1
|
Jeang WJ, Wong BM, Zhao Y, Manan RS, Jiang AL, Bose S, Collins E, McMullen P, Rosenboom JG, Lathwal S, Langer R, Anderson DG. Antifouling Immunomodulatory Copolymer Architectures That Inhibit the Fibrosis of Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414743. [PMID: 39722171 DOI: 10.1002/adma.202414743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation. The present work introduces antifouling immunomodulatory (AIM) copolymer coatings, which combine both strategies to effectively enhance implant protection. AIM copolymers synergistically integrate zwitterionic moieties to resist protein fouling, HTS-derived antifibrotics for immunomodulation, and silane monomers for grafting to diverse substrates including elastomers, ceramics, and metals. Interestingly, simply combining these monomers into conventional random or block copolymer architectures yielded no significant advantage over homopolymers. By contrast, an unusual polymer chain architecture - a zwitterionic block flanked by a mixed zwitterionic immunomodulatory segment - showed superior fibrosis resistance in both peritoneal and subcutaneous sites over one month in immunocompetent mice. This architecture also improved the performance of two different HTS-derived antifibrotic monomers, suggesting that tailoring AIM architectures may broadly complement immunomodulatory chemistries and provide a versatile approach to improving implant longevity.
Collapse
Affiliation(s)
- William J Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
| | - Bryan M Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexis L Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA, 02481, USA
| | - Suman Bose
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Evan Collins
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick McMullen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jan-Georg Rosenboom
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sushil Lathwal
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
4
|
Jeang WJ, Bochenek MA, Bose S, Zhao Y, Wong BM, Yang J, Jiang AL, Langer R, Anderson DG. Silicone cryogel skeletons enhance the survival and mechanical integrity of hydrogel-encapsulated cell therapies. SCIENCE ADVANCES 2024; 10:eadk5949. [PMID: 38578991 PMCID: PMC10997197 DOI: 10.1126/sciadv.adk5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.
Collapse
Affiliation(s)
- William J. Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew A. Bochenek
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suman Bose
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan M. Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiawei Yang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Alexis L. Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Kalhori D, Zakeri N, Azarpira N, Fanian M, Solati-Hashjin M. Chitosan-Coated-Alginate encapsulation of HepG2 cells for enhanced cellular functions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2022.2162414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Fanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
6
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Gadelha DD, Filho WA, Brandão MAJ, Montenegro RM. Is parathyroid allotransplantation a viable option in the treatment of permanent hypoparathyroidism? A review of the literature. Endocrine 2022; 80:253-265. [PMID: 36583826 DOI: 10.1007/s12020-022-03292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The standard clinical treatment for hypoparathyroidism, replacement of calcium and vitamin metabolites (calcitriol), has been used for decades; however, evidence points to its inefficiency in acting on the pathophysiology of the disease, which may precipitate or aggravate conditions already related to hypoparathyroidism. Therapies based on recombinant human parathyroid hormone have emerged in recent years but still have low availability due to their high cost. Parathyroid allotransplantation (Pt-a) has been reported as a strategy for treating more severe cases. METHODS This narrative review highlights relevant aspects of conventional permanent hypoparathyroidism treatment and provides a comprehensive and critical review of the reports of applications of Pt-a, especially those carried out in recent years. Particular focus is placed on the following key points: parathyroid immunogenicity, immunosuppression regimens (short-term or chronic), techniques to reduce the expression of immunogenic molecules, follow-up time, and reductions in calcium and vitamin D supplementation. CONCLUSION Pt-a has been considered a safe and relatively low-cost therapy and is believed to have the potential to cure the disease, in addition to treating symptoms. However, there is considerable heterogeneity in treatment protocols; therefore, more studies are required to improve the standardization of the procedure and thus improve the consistency of outcomes.
Collapse
|
8
|
Krishtul S, Davidov T, Efraim Y, Skitel‐Moshe M, Baruch L, Machluf M. Development of a bioactive microencapsulation platform incorporating decellularized extracellular matrix to entrap human induced pluripotent stem cells for versatile biomedical applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stasia Krishtul
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Yael Efraim
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Michal Skitel‐Moshe
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering Technion – Israel Institute of Technology Haifa Israel
| |
Collapse
|
9
|
Opara A, Jost A, Dagogo-Jack S, Opara EC. Islet cell encapsulation - Application in diabetes treatment. Exp Biol Med (Maywood) 2021; 246:2570-2578. [PMID: 34666516 PMCID: PMC8669170 DOI: 10.1177/15353702211040503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
| | - Alec Jost
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes & Metabolism, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
10
|
Cheepa FF, Zhao G, Panhwar F, Memon K. Controlled Release of Cryoprotectants by Near-Infrared Irradiation for Improved Cell Cryopreservation. ACS Biomater Sci Eng 2021; 7:2520-2529. [PMID: 34028256 DOI: 10.1021/acsbiomaterials.1c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation is essential to store living cells and tissues for future use while maintaining the proper levels of cell functions. The use of cryoprotective agents (CPAs) to inhibit intracellular ice formation during cryopreservation is vital for cell survival, but the addition and removal of CPAs and ice recrystallization during rewarming will cause fatal injury to cells. The conventional CPA loading and unloading methods generate osmotic shocks and cause mechanical injury to biological samples, and the conventional method of rewarming using a water bath also leads to ice recrystallization and devitrification. A new CPA-loaded microparticle-based method for loading and photothermal rewarming under near-infrared (NIR) laser irradiation was proposed to overcome these difficulties. We have successfully achieved the controlled release of CPAs (2 M EG, 2 M PG, and 0.5 M trehalose) with a graphene oxide (GO, 0.04% w/v) core from a 1.5% (w/v) sodium alginate shell to the human umbilical vein endothelial cells (HUVECs) within 60 s using NIR laser irradiation (808 nm Lasever at 5000 mW/cm2) and successfully recovered the CPA-loaded cells with 0.04% (w/v) GO in 8-10 s using the same NIR irradiation. The results show that this method achieved 25% higher viability of HUVECs compared to the conventional method. In short, this study proposes a new approach for achieving controlled CPA loading to cells with a photothermal-induced strategy for cell cryopreservation.
Collapse
Affiliation(s)
- Faryal Farooq Cheepa
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
11
|
Capin L, Abbassi N, Lachat M, Calteau M, Barratier C, Mojallal A, Bourgeois S, Auxenfans C. Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances their Secretory Profile. Int J Mol Sci 2020; 21:E6316. [PMID: 32878250 PMCID: PMC7504546 DOI: 10.3390/ijms21176316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.
Collapse
Affiliation(s)
- Lucille Capin
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Nacira Abbassi
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Maëlle Lachat
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Marie Calteau
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Cynthia Barratier
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Ali Mojallal
- Service de chirurgie plastique, reconstructrice et esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France;
- Univ Lyon, Université Claude Bernard-Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| |
Collapse
|
12
|
Neves MI, Moroni L, Barrias CC. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front Bioeng Biotechnol 2020; 8:665. [PMID: 32695759 PMCID: PMC7338591 DOI: 10.3389/fbioe.2020.00665] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The rational choice and design of biomaterials for biomedical applications is crucial for successful in vitro and in vivo strategies, ultimately dictating their performance and potential clinical applications. Alginate, a marine-derived polysaccharide obtained from seaweeds, is one of the most widely used polymers in the biomedical field, particularly to build three dimensional (3D) systems for in vitro culture and in vivo delivery of cells. Despite their biocompatibility, alginate hydrogels often require modifications to improve their biological activity, namely via inclusion of mammalian cell-interactive domains and fine-tuning of mechanical properties. These modifications enable the addition of new features for greater versatility and control over alginate-based systems, extending the plethora of applications and procedures where they can be used. Additionally, hybrid systems based on alginate combination with other components can also be explored to improve the mimicry of extracellular microenvironments and their dynamics. This review provides an overview on alginate properties and current clinical applications, along with different strategies that have been reported to improve alginate hydrogels performance as 3D matrices and 4D dynamic systems.
Collapse
Affiliation(s)
- Mariana Isabel Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,CNR NANOTEC - Institute of Nanotechnology, Università del Salento, Lecce, Italy
| | - Cristina Carvalho Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Arifin DR, Kulkarni M, Kadayakkara D, Bulte JWM. Fluorocapsules allow in vivo monitoring of the mechanical stability of encapsulated islet cell transplants. Biomaterials 2019; 221:119410. [PMID: 31421313 PMCID: PMC6717436 DOI: 10.1016/j.biomaterials.2019.119410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Clinical trials that have used encapsulated islet cell therapy have been few and overall disappointing. This is due in part to the lack of suitable methods to monitor the integrity vs. rupture of transplanted microcapsules over time. Fluorocapsules were synthesized by embedding emulsions of perfluoro-15-crown-5-ether (PFC), a bioinert compound detectable by 19F MRI, into dual-alginate layer, Ba2+-gelled alginate microcapsules. Fluorocapsules were spherical with an apparent smooth surface and an average diameter of 428 ± 52 μm. After transplantation into mice, the 19F MRI signal of capsules remained stable for up to 90 days, corresponding to the total number of intact fluorocapsules. When single-alginate layer capsules were ruptured with alginate lyase, the 19F MRI signal dissipated within 4 days. For fluoroencapsulated luciferase-expressing mouse βTC6 insulinoma cells implanted into autoimmune NOD/ShiLtJ mice and subjected to alginate-lyase induced capsule rupture in vivo, the 19F MRI signal decreased sharply over time along with a decrease in bioluminescence imaging signal used as a measure of cell viability in vivo. These results indicate that maintenance of capsule integrity is essential for preserving transplanted cell survival, where a decrease in 19F MRI signal may serve as a predictive imaging surrogate biomarker for impending failure of encapsulated islet cell therapy.
Collapse
Affiliation(s)
- Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mangesh Kulkarni
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Deepak Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Li Y, Memon K, Zheng Y, Cheng Y, Mbogba MK, Wang P, Ouyang X, Zhao G. Microencapsulation Facilitates Low-Cryoprotectant Vitrification of Human Umbilical Vein Endothelial Cells. ACS Biomater Sci Eng 2019; 5:5273-5283. [DOI: 10.1021/acsbiomaterials.9b00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufang Li
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yuanyuan Zheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yue Cheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Momoh Karmah Mbogba
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Peitao Wang
- Department of Cryomedicine and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
15
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
16
|
De Mesmaeker I, Robert T, Suenens KG, Stangé GM, Van Hulle F, Ling Z, Tomme P, Jacobs-Tulleneers-Thevissen D, Keymeulen B, Pipeleers DG. Increase Functional β-Cell Mass in Subcutaneous Alginate Capsules With Porcine Prenatal Islet Cells but Loss With Human Adult Islet Cells. Diabetes 2018; 67:2640-2649. [PMID: 30305364 DOI: 10.2337/db18-0709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022]
Abstract
Alginate (Alg)-encapsulated porcine islet cell grafts are developed to overcome limitations of human islet transplantation. They can generate functional implants in animals when prepared from fetal, perinatal, and adult pancreases. Implants have not yet been examined for efficacy to establish sustained, metabolically adequate functional β-cell mass (FBM) in comparison with human islet cells. This study in immune-compromised mice demonstrates that subcutaneous implants of Alg-encapsulated porcine prenatal islet cells with 4 × 105 β-cells form, over 10 weeks, a FBM that results in glucose-induced plasma C-peptide >2 ng/mL and metabolic control over the following 10 weeks, with higher efficiency than nonencapsulated, while failing in peritoneum. This intracapsular FBM formation involves β-cell replication, increasing number fourfold, and maturation toward human adult β-cells. Subcutaneous Alg-encapsulated human islet cells with similar β-cell number establish implants with plasma C-peptide >2 ng/mL for the first 10 weeks, with nonencapsulated cells failing; their β-cells do not replicate but progressively die (>70%), explaining C-peptide decline and insufficient metabolic control. An Alg matrix thus helps establish β-cell functions in subcutis. It allows formation of sustained metabolically adequate FBM by immature porcine β-cells with proliferative activity but not by human adult islet cells. These findings define conditions for evaluating its immune-protecting properties.
Collapse
Affiliation(s)
- Ines De Mesmaeker
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Robert
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Krista G Suenens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert M Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freya Van Hulle
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Application of Millifluidics to Encapsulate and Support Viable Human Mesenchymal Stem Cells in a Polysaccharide Hydrogel. Int J Mol Sci 2018; 19:ijms19071952. [PMID: 29970871 PMCID: PMC6073862 DOI: 10.3390/ijms19071952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/10/2023] Open
Abstract
Human adipose-derived stromal cells (hASCs) are widely known for their immunomodulatory and anti-inflammatory properties. This study proposes a method to protect cells during and after their injection by encapsulation in a hydrogel using a droplet millifluidics technique. A biocompatible, self-hardening biomaterial composed of silanized-hydroxypropylmethylcellulose (Si-HPMC) hydrogel was used and dispersed in an oil continuous phase. Spherical particles with a mean diameter of 200 μm could be obtained in a reproducible manner. The viability of the encapsulated hASCs in the Si-HPMC particles was 70% after 14 days in vitro, confirming that the Si-HPMC particles supported the diffusion of nutrients, vitamins, and glucose essential for survival of the encapsulated hASCs. The combination of droplet millifluidics and biomaterials is therefore a very promising method for the development of new cellular microenvironments, with the potential for applications in biomedical engineering.
Collapse
|