1
|
Ma B, Wang W, Li Z, Zhong C, Zhou J, Yang B, Liu L, Wang Z, Yi X, Zheng Y, Wang Y. 4-Hydroxyderricin attenuates ischemic brain injury and neuroinflammation by upregulating haptoglobin expression in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156649. [PMID: 40117946 DOI: 10.1016/j.phymed.2025.156649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Angelica keiskei (Miq.) Koidz. is a traditional plant that is widely used in Asian countries because of its tonic, diuretic, and galactagogue properties. The chalcone compound 4-hydroxyderricin (4-HD), uniquely present in A. keiskei, has demonstrated inhibitory effects on inflammation in peripheral tissues. Nonetheless, its efficacy in central neuroinflammation and ischemic brain injury remains unclear. PURPOSE This study aims to assess the ability of 4-HD to alleviate acute ischemic brain injury and the associated inflammatory response, and to elucidate the underlying mechanisms. METHODS Mice underwent middle cerebral artery occlusion (MCAO) surgery to induce acute cerebral ischemic injury. The extent of brain injury was evaluated by TTC staining and neurological function scoring. Immunofluorescence was employed to observe glial cell activation, whereas ELISA and RT-PCR were used to quantify inflammatory cytokine expression in ischemic brain tissues. Oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation of BV2 microglial cells were conducted in vitro to examine the direct impact of 4-HD on microglial inflammation. ELISA and RT-PCR were carried out to quantify inflammatory cytokine expression in BV2 cells. Western blotting and immunofluorescence techniques were used to detect protein expression and localization, respectively. Additionally, alterations in gene expression were measured using RNA-seq analysis profiling following 4-HD treatment of BV2 cells. A short hairpin RNA (shRNA) was used to silence the Haptoglobin (Hp) gene to elucidate the relationship between drug effects and Hp protein levels. RESULTS 4-HD effectively reduced the infarct area and enhanced neurological function 24 h post-MCAO surgery by lowering inflammatory cytokine levels and inhibiting microglia activation in ischemic brain tissues. In OGD and LPS-stimulated BV2 microglia, 4-HD decreased the levels of inflammatory cytokines. Mechanistic research indicated that 4-HD enhanced Hp and reduced HMGB1 expression in BV2 cells. Moreover, the activation of the NF-κB and MAPK signaling pathways, two key pro-inflammatory pathways downstream of HMGB1, was inhibited by 4-HD treatment. In BV2 cells with Hp gene knockdown, the inhibitory effect of HMGB1 disappeared, and its anti-inflammatory effect was also significantly weakened. CONCLUSION 4-HD has the potential to mitigate brain injury and neuroinflammation resulting from MCAO-induced acute ischemic damage. This neuroprotective effect is linked to the suppression of microglial activation and the inhibition of HMGB1 pro-inflammatory signaling, facilitated by the increased expression of the Hp protein. This study revealed, for the first time, the protective effects and mechanisms of 4-HD on ischemic brain injury. Additionally, we present the Hp protein as a new target for a small-molecule compound to protect against ischemic brain injury, offering a novel strategy for developing new neuroprotective drugs.
Collapse
Affiliation(s)
- Biying Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Wenqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Zhongxia Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Chao Zhong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Jing Zhou
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Liying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Zhanqiu Wang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Xiangjiao Yi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Yiqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
2
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Huang X, Zeng Q, Hu Y, Shi X. A mendelian randomization analysis of the associations between haptoglobin and multiple sclerosis. Neurol Sci 2024; 45:5823-5832. [PMID: 39400787 DOI: 10.1007/s10072-024-07786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Observational studies have suggested an association between plasma haptoglobin and multiple sclerosis (MS). Haptoglobin plays an important role in the pathogenesis of MS. However, whether it has a causal effect on MS remains unknown. METHODS We here used a two-sample bidirectional Mendelian randomization (MR) method to investigate the causality between haptoglobin and MS. Genetic variants associated with plasma haptoglobin from two independent genome wide association studies (GWASs) (used as the discovery and replication datasets, respectively) were applied as the exposure. Their causal effects on summary statistics of GWASs of MS and disease severity were evaluated using the inverse-variance weighted (IVW) approach as the main analysis component. RESULTS We found in both discovery and replication dataset that plasma haptoglobin was causally positively associated with the risk of MS (discovery: OR: 1.063, 95% CI: 1.022-1.106, P = 0.002; replication: OR: 1.041, 95% CI: 1.005-1.078, P = 0.026), but it was not associated with MS severity (discovery: OR: 1.017, 95% CI: 0.993-1.042, P = 0.168; replication: OR: 1.011, 95% CI: 0.987-1.036, P = 0.373). Besides, we did not detect any significant results in the reverse causation analysis. CONCLUSIONS Our study provides evidence for the causal effects of plasma haptoglobin on the risk of MS.
Collapse
Affiliation(s)
- Xingxiao Huang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- School of Mental Health, Guangzhou Medical University, Guangzhou, China
- Institute of Psychiatry and Psychology, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Qian Zeng
- School of Mental Health, Guangzhou Medical University, Guangzhou, China
- Institute of Psychiatry and Psychology, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Neurology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yachun Hu
- School of Mental Health, Guangzhou Medical University, Guangzhou, China
- Institute of Psychiatry and Psychology, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Neurology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaolei Shi
- Geriatric Neuroscience Center, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
- School of Mental Health, Guangzhou Medical University, Guangzhou, China.
- Institute of Psychiatry and Psychology, Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
4
|
Lothstein KE, Chen F, Mishra P, Smyth DJ, Wu W, Lemenze A, Kumamoto Y, Maizels RM, Gause WC. Helminth protein enhances wound healing by inhibiting fibrosis and promoting tissue regeneration. Life Sci Alliance 2024; 7:e202302249. [PMID: 39179288 PMCID: PMC11342954 DOI: 10.26508/lsa.202302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Skin wound healing due to full thickness wounds typically results in fibrosis and scarring, where parenchyma tissue is replaced with connective tissue. A major advance in wound healing research would be to instead promote tissue regeneration. Helminth parasites express excretory/secretory (ES) molecules, which can modulate mammalian host responses. One recently discovered ES protein, TGF-β mimic (TGM), binds the TGF-β receptor, though likely has other activities. Here, we demonstrate that topical administration of TGM under a Tegaderm bandage enhanced wound healing and tissue regeneration in an in vivo wound biopsy model. Increased restoration of normal tissue structure in the wound beds of TGM-treated mice was observed during mid- to late-stage wound healing. Both accelerated re-epithelialization and hair follicle regeneration were observed. Further analysis showed differential expansion of myeloid populations at different wound healing stages, suggesting recruitment and reprogramming of specific macrophage subsets. This study indicates a role for TGM as a potential therapeutic option for enhanced wound healing.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Fei Chen
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Pankaj Mishra
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Wenhui Wu
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
5
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
6
|
Xia Y, Wu P, Chen H, Chen Z. Advances in stem cell therapy for diabetic foot. Front Genet 2024; 15:1427205. [PMID: 39290985 PMCID: PMC11405205 DOI: 10.3389/fgene.2024.1427205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic Foot Ulcers (DFU) represent a grave complication often encountered in the advanced stages of diabetes mellitus. They frequently lead to recurrent hospitalizations and, in severe cases, can result in life-threatening conditions such as infections, gangrene, and even amputation Diabetic foot ulcers (DFU), as a serious complication in the late stage of diabetes mellitus, are prone to lead to repeated hospitalization, and in severe cases, infection, gangrene, and even amputation. Although there are many methods for treating diabetic foot, there is no clear and effective method to reduce the amputation rate of diabetic foot patients. In recent years, advancements in the understanding of stem cell therapy for the treatment of DFU have shed light on its potential as a novel therapeutic approach. In recent years, as the research on stem cell therapy for diabetic foot is gradually deepening, stem cells are expected to become a new therapeutic method for treating DFU in the future. Their therapeutic effects are through promoting angiogenesis, secreting paracrine factors, controlling inflammation, promoting collagen deposition, and regulating immunity, etc. Despite numerous studies confirming the efficacy of stem cell therapy in treating DFU, there is still a need for the establishment of standardized treatment protocols. Although numerous studies have shown that stem cell therapy for DFU is real and effective, there has not yet been a standardized treatment protocol. This article reviews studies related to stem cell therapy for DFU, looking at the mechanism of action, types of stem cells, and modes of administration.
Collapse
Affiliation(s)
- Yinfeng Xia
- Department of Burn and Plastic Surgery, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Ping Wu
- Department of Burn and Plastic Surgery, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Hong Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing MedicalUniversity, Chongqing, China
| | - Zhiyong Chen
- Department of Burn and Plastic Surgery, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Hernandez CO, Hsieh HC, Zhu K, Li H, Yang HY, Recendez C, Asefifeyzabadi N, Nguyen T, Tebyani M, Baniya P, Lopez AM, Alhamo MA, Gallegos A, Hsieh C, Barbee A, Orozco J, Soulika AM, Sun YH, Aslankoohi E, Teodorescu M, Gomez M, Norouzi N, Isseroff RR, Zhao M, Rolandi M. A bioelectronic device for electric field treatment of wounds reduces inflammation in an in vivo mouse model. PLoS One 2024; 19:e0303692. [PMID: 38875291 PMCID: PMC11178234 DOI: 10.1371/journal.pone.0303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Electrical signaling plays a crucial role in the cellular response to tissue injury in wound healing and an external electric field (EF) may expedite the healing process. Here, we have developed a standalone, wearable, and programmable electronic device to administer a well-controlled exogenous EF, aiming to accelerate wound healing in an in vivo mouse model to provide pre-clinical evidence. We monitored the healing process by assessing the re-epithelization rate and the ratio of M1/M2 macrophage phenotypes through histology staining. Following three days of treatment, the M1/M2 macrophage ratio decreased by 30.6% and the re-epithelization in the EF-treated wounds trended towards a non-statically significant 24.2% increase compared to the control. These findings provide point towards the effectiveness of the device in shortening the inflammatory phase by promoting reparative macrophages over inflammatory macrophages, and in speeding up re-epithelialization. Our wearable device supports the rationale for the application of programmed EFs for wound management in vivo and provides an exciting basis for further development of our technology based on the modulation of macrophages and inflammation to better wound healing.
Collapse
Affiliation(s)
- Cristian O Hernandez
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cynthia Recendez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Andrea Medina Lopez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Moyasar A Alhamo
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States of America
| | - Yao-Hui Sun
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marcella Gomez
- Department of Applied Mathematics, University of California, Santa Cruz, CA, United States of America
| | - Narges Norouzi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States of America
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Dermatology Section, VA Northern California Health Care System, Mather, CA, United States of America
| | - Min Zhao
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
8
|
Yue Y, Liu Y, Lin Y, Guo F, Cai K, Chen S, Zhang W, Tang S. A carboxymethyl chitosan/oxidized hyaluronic acid composite hydrogel dressing loading with stem cell exosome for chronic inflammation wounds healing. Int J Biol Macromol 2024; 257:128534. [PMID: 38048924 DOI: 10.1016/j.ijbiomac.2023.128534] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Stem cell exosomes (Exo) play an important role in the transformation of macrophages, but the rapid clearance of Exo in vivo limits their therapeutic effects for chronic inflammation wounds healing. Here, stem cell Exo was isolated and introduced to a composite hydrogel including carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA) through chemical cross-linking, which formed an Exo-loaded (CMCS/OHA/Exo) hydrogel. The CMCS/OHA/Exo hydrogel exhibited a function of Exo sustained release and an Exo protection within 6 days. This CMCS/OHA/Exo hydrogel was much better than CMCS/OHA hydrogel or Exo solution in macrophage cell phagocytosis, proliferation and migration in vitro, especially, played an obviously positive role in the transformation of macrophages compared with the reference groups. For the treatment of the chronic inflammation wounds in vivo, the CMCS/OHA/Exo hydrogel had the best results at wound heal rate and inhibiting the secretion of inflammatory factors, and it was far superior to reference groups in wound re-epithelization and collagen production. CMCS/OHA/Exo hydrogels can promote Exo release based on hydrogel degradation to regulate macrophages transformation and accelerate chronic wound healing. The study offers a method for preparing Exo-loaded hydrogels that effectively promote the transformation of macrophages and accelerate chronic inflammatory wound healing.
Collapse
Affiliation(s)
- Yan Yue
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Yukai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fengbiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Kun Cai
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
9
|
Sakaguchi H, Sato Y, Matsumoto R, Gomikawa J, Yoshida N, Suzuki T, Matsuda M, Iwanami N. Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract. Front Immunol 2023; 14:1259519. [PMID: 37767090 PMCID: PMC10520778 DOI: 10.3389/fimmu.2023.1259519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
10
|
Pires IS, Berthiaume F, Palmer AF. Engineering Therapeutics to Detoxify Hemoglobin, Heme, and Iron. Annu Rev Biomed Eng 2023; 25:1-21. [PMID: 37289555 DOI: 10.1146/annurev-bioeng-081622-031203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
11
|
Han S, Cai L, Chen P, Kuang W. A study of the correlation between stroke and gut microbiota over the last 20years: a bibliometric analysis. Front Microbiol 2023; 14:1191758. [PMID: 37350780 PMCID: PMC10282156 DOI: 10.3389/fmicb.2023.1191758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose This study intends to uncover a more thorough knowledge structure, research hotspots, and future trends in the field by presenting an overview of the relationship between stroke and gut microbiota in the past two decades. Method Studies on stroke and gut microbiota correlations published between 1st January 2002 and 31st December 2021 were retrieved from the Web of Science Core Collection and then visualized and scientometrically analyzed using CiteSpace V. Results A total of 660 papers were included in the study, among which the United States, the United Kingdom, and Germany were the leading research centers. Cleveland Clinic, Southern Medical University, and Chinese Academy of Science were the top three institutions. The NATURE was the most frequently co-cited journal. STANLEY L HAZEN was the most published author, and Tang WHW was the most cited one. The co-occurrence analysis revealed eight clusters (i.e., brain-gut microbiota axis, fecal microbiome transplantation, gut microbiota, hypertension, TMAO, ischemic stroke, neuroinflammation, atopobiosis). "gut microbiota," "Escherichia coli," "cardiovascular disease," "risk," "disease," "ischemic stroke," "stroke," "metabolism," "inflammation," and "phosphatidylcholine" were the most recent keyword explosions. Conclusion Findings suggest that in the next 10 years, the number of publications produced annually may increase significantly. Future research trends tend to concentrate on the mechanisms of stroke and gut microbiota, with the inflammation and immunological mechanisms, TMAO, and fecal transplantation as hotspots. And the relationship between these mechanisms and a particular cardiovascular illness may also be a future research trend.
Collapse
Affiliation(s)
- Shengnan Han
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longhui Cai
- First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Chen
- School of Medical Technology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Mahmoudvand G, Karimi Rouzbahani A, Razavi ZS, Mahjoor M, Afkhami H. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Front Bioeng Biotechnol 2023; 11:1158484. [PMID: 37122856 PMCID: PMC10133463 DOI: 10.3389/fbioe.2023.1158484] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Diabetic foot ulcer (DFU) is considered the most catastrophic complication of diabetes mellitus (DM), leading to repeated hospitalizations, infection, gangrene, and finally amputation of the limb. In patients suffering from diabetes mellitus, the wound-healing process is impaired due to various factors such as endothelial dysfunction and synthesis of advanced glycation end-products, hence, conventional therapeutic interventions might not be effective. With increasing therapeutic applications of mesenchymal stem cells (MSCs) in recent years, their potential as a method for improving the wound-healing process has gained remarkable attention. In this field, mesenchymal stem cells exert their beneficial effects through immunomodulation, differentiation into the essential cells at the site of ulcers, and promoting angiogenesis, among others. In this article, we review cellular and molecular pathways through which mesenchymal stem cell therapy reinforces the healing process in non-healing Diabetic foot ulcers.
Collapse
Affiliation(s)
- Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Hamed Afkhami,
| |
Collapse
|
14
|
Ebrahimi L, Samadikuchaksaraei A, Joghataei MT, Safa M, Abtahi Froushani SM, Ghasemian M, Zolfaghari S, Mozafari M, Brouki Milan P. Transplantation of decellularised human amniotic membranes seeded with mesenchymal stem cell-educated macrophages into animal models. J Biomed Mater Res B Appl Biomater 2022; 110:1637-1650. [PMID: 35113492 DOI: 10.1002/jbm.b.35024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
The reconstruction of chronic skin wounds remains a public health challenge in dermatology. Precisely controlling and monitoring the wound-healing process should result in enhanced outcomes for the patient. Cell-based therapies have shown great potential in medicine due to their immunomodulatory and healing properties. Herein, we produced activated macrophages by treating circulating monocytes with mesenchymal stem cell (MSC) supernatant. We also demonstrated the critical role of activated macrophages transplantation using amniotic membranes in accelerating wound healing in an animal wound model. The activated macrophages not only exhibited immunomodulatory cytokines like transforming growth factorβ (TGFβ) and interleukin 10 (and IL10) secretion but also showed attachment and proliferation ability on the amniotic membrane scaffold. Moreover, MSCs supernatant-treated cells also displayed significant ARG1, CD206, and IL 10 genes expression. Inspired by the in vitro results, we examined the in vivo therapeutic efficacy of the activated macrophage transplantation using an acellular amniotic membrane carrier in a full-thickness cutaneous wound model. The wound healing rate was significant in the group treated with macrophages generated via mesenchymal cell therapy seeded human amniotic membrane. There was less scarring in the wound sites after placing cell-scaffold constructs in the wound sites in the animal models. Overall, macrophages stimulated with mesenchymal cells' supernatant exhibited improved healing processes in incisional wounds by decreasing the inflammatory phase, increasing angiogenesis, and reducing scar tissue development.
Collapse
Affiliation(s)
- Loghman Ebrahimi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tang X, Zheng W, Hu J, Deng H, Tang L, Zou Z, Liu Y, Qin H, Ye Y, Chen H. Proteomics-based analysis of potential therapeutic targets in patients with peritoneal dialysis-associated peritonitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140796. [PMID: 35661691 DOI: 10.1016/j.bbapap.2022.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Peritoneal dialysis-associated peritonitis (PDAP) is the most common complication in peritoneal dialysis patients. We propose screening for characteristic expressed proteins in the dialysate of PDAP patients to provide clues for the diagnosis of PDAP and its therapeutic targets. METHODS Dialysate samples were collected from patients with a first diagnosis of PDAP (n = 15) and from patients who had not experienced peritonitis (Control, n = 15). Data-independent acquisition (DIA) proteomic analysis was used to screen for differentially expressed proteins (DEPs). Co-expression networks were constructed via weighted gene co-expression network analysis (WGCNA) for detection of gene modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional annotation of DEPs and gene modules. Hub proteins were validated using the parallel reaction monitoring (PRM) method. RESULTS A total of 142 DEPs in the dialysate of PDAP patients were identified. 70 proteins were upregulated and 72 proteins were downregulated. GO and KEGG analysis showed that DEPs were mainly enriched in cell metabolism, glycolysis/glycogenesis and hypoxia-inducible factor-1 signaling pathway. Subsequently, a co-expression network was constructed and four gene modules were detected. Myeloperoxidase (MPO) and myeloperoxidase (HP) were the key proteins of the blue and turquoise modules, respectively. Additionally, PRM analysis showed that the expression of MPO and HP was significantly upregulated in the PDAP group compared to the non-peritonitis group, which was consistent with our proteomics data. CONCLUSION MPO and HP were differentially expressed in the dialysate of PDAP patients and may be potential diagnostic and therapeutic targets for PDAP.
Collapse
Affiliation(s)
- Xingming Tang
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China.
| | - Wei Zheng
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Jieping Hu
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Huizhao Deng
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Liwen Tang
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Ziliang Zou
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Yinglin Liu
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Hui Qin
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Yuqiu Ye
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Huimin Chen
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| |
Collapse
|
16
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
17
|
Ning M, Li Y, Chen Z, Han P, Tang X, Zhang Y, Gao L. Role of haematopoietic cell-specific protein 1-associated protein X-1 gene in lipopolysaccharide-induced apoptosis of human dermal fibroblasts. Wound Repair Regen 2021; 30:34-44. [PMID: 34826355 DOI: 10.1111/wrr.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Wound healing may be disrupted by lipopolysaccharide (LPS)-induced mitochondrial dysfunction, inflammation, and excessive oxidative stress, which can lead to undesirable consequences. The haematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) is a mitochondrial matrix protein that regulates mitochondrial function. This study aimed to comprehensively identify the role of HAX-1 in the inhibition of LPS-induced mitochondrial dysfunction and apoptosis in human dermal fibroblasts (HDFs). HAX-1 expression was assessed in the HDF-a cell line using real-time polymerase chain reaction, western blotting, and immunohistochemical staining. The viability, migration, and apoptosis of HDF-a cells were evaluated using the water-soluble tetrazolium-1 assay, transwell assay, and flow cytometry analysis, respectively. Mitochondrial function was evaluated based on reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm). Our results demonstrated that LPS stimulation markedly repressed HAX-1 expression in HDFs and silencing of HAX-1 led to mitochondrial ROS accumulation, ΔΨm disruption, and abnormal mitochondrial morphology. Accordingly, overexpression of HAX-1 or administration of metformin enhanced mitochondrial fusion and normalized mitochondrial dynamics, thereby reversing LPS-induced mitochondrial dysfunction, fibroblast apoptosis, and viability and migration inhibition in HDF-a cells. These data support a mechanism wherein HAX-1 plays a crucial role in LPS-induced fibroblast apoptosis in a mitochondria-dependent manner.
Collapse
Affiliation(s)
- Mei Ning
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Yanlong Li
- Department of Cardiovascular, Shandong Electric Power Central Hospital, Jinan, China
| | - Zhihui Chen
- Department of Emergency, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Pengfei Han
- Department of Clinical Laboratory, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiaolan Tang
- College of Nursing, Mudanjiang Medical University, Mudanjiang, China
| | - Yanli Zhang
- Department of Anesthesiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Luan Gao
- Department of Emergency, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
18
|
Wan BN, Zhou SG, Wang M, Zhang X, Ji G. Progress on haptoglobin and metabolic diseases. World J Diabetes 2021; 12:206-214. [PMID: 33758643 PMCID: PMC7958475 DOI: 10.4239/wjd.v12.i3.206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Haptoglobin (Hp) is an acidic glycoprotein, existing in the serum and other body fluids of human beings and a variety of mammals. Hp is produced in the liver, white adipose tissue, and the kidney. The genetic polymorphisms and different phenotypes of Hp have different biological functions. Hp has antibacterial, antioxidant, and angiogenic effects and is associated with multiple diseases including simple obesity, vascular complications of diabetes mellitus, nonalcoholic fatty liver disease, hypertension, blood diseases, autoimmune diseases, and malignant tumors. Hp also participates in many life activities, indicating the importance of Hp in further studies. Previously, we found that the expression of serum Hp changed after treatment of simple obesity patients in clinical trials. However, the specific mechanism of Hp in patients with simple obesity is still unclear. The purpose of this article is to introduce recent research progress on Hp, emphasizing the relationship between Hp and the development of metabolic disease, which will improve the understanding of the functions of Hp underlying metabolic diseases and discuss future research directions.
Collapse
Affiliation(s)
- Bao-Nian Wan
- Department of TCM Demonstration, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shi-Gao Zhou
- Department of TCM Demonstration, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Miao Wang
- Department of TCM Demonstration, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao Zhang
- Department of TCM Demonstration, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|