, so phagocytosis immune checkpoints are a potential target for cancer immunotherapy. CD47 is one of the important phagocytosis immune checkpoints; thus, blocking the interaction between CD47 and signal regulatory protein α (SIRPα) may provide new options for cancer treatment. Using computer-aided targeted epitope mammalian cell-displayed antibody library, we screened and obtained an engineered SIRPα variant fragment crystallizable fusion protein, FD164, with higher CD47-binding activity than wild-type SIRPα Compared with wild-type SIRPα, FD164 has approximately 3-fold higher affinity for binding to CD47, which further enhanced its phagocytic effect in vitro and tumor suppressor activity in vivo. FD164 maintains the similar antitumor activity of the clinical research drug Hu5F9 in the mouse xenograft model. Furthermore, FD164 combined with rituximab can significantly improve the effect of single-agent therapy. On the other hand, compared with Hu5F9, FD164 does not cause hemagglutination, and its ability to bind to red blood cells or white blood cells is weaker at the same concentration. Finally, it was confirmed by computer structure prediction and alanine scanning experiments that the N45, E47, 52TEVYVK58, K60, 115EVTELTRE122, and E124 residues of CD47 are important for SIRPα or FD164 recognition. Briefly, we obtained a high-affinity SIRPα variant FD164 with balanced safety and effectiveness. SIGNIFICANCE STATEMENT: Up to now, few clinically marketed drugs targeting CD47 have been determined to be effective and safe. FD164, a potential signal regulatory protein α variant fragment crystallizable protein with balanced safety and effectiveness, could provide a reference for the development of antitumor drugs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, Differentiation/adverse effects
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- CD47 Antigen/chemistry
- CD47 Antigen/immunology
- CHO Cells
- Cell Line
- Cricetulus
- Drug Design
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Hemagglutination/drug effects
- Immunotherapy
- Mice, SCID
- Models, Molecular
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Recombinant Fusion Proteins/adverse effects
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Rituximab/therapeutic use
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Haitao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Caiping Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Liuzhong Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Jiaguo Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Dingmu Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Hui Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.W., N.H., X.L., C.Q., G.C., J.W., L.Z., J.W., D.Z., J.F., B.S., L.L.); School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China (H.W., H.P.); Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China (H.P.); Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China (H.W.); and Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China (C.R.)
| |
Collapse
|
37
|
Xu LN, Wang SH, Su XL, Komal S, Fan HK, Xia L, Zhang LR, Han SN. Targeting Glycogen Synthase Kinase 3 Beta Regulates CD47 Expression After Myocardial Infarction in Rats via the NF-κB Signaling Pathway. Front Pharmacol 2021; 12:662726. [PMID: 34349643 PMCID: PMC8327268 DOI: 10.3389/fphar.2021.662726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the effects of the GSK-3β/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3β upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Kun Fan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Lu ZD, Chen YF, Shen S, Xu CF, Wang J. Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29424-29438. [PMID: 34129318 DOI: 10.1021/acsami.1c08329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient capture and presentation of tumor antigens by antigen-presenting cells (APCs), especially dendritic cells (DCs), are crucial for activating the anti-tumor immunity. However, APCs are immunosuppressed in the tumor microenvironment, which hinders the tumor elimination. To reprogram APCs for inducing strong anti-tumor immunity, we report here a co-delivery immunotherapeutic strategy targeting the phagocytosis checkpoint (signal regulatory protein α, SIRPα) and stimulator of interferon genes (STING) of APCs to jointly enhance their ability of capturing and presenting tumor antigens. In brief, a small interfering RNA targeting SIRPα (siSIRPα) and a STING agonist (cGAMP) were co-delivered into APCs by the encapsulation into poly(ethylene glycol)-b-poly(lactide-co-glycolide)-based polymeric nanoparticles (NPsiSIRPα/cGAMP). siSIRPα-mediated SIRPα silence promoted APCs to actively capture tumor antigens by engulfing tumor cells. The cGAMP-stimulated STING signaling pathway further enhanced the functions of APCs, thereby increased the activation and expansion of CD8+ T cells. Using ovalbumin (OVA)-expressing melanoma as a model, we demonstrated that NPsiSIRPα/cGAMP stimulated the activation of OVA-specific CD8+ T cells and induced holistic anti-tumor immune responses by reversing the immunosuppressive phenotype of APCs. Collectively, this co-delivery strategy synergistically enhanced the functions of APCs and can be extended to the treatment of tumors with poor immunogenicity.
Collapse
Affiliation(s)
- Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yi-Fang Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
39
|
Phou S, Costello C, Kopko PM, Allen ES. Optimizing transfusion management of multiple myeloma patients receiving daratumumab-based regimens. Transfusion 2021; 61:2054-2063. [PMID: 33960433 DOI: 10.1111/trf.16425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Daratumumab, a human anti-CD38 monoclonal antibody used to treat multiple myeloma, interferes with pretransfusion testing and can mask alloantibodies. Incidence of alloimmunization in patients on daratumumab has not been well characterized, and optimal transfusion guidelines regarding prophylactic antigen matching, accounting for both patient safety and efficiency, have not been well established for these patients. METHODS Records of patients who received daratumumab between January 1, 2014 and July 2, 2019 were reviewed. Daratumumab interference with pretransfusion testing was managed by testing with reagent red blood cells (RBCs) treated with 0.2 M dithiothreitol. When daratumumab was present during antibody testing, patients were transfused with RBC units prophylactically matched for D, C, c, E, e, and K antigens per hospital policy. RESULTS Out of 90 patients identified, 52 received a total of 638 RBC transfusions (average of 12.3 units per patient, SD 17.2, range 1-105, median 5 among those transfused). Alloantibodies existing before daratumumab initiation were identified in seven patients. No new alloantibodies were detected in any patients after starting daratumumab treatment. CONCLUSIONS The incidence of alloimmunization in patients receiving daratumumab is low. Whether this is due to the effect of daratumumab, underlying pathophysiology, or other factors, is unknown. Because these patients require a large number of RBC transfusions overall and have little observed alloimmunization, phenotype matching (beyond RhD) may be unnecessary. Since the use of dithiothreitol cannot rule out the presence of anti-K, we recommend transfusion of ABO-compatible units, prophylactically matched for the D and K antigens only.
Collapse
Affiliation(s)
- Samantha Phou
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Caitlin Costello
- Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, California, USA
| | - Patricia M Kopko
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Koenigbauer UF. Laboratory Detection of Blood Groups and Provision of Red Cells. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Jones AD, Moayeri M, Nambiar A. Impact of new myeloma agents on the transfusion laboratory. Pathology 2021; 53:427-437. [PMID: 33707006 DOI: 10.1016/j.pathol.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Monoclonal antibody (mAb) therapy targeting CD38 and CD47 antigens expressed on cancer cells has transformed therapy options for patients with multiple myeloma as well as other haematological and non-haematological malignancies. While the on target effects of these new drugs highlight the promise of precision cancer therapeutics, the unintended, off target binding of drugs to red blood cells (RBCs) and platelets has required transfusion service laboratories (TSL) and immunohaematology reference laboratories (IRL) to innovate and rapidly set up processes and testing protocols to overcome the significant interference in routine pre-transfusion tests caused by these agents. Binding of anti-CD38 and anti-CD47 drugs to reagent RBCs leads to false positive pan-agglutination during the antihuman globulin phase of testing, making it difficult to rule out underlying alloantibodies, and leading to delays in setting up compatible units for RBC transfusion. Anti-CD47 agents can also interfere with ABO/Rh typing studies. Several methods to successfully mitigate interference have been described, such as treatment of reagent RBCs with reducing agents or enzymes, allogeneic RBC adsorption studies and drug specific neutralisation assays; all methods have limitations. TSLs should select an approach that best fits their workflow and expertise and takes into consideration their level of access to specialised outside testing, local blood supplier capabilities, and the type of patient population served. For platelet refractory patients, samples should be tested by platelet antibody assays that are known to be unaffected by drug therapy. RBC transfusion support for multiple myeloma patients receiving anti-CD38 or anti-CD47 drugs can be optimised by establishing good communication between the clinical teams and TSLs, building electronic notification processes, and ensuring timely completion of baseline pre-transfusion testing and RBC phenotype/genotype prior to starting therapy. Staff education, standardisation of laboratory mitigation measures, and implementation of testing algorithms that consider mAb-induced interference when working up a pan-agglutinin help to significantly decrease delays that would otherwise result if standard methods were employed to complete antibody identification studies.
Collapse
Affiliation(s)
- Andrew D Jones
- UCSF Medical Center, Department of Laboratory Medicine, San Francisco, CA, USA.
| | - Morvarid Moayeri
- UCSF Medical Center, Department of Laboratory Medicine, San Francisco, CA, USA
| | - Ashok Nambiar
- UCSF Medical Center, Department of Laboratory Medicine, San Francisco, CA, USA
| |
Collapse
|
42
|
Eldakhakhny B, Al Sadoun H, Taleb NB, Nori DA, Helmi N, Ahmed IM, Bakhrebah MA, Abdulaal WH. Evaluation of the role of CD47 in sickle cell disease. J Hematop 2021. [DOI: 10.1007/s12308-020-00433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractCD47 is a self-marker expressed on the surface of RBCs and work to prevent the process of phagocytosis. SIRPα is the ligand of CD47 that is expressed on the surface of phagocytic cells, such as macrophages, to control the removal of dead/diseased cells. This study aimed to examine the expression of CD47 on RBCs and SIRPα on PBMC cells in SCD patients and the apoptosis of SCD RBCs. We also measured the levels of pro-inflammatory cytokines in SCD patients and correlated it with the cell surface marker expression of CD47 and SIRPα to determine whether CD47 and/or SIRPα played a role in promoting the pro-inflammatory phenotype in SCD. Whole blood samples were drawn from SCD patients, and healthy control and PBMC were isolated and stained with SIRPα. Change in CD47, apoptosis by annexin V marker, and pro-inflammatory cytokines were measured and correlation among these variants was determined. The expression of CD47 was significantly decreased and the apoptosis was increased in RBCs of SCD patients. A higher level of pro-inflammatory cytokines, IL-6 and IL-1β, was found in SCD patients and IL-1β was found to be inversely correlated with SIRPα expression. Our data showed that CD47 of erythrocytes of SCD samples is reduced and that the apoptosis is increased in those patients. Based on the role of CD47, we suggest that increased apoptosis in SCD would be impacted by the reduced level of CD47. An inverse relationship was found between SIRPα marker on PBMC and the increased production of pro-inflammatory cytokines in SCD.
Collapse
|
43
|
Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, Pereira DS. Novel SIRPα Antibodies That Induce Single-Agent Phagocytosis of Tumor Cells while Preserving T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:712-721. [PMID: 33431660 DOI: 10.4049/jimmunol.2001019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The signal regulatory protein α (SIRPα)/CD47 axis has emerged as an important innate immune checkpoint that enables cancer cell escape from macrophage phagocytosis. SIRPα expression is limited to macrophages, dendritic cells, and neutrophils-cells enriched in the tumor microenvironment. In this study, we present novel anti-SIRP Abs, SIRP-1 and SIRP-2, as an approach to targeting the SIRPα/CD47 axis. Both SIRP-1 and SIRP-2 bind human macrophage SIRPα variants 1 and 2, the most common variants in the human population. SIRP-1 and SIRP-2 are differentiated among reported anti-SIRP Abs in that they induce phagocytosis of solid and hematologic tumor cell lines by human monocyte-derived macrophages as single agents. We demonstrate that SIRP-1 and SIRP-2 disrupt SIRPα/CD47 interaction by two distinct mechanisms: SIRP-1 directly blocks SIRPα/CD47 and induces internalization of SIRPα/Ab complexes that reduce macrophage SIRPα surface levels and SIRP-2 acts via disruption of higher-order SIRPα structures on macrophages. Both SIRP-1 and SIRP-2 engage FcγRII, which is required for single-agent phagocytic activity. Although SIRP-1 and SIRP-2 bind SIRPγ with varying affinity, they show no adverse effects on T cell proliferation. Finally, both Abs also enhance phagocytosis when combined with tumor-opsonizing Abs, including a highly differentiated anti-CD47 Ab, AO-176, currently being evaluated in phase 1 clinical trials, NCT03834948 and NCT04445701 SIRP-1 and SIRP-2 are novel, differentiated SIRP Abs that induce in vitro single-agent and combination phagocytosis and show no adverse effects on T cell functionality. These data support their future development, both as single agents and in combination with other anticancer drugs.
Collapse
|
44
|
Murata Y, Saito Y, Kotani T, Matozaki T. Blockade of CD47 or SIRPα: a new cancer immunotherapy. Expert Opin Ther Targets 2020; 24:945-951. [PMID: 32799682 DOI: 10.1080/14728222.2020.1811855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CD47-Signal regulatory protein α (SIRPα) singling axis acts as a crucial regulator that limits the phagocytic activity of professional phagocytes such as macrophages. Recent studies have demonstrated that the interaction between CD47 on tumor cells and SIRPα on macrophages is implicated in the ability of tumors to evade immunosurveillance. Targeting the CD47-SIRPα interaction is therefore considered to be a promising approach for cancer therapy. Herein, we review some of studies displaying the potential clinical application of antibodies and other modalities that target the CD47-SIRPα interaction. Current limitations of the CD47-SIRPα-targeted immunotherapeutic approaches are also discussed as well as other avenues for future study to improve the current strategies in targeting the CD47-SIRPα signaling axis for cancer immunotherapy.
Collapse
Affiliation(s)
- Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine , Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine , Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine , Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine , Japan
| |
Collapse
|
45
|
Kim TY, Yoon MS, Hustinx H, Sim J, Wan HI, Kim H. Assessing and mitigating the interference ofALX148, a novelCD47blocking agent, in pretransfusion compatibility testing. Transfusion 2020; 60:2399-2407. [DOI: 10.1111/trf.16009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics Samsung Medical Center Seoul South Korea
| | - Mi Sook Yoon
- Department of Laboratory Medicine Seoul National University Hospital Seoul South Korea
| | - Hein Hustinx
- Interregional Blood Transfusion SRC Ltd. Berne Switzerland
| | | | | | - Hyungsuk Kim
- Department of Laboratory Medicine Seoul National University Hospital Seoul South Korea
| |
Collapse
|
46
|
Oronsky B, Carter C, Reid T, Brinkhaus F, Knox SJ. Just eat it: A review of CD47 and SIRP-α antagonism. Semin Oncol 2020; 47:117-124. [PMID: 32517874 DOI: 10.1053/j.seminoncol.2020.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
Abstract
The mammalian immune system consists of two distinct arms, nonspecific innate and more specific adaptive, with the innate immune response as the first line of defense and protection, which primes and amplifies subsequent adaptive responses. On the basis of this binary immune interplay, stimulation of T cells through checkpoint inhibitors (CIs), which bypasses innate involvement, seems likely to engender suboptimal or incomplete anticancer immunity, given that the successful induction of effect or responses depends on two-way innate/adaptive coordination. Indeed, the majority of patients-70%-80%, do not respond to CIs, which is potentially problematic if access to more optimal standard therapies is withheld or delayed in favor of ineffective or only marginally effective anti-PD-1/PD-L1 treatment. Therefore, stimulation of the innate immune response in combination with CIs (or other inducers of T cell cytotoxicity) has the potential to make the immune system "whole" and thereby to enhance and broaden the anti-tumor activity of PD-1/PD-L1 inhibitors for example, in relatively nonimmunogenic or "cold" tumor types. A critical innate macrophage immune checkpoint and druggable target is the antiphagocytic and "marker of self" CD47-SIRPα pathway, which is co-opted by cancer cells to mediate escape from immune-mediated clearance and checkpoint inhibition. This review summarizes the status of key CD47 antagonists in clinical trials, including the biologics, Hu5F9-G4 (5F9), TTI-621, and ALX148, as well as the small molecule, RRx-001, now in a Phase 3 clinical trial, which has not been previously included in CD47-SIRPα reviews focused on biologics. Hu5F9-G4 (5F9), TTI-621, ALX148, and RRx-001 are chosen as compounds with potentially promising data that have advanced the farthest in clinical development.
Collapse
Affiliation(s)
| | | | - Tony Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, California
| | | | - Susan J Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
47
|
Pagano MB, Allen ES, Chou ST, Dunbar NM, Gniadek T, Goel R, Harm SK, Hopkins CK, Jacobson J, Lokhandwala PM, Metcalf RA, Raval JS, Schwartz J, Shan H, Spinella PC, Storch E, Cohn CS. Current advances in transfusion medicine: a 2019 review of selected topics from the AABB Clinical Transfusion Medicine Committee. Transfusion 2020; 60:1614-1623. [PMID: 32472580 DOI: 10.1111/trf.15848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The AABB Clinical Transfusion Medicine Committee (CTMC) compiles an annual synopsis of the published literature covering important developments in the field of transfusion medicine (TM) for the board of director's review. This synopsis is now made available as a manuscript published in TRANSFUSION. STUDY DESIGN AND METHODS CTMC committee members review original manuscripts including TM-related topics published in different journals between late 2018 and 2019. The selection of topics and manuscripts are discussed at committee meetings and are chosen based on relevance and originality. After the topics and manuscripts are selected, committee members work in pairs to create a synopsis of the topics, which is then reviewed by two committee members. The first and senior authors of this manuscript assembled the final manuscript. Although this synopsis is comprehensive, it is not exhaustive, and some papers may have been excluded or missed. RESULTS The following topics are included: infectious risks to the blood supply, iron donor studies, pre-transfusion testing interference and genotyping, cold agglutinin disease (CAD), HLA alloimmunization in platelet transfusions, patient blood management, updates to TACO and TRALI definitions, pediatric TM, and advances in apheresis medicine. CONCLUSION This synopsis provides easy access to relevant topics and may be useful as an educational tool.
Collapse
Affiliation(s)
- Monica B Pagano
- Transfusion Medicine Division, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Stella T Chou
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Ruchika Goel
- Transfusion Medicine Division, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Division of Hematology/Oncology, Simmons Cancer Institute at Southern Illinois University School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Sarah K Harm
- Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| | | | - Jessica Jacobson
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Parvez M Lokhandwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan A Metcalf
- Clinical Pathology Division, Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Jay S Raval
- Transfusion Medicine Service, Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | - Joseph Schwartz
- Transfusion Medicine & Cellular Therapy, Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Hua Shan
- Department of Pathology, Stanford University, Stanford, California
| | - Philip C Spinella
- Division of Pediatric Critical Care, Washington University in St Louis, St Louis, Missouri, USA
| | - Emily Storch
- Office of Blood Research and Review, Food and Drug Administration, Silver Spring, Maryland
| | - Claudia S Cohn
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
48
|
Perram J, Blayney B, Ackerman L, Beig A, Khoo L. Solid phase antibody screening in the presence of anti-CD38 monoclonal antibodies: a potential alternative to avoid interference. Pathology 2020; 52:492-494. [PMID: 32354658 DOI: 10.1016/j.pathol.2020.01.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Affiliation(s)
- J Perram
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Blood Bank NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - B Blayney
- Blood Bank NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - L Ackerman
- Blood Bank NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - A Beig
- Blood Bank NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - L Khoo
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Blood Bank NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
49
|
DePalma H, Godbey EA, Opalka A, Parsi M, Vege S, Lomas-Francis C, Westhoff CM. Reliability of labeling red cell units with minor antigen historical results and process considerations. Transfusion 2020; 60:822-830. [PMID: 32086951 DOI: 10.1111/trf.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Several approaches are used by blood centers when providing minor (non-ABO/D) antigen-negative RBCs to hospitals. Details vary but include providing results on the unit labeling intended for clinical use without retyping or providing results on packing documents or via computer query requiring confirmation. Recent regulatory changes allow labeling with historical minor antigen results, defined as previously performed by the donor center on two different donations with results linked to the donor and confirmed concordant. Here we investigate causes of discrepancies and identify critical process steps. STUDY DESIGN AND METHODS Nine years (2009-2017) of data were reviewed for number, antigen system, and root cause of discrepancies flagged by the computer when retyping donors prior to labeling (internal discrepancies) or reported by the hospital when retested (external discrepancies). Licensed automated (CcEeK) and tube methods were used. RESULTS Among 300,000 samples phenotyped for CcEe, K, Fya/b , Jka/b , Ss (>3 million antigens), ∼1,389,960 were repeated on 2nd donation with 397 (1/3501) discordant; 205 Fy, 118 Rh, and 74 others. Of ∼682,691 antigen-negative phenotypes provided on unit labeling, ∼37.5% (256,118) were retyped by hospitals with 29 discrepancies (1/8832), primarily Rh variants. CONCLUSION When repeating minor antigen types by serology, discrepancies are primarily associated with weak Fyb , among Caucasian donors, and weak/partial Rh antigens in donors of African ancestry. DNA-based testing avoids these. To label with historical results, accuracy is increased by automated testing with direct computer interface. Testing on two donations with results confirmed to be concordant is not inferior to testing on the current donation.
Collapse
Affiliation(s)
- Helene DePalma
- New York Blood Center, New York, New York
- York College-City University of New York, Jamaica, New York
| | - Elizabeth A Godbey
- New York Blood Center, New York, New York
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | |
Collapse
|
50
|
Branch DR. A stressful predicament for blood bankers! Transfus Med 2020; 30:84-85. [DOI: 10.1111/tme.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Donald R. Branch
- Centre for Innovation, Canadian Blood Services Toronto Ontario Canada
- Department of Medicine, Department of Laboratory Medicine and PathobiologyUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|